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Chapter 1

Introduction

Even if we do not realize, almost all of us are facing combinatorial optimization problems in
our daily life, i.e., problems where there are several possible solutions and we have to choose
the best or a fair enough solution in some respects. For example, when we want to get some-
where using public transport we may have several possible routes but we want to choose the
fastest one (or the one with the fewest transfers, or the one with the least walking, etc.). The
public transport company also faces combinatorial optimization problems. For example, on
the operational planning phase they have to create (i) daily schedules for the vehicles of their
fleet to perform the timetabled trips, minimizing some assets and operational costs; (ii) daily
shifts and (iii) rosters over a longer planning period (e.g., weeks or months) for the drivers,
satisfying a wide variety of federal regulations, minimizing the labor costs. Although our
planning problem can be easily handled and there are also several applications to support our
decisions, the problems arising in the public transport company require complex systems con-
taining suitable mathematical models and efficient algorithms to make them computationally
tractable.

Today’s industries are also teeming with combinatorial optimization problems. For exam-
ple, machine scheduling problems permanently arise in a company producing or assembling
some products. Such a problem involves sequencing a set of jobs (e.g., manufacturing op-
erations of a given product) to be processed in a set of resources. Without a claim to com-
pleteness, we mention that these problems have different flow patterns (e.g., single machine,
parallel machines, shop models), constraints (e.g., precedence constraints, setup times, release
dates, no-wait operations) and objectives (minimizing costs, penalties, makespan, or increas-
ing production throughput) based on the particularity of the companies and the products.
Again, it requires adaptable models and algorithms to take more and more details of the
production process into consideration while keeping the problem computationally tractable.
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Exact algorithms or heuristics?

Facing a hard problem, we can use two types of solution approaches: exact algorithms and
heuristics. Exact algorithms are guaranteed to find an optimal solution, however, it may
require plenty of time. In contrast, heuristics does not guarantee optimality, however, finds
a fair enough solution in a shorter execution time. So there is a trade-off between these
approaches we need to deal with. Although everybody desires an optimal solution to their
problem, since it minimizes the costs or maximizes the profit, we may not insist on such a
solution within a reasonable running time due to the complexity of the problem. For example,
in case of vehicle and crew scheduling problems the exact solution of an instance taken from
a middle-sized city (e.g., there are 2763 timetabled trips on an average workday in Szeged,
Hungary) is not possible (Árgilán et al., 2010).

Despite all the difficulties mentioned so far, for all the problems investigated in this the-
sis we provide exact algorithms. In addition, for one of these problems we also present an
approximation algorithm, i.e., an algorithm which guarantees that its returned solution is
within a multiplicative factor of the optimal solution. In all these exact algorithms, integer
programming approaches play a key role.

Integer programming approaches

A well-established technique to create an exact solution approach is to formulate the given
problem as an integer linear program (ILP) and solve it with a branch-and-bound type algo-
rithm. Such a formulation consists of integer variables (i.e., variables that should take integer
values in the solution), linear constraints (or inequalities) and a linear objective function such
that the feasible solutions of the formulation represent the feasible solutions of the problem.
To solve an ILP problem one can adapt a branch-and-bound procedure which splits up the
problem into smaller subproblems and discards those that are not promising an optimal so-
lution for the original problem.

Although several softwares have been developed to solve ILP problems, these are usually
struggling on hard problems that we consider in this thesis. One of the main reasons for this is
that these are general solvers and have no insight into the problem except the initial formula-
tion. Thus, in order to make these problems manageable, we need to understand the structure
of the problem and utilize this knowledge to improve either the initial ILP formulation or the
solution procedure. The former task leads us to polyhedral investigations.

Polyhedral investigations

The linear inequalities of an ILP formulation determine a polyhedron in a multi-dimensional
space, called the LP-relaxed polyhedron, and the integer points (i.e., points with integer coor-
dinates) in this polyhedron represent the feasible solutions of the problem, see Fig. 1.1a. These
integer points (under certain conditions) also determine a polyhedron, called the polytope of
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(a) The polyhedron determined
by linear constraints and its
integer points

(b) The polytope of the integer
points

(c) A valid (dotted) and a
facet-defining (dashed)
inequality for the polytope

Figure 1.1: 2-dimensional example for the polyhedron associated with an integer linear
programming formulation

feasible solutions, see Fig. 1.1b, and basically the tighter an LP-relaxed polyhedron is the
better the corresponding ILP formulation for the problem is. So, our purpose is to find con-
straints that make the formulation tighter, called valid inequalities for the polytope of feasible
solutions, see Fig. 1.1c. The greatest achievement would be finding the complete description
of that polytope, i.e., its determining (so-called facet-defining) inequalities, see Fig. 1.1c, since
in that case we had the tightest ILP formulation for the problem. The bad news, besides that
finding this description is generally a challenging task, is that such a description could be
exponential size which makes again the problem computationally intractable. The good news
is that if we can identify a class of valid inequalities we can improve a branch-and-bound
procedure by adding these inequalities gradually to the formulation, if needed.

Problems investigated in the thesis

In this thesis we deal with three different combinatorial optimization problems presenting our
theoretical results, and our solution approaches along with the computational results of our
thorough experiments.

Resource constrained shortest path problem. In Chapters 3 and 4 we consider the resource con-
strained shortest path problem where the goal is to find the shortest path between two points
in a given network such that certain resource consumptions along the path do not exceed the
given limits. This problem and its variants have several direct real-world applications, e.g.,
finding a sequence of treatment processes that reduces the concentrations of the pollutants to
acceptable levels (Elimam and Kohler, 1997), designing a thermally efficient composite wall
or roof structure (Elimam and Kohler, 1997), calculating an aircraft’s optimal risk trajectory
(Zabarankin et al., 2002), locating a pipeline between two locations with safety valves (Laporte
et al., 2012). The problem and its variants also arise in other optimization problems as a sub-
problem to be solved repeatedly, e.g., crew scheduling and rostering problems (Desrochers
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and Soumis, 1989; Gamache et al., 1999), various vehicle routing problems (Chabrier, 2006;
Derigs et al., 2009), maximizing profit over the life cycle of a family of products by prescribing
the content and timing of upgrades (Wilhelm et al., 2003), optimizing the placement opera-
tions of a dual-head placement machine (Wilhelm et al., 2007). In Chapter 3 we investigate
approximation schemes for the problem, where the resource limits can be slightly violated. In
Chapter 4 we propose linear programming based exact solution algorithms for the problem.

Position-based scheduling on a single machine. As we mentioned before, machine scheduling
has a great practical relevance, and thus the problem has a large number of variants. Hence,
we do not attempt to enumerate any application of these problems, however, for a tertiary
analysis we refer to (Abedinnia et al., 2017). In Chapter 5 we consider and give an exact
solution approach to a machine scheduling problem where the set of jobs has to be sequenced
on a single machine.

Multiple-depot integrated vehicle and crew scheduling problem. As we mentioned before, the ve-
hicle scheduling and the crew scheduling problems are two main planning problems that
arise in public transportation. Several solution approaches have been proposed to solve the
variants of these problems which are either tested on real-life instances or integrated to an in-
formation system, e.g., the decision support system (GIST) of Portuguese transport companies
(Dias et al., 2002), the public transport company (Connexxion) in the Netherlands (Huisman
et al., 2004), the public transport company (Ljubljanski potniški promet) in Ljubljana, Republic
of Slovenia (Békési et al., 2009), the bus company (Tisza Volán) in Szeged, Hungary (Békési
et al., 2009; Árgilán et al., 2010), the mass transit system (MIO) in Cali, Colombia (Baldoquin
and Rengifo-Campo, 2018). In Chapter 6 we consider and give an exact solution approach
to the integrated vehicle and crew scheduling problem, where the vehicles and the crew are
scheduled simultaneously, which makes the problem more complex.



Chapter 2

Terminology, notation

2.1 Basics

We denote with Z, Q, and R the set of integer, rational, and real numbers, respectively. For a
set S ∈ {Z, Q, R} of numbers, the set of positive and non-negative elements of S are denoted
with S>0 := {e ∈ S : e > 0} and S≥0 := {e ∈ S : e ≥ 0}, respectively. Analogously, we denote
with Zd, Qd, and Rd the set of d-dimensional vectors (d ∈ Z>0) with integer, rational, and
real coefficients, respectively, and for a set S ∈ {Z, Q, R} of numbers, the set of d-dimensional
vectors with positive and non-negative coefficients are denote with Sd

>0 and Sd
≥0, respectively.

2.2 Graphs

2.2.1 Undirected graphs

An undirected graph is an ordered pair (V, E) where V is a set of elements, called nodes, and
E is a set of unordered pairs of nodes, called edges. If {u, v} ∈ E, we say that nodes u and v
are adjacent, and for an edge e = {u, v} ∈ E we say that e is incident to node u and node v.

A subset of nodes is a vertex cover if each edge of the graph is incident to at least one
node of this subset. A subset of nodes is a clique if every two distinct nodes of this subset are
adjacent. A subset of nodes is independent if no two nodes of this subset are adjacent.

2.2.2 Directed graphs

A directed graph is an ordered pair (V, A) where V is a set of elements, called nodes, and A is a
set of ordered pairs of nodes, called directed edges or arcs. For an arc e = (u, v), u is called the
tail of e and v is called the head of e, and denoted with tail(e) and head(e), respectively.

For a node v let δin(v) := {e ∈ A : head(e) = v} = {(v1, v2) ∈ A : v2 = v} be the set
of incoming arcs of v, and δout(v) := {e ∈ A : tail(e) = v} = {(v1, v2) ∈ A : v1 = v} be the
set of outgoing arcs of v. For a non-empty set of nodes S ⊂ V let δout(S) := {(u, v) ∈ A : u ∈
S and v /∈ S} be the set of outgoing arcs of S, and δin(S) := {(u, v) ∈ A : u /∈ S and v ∈ S} be

5



6 Machine scheduling

the set of incoming arcs of S. For a set of nodes S ⊆ V let γ(S) := {(u, v) ∈ A : u ∈ S and v ∈ S}
denote the set of arcs spanned by S. Sometimes, to avoid ambiguity, we use notation δin

D (v),
δout

D (v), δin
D (S), δout

D (S), and γD(S) to indicate the underlying graph D = (V, A).

A sequence (e1, . . . , e`) of arcs is called a walk, if head(ei) = tail(ei+1) for all i = 1, . . . , `−
1. A walk (e1, . . . , e`) is a path, if nodes tail(e1), head(e1), head(e2), . . . , head(e`) are pairwise
distinct. A walk (e1, . . . , e`) is a cycle, if nodes head(e1), head(e2), . . . , head(e`) are pairwise
distinct and head(e`) = tail(e1). A directed graph without any cycle is called acyclic. For
distinct nodes s, t ∈ V, a path (e1, . . . , e`) is called an s-t path, if s = tail(e1) and t = head(e`).
The set of all s-t paths in a given graph is denoted with Pst.

A node u is reachable from node v if D contains a v-u path. The set of nodes reachable from
node v is denoted with ρout(v), and symmetrically, let ρin(v) be the set of nodes from which
node v can be reached. Note that v ∈ ρout(v) and v ∈ ρin(v) for each node v. For a node v ∈ V,
let D[v] := (ρin(v) ∪ ρout(v), γ(ρin(v)) ∪ γ(ρout(v))). Similarly, for an arc e = (u, v) ∈ A, let
D[e] := (ρin(u)∪ ρout(v), γ(ρin(u))∪{e}∪γ(ρout(v))). Clearly, π is an s-t path in D containing
node v (arc e) only if π is an s-t path in D[v] (in D[e]).

A cut is a partition of the nodes into two disjoint subsets X and X̄, where ∅ 6= X ⊂ V and
X̄ = V \ X. For distinct nodes s, t ∈ V a cut (X, X̄) is called an s-t cut if s ∈ X and t ∈ X̄.

For a directed graph D = (V, A) and arc e ∈ A, let D \ e denote the directed graph
obtained from D by deleting arc e, i.e., D \ e := (V, A \ {e}). We call an arc e = (u, v) transitive
in D, if there exists an u-v path in D \ e. A directed, acyclic graph without any transitive arc
is called a precedence graph.

2.3 Machine scheduling

A set {J1, . . . , Jn} of jobs has to be processed on a set {M1, . . . , Mm} of machines. Each machine
can process at most one job at a time and each job can be processed on at most one machine
at a time. To reflect various job, machine and scheduling characteristics we use the 3-field
notation α | β | γ introduced by Graham et al. (1979), where the first field, α, specifies the
machine environment; the second field, β, indicates additional restrictions (e.g., processing
time, precedence constraints, etc.); and the third field, γ, indicates the optimality criterion.

Unless otherwise stated, we assume that each job has to be processed on exactly one
machine. A single-machine problem is denoted by α = 1, i.e., we write 1 | β | γ. For multiple-
machine problems α = P refers to case of identical parallel machines, where the processing
time of a job (i.e., the amount of time required to process the job) does not depend on the
machines. In the case of α = Pm the number of machines, m, is given a priori.

For each job Jj we denote with pji its processing time related to machine Mi. In the case
of a single machine or parallel identical machines we could simply use pj. The notation
α | pj = 1 | γ refers to the case of unit-time jobs, that is, for each job Jj we have pj = 1.

We denote with prec the presence of precedence constraints, that is, when a precedence
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(a) arbitrary precedences (b) chain precedences (c) 2-chain precedences

Figure 2.1: Examples for precedence constraints

relation between the jobs is specified. Such a relation is derived from a precedence graph
with nodes corresponding to jobs; if there is a directed path from Ji to Jj (Ji 6= Jj) then job Jj

can be started only if job Ji is already processed. In this case, we write Ji ≺≺ Jj, and job Ji

is called a predecessor of job Jj and job Jj is called a successor of job Ji. Moreover, if (Ji, Jj)

is an arc in the precedence graph, we say that job Ji is an immediate predecessor of job Jj and
job Jj is an immediate successor of job Ji, and we write Ji ≺ Jj. We illustrate some special cases
of precedence constraints in Fig. 2.1. In the case of chain precedence constraints (denoted by
chains) each job has at most one immediate predecessor and at most one immediate successor,
moreover, if each job has either exactly one immediate predecessor or exactly one immediate
successor but not both (i.e., each chain consists of exactly two jobs) we have a 2-chain precedence
constraint (denoted by 2-chains).

For a given schedule S let CS
j denote the completion time of job Jj. The makespan of some

schedule S is the maximum of the job completion times, i.e., CS
max := maxj CS

j . If a due-
date dj is given for each job Jj, then the tardiness of the job is TS

j := max{0, CS
j − dj}, while

US
j indicates if the job is late, i.e., US

j = 1, if CS
j > dj, and 0 otherwise. The jobs may also

have some non-negative weight wj. The optimality criterion for minimizing the makespan,
the sum of completion times, the weighted sum of completion times, the total tardiness and
the number of tardy jobs is denoted by Cmax, ∑ Cj, ∑ wjCj, ∑ Tj, and ∑ Uj, respectively.

2.4 Combinatorial optimization problems

An instance of the combinatorial optimization problem is given by a set S of feasible solutions
along with an objective function c : S → R, and the problem is the following:

minimize (or maximize) c(S) subject to S ∈ S . (2.1)

The budgeted version of a combinatorial optimization problem (2.1) has an additional set of
k weight functions on the feasible solutions, that is, w : S → Qk, and there is a limit L ∈ Qk

on the total budget allowed. The k-budgeted optimization problem is formulated as

minimize (or maximize) c(S) subject to S ∈ S , and wi(S) ≤ Li for all i = 1, . . . , k. (2.2)

Note that problem (2.2) is not more general then problem (2.1), since it can be written in
the form: min / max{c(S) : S ∈ S ′}, where S ′ = {S ∈ S : wi(S) ≤ Li for all i = 1, . . . , k}.
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However, the form of (2.2) will be useful for us, because in some cases we will relax the budget
limits.

2.4.1 Approximation

An α-approximation algorithm, α > 1, for an optimization problem Π is a polynomial time
algorithm which finds an α-approximate solution S for Π, that is, c(S) ≥ c(SOPT)/α if Π is
a maximization problem, and c(S) ≤ αc(SOPT) if Π is a minimization one, where SOPT is an
optimal solution. A polynomial time approximation scheme (PTAS) for an optimization problem
Π is a family of approximation algorithms {Aε}ε>0 such that Aε is an (1 + ε)-approximation
algorithm for Π for any ε > 0. A fully polynomial time approximation scheme (FPTAS) for Π is a
PTAS with {Aε}ε>0 such that Aε runs in polynomial time in 1/ε as well.

2.4.2 Examples

In the following we introduce some cases of the combinatorial optimization problem, and pro-
vide some results which will be useful for the rest of this thesis. Note that machine scheduling
problems proposed in Section 2.3 are also combinatorial optimization problems where the set
of feasible solutions consists of the schedules satisfying the corresponding restrictions, and
the cost of such a schedule is given by the corresponding optimality criterion.

In the following examples given a set U of elements along with costs c : U → R, the
feasible solutions are certain subsets of the elements, i.e., S ⊆ 2U , and the cost of a feasible
solution S ∈ S is defined by c(S) := ∑e∈S c(e). In the case of budgeted version, there are
k weight functions on the elements, w : U → Qk, and the weight of a feasible solution S ∈ S
is defined by wi(S) := ∑e∈S wi(e) for all i = 1, . . . , k.

Shortest Path Problem. In the Shortest Path Problem (SPP) given a directed graph with
two designated nodes, each arc has a length, and a path with minimum total length is sought
between the designated nodes, that is, SPP refers to the minimization version of problem (2.1),
where S = Pst, i.e., the set of all s-t paths of a directed graph D = (V, U) with designated
nodes s, t ∈ V.

Resource Constrained Shortest Path Problem. The Resource Constrained Shortest Path Prob-
lem (RCSPP) corresponds to the budgeted version of SPP. Dror (1994) shows that RCSPP is
NP-hard hard in the strong sense for graphs containing negative cost cycles, however, the
problem remains NP-hard even if the graph is acyclic, there is a single weight function, and
all the arc weights and costs are non-negative (cf. (Garey and Johnson, 1979, problem ND30)).

Matroid Basis Problem. The Matroid Basis Problem refers to the problem (2.1), where S is
the set of bases of a given matroid with ground set U. Specially, if S is the set of all spanning
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trees of a given undirected graph G = (V, U) then problem (2.1) refers to the Spanning Tree
Problem.

Matching problems. In the case of (Bipartite) (Perfect) Matching Problem the solution
set S consists of the (perfect) matchings of an undirected (bipartite) graph G = (V, U).

Vertex Cover Problem. In the Vertex Cover Problem (VCP) a vertex cover with minimum
cardinality is sought, that is, VCP refers to the minimization version of problem (2.1), where
S is the set of all vertex covers of an undirected graph G = (U, E), and c(v) = 1 for all
v ∈ U. Dinur and Safra (2005) show that it is NP-hard to approximate VCP to within any
factor smaller than 10

√
5− 21 ≈ 1.3606.

Clique Problem. In the Clique Problem (ClP) a clique with maximum cardinality is sought
for a given graph, that is, ClP refers to the maximization version of problem (2.1), where S is
the set of all cliques of an undirected graph G = (U, E), and c(v) = 1 for all v ∈ U. Hastad
(1996) shows that ClP is not approximable within |V|1/2−ε for any ε > 0.

Independent Set Problem. In the Independent Set Problem (ISP) an independent set with
maximum cardinality is sought for a given graph, that is, ISP refers to the maximization
version of problem (2.1), where S is the set of all independent sets of an undirected graph G =

(U, E), and c(v) = 1 for all v ∈ U. Clearly, an independent set S in G is a clique in the
complement graph Ḡ, and vice versa, thus the result of Hastad (1996) for ClP is also valid
for ISP.

Knapsack problems. In the Binary Knapsack Problem (KP) we have a set of items, each with
a weight and a value, and a subset of item with maximum total value is sought such that
the total weight of these items does not exceed a given capacity. The Multi-Dimensional
Knapsack Problem (MDKP) is similar to KP, however, in this case each item has k weight
values. KP and MDKP refer to problem (2.2) with k = 1 and k ≥ 2, respectively, where
S = 2U for a set U of items.

2.5 Polyhedral theory

Consider a set of finitely many points S = {x1, . . . , xk} ⊆ Rn, and scalars λ1, . . . , λk ∈ Rn.
The vector x := ∑k

i=1 λixi is called a linear combination of the vectors x1, . . . , xk. If in addition

∑k
i=1 λi = 1 holds, then x is called an affine combination of the vectors x1, . . . , xk. Moreover, if

0 ≤ λi for all i = 1, . . . , k, then x is called a convex combination of the vectors x1, . . . , xk. The set of
all linear (affine, convex) combinations of the points in S, denoted by lin(S) (aff(S), conv(S)),
is called the linear (affine, convex) hull of S.
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A set of points x1, . . . , xk ∈ Rn is linearly independent if ∑k
i=1 λixi = 0 implies λi = 0 for

all i = 1, . . . , k; otherwise, the points are linearly dependent. The rank of a set S ⊆ Rn, denoted
by rank(S), is the cardinality of the largest linearly independent subset of S. The rank of a
matrix A ∈ Rm×n, denoted by rank(A), is the rank of the set of its row vector (which is the
same as the rank of the set of its column vectors). A set of points x1, . . . , xk ∈ Rn is affinely
independent if ∑k

i=1 λixi = 0 and ∑k
i=1 λi = 0 imply λi = 0 for all i = 1, . . . , k; otherwise, the

points are affinely dependent.
A polyhedron P ⊆ Rn is the set of points that satisfy a finite number of linear inequalities;

that is, P = {x ∈ Rn : Ax ≤ b}, where (A, b) is an m × (n + 1) matrix. Throughout the
text we assume that (A, b) has rational coefficients. Let [m] := {1, . . . , m}, and for i ∈ [m]

let (ai, bi) denote the ith row of matrix (A, b). A polyhedron P is of dimension k, denoted by
dim(P) = k, if the maximum number of affinely independent points in P is k + 1. Let M= :=
{i ∈ [m] : aix = bi for all x ∈ P} and M≤ := [m] \M= = {i ∈ [m] : aix < bi for some x ∈ P},
and let (A=, b=) and (A≤, b≤) be the corresponding rows of (A, b), respectively. (E, f ) ⊆
m′ × (n + 1) is called an equation system for P, if aff(A=, b=) = {x ∈ Rn : Ex = f }, moreover,
it is minimal system for P, if rank(E, f ) = rank(A=, b=) also holds.

Proposition 2.1. Let (E, f ) be an equation system for P ⊆ Rn, then dim(P) + rank(E, f ) = n.
Specially, dim(P) + rank(A=, b=) = n.

Note that the result of Proposition 2.1 is still valid with the convention that if P = ∅, then
dim(P) = −1.

The inequality αx ≤ β is called a valid inequality (or cutting plane) for P, if it is satisfied by
all points in P. If αx ≤ β is a valid inequality for P, then F = {x ∈ P : αx = β} is called a face
of P, and we say that αx ≤ β represents F. A face F of P is a facet of P, if dim(F) = dim(P)− 1.
We say that an inequality is a facet-defining inequality for P, if it represents a facet of P.

2.6 Mixed-integer linear programming

Consider the mixed-integer linear programming (MILP) problem of the following form:

minimize
{

cx + dy : Ax + By ≥ b, x ∈ Zn
≥0, y ∈ R

p
≥0

}
, (2.3)

where A ∈ Qm×n, B ∈ Qm×p, b ∈ Qm, c ∈ Rn, and d ∈ Rp. The set S = {(x, y) ∈ Zn
≥0 ×R

p
≥0 :

Ax + By ≥ b} is called the set of feasible solutions of (2.3) and P := conv(S) is called the
polyhedron of feasible solutions of (2.3) (or the polytope of feasible solutions of (2.3), if it is bounded).
The problem

minimize
{

cx + dy : Ax + By ≥ b, x ∈ Rn
≥0, y ∈ R

p
≥0

}
(2.4)

is called the LP-relaxation of (2.3). The (pure) integer linear programming (ILP) problem

minimize
{

cx : Ax ≥ b, x ∈ Zn
≥0
}

(2.5)
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is the special case of MILP (2.3) in which there are no continuous variables, and the linear
programming (LP) problem

minimize
{

dy : By ≥ b, y ∈ R
p
≥0

}
(2.6)

is the special case of MILP (2.3) in which there are no integer variables. The dual problem
of (2.6) is the problem

maximize
{

πb : πB ≤ d, π ∈ Rm
≥0
}

. (2.7)

2.6.1 Column generation

Linear programs can be solved efficiently e.g., with the simplex algorithm or interior point
methods, however, in some cases all the variables cannot be considered explicitly (e.g., due to
the huge number of variables). In a column generation there is an initial system consisting
of a subset of the columns only, which is gradually augmented by the missing columns, if
needed. The approach is based on the observation that most of the columns will be nonbasic
in an optimal solution, and have their corresponding variable equal to zero, thus, the majority
of the columns are irrelevant for solving the problem optimally.

Consider the linear programming problem of the form (2.6), called master problem, and the
restricted master problem

minimize
{

d̃y : B̃y ≥ b, y ∈ R
q
≥0

}
(2.8)

which is obtained from the master problem (2.6) by excluding a set of columns, and its dual
problem

maximize
{

πb : πB̃ ≤ d̃, π ∈ Rm
≥0
}

. (2.9)

That is, d̃ and B̃ is the vector and matrix obtained from d and B, respectively, by exclud-
ing p − q columns. Solving the restricted master problem (2.8) we get an optimal (primal)
solution ȳ ∈ R

q
≥0 for (2.8) with optimal (dual) solution π̄ ∈ R

q
≥0 for (2.9). Clearly, the vec-

tor ȳ0 ∈ R
p
≥0 obtained from ȳ by completing with zero values is a feasible solution for the

original problem (2.6), moreover, it is an optimal solution, if the dual solution π̄ is feasible for
the original dual problem (2.7), i.e., π̄Bi ≤ di holds for i = 1, . . . , p. The subproblem

minimize
{

di − π̄Bi : i ∈ {1, . . . , p}
}

(2.10)

to find a violating column (if any) is called the pricing problem. If its optimum is greater than
or equal to zero, then π̄ is optimal for the original dual problem; otherwise there exists a
column Bi (i ∈ {1, . . . , p} \ I) with negative reduced cost di − π̄Bi.

The sketch of a column generation procedure for (2.6) is the following: (i) we obtain a
restricted master problem (2.8), then (ii) we solve the restricted mater problem to yield primal-
dual solution (ȳ, π̄), and finally (iii) we solve pricing problem (2.10). If its optimum is greater
than or equal to zero, we stop since ȳ0 is an optimal solution for the master problem (2.6);
otherwise, we add the violating column for the restricted master problem and repeat the
procedure.
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2.6.2 Branch-and-bound procedure

The branch-and-bound procedure is generally used to solve combinatorial optimization prob-
lems. The basic idea of the procedure is to split the original problem into smaller ones, such
that the set of feasible solutions of the original problem is the (usually disjunct) union of
the set of feasible solutions of the subproblems. The subproblems can be divided into other
subproblems, and the investigated subproblems can be represented with a rooted tree, called
enumeration tree, where the root represents the original problem, and the children of a node
represent the corresponding subproblems. We use ’subproblem’ and ’(enumeration tree) node’
as synonyms for each other. For each subproblem a lower bound on its optimal solution is
calculated, and a subproblem can be pruned from the tree, if its lower bound greater than an
upper bound on the original problem.

In the case of an LP-based branch-and-bound procedure the lower bounds are obtained from
the LP-relaxation, and the branching is taken by adding linear inequalities to the subproblems.
In the following we describe the sketch of the LP-based branch-and-bound procedure to solve
problem (2.5). Note that the procedure is very similar for solving problem (2.3).

Let Π0 denote the original problem. During the procedure we maintain a lower bound LB
and an upper bound UB for the optimum value of Π0, and a list L of subproblems. In the
beginning LB = −∞, UB = +∞ and L contains only Π0. The sketch of the procedure is the
following: (i) Node selection: In a general step we choose a subproblem Π from list L, and
find the optimal solution x? of its LP-relaxation. (ii) (a) Pruning: If x? does not exists (since
Π is infeasible) or UB ≤ cx?, then we prune the corresponding node from the tree, since the
sub-tree rooted at that node does not contain better solution than the actual one. (b) Bounding:
If cx? < UB and x? is integral, we set UB to cx?. (c) Branching: If cx? < UB but x? is not
integral, we create two subproblems, i.e., two child nodes in the tree. Let i be an index such
that x?i is not integral, and let Πdown and Πup be the subproblems obtained from Π by adding
inequalities xi ≤ bx?i c and dx?i e ≤ xi, respectively. We add Πdown and Πup to the list L. (iii)
We remove Π from list L and we select a new one, if L is not empty.

Above we described the default branching strategy for an LP-based branch-and-bound
procedure (which is called the 0-1 branching in the case of problems with binary variables
only). Note that in this branching strategy each subproblem is divided into exactly two
subproblems by considering a single variable, however, one can create arbitrary number of
subproblems, and take multiple variables into consideration to perform branch.

2.6.3 Branch-and-cut procedure

The branch-and-cut procedure is the extension of the branch-and-bound procedure where in
the nodes of the enumeration tree the corresponding LP-relaxation is strengthened by valid
inequalities. That is, if the optimal solution x? for the LP-relaxation is not integral, then we
add inequality αx ≥ β to the problem such that αx ≥ β is valid for the polytope of the feasible
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solutions, but x? violates it, i.e., αx? < β. The procedure to find such an inequality is called
separation procedure.

2.6.4 Branch-and-price procedure

The branch-and-price procedure is the combination of the branch-and-bound procedure with
column generation. Note that to solve problem (2.5) optimally it is not sufficient in general
to apply column generation for the LP-relaxation of the problem and to solve the integer
programming problem with the obtained column set. In the case of a branch-and-price pro-
cedure in each node of the enumeration tree a column generation procedure is applied. If
cutting planes are also separated, the method is known as branch-price-and-cut procedure.

2.6.5 Improvement techniques

Several techniques are developed to improve a branch-and-bound procedure. For example,
we already mentioned the use of cutting planes that yielded the branch-and-cut procedure. In
the following we discuss some other techniques.

Presolving

In most cases, the MILP formulation can be simplified (e.g., by removing redundant inequali-
ties) and strengthened (e.g., by exploiting integrality information).

Branching strategies

Based on the relying problem one can create problem-specific branching strategies. Typically,
in a branch-and-price method the default branching strategy could be weak. Consider for
example a problem with set partitioning structure, i.e., of the form min{cx : Ax = 1, x ∈
{0, 1}n} where A has 0-1 columns representing some subsets of a set. Fixing a variable to 1
on a branch reduces the search space on the corresponding enumeration subtree, however,
fixing a variable to 0 on the other branch has a meager affect. Ryan and Foster (1981) suggest
a branching strategy based on the observation that in every fractional solution of the LP-
relaxation, there exists a pair of rows (Ai·, Aj·) with 0 < ∑c∈C(i,j) xc < 1, where C(i, j) is the set
of columns covering both constraints Ai· and Aj·, i.e., C(i, j) = {c ∈ {1, . . . , n} : Aic = Ajc =

1}. Their branching strategy creates two branches: one forcing to cover rows Ai· and Aj· by
the same column, and another one forcing to cover the two rows by different columns.

Bound tightening, variable fixing

Bound tightening can be applied in an enumeration tree node prior to solving the correspond-
ing node-LP. The aim of the procedure is to tighten the bounds of some variables locally, i.e.,
in the enumeration subtree rooted in the corresponding node. In the case of binary linear
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programs we refer to this procedure as variable fixing, since tightening bounds of a binary
variable is fixing the variable to 0 or 1.

Primal heuristics

Primal heuristics aim to find feasible solutions during the global search. Some simple heuris-
tics which do not require a starting solution can be applied before the initial LP-relaxation of
the MILP is solved. Other heuristics (e.g., simple rounding heuristics, diving heuristics) can
be applied in enumeration tree nodes after the corresponding node-LP is solved. Local search
heuristics can be applied after a feasible solution for the MILP is found.

2.6.6 Solvers

Several commercial and non-commercial solvers have been developed for solving MILPs.
CPLEX Optimizer, FICO Xpress Solver, and Gurobi Optimizer are the most well-known com-
mercial solvers, and all of them provide a C++ callable library for users to implement their
own plugins via callback functions (cutting plane separators, branching rules, primal heuris-
tics, etc.). Note that none of these solvers support branch-and-price, that is, they allow to add
columns to the problem only at the root node. SCIP Optimization Suite is a non-commercial,
open-source solver (implemented in C along with C++ wrapper) for constraint integer pro-
gramming including MILP. It is also a framework for branch-price-and-cut and provides total
control of the solution process.



Chapter 3

Multi-criteria approximation scheme
for the resource constrained shortest
path problem

In Section 2.4.2 we introduced the Resource Constrained Shortest Path Problem (RCSPP)
as the budgeted version of the Shortest Path Problem. In this chapter we investigate multi-
criteria approximation schemes for RCSPP, where the budget limits can be slightly violated.
The motivation for our study is the paper by Grandoni et al. (2014) in which the budgeted
versions of a number of combinatorial optimization problems are discussed. Our positive and
negative results, along with the observations of Grandoni et al. (2014) give a complete picture
on the approximability of RCSPP in terms of approximation schemes.

3.1 Introduction

3.1.1 Problem definition

In this chapter we consider budgeted combinatorial optimization problems of the following
form. Given a set U of elements along with a cost function c : U → Q, a finite set S ⊆ 2U of
feasible solutions, and a set of k weight functions w : U → Qk

≥0 on the elements along with
budget limits L ∈ Qk

>0. The k-budgeted combinatorial optimization problem is formalized as

minimize (or maximize) c(S) subject to S ∈ S , and wi(S) ≤ Li for all i = 1, . . . , k

with c(S) := ∑e∈S c(e) and wi(S) := ∑e∈S wi(e) for all i = 1, . . . , k.

3.1.2 Preliminaries

In Section 2.4.1 we introduced the concepts of approximation, PTAS and FPTAS for optimiza-
tion problems, and now we define similar concepts for the budgeted version. A multi-criteria

15
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(α0; α1, . . . , αk)-approximation algorithm, αi ≥ 1, for a k-budgeted optimization problem is an
algorithm which finds an α0-approximate solution S for the non-budgeted problem such that
wi(S) ≤ αiLi for all i = 1, . . . , k. A multi-criteria approximation scheme for a k-budgeted opti-
mization problem Π contains a (1 + ε; 1 + ε, . . . , 1 + ε)-approximation algorithm for Π for any
ε > 0.

3.1.3 Related work

In the case of a single budget (i.e., k = 1), Hassin (1992) propose the first (1 + ε; 1)-FPTAS for
RCSPP on acyclic graphs with time complexity O(m(n2/ε) log(n/ε)), where m and n denote
the number of arcs and nodes of the given directed graph, respectively. Ergun et al. (2002) give
another (1+ ε; 1)-FPTAS with improved running time of O(mn/ε). For general graphs Lorenz
and Raz (2001) propose an (1 + ε; 1)-FPTAS with time complexity of O(mn(log log n + 1/ε)).
Goel et al. (2001) give an (1; 1 + ε)-FPTAS with running time O((m + n log n)n/ε).

In the case of 2 ≤ k = O(1), one can obtain a multi-criteria (1 + ε; 1 + ε, . . . , 1 + ε)-FPTAS
for the k-budgeted s-t Path Problem (including RCSPP) and the k-budgeted Spanning Tree
Problem based on the general technique of Papadimitriou and Yannakakis (2000), however,
there is no (α0; α1, . . . , αk)-approximation algorithm with two or more αi’s equal to 1 for these
problems, unless P=NP (see (Grandoni et al., 2014)). Further on, Grandoni et al. (2014)
describe (1; 1 + ε, . . . , 1 + ε)-PTASs for the k-budgeted Spanning Tree Problem and the k-
budgeted Matroid Basis Problem, however, they do not provide such an algorithm for RC-
SPP, which is one of the motivations for our work. They also provide a (1+ ε; 1+ ε, . . . , 1+ ε)-
PTAS for the k-budgeted Bipartite Matching Problem. Another motivation is that the
method of Papadimitriou and Yannakakis (2000) and the results of Grandoni et al. (2014)
work only if the number of weight functions, k, is a constant.

Song and Sahni (2006) describe ε-approximation algorithms for k-MCP. For an overview of
exact and approximation algorithms for k-MCP and its variants we refer to (Garroppo et al.,
2010).

3.1.4 Our contribution

Firstly, we show that RCSPP admits no multi-criteria PTAS if the number of weight functions,
k, is part of the input (i.e., not a constant), unless P = NP. This statement is also true
for some other k-budgeted optimization problems (Theorem 3.1). On the positive side, we
provide a (1; 1 + ε, . . . , 1 + ε)-FPTAS for the case of k = O(1) (Theorem 3.2). Notice that a
direct application of the method of Papadimitriou and Yannakakis (2000) would give only an
(1+ ε; 1+ ε, . . . , 1+ ε)-FPTAS. Our multi-criteria FPTAS is a dynamic programming algorithm,
similar to the SPPP algorithm of Lorenz and Raz (2001), with a combination of the rounding
technique of Song and Sahni (2006). The time complexity of our multi-criteria approximation
scheme is O(m(n/ε)k), which for k = 1 matches that of Ergun et al. (2002), who provided an
(1 + ε; 1)-FPTAS for RCSPP restricted to acyclic graphs.
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Our positive and negative results, along with the observations of Grandoni et al. (2014)
give a complete picture on the approximability of RCSPP in terms of approximation schemes.

Theorem 3.1. If P 6= NP, and the number of weight functions, k, is not a constant (i.e., part of the in-
put), then there is no polynomial time multi-criteria approximation scheme either for the minimization
or for the maximization version of the k-budgeted s-t Path Problem, the k-budgeted Spanning
Tree Problem, the k-budgeted Matroid Basis Problem, and the k-budgeted Bipartite Per-
fect Matching Problem.

Note that RCSPP refers to the minimization version of the k-budgeted s-t Path Problem.

Theorem 3.2. If the number of weight functions, k, is a constant (i.e., not part of the input), then there
exists a fully polynomial time (1; 1 + ε, . . . , 1 + ε)-approximation scheme for the Resource Con-
strained Shortest Path Problem.

We emphasize that our result is valid for general graphs with nonnegative weights and
arbitrary costs, however, cycles with negative total cost are not allowed.

3.2 Proof of Theorem 3.1

In this section we assume that the number of weight functions, k, is part of the input (not a
constant). First, we prove that unless P = NP, there exists no polynomial time multi-criteria
approximation scheme for RCSPP (Theorem 3.3). Based on the proof, it is a routine to show
that there is no multi-criteria PTAS for the minimization version of the k-budgeted Span-
ning Tree Problem (thus for the k-budgeted Matroid Basis Problem) and the k-budgeted
Bipartite Perfect Matching Problem.

Theorem 3.3. If P 6= NP, and the number of weight functions, k, is part of the input (i.e., not a
constant), then there is no polynomial time multi-criteria approximation scheme for the Resource
Constrained Shortest Path Problem.

Proof. We give a PTAS-preserving reduction from the Vertex Cover Problem (VCP) to RCSPP
to show that there is no polynomial time (1 + ε; 2 − ε, . . . , 2 − ε)-approximation algorithm
for RCSPP with 0 < ε < 0.3606, unless P = NP. Recall that an instance of VCP is given by
an undirected graph G, and a minimum size subset of nodes C ⊆ V(G) is sought such that
for each edge (u, v) ∈ E(G), 1 ≤ |{u, v} ∩ C|. Given a VCP instance, we create an instance
of RCSPP with k = |E(G)| and with directed graph D as follows. For each node vi ∈ V(G),
i = 1, . . . , n, we add two distinct nodes xi and yi, and also node xn+1 to V(D), and three
arcs (xi, xi+1), (xi, yi) and (yi, xi+1) to A(D). Let s = x1, t = xn+1. We create a cost function
c : A(D) → Q≥0 such that c(xi, xi+1) = 1 and c(xi, yi) = c(yi, xi+1) = 0 for all i = 1, . . . , n. We
create weights w : A(D)→ Q

|E(G)|
≥0 such that

wij(a) =

{
1 if a = (xi, yi) or a = (xj, yj),
0 otherwise
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for each (vi, vj) ∈ E(G). We set the corresponding budget limit Lij to 1.
Consider the one-to-one correspondence between the node sets of G and the s-t paths

in D, such that to a node set C ⊆ V(G) we assign the s-t path π[C] in D consisting of arcs
{(xi, xi+1) : vi ∈ C} ∪ {(xi, yi), (yi, xi+1) : vi /∈ C}. It is clear that for a node set C ⊆ V(G) and
the corresponding path π[C], c(π[C]) = |C|, moreover, we claim that C is a vertex cover if and
only if P[C] satisfies the budget limits. If C is a vertex cover, then for each edge (vi, vj) ∈ E(G)

we have 1 ≤ |{vi, vj} ∩ C|, thus |{(xi, yi), (xj, yj)} ∩ π[C]| ≤ 1, therefore wij(π[C]) ≤ Lij. The
opposite direction can be shown similarly.

Assume that we have an (1 + ε; 2− ε, . . . , 2− ε)-approximation algorithm for RCSPP with
0 < ε < 0.3606. Applying this algorithm for RCSPP instance, we can find in polynomial time
an s-t path π such that c(π) ≤ (1 + ε)c(πOPT) and wij(π) ≤ (2− ε)Lij, for all (vi, vj) ∈ E(G),
where πOPT is an optimal solution for RCSPP. On the one hand, c(π) ≤ (1+ ε)c(πOPT) = (1+
ε)|COPT|, where COPT is an optimal solution for VCP. On the other hand, wij(π) ≤ 2− ε < 2,
i.e., wij(π) ≤ 1 holds for all (vi, vj) ∈ E(G), thus the set C ⊆ V(G) corresponding to π is a
vertex cover. To sum up, by applying the approximation algorithm for RCSPP instance, we
can find in polynomial time a vertex cover C in G such that |C| ≤ (1 + ε)|COPT| which is
impossible for ε < 0.3606, unless P = NP (see (Dinur and Safra, 2005)).

Now, we prove that the Multi-Dimensional Knapsack Problem (MDKP) does not admit
a polynomial time multi-criteria approximation scheme if the number of dimensions, k, is
part of the input (Theorem 3.4). Recall that an instance of MDKP is given by a set of items U,
where each item u ∈ U has a cost c(u) and a weight w(u) ∈ Qk

≥0, and there is a weight limit
L ∈ Qk

≥0. A subset of items S ⊆ U of maximum c(S) value is sought such that w(S) ≤ L.
Apparently, it is the budgeted version of a trivial maximization problem over all subsets of U.

By using similar techniques it is easy to prove that there exists no multi-criteria PTAS for
the maximization version of the k-budgeted s-t Path Problem, k-budgeted Spanning Tree
Problem, the k-budgeted Matroid Basis Problem and the k-budgeted Bipartite Perfect
Matching Problem, if the number of weight functions, k, is part of the input (i.e., not a
constant), unless P = NP.

Theorem 3.4. If P 6= NP, and the dimension k of MDKP is part of the input (i.e., not a constant),
then there is no polynomial time multi-criteria approximation scheme for MDKP.

Proof. We give a PTAS-preserving reduction from the Independent Set Problem (ISP) prob-
lem to MDKP. An instance of ISP is given by an undirected graph G = (V, E), and a maximum
size subset of nodes S ⊆ V is sought such that for each edge (u, v) ∈ E, |{u, v} ∩ S| ≤ 1. Given
an ISP instance, we create an instance of MDKP with k = |E| as follows. We create a set of
items U = {u1, . . . , un} where item ui corresponds to node vi ∈ V and it has a cost c(ui) = 1.
We create weights wij : U → Q

|E|
≥0 such that

wij(u) =

{
1 if u corresponds to vi or vj,
0 otherwise
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for each (vi, vj) ∈ E. We set the corresponding budget limit Lij to 1.
Consider a node set I = {vi1 , . . . , vip} ⊆ V and the corresponding set of items S =

{ui1 , . . . , uip}. If I is independent, then for each edge (vi, vj) ∈ E we have |{vi, vj} ∩ I| ≤ 1,
thus |{ui, uj} ∩ S| ≤ 1, therefore wij(S) ≤ Lij, that is, S satisfies the budget limits, moreover
c(S) = |I|. The opposite direction (that is, the node set corresponding to a set of items that
satisfies the budget limits is independent) can be shown similarly.

Similarly to the previous proof, if we had a (1+ ε; 2− ε, . . . , 2− ε)-approximation algorithm
for MDKP with 0 < ε < 1, we could find in polynomial time an independent set I in G such
that |I| ≥ |IOPT|/(1 + ε) which is impossible, unless P = NP (see (Hastad, 1996)).

3.3 Proof of Theorem 3.2

We give a (1; 1 + ε, . . . , 1 + ε)-FPTAS for RCSPP, where the number of weight functions, k, is a
constant. Recall that this problem can be formulated as

min
π∈Pst

{c(π) : wi(π) ≤ Li for all i = 1, . . . , k} . (3.1)

For a given an ε > 0 we scale and round the weights, that is, we define a scale vector
∆ ∈ Qk

>0 and scaled weights w̄ ∈ Qk
>0 as follows: for all i = 1, . . . , k let ∆i := εLi/(n − 1),

and for each arc a ∈ A let w̄i(a) := di(a)∆i, where di(a) = 1 if wi(a) = 0, otherwise di(a) is
a positive integer such that (di(a)− 1)∆i < wi(a) ≤ di(a)∆i holds. Note that 0 < w̄i(a) holds
for each arc a and i = 1, . . . , k. Consider the following, scaled problem:

min
π∈Pst

{c(π) : w̄i(π) ≤ (1 + ε)Li for all i = 1, . . . , k} . (3.2)

For any s-t path π and i = 1, . . . , k we have

w̄i(π) = ∑
a∈π

w̄i(a) ≤ ∑
a∈π

(wi(a) + ∆i) ≤ ∑
a∈π

wi(a) + (n− 1)∆i = wi(π) + εLi,

since π consists of at most n− 1 arcs. Clearly, if wi(π) ≤ Li holds for some i = 1, . . . , k, then
w̄i(π) ≤ (1 + ε)Li also holds. That is, if π is a feasible solution for the original problem (3.1),
then π is feasible for the scaled problem (3.2) as well. Moreover, since by definition wi(a) ≤
w̄i(a) holds for all arcs a and i = 1, . . . , k, thus for each feasible solution π for the scaled
problem (3.2) we have wi(π) ≤ w̄i(π) ≤ (1 + ε)Li, for all i = 1, . . . , k. These imply the
following proposition.

Proposition 3.1. If problem (3.1) has a feasible solution, then any optimal solution for problem (3.2)
is a (1; 1 + ε, . . . , 1 + ε)-approximate solution for (3.1).

3.3.1 Dynamic programming algorithm

In the following we use element-wise operations for vectors. That is, the Hadamard product
of vectors a, b ∈ Qk is the vector a ◦ b ∈ Qk with (a ◦ b)i = aibi for all i = 1, . . . , k. The
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inverse of vector a ∈ Qk
>0 is the vector a−1 ∈ Qk

>0 with (a−1)i = 1/ai for all i = 1, . . . , k.
For k-dimension vectors a and b we write a ≤ b (a < b) if ai ≤ bi (ai < bi) holds for all
i = 1, . . . , k.

A pattern is a vector η = (η1, . . . , ηk) where ηi (i = 1, . . . , k) is a non-negative integer. Note
that for any path π, there is a pattern η with nonzero elements such that w̄(π) = η ◦ ∆. A
pattern η is feasible if η ◦ ∆ ≤ (1 + ε)L holds.

Proposition 3.2. The number of feasible patterns is O((n/ε)k).

Proof. For any feasible pattern η, 0 ≤ ηi ≤ (1 + ε)Li/∆i = (n− 1)(1 + 1/ε) holds for all i =
1, . . . , k, thus the number of feasible patterns is at most ((n− 1)(1 + 1/ε) + 1)k = O((n/ε)k).

For a node v and pattern η let χ(v, η) denote the cost of the minimum cost s-v path π such
that w̄(π) ≤ η ◦ ∆, if any. By this, χ(t, b(1 + ε)L ◦ ∆−1c) is the optimal solution value of (3.2).
Let H = (η1, η2, . . . , η|H|) denote the set of the feasible patterns, where patterns are partially
ordered by the element-wise comparison, that is, if ηp ≤ ηq holds for patterns ηp and ηq, then
p ≤ q. Clearly η1 = (0, . . . , 0).

The sketch of the algorithm can be seen in Algorithm 1. In the initialization phase for
each pattern η we set χ(s, η) to zero and χ(v, η) to infinity (v 6= s). We iterate over the
partially ordered set of feasible patterns (note that according to the initialization, we can skip
pattern η1 = (0, . . . , 0)), and in each iteration we visit each node in the graph. For a given
pattern η and node v we examine the incoming arcs of v. Let (u, v) be an impending arc.
If w̄i(u, v) > ηi∆i holds for some 1 ≤ i ≤ k, then there is no s-v path containing arc (u, v)
such that w̄(π) ≤ η ◦ ∆, thus we cannot update χ(v, η). Otherwise w̄(u, v) ◦ ∆−1 ≤ η, and by
definition 0 < w̄(u, v) ◦∆−1, thus 0 ≤ η− w̄(u, v) ◦∆−1 < η, i.e., pattern η− w̄(u, v) ◦∆−1 was
already examined in a former iteration, that is, χ(u, η − w̄(u, v) ◦ ∆−1) is already computed
(and valid), so we can update χ(v, η). Finally, we return χ(t, b(1 + ε)L ◦ ∆−1c) which is the
optimal solution value of (3.2). In Theorem 3.5 we prove the correctness of the algorithm.

Algorithm 1 Dynamic programming algorithm for (3.2)

1: χ(s, η)← 0 (η ∈ H)
2: χ(v, η)← ∞ (v 6= s, η ∈ H)
3: for η = η2, η3, . . . , η|H| do
4: for v ∈ V do
5: for a ∈ {(u, v) ∈ A : w̄(u, v) ≤ η ◦ ∆} do
6: χ(v, η)← min{χ(v, η), χ(u, η − w̄(a) ◦ ∆−1) + c(a)}
7: return χ(t, (b(n− 1)(1 + 1/ε)c, . . . , b(n− 1)(1 + 1/ε)c))

Theorem 3.5. After Algorithm 1 terminates, for each node v ∈ V and for each pattern η, χ(v, η) is
equal to the cost of the minimum cost s-v path π such that w̄(π) ≤ η ◦ ∆.



Multi-criteria approximation scheme for the resource constrained shortest path problem 21

Proof. Basically, we prove that after the algorithm terminates χ(v, η) is equal to the cost of the
minimum cost s-v walk π (i.e., vertices may be repeated) such that w̄(π) ≤ η ◦ ∆. However,
according to our assumptions the graph does not contain cycles with negative total cost or
negative total weight, therefore a minimum cost s-t walk always comprises an s-t path of the
same cost. To prove the former statement, it is sufficient to show that after a pattern η is
examined (i.e., the corresponding iteration is performed):

a) for each node v, if χ(v, η) is not infinity, then it is equal to the cost of an s-v walk π such
that w̄(π) ≤ η ◦ ∆.

b) for each node v, if there is an s-v walk π with w̄(π) ≤ η ◦ ∆, then χ(v, η) ≤ c(π) holds.
We prove these statements by induction. Clearly, statements a) and b) are satisfied before the
first iteration is performed (i.e., after the initialization).

To prove statement a) consider a moment when χ(v, η) is updated (line 6), that is χ(v, η) =

χ(η − w̄(u, v) ◦ ∆−1) + c(u, v) for some (u, v) ∈ A with w̄(u, v) ≤ η ◦ ∆. Since 0 < w̄(u, v)
holds by definition, thus 0 ≤ η − w̄(u, v) ◦ ∆−1 < η, i.e., pattern η − w̄(u, v) ◦ ∆−1 was al-
ready examined in a former iteration, that is, χ(u, η − w̄(u, v) ◦ ∆−1) is already computed.
By inductive assumption, χ(u, η − w̄(u, v) ◦ ∆−1) is equal to the cost of an s-u walk π with
w̄(π) ≤ η ◦ ∆− w̄(u, v), thus χ(v, η) is equal to the cost of the walk π′ = π ∪ {(u, v)} with
w̄(π′) ≤ η ◦ ∆.

To prove statement b) consider the shortest s-v path π such that w̄(π) ≤ η ◦∆ holds, and let
(u, v) be its last arc, i.e., π = π′ ∪ (u, v) for an s-u path π′. Clearly, π′ is the minimum cost s-u
walk such that w̄(π′) ≤ η ◦ ∆− w̄(u, v) holds. On the one hand, by inductive assumption, we
have χ(v, η− w̄(u, v) ◦∆−1) ≤ c(π′), and on the other hand we compared χ(v, η) and χ(u, η−
w̄(u, v) ◦ ∆−1) + c(u, v) in the iteration of pattern η (line 6), therefore we have χ(v, η) ≤
χ(u, η − w̄(u, v) ◦ ∆−1) + c(u, v) ≤ c(π′) + c(u, v) = c(π).

According to Proposition 3.2 we have at most O((n/ε)k) iterations, and in each iteration
each arc is examined once, thus the running time of the algorithm is O(m(n/ε)k).





Chapter 4

LP-based methods for the resource
constrained shortest path problem

In Section 2.4.2 we introduced the Resource Constrained Shortest Path Problem (RCSPP)
as the budgeted version of the Shortest Path Problem, and in Chapter 3 we investigated
approximation schemes for the problem. In this chapter we turn our attention to exact solution
approaches. Although several types of solution approaches are proposed to solve variants
of RCSPP, only a few papers deal with LP-based methods, which was the main motivation
for our study. We present new primal heuristics and a variable fixing method to improve
a branch-and-bound procedure, new cutting planes along with separation procedures that
can be used in a branch-and-cut procedure, and we also present the results of our thorough
computational experiments.

4.1 Introduction

4.1.1 Problem definition

Recall that an instance of RCSPP is given by a directed graph D = (V, A) with designated
nodes s, t ∈ V, a cost function c : A → Q on the arcs, and a set of k weight functions
w : A → Qk on the arcs (also called resource functions) along with limits L ∈ Qk (also called
resource limits); and a minimal cost s-t path π is sought such that the resource limits on the
path are not violated, that is, ∑e∈π wi(e) ≤ Li holds for all i = 1, . . . , k. Note that in contrast to
the definition in Section 2.4.2 we allow negative weights and thus non-positive limits as well.

Assumptions

Throughout this chapter we consider an instance of RCSPP with the following assumptions.

Assumption 4.1. For the underlying directed graph D we have ρout(s) = ρin(t) = V and δin(s) =
δout(t) = 0.
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Assumption 4.2. The underlying directed graph D contains no directed cycle of negative total cost,
or of negative total resource consumptions for any of the resources.

Note that Assumption 4.1 is not a restriction, since each node v ∈ (V \ ρout(s)) ∪ ((V \
ρin(t)) and each arc e ∈ δin(s) ∪ δout(t) can be removed from the graph, because they cannot
appear in any s-t path.

4.1.2 Problem formulation

Let xe be the binary variable indicating whether the path sought goes through the arc e ∈ A
or not. We formulate RCSPP as:

min ∑
e∈A

c(e)xe (4.1)

∑
e∈δout(v)

xe − ∑
e∈δin(v)

xe =





1 if v = s
0 if v ∈ V \ {s, t}
−1 if v = t

for all v ∈ V (4.2)

x(γ(S)) ≤ |S| − 1 for all S ⊂ V with 2 ≤ |S| (4.3)

∑
e∈A

wi(e)xe ≤ Li for all i = 1, . . . , k (4.4)

xe ∈ {0, 1} for all e ∈ A. (4.5)

Flow conservation equations (4.2) along with cycle elimination inequalities (4.3) and binary
conditions (4.5) ensure that feasible solutions constitute s-t paths. The objective function (4.1)
expresses the total cost of the path, while the resource consumptions of the path are bounded
by inequalities (4.4). Let SRCSPP := {x ∈ {0, 1}A : x satisfies (4.2)− (4.4)} be the set of feasible
solutions of problem (4.2)–(4.5), and PRCSPP := conv(SRCSPP) be the polytope of feasible
solutions of problem (4.2)–(4.5), called the RCSPP-polytope.

Proposition 4.1. SRCSPP is the set of incidence vectors corresponding to resource feasible s-t paths.

Note that cycle elimination inequalities (4.3) are only necessary if negative cost cycles are
present, which is not our case due to Assumption 4.2, thus we do not use these inequalities.
By this, cycles with zero cost can be present in an optimal solution, however, such an optimal
solution always comprises a feasible s-t path with the same costs, that is, one can remove zero
cost cycles by postprocessing to obtain an optimal s-t path.

4.1.3 Related work

Several types of exact solution approaches have been proposed to solve variants of RCSPP,
e.g., path ranking-based methods, dynamic programming strategies, label-setting/correcting
algorithms, methods based on branch-and-bound procedure. For an overview we refer to
e.g., (Pugliese and Guerriero, 2013b), and in the following we only discuss papers related to
branch-and-cut procedure or polyhedral investigation of the RCSPP-polytope.
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Avella et al. (2004) present a generalization of RCSPP where numerical non-totalizable
attributes are also considered. The authors use a similar formulation that of (4.1)–(4.5), and
propose a branch-and-cut approach where certain cycle elimination inequalities are separated.
Jepsen et al. (2008) consider a problem similar to RCSPP where weights are associated with
nodes rather than arcs. The authors also propose a branch-and-cut procedure where general-
ized subtour elimination inequalities and two other classes of valid inequalities are separated.
Garcia (2009) provides several class of valid inequalities for the RCSPP-polytope in the acyclic
and generic case as well. The author also presents a branch-and-cut procedure along with
preprocessing procedures, branching strategies, and primal heuristics.

Dahl and Realfsen (2000) and Dahl and Gouveia (2004) study a special case of RCSPP with
a single resource function and unit weights (i.e., only the length of the path in terms of arcs is
restricted) on acyclic graphs. Dahl and Realfsen (2000) show that the polytope associated with
the LP-relaxation of their problem formulation is integral in some special cases, and thus can
be solved as a linear programming problem. Dahl and Gouveia (2004) give a complete linear
characterization of the polytope when the resource limit is equal to 2 or 3.

4.1.4 Our contribution

We investigate LP-based branch-and-bound solution approaches. We propose new primal
heuristics and a variable fixing procedure to improve the branch-and-bound procedure, and
we also generalize some inequalities of Garcia (2009) and give exact and heuristic separation
procedures in order to use them in a branch-and-cut procedure. We present the results of
our thorough computational experiments in which (i) we examined the effectiveness of the
components mentioned above, and (ii) we compared our LP-based method with state-of-the-
art methods.

4.1.5 Preliminaries

For basic terminology and notation we refer to Section 2.2.2. For nodes u, v ∈ V let ωi(u, v)
denote the length of the shortest u-v path with respect to the arc weights wi, i.e., ωi(u, v) =
min{wi(π) : π ∈ Puv}; whereas σ(u, v) denotes that with respect to the arc costs c, i.e.,
σ(u, v) = min{c(π) : π ∈ Puv}. Note that ωi(u, u) = 0 and σ(u, u) = 0 for each node u and
i = 1, . . . , k. If no u-v path exists then ωi(u, v) = ∞ for all i = 1, . . . , k, and σ(u, v) = ∞.

We say that a tuple (i.e., an ordered sequence) of arcs τ = (e1, e2 . . . , ep) is compatible with
respect to wi if

ωi(s, tail(e1)) + wi(e1) + ωi(head(e1), tail(e2)) + wi(e2) + . . . + wi(ep) + ωi(head(ep), t) ≤ Li

holds; otherwise τ is incompatible with respect to wi. Moreover, τ is compatible, if it is compatible
with respect to wi for all i = 1, . . . , k; otherwise τ is incompatible. Specially, if π = (e1, e2 . . . , ep)

is a path, we say that π is a feasible/infeasible subpath with respect to wi, and π is a feasible/infeasible
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subpath, respectively. Finally, if π = (e1, e2 . . . , ep) is an s-t path, we say that π is a feasi-
ble/infeasible s-t path with respect to wi, and π is a feasible/infeasible s-t path, respectively.

4.2 Preprocessing, variable fixing, primal heuristics

4.2.1 Previous work

Several preprocessing methods are proposed for RCSPP in order to reduce the size of the
underlying graph. Clearly, a node v ∈ V cannot be in any feasible s-t path if

ωi(s, v) + ωi(v, t) > Li (4.6)

holds for some i ∈ {1, . . . , k}, or

σ(s, v) + σ(v, t) > U, (4.7)

where U is an upper bound on the value of an optimal s-t path. Similarly, an arc e = (u, v) ∈ A
cannot be in any feasible s-t path if

ωi(s, u) + wi(e) + ωi(v, t) > Li (4.8)

holds for some i ∈ {1, . . . , k}, or

σ(s, u) + c(e) + σ(v, t) > U, (4.9)

where U is an upper bound on the value of an optimal s-t path.
Aneja et al. (1983) repeatedly remove nodes with (4.6) and arcs with (4.8) until no other

nodes and arcs can be deleted, or no s-t path remains in the reduced graph (which means that
the problem is infeasible). Beasley and Christofides (1989) extend this approach by considering
cost bounds to erase additional nodes and arcs from the underlying graph, similar to (4.7)
and (4.9). In a branch-and-bound procedure in each enumeration tree node they calculate
cost bounds through Lagrangean relaxation and eliminate nodes and arcs from the graph
that could not appear in an optimal s-t path. Dumitrescu and Boland (2003) combine and
simplify these two approaches. That is, they repeatedly remove nodes with (4.6) or (4.7), and
arcs with (4.8) or (4.9), where the upper bound U may be calculated and updated during the
procedure. We refer to this procedure as DB-preprocessing. Note that the final upper bound
can be also used e.g., to improve a branch-and-bound procedure.

Garcia (2009) also extends the preprocessing scheme of Aneja et al. (1983) by applying their
procedure on graph D[v] for each node v. Recall that D[v] is the subgraph of D containing all
the s-t paths traversing through node v. So, if no s-t path remains in D[v] after the reduction,
then there exists no feasible s-t path in D traversing through node v, thus node v can be
removed from D. We refer to this procedure as G-preprocessing. Note that this approach can
be applied not only to a node v, but also to an arc e, that is, one can apply the preprocessing
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scheme of Aneja et al. (1983) on graph D[e]. Since applying this procedure for all arcs can
be expensive, Garcia (2009) suggests to use it as a variable fixing method. That is, once a
fractional solution x̄ to the LP-relaxation is available, one can preprocess D[e] for each arc e
with x̄e > 0, and fix xe to zero, if no s-t path remains in D[e] after the preprocessing. We refer
to this approach as G-varfix.

4.2.2 New results

Primal heuristics

The basic idea of our primal heuristics is to find a feasible s-t path in the support graph Dx̄

of the solution x̄ ∈ [0, 1]A of the node-LP of the corresponding enumeration tree node (that
is, Dx̄ = (V, Ax̄) with Ax̄ = {e ∈ A : x̄e > 0}), if any, and update the best upper bound
on an optimal solution to improve the branch-and-bound procedure. The basis of this idea
is the observation that x̄ is a convex combination of s-t paths (note we can omit cycles with
0 cost, if any). Briefly stated, we perform a depth-first search from s on Dx̄, and once we reach
a processed node v we can examine one or more s-t paths through v. For details we refer
to (Horváth and Kis, 2016a).

Variable fixing procedure

The basic idea of our variable fixing procedure is to apply the DB-preprocessing in enumer-
ation tree nodes (prior to solving the corresponding node LP) in order to fix arcs (i.e., the
corresponding variables) to 0 if they cannot appear in any optimal solution of the subtree
rooted at the corresponding node. Recall that DB-preprocessing is originally used to remove
nodes and arcs from the underlying graph which cannot be in any feasible s-t path with re-
spect to a single resource, or in any s-t path with cost at most U, where U is an upper bound
on an optimal s-t path. If no s-t path remains in the reduced graph, then the problem is proven
to be infeasible. Moreover, when a feasible s-t path is found during the procedure, the upper
bound will be updated, and the final bound can be used to improve e.g., a branch-and-bound
procedure.

In an enumeration tree node some variables may be already fixed to 0 or 1 (e.g., due to
branching decisions), that is, in the subtree rooted at that tree node we seek a minimum cost,
feasible s-t path which passes through every arc e such that xe is fixed to 1 (mandatory arcs),
and avoids each arc e such that xe is fixed to 0 (forbidden arcs). We call such an s-t path proper.
Thus we obtain a directed graph from the original (possibly preprocessed) graph by removing
nodes and arcs that cannot appear in any proper path (shortly, after the forbidden arcs are
erased from the graph we remove all nodes and arcs which cannot appear in any s-t path
which contains all the mandatory arcs) and then we apply DB-preprocessing on it. We fix
each variable corresponding to an erased arc to 0 since a proper path cannot passes through
it. If there is no s-t path in the reduced graph, we prune the enumeration tree node. Note that
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this variably fixing procedure is also a primal heuristics since each feasible s-t path found by
DB-preprocessing is a feasible solution for problem (4.1)–(4.5). For details we refer to (Horváth
and Kis, 2016a).

4.3 Valid inequalities for the RCSPP-polytope

4.3.1 Previous work

s-t cut precedence inequalities

Consider an s-t cut (X, X̄) and an arc e ∈ A with head(e) ∈ X. Clearly, each s-t path through e
contains at least one arc f from δout(X), moreover, for a feasible s-t path (e, f ) is compatible.
Using this observation, for i = 1, . . . , k one can define the sets

φout
i (X, e) :=

{
f ∈ δout(X) : (e, f ) is compatible with respect to wi

}

and
Fout

i (X, e) :=
{

f ∈ φout
i (X, e) : tail( f ) 6= tail(e) and head( f ) 6= tail(e)

}
.

Then the s-t cut precedence inequality with respect to arc e, cut (X, X̄), and resource wi is

xe ≤ x
(

Fout
i (X, e)

)
, (4.10)

and the s-t cut precedence inequality with respect to arc e and cut (X, X̄) is

xe ≤ x

(
k⋂

i=1

Fout
i (X, e)

)
. (4.11)

Analogously, for an s-t cut (X, X̄), an arc e ∈ A with tail(e) ∈ X̄, and i = 1, . . . , k one can
define the sets

φin
i (X, e) :=

{
f ∈ δout(X) : ( f , e) is compatible with respect to wi

}
,

and
Fin

i (X, e) :=
{

f ∈ φin
i (X, e) : tail( f ) 6= head(e) and head( f ) 6= head(e)

}
.

Then the reverse s-t cut precedence inequality with respect to arc e, cut (X, X̄), and resource wi is

xe ≤ x
(

Fin
i (X, e)

)
, (4.12)

and the reverse s-t cut precedence inequality with respect to arc e and cut (X, X̄) is

xe ≤ x

(
k⋂

i=1

Fin
i (X, e)

)
. (4.13)

Garcia (2009) shows that inequalities (4.10), (4.11), (4.12), and (4.13) are valid for the RCSPP-
polytope and can be separated by computing a minimum cut in a graph derived from D.
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Subpath precedence inequalities

Let π = (e1, . . . , ep−1) be a path in D, and let vi = tail(ei) for all i = 1, . . . , p− 1, and vp =

head(ep−1). Assume that π is an infeasible subpath with respect to wi, that is, ωi(s, v1) +

∑
p−1
`=1 wi(e`) + ωi(vp, t) > Li. If e1 is an arc of a feasible s-t path π?, then π? cannot contain

all the arcs of π, and therefore, it must leave path π on some arc f = (vq, u) with 2 ≤ q ≤
vp−1 such that the path (e1, . . . , eq−1, f ) is a feasible subpath with respect to wi. Using this
observation, for q = 2, . . . , p− 1 one can define the sets

φout
i (π, q) :=

{
f ∈ δout(vq) : ωi(s, v1) +

q−1

∑
`=1

wi(e`) + wi( f ) + ωi(head( f ), t) ≤ Li

}
,

Fout
i (π, q) :=

{
f ∈ φout

i (π, q) : head( f ) 6= v1, . . . , vq−1
}

,

and

Fout
i (π) :=

p−1⋃

q=2

Fout
i (π, q).

Then the subpath precedence inequality with respect to infeasible subpath π and resource wi is

xe1 ≤ x
(

Fout
i (π)

)
, (4.14)

and the subpath precedence inequality with respect to infeasible subpath π is

xe1 ≤ x

(
k⋂

i=1

Fout
i (π)

)
. (4.15)

Analogously, for q = 2 . . . , p− 1 one can define the sets

φin
i (π, q) :=

{
f ∈ δin(vq) : ωi(s, tail( f )) + wi( f ) +

p−1

∑
`=q

wi(e`) + ωi(vp, t) ≤ Li

}
,

Fin
i (π, q) :=

{
f ∈ φin

i (π, q) : tail( f ) 6= vq+1, . . . , vp

}
,

and

Fin
i (π) :=

p−1⋃

q=2

Fin
i (π, q).

Then the reverse subpath precedence inequality with respect to infeasible subpath π and resource wi

is
xep ≤ x

(
Fin

i (π)
)

, (4.16)

and the reverse subpath precedence inequality with respect to infeasible subpath π is

xep ≤ x

(
k⋂

i=1

Fin
i (π)

)
. (4.17)

Garcia (2009) shows that inequalities (4.14), (4.15), (4.16), and (4.17) are valid for the RCSPP-
polytope and provides a heuristic separation procedure for them, however, provides neither a
polynomial time separation procedure, nor a proof that the separation problem is NP-hard.
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4.3.2 New results

In this section we generalize the valid inequalities for the RCSPP-polytope described before.

Cut based inequalities

To define s-t cut precedence inequalities we considered an arc and an appropriate cut in the
graph. Now, we will generalize these inequalities by considering a pair of arcs instead of a
single one. Fix a pair of arcs e, f ∈ A such that tail(e) 6= tail( f ), head(e) 6= head( f ), and
head( f ) 6= tail(e). For an s-tail(e) cut (X, X̄) and i = 1, . . . , k we define the sets

φ1
i (X, e, f ) :=

{
g ∈ δout(X) : (g, e, f ) is compatible with respect to wi

}

and

F1
i (X, e, f ) :=

{
g ∈ φ1

i (X, e, f ) : tail(g), head(g) /∈ {head(e), tail( f ), head( f ), t}
}

,

and the inequalities
xe + x f − 1 ≤ x

(
F1

i (X, e, f )
)

(4.18)

and

xe + x f − 1 ≤ x

(
k⋂

i=1

F1
i (X, e, f )

)
. (4.19)

Proposition 4.2. If D contains no path from head( f ) to tail(e), then inequality (4.19) (and thus
inequality (4.18)) is valid for the RCSPP-polytope.

Proof. Consider any feasible s-t path π, and let xπ ∈ {0, 1}A be its characteristic vector, i.e.,
xπ

g = 1 if π contains arc g, otherwise xπ
g = 0. If π does not contain any of the edges {e, f }

then the left-hand side of (4.19) is at most 0, while the right-hand side is at least 0 by
the non-negativity of xπ, thus the claim follows. So, suppose π passes through both of e
and f , i.e., xπ

e = xπ
f = 1. We claim that the right-hand side of (4.19) is at least 1. It suf-

fices to verify that xπ
g = 1 for some arc g ∈ F1

i (X, e, f ). Since D contains no directed path
from head( f ) to tail(e), π passes through e first, and then through f , thus (g, e, f ) is compati-
ble for all the arcs g on the subpath π′ from s to tail(e), and clearly, π′ contains no nodes from
{head(e), tail( f ), head( f ), t}. Since (X, X̄) is an s-tail(e) cut, at least one edge g of π′ must
belong to δout(X), and the claim is verified.

Now we give an example showing that a member of this new class of inequalities (4.18)
may be violated, while all s-t cut precedence inequalities (4.10) and (4.12) are satisfied.

Example 4.1. Consider the RCSPP instance in Fig. 4.1. There is a single resource function with limit
equals to 8, and the weights are indicated on the arcs. The only infeasible s-t path ψ = (s, v2, v4, t) is
not cut off by any s-t cut precedence inequalities, but the inequality (4.18) for arcs (v2, v4) and (v4, t),
and cut (X, X̄) with X = {s}, i.e., x(v2,v4) + x(v4,t) − 1 ≤ x(s,v1) is violated by the incidence vector
of ψ.
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Figure 4.1: [Example 4.1] RCSPP instance with a single resource

Analogously, for a head(e)-tail( f ) cut (X, X̄), and i = 1, . . . , k we define the sets

φ2
i (X, e, f ) :=

{
g ∈ δout(X) : (e, g, f ) is compatible with respect to wi

}

and
F2

i (X, e, f ) :=
{

g ∈ φ2
i (X, e, f ) : tail(g), head(g) /∈ {s, tail(e), head( f ), t}

}
,

and the inequality

xe + x f − 1 ≤ x

(
k⋂

i=1

F2
i (X, e, f )

)
. (4.20)

Finally, for a head( f )-t cut (X, X̄), and i = 1, . . . , k we define the sets

φ3
i (X, e, f ) :=

{
g ∈ δout(X) : (e, f , g) is compatible with respect to wi

}

and

F3
i (X, e, f ) :=

{
g ∈ φ3

i (X, e, f ) : tail(g), head(g) /∈ {s, tail(e), head(e), tail( f )}
}

,

and the inequality

xe + x f − 1 ≤ x

(
k⋂

i=1

F3
i (X, e, f )

)
. (4.21)

Similarly to the proof of Proposition 4.2, one can prove the following proposition.

Proposition 4.3. If D contains no path from head( f ) to tail(e), then inequalities (4.20) and (4.21)
are valid for the RCSPP-polytope.

Separation of the inequalities. Let x̄ be a fractional solution of the LP-relaxation of (4.1)–(4.5)
(possibly augmented by some valid inequalities, and in which some variables may be fixed to 0
or 1 due to preprocessing, branching, or variable fixing). In order to find an inequality (4.19)
violated by x̄, we will search for each pair of arcs a maximally violated inequality over all cuts,
if any, by calculating a minimum cut in an appropriate graph. So, fix a pair of arcs (e, f ) such
that there is no directed path from head( f ) to tail(e) in D. First, we define a capacity function
κ : A → R≥0 as follows. Let κ(g) := x̄g for each arc g such that (g, e, f ) is compatible, and
tail(g), head(g) /∈ {head(e), tail( f ), head( f ), t}; otherwise let κ(g) := 0. Then, we determine
a minimum capacity s-tail(e) cut (X, X̄) with respect to κ, and if x̄e + x̄ f − 1 > κ(X), then
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a violated inequality is found. It is easy to see that this procedure is of polynomial time
for a fixed pair of arcs, and since the number of such pairs is O(|A|2), one can separate
the class of inequalities (4.19) in polynomial time. Similarly, one can separate the classes of
inequalities (4.20) and (4.21).

Infeasible subpath based inequalities

Let π = (e1, . . . , ep−1) be an infeasible subpath in D with p ≥ 4, and let vq = tail(eq) for
q = 1, . . . , p− 1 and vp = head(ep−1). Clearly, any feasible s-t path visiting e1 and ep−1 in this
order must leave π on some arc f = (vq, u) with 2 ≤ q ≤ p− 2, otherwise it would contain all
the arcs of an infeasible subpath. Moreover, for such and arc, tuple (e1, . . . , eq−1, f , ep−1) must
be compatible. Therefore, for all q = 2, . . . , p− 2, and i = 1, . . . , k we define the sets

γout
i (π, q) :=

{
f ∈ δout(vq) \ {eq} : (e1, . . . , eq−1, f , ep−1) is compatible with respect to wi

}

Gout
i (π, q) :=

{
f ∈ γout

i (π, q) : head( f ) 6= v1, . . . , vq−1 and head( f ) 6= vp
}

,

and

Gout
i (π) :=

p−2⋃

q=2

Gout
i (π, q),

and the inequalities
xe1 + xep−1 − 1 ≤ x

(
Gout

i (π)
)

(4.22)

and

xe1 + xep−1 − 1 ≤ x

(
k⋂

i=1

Gout
i (π)

)
. (4.23)

Proposition 4.4. If D contains no directed path from vp to v1, then inequality (4.23) (and thus
inequality (4.22)) is valid for the RCSPP-polytope.

Proof. Consider any feasible s-t path ψ, and let xψ ∈ {0, 1}A be its characteristic vector. If
ψ does not contain any of the edges {e1, ep−1} then the left-hand side of (4.22) is at most 0,
while the right-hand side is at least 0 by the non-negativity of xψ, thus the claim follows.
So, suppose ψ passes through both of e1 and ep−1, i.e., xψ

e1 = xψ
ep−1 = 1. We claim that the

right-hand side of (4.18) is at least 1. It suffices to verify that xψ
f = 1 for some arc f ∈

⋂k
i=1 Gout

i (π). Since D contains no directed path from vp to v1, ψ passes through e1 first, and
then through ep−1, and thus ψ cannot contain all the arcs e2, . . . , ep−2 since π = (e1, . . . , ep−1)

is an infeasible subpath. Hence, ψ must contain an arc emanating from one of the nodes
v2, . . . , vp−2, so let f = (vq, u) be the first emanating arc for some 2 ≤ q ≤ p− 2, i.e., f 6= eq.
Since ψ is a path, u 6= v1, . . . , vq−1 and u 6= vp, and since ψ is feasible, thus f ∈ Gout

i (π, q) ⊆
Gout

i (π) for all i = 1, . . . , k, and the statement of the proposition is proved.

The following two examples show that neither the subpath precedence inequalities, nor
the infeasible subpath based inequalities dominate the other.
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(a) Instance of Example 4.2
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(b) Instance of Example 4.3

Figure 4.2: [Examples 4.2 and 4.3] RCSPP instances with a single resource

Example 4.2. Consider the RCSPP instance depicted in Fig. 4.2a. There is single resource with limit
equals to 8, and there are two infeasible subpaths: π1 = (s, v2, v4, t) and π2 = (s, v2, v6, v4, t). The
subpath precedence inequalities (4.14) for π1 and π2, and the infeasible subpath based inequalities (4.22)
for {π1, π2} are: (i) x(s,v2) ≤ x(v2,v3) + x(v2,v6) + x(v4,v5), (ii) x(s,v2) ≤ x(v2,v3) + x(v2,v4) + x(v4,v5), and
(iii) x(s,v2) + x(v4,t) ≤ x(v2,v3) + 1, respectively. Inequality (iii) excludes both π1 and π2, however,
(i) excludes only π1, and (ii) excludes only π2.

Example 4.3. Consider the RCSPP instance depicted in Fig. 4.2b. There is single resource with limit
equals to 8, and there are three infeasible subpaths: π1 = (s, v2, v4, t), π2 = (s, v2, v4, v6) and π3 =

(s, v2, v4, v6, t). The subpath precedence inequalities (4.14) for {π1, π2, π3}, and the infeasible subpath
based inequalities (4.22) for π1, π2, and π3 are: (i) x(s,v2) ≤ x(v2,v3) + x(v4,v5), (ii) x(s,v2) + x(v4,t) ≤
x(v2,v3) + 1, (iii) x(s,v2) + x(v4,v6) ≤ x(v2,v3) + 1, and (iv) x(s,v2) + x(v6,t) ≤ x(v2,v3) + 1, respectively.
Inequality (i) excludes all of π1, π2, and π3, however, (ii), (iii), and (iv) only excludes π1, π2 and π3,
respectively.

Similarly to the previous case, for all q = 3, . . . , p− 1, and i = 1, . . . , k we define the sets

γin
i (π, q) :=

{
f ∈ δin(vq) \ {eq−1} : (e1, f , eq, . . . , ep−1) is compatible with respect to wi

}
,

Gin
i (π, q) :=

{
f ∈ γin

i (π, q) : tail( f ) 6= vq+1, . . . , vp and tail( f ) 6= v1

}
,

and

Gin
i (π) :=

p−1⋃

q=3

Gin
i (π, q),

and the inequality

xe1 + xep−1 − 1 ≤ x

(
k⋂

i=1

Gin
i (π)

)
. (4.24)

Similarly to Proposition 4.4 one can prove the following proposition.

Proposition 4.5. If D contains no directed path from vp to v1, then inequality (4.24) is valid for the
RCSPP-polytope.
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Separation of inequalities. We show that separating the class of subpath precedence inequali-
ties (4.14) and the infeasible subpath based inequalities (4.23) are NP-hard.

Problem 4.1 (SPP-SEP). Given an instance of RCSPP and a feasible solution x̄ for the LP-relaxation
of (4.1)–(4.5) (possibly augmented by some valid inequalities for RCSPP, and in which some variables
may be fixed to 0 or 1 due to preprocessing, branching, or variable fixing). Is there an infeasible
subpath π = (e1, . . . , ep−1) with p ≥ 4 such that x̄e1 > x̄(Fout

i (π)) for some i ∈ {1, . . . , k}?

Theorem 4.1. SPP-SEP is NP-hard.

Proof. Clearly, it is sufficient to consider the single-resource case. We reduce the Binary
Knapsack Problem (KP) to SPP-SEP. Recall that an instance of (the decision version of) KP
is given by a set of n items, each with a profit pi ∈ Z≥0 and a weight ai ∈ Z≥0, a capacity
value B ∈ Z>0, and a desired profit P ∈ Z; and the question is whether a subset J of items
exists such that p(J) > P and a(J) < B (cf. (Garey and Johnson, 1979, Problem MP9)).

Given an instance of KP. Without loss of generality we may assume that 1 ≤ a1 ≤ . . . ≤
an ≤ B, and 1 ≤ pi ≤ P for all i = 1, . . . , n. Let

āi :=
ai

an + B
for all i = 1, . . . , n, ā0 := 0, and B̄ :=

B
an + B

.

Since B̄ < 1, by multiplying values pi and P by a suitable integer, we may assume that

B̄ ≤ P + psum + 1
P + psum + 2

(4.25)

holds, where psum := ∑n
i=1 pi.

We create an acyclic directed graph D̄ with node set V(D̄) = {v0, . . . , vn+2}. Every pair of
nodes (vi, vi+1), i = 1, . . . , n + 1 is connected by two arcs: e+i,i+1 and e0

i,i+1. Furthermore, for all
i = 1, . . . , n there is an arc from v0 to vi: e0

0,i. Finally, there is an arc e+0,1 from v0 to v1, and an
arc e+1,n+2 from v1 to vn+2. Let s = v0 and t = vn+2, we define arc-weights w, and a feasible
solution x̄ for the LP-relaxation of (4.1)–(4.5) as follows:

w(e) :=





pi if e = e+i,i+1 (i = 1, . . . , n),
psum + 1 if e = e+0,1 or e = e+n+1,n+2,

P + psum + 2 if e = e+1,n+2,
0 otherwise

x̄e :=





āi if e = e0
i,i+1 (i = 1, . . . , n),

ān if e = e0
n+1,n+2,

āi − āi−1 if e = e0
0,i (i = 1, . . . , n),

B̄ if e = e+0,1 or e = e+1,n+2,
0 otherwise

and finally let L := P + 2psum + 2. In Fig. 4.3 we depict the sketch of the constructed graph
where the weights and solution values are indicated on the arcs. Clearly, x̄ is a feasible solution
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Figure 4.3: [Proof of Theorem 4.1] Reducing KP to SPP-SEP

for the LP-relaxation of (4.1)–(4.5) since it is an s-t flow of value ān + B̄ = 1, and the resource
limit is satisfied due to (4.25), that is, ∑e∈E w(e)x̄e = (psum + 1)(ān + B̄) + (P + psum + 2)B̄ ≤
P + 2psum + 2. We claim there exists a solution for KP if and only if there exists a solution
for SPP-SEP in D̄.

First, suppose that SPP-SEP admits a solution, and let π = (e1, . . . , ep−1) be an infeasible
subpath with p ≥ 4 such that x̄(Fout(π)) < x̄e1 . Note that π does not contain arc e+1,n+2 since it
cannot appear in an infeasible subpath with minimum length 3. Clearly, ω(s, vi) = ω(vi, t) = 0
for all i = 1, . . . , n + 2, and ∑n

i=1 max{w(e+i,i+1), w(e0
i,i+1)} = psum, hence an infeasible subpath

with minimum length 3 contains both of the arcs e+0,1 and e+n+1,n+2, and thus π is an s-t path.
Now we determine Fout(π). First, notice that e+1,n+2 /∈ Fout(π), since w(e+0,1) + w(e+1,n+2) =

P + psum + 3 > L. Second, notice that w(πs,vi) ≤ 2psum + 1 holds for the subpath πs,vi of π

from s to vi for all i = 1, . . . , n + 1, w(e0
i,i+1) = 0, w(e+i,i+1) = pi, and ω(vi+1, t) = 0, thus if

π contains an arc e+i,i+1 for some i ∈ {1, . . . , n + 1}, then Fout(π) comprises arc e0
i,i+1 and if

π contains an arc e0
i,i+1 for some i ∈ {1, . . . , n}, then Fout(π) comprises arc e+i,i+1. Therefore, let

I := {i ∈ {1, . . . , n} : e+i,i+1 ∈ π} and we have

Fout(π) =

(
⋃

i∈I

{e0
i,i+1}

)
∪
(
⋃

i/∈I

{e+i,i+1}
)
∪ {e0

n+1,n+2},

and x̄(Fout(π)) = ā(I). Thus, if π is a solution for SPP-SEP, i.e., x̄(Fout(π)) < x̄(e+0,1), that
is, ā(I) < B̄, then a(I) < B and thus I is a solution for KP, since p(I) = w(π) −w(e+0,1) −
w(e+n+1,n+2) > P.

Conversely, let I be a solution for KP. We define path π with arc set

{
e+0,1, e+n+1,n+2

}
∪
(
⋃

i∈I

{e+i,i+1}
)
∪
(
⋃

i/∈I

{e0
i,i+1}

)
.

Similarly to the previous case, it is easy to verify that Fout(π) =

(
⋃
i∈I
{e0

i,i+1}
)
∪
(
⋃
i/∈I
{e+i,i+1}

)
∪

{e0
n+1,n+2}, and inequality (4.14) is violated by x̄.
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Problem 4.2 (ISPB-SEP). Given an instance of RCSPP, a feasible solution x̄ for the LP-relaxation
of (4.1)–(4.5) (possibly augmented by some valid inequalities for RCSPP, and in which some variables
may be fixed to 0 or 1 due to preprocessing, branching, or variable fixing), and two arcs e, f ∈ A.
Is there an infeasible subpath π = (e1, . . . , ep−1) with p ≥ 5 and e1 = e, ep−1 = f such that
x̄e1 + x̄ep−1 − 1 > x̄(Gin(π)) for some i ∈ {1, . . . , k}?

Theorem 4.2. ISPB-SEP is NP-hard.

Proof. The construction is almost the same as that in the proof of Theorem 4.1. To be suitable
for the present claim, extend the graph D̄ with a new node vn+2 and a new arc e0

n+2,n+3

from vn+2 to vn+3. The weight of this the new arc is 0, and let x̄e0
n+2,n+3

= 1. Accordingly,
the new destination node is t = vn+3, and the source node remains s = v0. Let e = e+0,1 and
f = e0

n+2,n+3.
One may verify that KP problem admits a solution I if and only if there is an infeasible

subpath π with length at least 4, with e+0,1 as the first edge, e0
n+2,n+3 as the last edge, and

x̄e+0,1
+ x̄e0

n+2,n+3
− 1 > x̄(Gin(π)).

4.4 Computational results: Evaluation of cutting planes and heuris-
tics

In this section we summarize our computational experiments, where the main goals were
• to show that some of the new cutting planes can improve the performance of a branch-

and-bound procedure for solving RCSPP,
• to assess the effectiveness of the new preprocessing and heuristic algorithms, and
• to find the best combination of the various techniques for solving hard instances.

4.4.1 Test environment and implementation

All the computational experiments were performed on a workstation with 4GB RAM, and
XEON X5650 CPU of 2.67 GHz, and under Linux operating system using a single thread only.
Our procedure is implemented in C++ programming language using FICO Xpress Solver
(Xpress, version 28.01.04) as a branch-and-cut framework, and Library for Efficient Modeling
and Optimization in Networks (Lemon, version 1.3.1) to handle graphs and to perform graph
algorithms.

4.4.2 Preliminary experiments

We performed experiments on several widely-used instance sets from the literature (see Ta-
ble 4.1), where we applied DB-preprocessing on the instances to reduce the underlying graph,
then we solved them with Xpress applying its default settings. We summarize these results
in Table 4.2, where for each instance set we indicate the number of instances (#Instances) in
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Table 4.1: Properties of instance sets

Instance set #Resources #Nodes #Arcs

Min Max Min Max

I1 Beasley and Christofides (1989) 1 100 500 955 4 978
I2 Beasley and Christofides (1989) 10 100 500 990 4 868
D1 Dumitrescu and Boland (2003) 1 10 002 135 002 29 900 404 850
D2 Dumitrescu and Boland (2003) 1 625 40 000 2400 159 200
S Santos et al. (2007) 1 10 000 40 000 15 000 800 000

Table 4.2: Average results on instance sets

Set #Instances Preprocessing Xpress

Time #Solved #Nodes Time

I1 12 0.01 12 - -
I2 12 0.03 10 1.0 0.45
D1 8 0.38 0 1.0 179.28
D2 56 0.12 1 3.0 22.96
S 880 0.12 878 2.0 160.71

the set, the average preprocessing time in seconds (Preprocessing/Time) over the instance set,
the number of instances solved optimally in the preprocessing phase (#Solved), the average
execution time (Branch-and-cut/Time) in seconds, and the average number of investigated enu-
meration tree nodes (#Nodes) of the branch-and-cut procedure over the instance set.

One can notice that most of these instances are solved optimally in the preprocessing
phase, and the rest of the instances are solved with Xpress investigating a small number of
enumeration tree nodes. Thus, these instances cannot be used to challenge a branch-and-
cut procedure, and therefore, we decided to generate our own instances using the similar
generation method as in (Garcia, 2009) that we describe next.

4.4.3 Instances

To construct a directed graph we used a method similar to that of (Beasley and Christofides,
1989). Let n be the number of desired nodes, and denote V = {1, 2, . . . , n} the set of nodes
with s = 1 and t = n. For all i = 1, . . . , n − 1 and for all j = i + 1, . . . , min{n, i + bn/4c}
we randomly include arc (i, j) with a probability such that the expected value of the number
of arcs is 10n. Since for all arcs (i, j), j− i ≤ n/4, every s-t path consisted of at least 4 arcs.
Clearly, the generated graphs are directed, acyclic, and do not contain parallel arcs.

In each of our instances all arc weights and all arc costs are integer. The weights were
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Table 4.3: Summary of instance classes (each instance contains
10 resources)

Resource limit type Class #Nodes Class #Nodes Class #Nodes

Reducing p = 20 G1 500 G5 1000 G9 1500
Uniform W = 20 G2 500 G6 1000 G10 1500
Uniform W = 30 G3 500 G7 1000 G11 1500
Uniform W = 40 G4 500 G8 1000 G12 1500

uniformly and independently generated from [0, 5], and arc costs were uniformly and inde-
pendently generated from [−5, 0]. To create resource limits we used two different methods.
The first one is similar to that in (Beasley and Christofides, 1989), that is, we searched a mini-
mal cost s-t path and computed its resource consumptions. The resource limits were derived
from these values, reduced by a given percentage p. In the second method we chose a fixed
uniform limit W for all resources, like in (Garcia, 2009).

We generated 20 graphs for each n ∈ {500, 1000, 1500}. For each graph we generated a cost
function and 10 resource functions, and then we derived four instances by the four ways of
setting the resource limits. That is, we used the reducing method with p = 20%, and the other
3 instances had uniform resource limits with W = 20, 30, and 40, respectively. Since every
s-t path consists of at least 4 arcs, and the maximum arc weight is 5, each RCSPP instance
with uniform resource limits has a feasible solution.

In summary, we created 240 = 20× 3× 4 RCSPP instances which can be grouped into
12 classes according to their sizes, and the method used to generate their resource limits as we
summarized in Table 4.3. For detailed information about the instances we refer to (Horváth
and Kis, 2016b, Tables A1-A3).

In all of the following experiments, before building the ILP model, we applied the DB- and
the G-preprocessing procedure to reduce the size of the underlying graph (see Section 4.2.1).

4.4.4 Experiments with heuristics and variable fixing procedures

In this section we present the results of the experiments with primal heuristics and variable
fixing procedures described in Section 4.2.2. Our purpose was to investigate how these meth-
ods can improve a simple branch-and-bound procedure, thus in these experiments we turned
off every Xpress presolving and heuristic methods, and we forbade Xpress to add any built-in
cutting plane to the problem.

In these experiments we compared five scenarios corresponding to the settings summa-
rized in Table A.1 of Appendix A. Method BnB (Arcfix) refers to the use of the variable fixing
method of Garcia (2009) at the root node. In case of method BnB (Varfix) we used our variable
fixing method in every enumeration tree node before solving the LP-relaxation, while in the
case of method BnB (Heuristics) we used our primal heuristics in every enumeration tree node
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G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

150 s

450 s

750 s

1,500 s
BnB
BnB (Heuristics)
BnB (Varfix)
BnB (All)

Figure 4.4: Results of experiments with primal heuristics and variable fixing procedures

after an optimal solution for the LP-relaxation had been found. Method BnB (All) refers to the
use of all these components. Remind that in each case DB- and G-preprocessing were applied
on the input graph.

The summary of these experiments can be found in Table A.2 of Appendix A, however,
in Fig. 4.4 we depict the average execution times in seconds over the instance sets for the
branch-and-bound method and the best performing methods.

The most successful method among the aboves is definitely our variable fixing technique.
Method BnB (Varfix) can reduce the total time by 54, 8 − 89, 6% with respect to the plain
branch-and-bound method BnB. Moreover, in most of the cases we obtained the best results
by method BnB (All), that is, when we combined all of the variable fixing and heuristic search
techniques.

4.4.5 Experiments with cutting planes based on s-t cuts

In this section we summarize the experiments with inequalities described in Section 4.3.1
and Section 4.3.2. Our purpose was to compare the performance of the s-t cut precedence
inequalities and that of our generalized inequalities. Again, we used the plain setting of
Xpress, that is, we turned off every Xpress presolving and heuristic methods, and we forbade
Xpress to add any built-in cutting plane to the problem. Moreover, in these experiments we
gave the optimal solution value to the solver and set it as a cutoff value.

In these experiments we compared three scenarios corresponding to the settings sum-
marized in Table A.1 of Appendix A. Method BnC (STCP) refers to the use of the s-t cut
precedence inequalities (4.11) and (4.13), while our cut based inequalities (4.19), (4.20), and
(4.21) were used in method BnC (CB). In the case of method BnC (STCP+CB) we used all the
inequalities mentioned above. Remind that in each case DB- and G-preprocessing were ap-
plied on the input graph. Cuts were generated in each enumeration tree node with depth at
most 8 in one round, except the root node where we separate inequalities in 20 rounds.

The summary of the experiments can be found in Table A.3 of Appendix A, however, in
Fig. 4.5 we depict the average execution times in seconds over the instance sets of the methods.
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G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

50 s
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BnC (STCP)
BnC (CB)
BnC (STCP+CB)

Figure 4.5: Results of experiments with cutting planes based on cuts

The results are diversified, however, we observe that the efficiency of the methods depends
on the types of the instances rather than their sizes. That is, for all problem sizes, for resource
limit types Reducing(20) and Uniform(20) (i.e., classes G1, G2, G5, G6, G9, G10) we obtained
the best results by method BnC (CB), furthermore, for resource limit types Uniform(30) and
Uniform(40) (i.e., classes G3, G4, G7, G8, G11, G12) method BnC (STCP) gave the best results
in almost all cases. One of the reasons for this is that RCSPP instances with resource limit types
Uniform(30) and Uniform(40) contain a few incompatible arc pairs, thus very few inequalities
can be generated, however, the separation of the cut based inequalities are more expensive in
total than the separation of the s-t cut precedence inequalities.

4.4.6 Experiments with cutting planes based on infeasible subpaths

In this section we summarize the experiments with cutting planes based on infeasible subpaths
described in Section 4.3.1 and Section 4.3.2. Our purpose was to compare the performance
of the subpath precedence inequalities and that of our generalized inequalities. Again, we
used the plain setting of Xpress, that is, we turned off every Xpress presolving and heuristic
methods, and we forbade Xpress to add any cutting plane of its own to the problem. Moreover,
in these experiments we gave the optimal solution value to the solver and set it as a cutoff
value.

In these experiments we compared three scenarios corresponding to the settings summa-
rized in Table A.1 of Appendix A. Method BnC (SPP) refers to the use of the strengthened
subpath precedence inequalities (4.15) and (4.17), while our infeasible subpath based inequal-
ities (4.23) and (4.24) were used in the case of method BnC (ISPB). In the case of method BnC
(SPP+ISPB) we used all the inequalities mentioned above. Remind that in each case DB- and
G-preprocessing were applied on the input graph. Cuts were generated in each enumera-
tion tree node with depth at most 8 in one round, except the root node where we separate
inequalities in 20 rounds.

The summary of these experiments can be found in Table A.4 of Appendix A, however, in
Fig. 4.6 we depict the average execution times in seconds over the instance sets of the methods.
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BnC (ISPB)
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Figure 4.6: Results of experiments with cutting planes based on infeasible subpaths

We can observe that in almost all cases BnC (ISPB) or BnC (SPP+ISPB) proved to be the
most effective method, except on the instances in class G12, where BnC (SPP) was the winner
both in computation time and number of enumeration tree nodes explored. The reason for
this is that the infeasible subpath based inequalities could be generated in a much greater
number than the subpath precedence inequalities.

4.4.7 Experiments with combination of various components

In the experiments presented below we combined the various components to find the best
way of using them together for solving hard instances. We report only on the most successful
combinations.

Method BnC (XC) refers to the default Xpress settings, however, we turned off every pre-
solving methods. In these experiments we compared four scenarios corresponding to the
settings summarized in Table A.1 of Appendix A. In the case of methods BnC (GC) and BnC
(NC) we used the plain setting of Xpress, that is, we turned off every Xpress presolving and
heuristic methods, and we forbade Xpress to add any cutting plane of its own to the prob-
lem. In the former case we separated the s-t cut precedence and the subpath precedence
inequalities, and the latter case we separated the s-t cut precedence, the cut based, and the
infeasible subpath based inequalities. Method BnC (XC+NC) is the extension of method BnC
(XC), where we separated the same class of inequalities as in method BnC (NC). Remind that
in each case DB- and G-preprocessing were applied on the input graph.

The summary of these experiments can be found in Table A.5 of Appendix A, however,
in Fig. 4.4 we depict the average execution times in seconds over the instance sets for the
branch-and-bound method and the best performing methods.

We can observe that for all problem sizes, and all types of resource limits, we obtained the
best results (in term of solving time) either by the method BnC (GC) or BnC (NC), and Xpress
cuts and heuristics does not improve the performance of the branch-and-cut procedure.
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Figure 4.7: Results of experiments with combination of various components

4.4.8 Conclusions

The above tests suggest that our primal heuristics and mainly our variable fixing method
can significantly reduce the execution time of a branch-and-bound procedure (Section 4.4.4).
We can also see that both of our cutting planes and the cutting planes from literature can
reduce the computation times and the number of enumeration tree nodes of a plain branch-
and-bound procedure (Section 4.4.5 and Section 4.4.6). However, if we compare the results of
the combined experiments with the results of the heuristics and variable fixing experiments,
we can conclude that adding cutting planes on top of heuristics and variable fixing methods
does not improve, and in most cases degrades the overall performance (cf. Section 4.4.4 and
Section 4.4.7).

4.5 Computational results: Comparison with state-of-the-art meth-
ods

In this section we present our computational experiments, where the main goal was to com-
pare our branch-and-cut approach with other approaches from the literature, namely the Ref-
erence Point Method of Pugliese and Guerriero (2013a), and the Pulse Algorithm of Lozano
and Medaglia (2013).

4.5.1 Test environment and implementation

All the computational experiments were performed on a notebook with Intel Core i7-4710MQ,
2.5 GHz CPU, under Windows 7. Our procedure is implemented in C++ programming lan-
guage using FICO Xpress Solver (Xpress, version 28.01.04) as a branch-and-cut framework,
and Library for Efficient Modeling and Optimization in Networks (Lemon, version 1.3.1) to
handle graphs and to perform graph algorithms.

The solution method of Pugliese and Guerriero (2013a) has been implemented in Java
programming language and tested by using a PC with Intel Core i7-620M, 2.67 GHz CPU,
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under Windows 7, while the solution approach of Lozano and Medaglia (2013) has been
implemented in Java programming language and tested by using a PC with Intel Core 2 Duo
P8600, 2.4 GHz CPU, under Windows XP. Since these environments differ from each other and
from ours, we do not intend to directly compare the running times of the different procedures,
but we want to investigate how they behave on different sets of instances.

4.5.2 Instances

For these experiments we used well-known instance sets from the literature, see Table 4.1.
Instance sets I1 and I2 were given by Beasley and Christofides (1989), and also used by Du-
mitrescu and Boland (2003). Instance sets D1 and D2 were developed by Dumitrescu and
Boland (2003), and also used by Pugliese and Guerriero (2013a). Instance sets S were given
by Santos et al. (2007), and also used by Pugliese and Guerriero (2013a) and Lozano and
Medaglia (2013). Originally, instance set S contains 900 instances, however, we have got only
880 of them. All of the instances have a single resource and can be classified into 18 classes
according to their sizes (S1-S18) or into 5 groups according to their resource types (Group 1-
Group 5). For details we refer to (Santos et al., 2007).

4.5.3 Experiments

In these experiments we tested only one version of our LP-based methods based on the previ-
ous results on the various components. That is, we applied DB-preprocessing on the instances
to reduce the underlying graph, then we solved them with a branch-and-cut procedure where
we used the default settings of Xpress in combination with our variable fixing procedure.

Experiments on instance sets I1 and I2

As we already mentioned in Section 4.4.2, 10 out of 12 instances of set I2, and all of the
12 instances of set I1 can be solved optimally only using DB-preprocessing; and the remaining
two instances are easy to solve with a branch-and-cut procedure (see Table 4.2). For detailed
results we refer to (Horváth and Kis, 2016b, Appendix B).

Experiments on instance sets D1 and D2

We present results in Tables 4.4 and 4.5 where we indicate execution times in seconds of the
Reference Point Method (RPM) of Pugliese and Guerriero (2013a) (LC and ISSA refer to the
two parts of the method, these are, the Label Correcting method and the Interactive Search
Strategy Algorithm) and our branch-and-cut method (LPB) (where PP refers to the prepro-
cessing procedure and BNC refers to the branch-and-cut procedure). For detailed results we
refer to (Horváth and Kis, 2016b, Appendix D).

We recall that the solution approaches are tested on different platforms, thus we do not
recommend a direct comparison of running times. However, we can observe that our LP-
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Table 4.4: Computation times (in seconds) on instance set D1

Instance RPM 1 LPB 2 Instance RPM LPB

LC ISSA PP BNC LC ISSA PP BNC

D1-L/1 0.02 2.50 0.02 0.48 D1-M/1 3.60 11.31 0.01 2.04
D1-L/2 3.68 2324.59 0.23 64.34 D1-M/2 96.92 564.33 0.13 47.66
D1-L/3 3.62 1330.74 0.42 65.40 D1-M/3 377.97 1180.05 0.25 100.77
D1-L/4 21.89 21 926.07 1.31 719.84 D1-M/4 1 849.89 15 635.17 0.70 403.16

1 method of Pugliese and Guerriero (2013a); tested with Intel Core i7-620M, 2.67 GHz CPU, under Windows 7
2 our method; tested with Intel Core i7-4710MQ, 2.5 GHz CPU, under Windows 7

Table 4.5: Computation times (in seconds) on instance set D2

Instance set RPM 1 LPB 2 Instance set RPM LPB

LC ISSA PP BNC LC ISSA PP BNC

D2-L-1 0.00 0.00 0.00 0.01 D2-M-1 0.01 0.04 0.00 0.04
D2-L-2 0.02 0.04 0.01 0.24 D2-M-2 0.18 0.27 0.01 0.33
D2-L-3 0.04 0.17 0.02 0.73 D2-M-3 0.62 4.65 0.02 2.99
D2-L-4 0.33 1.36 0.07 3.10 D2-M-4 9.30 16.27 0.09 11.82
D2-L-5 0.72 2.96 0.15 8.98 D2-M-5 36.60 89.46 0.14 19.42
D2-L-6 1.01 10.16 0.20 32.07 D2-M-6 63.26 475.64 0.19 42.95
D2-L-7 2.09 52.60 0.36 59.65 D2-M-7 243.91 487.75 0.28 104.79

1 method of Pugliese and Guerriero (2013a); tested with Intel Core i7-620M, 2.67 GHz CPU, under Win-
dows 7

2 our method; tested with Intel Core i7-4710MQ, 2.5 GHz CPU, under Windows 7



LP-based methods for the resource constrained shortest path problem 45

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18
1×

20×

75×

280×
RPM
PA
LPB

Figure 4.8: Computation times for Group 1 scaled to set S1

based method behaves in a more stable way than the Reference Point Method, since for the
latter the running time grows more rapidly with the size of the instances.

Experiments on instance set S

We summarize results in Table A.6 of Appendix A. For detailed results we refer to (Horváth
and Kis, 2016b, Appendix S). In Fig. 4.8 we indicate the average computation times of the
Reference Point Method (RPM), the Pulse Algorithm (PA), and our branch-and-cut procedure
(LPB) over the instance sets of Group 1 scaled to set S1. We have the following conclusions:

• We already showed in Section 4.4.2 that all but two instances (that is, 878 out of 880) are
solved optimally in a split of second by just applying preprocessing (see also Table 4.2)
which is a very surprisingly result. Note that Pugliese and Guerriero (2013a) also con-
firmed the efficiency of DB-preprocessing on these instances, but our computation times
are orders of magnitude better than theirs. A possible reason for their high compu-
tation times is that they implemented the methods in Java (while we used C++), and
on the other hand we used very efficient graph structures and shortest path algorithms
provided by Lemon.
• Recall that the solution approaches have been tested on different platforms, thus we do

not recommend to compare the corresponding execution times with each other, however,
we notice that the computation times of PA and LPB are of the same magnitude, and
RPM is significantly slower than them (see Table A.6). We remark that for LPB we have
two salient results, namely for Group 2 in set S6 and set S18. These two sets contain the
two instances not solved in the preprocessing phase.
• PA and LPB behave more stable way than RPM, that is, execution times increase less by

the increase of the input size (see Fig. 4.8). For example, between sets S12 (20 000 nodes,
400 000 arcs) and S18 (40 000 nodes, 800 000 arcs) of Group 1 the computation time of PA
and LPB increased by 120− 130%, however, in the case of RPM the same value is 280%.
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4.5.4 Conclusions

The above experiments suggest that our LP-based methods are competitive with other solution
approaches to solve RCSPP. As we summarized in Table 4.2, the vast majority of the instances
from sets I1, I2, and S can be solved optimally using only the well-known DB-preprocessing
procedure. On harder instances, i.e., set D1 and D2, preprocessing techniques (both prior
to forming the ILP, and in the course of branch-and-bound) play a key role in reducing the
computation times.



Chapter 5

Position-based scheduling of chains on
a single machine

In this chapter we consider a scheduling problem, where a set of unit-time jobs has to be
sequenced on a single machine without any idle times between the jobs. Preemption of pro-
cessing is not allowed. The processing cost of a job is determined by the position in the
sequence, i.e., for each job and each position, there is an associated weight, and one has to de-
termine a sequence of jobs which minimizes the total weight incurred by the positions of the
jobs. In addition, the ordering of the jobs must satisfy the given chain-precedence constraints.
We show that this problem is NP-hard even in a special case, where each chain consists of
two jobs. Further on, we study the polyhedron associated with the problem, and present a
class of valid inequalities along with a polynomial-time separation procedure, and show that
some of these inequalities are facet-defining in the special case. Finally, we present our com-
putational results that confirm that separating these inequalities can significantly speed up a
linear programming based branch-and-bound procedure to solve the problem with chains of
two jobs.

5.1 Introduction

For basic terminology and notation we refer to Section 2.3.

5.1.1 Problem definition

Let J = {J1, . . . , Jn} be the set of unit-time jobs. For a given schedule S and job Jj let
σS

j ∈ {1, . . . , n} indicate the position of the job in the sequence (that is, σS
j = k if exactly k− 1

jobs are scheduled before Jj). For each job Jj and position k there is a weight wjk ∈ Q, and thus
the weight of job Jj for a given schedule S is wj,σS

j
. The goal of the problem is to determine a

schedule S that minimizes the total weight ∑n
j=1 wj,σS

j
. Using the classification of deterministic

sequencing and scheduling problems introduced by Graham et al. (1979), we denote the prob-

47
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lem as 1 | pj = 1 | ∑ wj,σj . In the case of precedence constraints, chain precedence constraints,
and chain precedence constraints with chains consisting exactly two jobs (two-chains) we use
notation 1 | prec, pj = 1 | ∑ wj,σj , 1 | chains, pj = 1 | ∑ wj,σj , and 1 | 2-chains, pj = 1 | ∑ wj,σj , re-
spectively. Note that problem 1 | pj = 1 | ∑ wj,σj is equivalent to the well-known assignment
problem (Motzkin, 1956), thus problem 1 | prec, pj = 1 | ∑ wj,σj can be considered as a gener-
alized assignment problem, where the set of positions is ordered, and the assignment must
satisfy the given precedence constraints.

5.1.2 Related work

Lenstra and Rinnooy Kan (1980) and Leung and Young (1990) present complexity results for
scheduling unit-time jobs on a single machine with chain-precedence constraints, i.e., prob-
lems of the form 1 | chains, pj = 1 | γ. Clearly, problems with γ = Cmax and γ = ∑ Cj are
trivial (since each feasible schedule is optimal), and polynomially solvable for γ = ∑ wjCj

(see e.g., (Lawler, 1978)). Lenstra and Rinnooy Kan (1980) and Leung and Young (1990) show
that problems with γ = ∑ Uj and γ = ∑ Tj are strongly NP-hard, respectively. Our results in
this chapter imply that the problem with γ = ∑ wj,σj is NP-hard in the strong sense even if
each chain in the precedence relation has length 2. We summarize these results in Table 5.1.
Although we do not consider multiple-machine scheduling problems in this chapter, for the
sake of completeness we also refer to some results about scheduling unit-time jobs on par-
allel machines under precedence constraints, i.e., problems of the form P | prec, pj = 1 | γ.
Ullman (1975) shows that problem P | prec, pj = 1 |Cmax is strongly NP-hard, however, prob-
lems P | chains, pj = 1 |Cmax and P2 | prec, pj = 1 |Cmax are polynomially solvable (see e.g.,
(Hu, 1961) and (Coffman and Graham, 1972), respectively). Hoogeveen et al. (2001) show
that problem P | prec, pj = 1 | ∑ Cj is APX-hard, however, problems P | chains, pj = 1 | ∑ Cj

and P2 | prec, pj = 1 | ∑ Cj are polynomially solvable (see e.g., (Hu, 1961) and (Coffman and
Graham, 1972), respectively). Finally, Timkovsky (2003) shows that problem P2 | chains, pj =

1 | ∑ wjCj is strongly NP-hard.

The traditional precedence constraints can be considered as AND-precedence constraints,
that is, a job can only be started after all of its (immediate) predecessors are completed. In
contrast, in the case of OR-precedence constraints, a job can be started as soon as one of its
immediate predecessors is completed. Note that in this case the precedence graph can be
cyclic, however, one can decide in linear time whether the problem has a feasible solution
(see e.g., (Möhring et al., 2004)). According to this, problem 1 | or-prec, pj = 1 | γ is trivial
for γ = Cmax and γ = ∑ Cj, where or-prec refers to the presence of OR-precedence con-
straints. Among other results, Johannes (2005) shows that problem 1 | or-prec, pj = 1 | ∑ wjCj

is strongly NP-hard. Note that the chain-precedence constraints are both AND- and OR-
precedence constraints, since in this case each job has at most one immediate predecessor,
thus problems of the form 1 | chains, pj = 1 | γ considered in this chapter are special cases of
problem 1 | or-prec, pj = 1 | γ. We also summarize these results in Table 5.1.
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Table 5.1: Problem 1 | β, pj = 1 | γ : scheduling unit-time jobs on a single machine under
precedence constraints

β = chains β = prec β = or-prec

γ = Cmax in P (trivial)1

γ = ∑ Cj in P (trivial)1

γ = ∑ wjCj
in P strongly NP-hard strongly NP-hard

(Lawler, 1978) (Lenstra and Rinnooy Kan, 1978) (Johannes, 2005)

γ = ∑ Tj strongly NP-hard (Leung and Young, 1990)

γ = ∑ Uj strongly NP-hard (Lenstra and Rinnooy Kan, 1980)

γ = ∑ wj,σj strongly NP-hard (in this chapter)

1 each feasible schedule is optimal

Wan and Qi (2010) introduce new scheduling models where time slot costs have to be
taken into consideration. In their models the planning horizon is divided into K ≥ ∑n

j=1 pj

time slots with unit length, where the kth time slot has cost πk, and the time slot cost of a job
Jj with starting time t is ∑k∈sj

πk, where sj = {t + 1, . . . , t + pj}. The objective of their models
is a combination of the total time slot cost with a traditional scheduling criterion, that is, they
consider problems of the form 1 | slotcost | γ + ∑j ∑k∈sj

πk. Wan and Qi (2010) show that in the
case of non-decreasing time slot costs (that is, π1 ≤ . . . ≤ πK) the problem can be reduced to
one without slot costs. Under the assumption of arbitrarily varied time slot costs they prove
that the problems with γ = ∑ Cj, γ = Lmax, γ = Tmax, γ = ∑ Uj and γ = ∑ Tj are strongly NP-
hard. They also show that in the case of non-increasing time slot costs some of these problems
can be solved in polynomial or pseudo-polynomial time. Zhao et al. (2016) prove that in the
case of non-increasing time slot costs, problem 1 | slotcost | ∑(Cj + ∑k∈sj

πk) is NP-hard in the
strong sense. Kulkarni and Munagala (2012) introduce a model similar to that of (Wan and
Qi, 2010), however, they deal with online algorithms to minimize the total time slot costs plus
the total weighted completion time. Note that the problem investigated in this chapter can be
considered as a generalization of a special case of the model of Wan and Qi (2010). That is,
in the case of unit-time jobs (with K = ∑n

j=1 pj = n) problem 1 | slotcost, pj = 1 | ∑j ∑k∈sj
πk is

similar to that of 1 | pj = 1 | ∑ wj,σj , however, in the latter problem the time slot costs depend
on the jobs.

5.1.3 Problem formulation

Recall that J = {J1, . . . , Jn} is the set of unit-time jobs, and let P = {1, . . . , n} be the set
of positions. Recall that we write Ji1 ≺≺ Ji2 (Ji1 ≺ Ji2) if Ji1 6= Ji2 and Ji1 is a predecessor
(immediate predecessor) of Ji2 . Let xij be the binary variable indicating whether job Ji is
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assigned to position j. We formulate problem 1 | prec, pj = 1 | ∑ wj,σj as

minimize
n

∑
i=1

n

∑
j=1

wijxij (5.1)

n

∑
j=1

xij = 1 for all i = 1, . . . , n (5.2)

n

∑
i=1

xij = 1 for all j = 1, . . . , n (5.3)

k+1

∑
j=1

xi2,j ≤
k

∑
j=1

xi1,j for all Ji1 ≺ Ji2 , and k = 1, . . . , n− 1 (5.4)

xij ∈ {0, 1} for all i = 1, . . . , n, and j = 1, . . . , n, (5.5)

where constraints (5.2) and (5.3) model the job-position assignment constraints. Inequal-
ity (5.4) ensures that the precedence constraints are satisfied. That is, for each pair of jobs Ji1

and Ji2 such that Ji1 ≺ Ji2 , there are n − 1 linear constraints ensuring that job Ji2 cannot be
assigned to the same or to an earlier position than job Ji1 . Let Sprec

n := {x ∈ {0, 1}n×n :
x satisfies (5.2)− (5.4)} be the set of feasible solutions, and Pprec

n := conv(Sprec
n ) be the poly-

tope of feasible solutions of (5.2)–(5.5). By construction, we have the following proposition.

Proposition 5.1. Sprec
n is the set of incidence vectors corresponding to feasible job-position assignments.

For later use we provide some valid equations for Pprec
n . Let J +

i := {Jj ∈ J : Ji ≺≺ Jj}
(J −i := {Jj ∈ J : Jj ≺≺ Ji}) be the set of successors (predecessors) of job Ji. Clearly, for each
point x ∈ Sprec

n we have

xij = 0 for all i = 1, . . . , n, and j = 1, . . . , |J −i | (5.6)

and

xij = 0 for all i = 1, . . . , n, and j = n− |J +
i |+ 1, . . . , n. (5.7)

Since Pprec
n is the convex hull of the points Sprec

n , these equations are valid for Pprec
n .

5.1.4 Our contribution

We show that problem 1 | prec, pj = 1 | ∑ wj,σj is strongly NP-hard even in the case of two-
chains.

We study the polytopes associated with the problem in case of chains and two-chains as
well. In case of chain precedence constraints we present a class valid inequalities for the
corresponding polytope along with a polynomial-time separation procedure. In case of two-
chains we prove that a subclass of these inequalities are facet-defining.

Finally, we present our computational results that confirm that separating these inequali-
ties can significantly speed up a linear programming based branch-and-bound procedure to
solve the problem with chains of two jobs.
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5.2 Problem 1 | chains, pj = 1 | γ
In this section we present a class of valid inequalities for the case of chain-precedence con-
straints along with a polynomial time separation procedure. We derive these inequalities by
using the so-called parity inequalities, which constitute the non-trivial facets of the parity
polytope (see Section 5.2.1).

For chain-precedence constraints, let Schain
n and Pchain

n denote the set of feasible solutions
and the polytope of feasible solutions, of (5.1)–(5.5), respectively. Let C = {C1, . . . , Cm} be the
set of chains (i.e., chain-precedence constraints), where Ci = (Ji1 , . . . , Ji`) with Ji1 ≺ . . . ≺ Ji`

for all i = 1, . . . , m. The length of a chain C, i.e., the number of its jobs, is denoted by |C|. For
a given integer k we denote the index set {1, . . . , k} by [k].

5.2.1 Parity polytope, parity inequalities

Let Peven
d (Podd

d ) be the convex hull of those d-dimensional 0-1 vectors in which the number
of 1’s is even (odd). The characterization of these polytopes is attributed to Jeroslow (1975),
however, for a direct proof of this result we refer to (Lancia and Serafini, 2018).

Theorem 5.1 (Lancia and Serafini (2018)).

Peven
d =

{
z ∈ [0, 1]d : ∑

i∈S
zi −∑

i/∈S
zi ≤ |S| − 1 for all odd-subset S ⊂ [d]

}
,

Podd
d =

{
z ∈ [0, 1]d : ∑

i∈S
zi −∑

i/∈S
zi ≤ |S| − 1 for all even-subset S ⊂ [d]

}
.

We say that a subset S ⊆ [d] is an odd-subset (even-subset) if its cardinality |S| is odd (even),
and we call the inequalities of Theorem 5.1 parity inequalities.

Separation of parity inequalities

Since we have not been able to find any paper that provides a separation procedure for parity
inequalities, we provide our own procedure. First, we reformulate parity inequalities as

1 ≤ ∑
i∈S

(1− zi) + ∑
i/∈S

zi for each odd-subset S ⊆ [d] (5.8)

and

1 ≤ ∑
i∈S

(1− zi) + ∑
i/∈S

zi for each even-subset S ⊆ [d]. (5.9)

Note that in the sake of convenience we allow S to be the complete set [d], with this the
corresponding inequality is still valid but redundant.
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Theorem 5.2. Inequalities (5.8) and (5.9) can be separated in polynomial time, that is, for a given
vector z̄ ∈ [0, 1]d the following problems can be solved in polynomial time:

maximize

{
1−

(
∑
i∈S

(1− z̄i) + ∑
i/∈S

z̄i

)
: S ⊆ [d] is an odd-subset

}
, (5.10)

maximize

{
1−

(
∑
i∈S

(1− z̄i) + ∑
i/∈S

z̄i

)
: S ⊆ [d] is an even-subset

}
. (5.11)

Clearly, if the maximum value is less than or equal to zero then all of the inequalities are
satisfied, otherwise, the corresponding subset gives one of the most violated inequalities.

Lemma 5.1. Let 1 ≥ v1 ≥ v2 ≥ . . . ≥ vd ≥ 0, and let f (S) := ∑i∈S(1− vi) + ∑i/∈S vi for all
S ⊆ [d]. Consider the following problems:

minimize { f (S) : S ⊆ [d] is an odd-subset} , (5.12)

minimize { f (S) : S ⊆ [d] is an even-subset} . (5.13)

a) Let S0 := ∅ and Si := [i] for all i = 1, . . . , d. There is an optimal solution SOPT for prob-
lem (5.12) (problem (5.13)) such that SOPT = Si for some i = 0, . . . , d.

b) Let t := 0 if 1− vi > vi holds for all i = 1, . . . , d, and let t := max{i : 1− vi ≤ vi} otherwise.
One of the sets St−1, St and St+1 is an optimal solution for problem (5.12) (problem (5.13)).

Proof. To prove statement a), consider an optimal solution SOPT for problem (5.12) which
maximizes the parameter p := max{i : Si ⊆ SOPT}, i.e., for any optimal solution S? we have
max{i : Si ⊆ S?} ≤ p. Clearly, p + 1 /∈ SOPT. Suppose for the sake of a contradiction that
there is an index q > p+ 1 such that q ∈ SOPT. Let S′ := (SOPT ∪ {p+ 1}) \ {q}. Now, we have
f (SOPT) ≤ f (S′) = f (SOPT) + (1− vp+1)− vp+1 − (1− vq) + vq = f (SOPT) + 2(vq − vp+1) ≤
f (SOPT), thus S′ is also an optimal solution for problem (5.12), however p < max{i : Si ⊆ S′}
which contradicts our assumption for SOPT, and the statement is proved.

According to statement a) problems (5.12) and (5.13) can be restricted to subsets of the form
Si, i ∈ {0, . . . , d}. For each i < t, 1− vi+1 ≤ vi+1, thus f (Si+1) = f (Si) + (1− vi+1)− vi+1 ≥
f (Si). For each i > t, 1− vi > vi, thus f (Si) = f (Si−1) + (1− vi)− vi < f (Si+1). Therefore,
we have

f (S1) ≥ . . . ≥ f (St−1) ≥ f (St) and f (St) < f (St+1) < . . . < f (Sn),

thus if St has odd (even) cardinality, then it is an optimal solution for problem (5.12) (prob-
lem (5.13)), otherwise, arg min{ f (St−1), f (St+1)} is an optimal solution for problem (5.12)
(problem (5.13)).

Proof of Theorem 5.2. For a given vector z̄ ∈ [0, 1]d let vi := z̄i for all i = 1, . . . , d, and let
f (S) := ∑i∈S(1 − vi) + ∑i/∈S vi for all S ⊆ [d]. Without loss of generality (e.g., by sorting
and reindexing the values), we can assume that v1 ≥ v2 ≥ . . . ≥ vd. By this, separation
problem (5.10) (problem (5.11)) is equivalent to problem (5.12) (problem (5.13)) which can be
solved in polynomial time according to Lemma 5.1.
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5.2.2 Valid inequalities for Pchain
n

We introduce variables zij (i = 1, . . . , m, j = 1, . . . , n) indicating whether the number of jobs
from chain Ci that are assigned to one of the positions from {1, . . . , j} is odd (zij = 1) or even
(zij = 0).

Claim 5.1. Let x ∈ Schain
n . For each chain Ci = (Ji1 , . . . , Ji`) and each position j ∈ {1, . . . , n} we have

zij =
`

∑
k=1

(−1)k−1
j

∑
p=1

xik ,p.

Proof. For an x ∈ Schain
n the value δk := ∑

j
p=1 xik ,p (k = 1, . . . , `) equals to 1 if and only if job Jik

is assigned to one of the positions {1, . . . , j}, otherwise it is 0. Clearly, for jobs Ji1 ≺ . . . ≺ Ji`

we have 1 ≥ δ1 ≥ . . . ≥ δ` ≥ 0, thus summing these values with alternating factors (−1)k−1

(k = 1, . . . , `), the sum (i.e., zij) is 1 if the number of δ-values that are equal to 1 is odd,
otherwise it is 0.

Claim 5.2. For an even (odd) position j ∈ {1, . . . , n} the number of 1’s in vector (z1j, . . . , zmj) is even
(odd).

Proof. If j is even (odd), then the number of chains Ci such that the cardinality of the set
{k ∈ {1, . . . , j} : zik = 1} is odd (i.e., Ci has an odd number of jobs assigned to the positions
1, . . . , j) must be even (odd).

According to Claim 5.2, the corresponding parity inequalities are valid for the polytope of
feasible solutions of the formulation extended by the z-variables. However, due to Claim 5.1,
one can transform these inequalities to the original x-variables, thus we have the following
theorem.

Theorem 5.3. The following inequalities are valid for Pchain
n :

∑
i∈S

( |Ci |
∑
k=1

(−1)k−1
j

∑
p=1

xik ,p

)
−∑

i/∈S

( |Ci |
∑
k=1

(−1)k−1
j

∑
p=1

xik ,p

)
≤ |S| − 1

for each even position j and odd-subset S ⊆ [m], (5.14)

and

∑
i∈S

( |Ci |
∑
k=1

(−1)k−1
j

∑
p=1

xik ,p

)
−∑

i/∈S

( |Ci |
∑
k=1

(−1)k−1
j

∑
p=1

xik ,p

)
≤ |S| − 1

for each odd position j and even-subset S ⊆ [m]. (5.15)

The separation procedure of the class of inequalities (5.14) (inequalities (5.15)) is similar to
the separation procedure of the class of inequalities (5.8) (inequalities (5.9)), that is, for a given
vector x̄ ∈ [0, 1]n×n, fix an even (odd) position j, and let z̄i := ∑`

k=1(−1)k−1 ∑
j
p=1 x̄ik ,p for each

chain Ci = (Ji1 , . . . , Ji`), i = 1, . . . , m. By this, one can use the separation procedure described
in Section 5.2.1.
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5.3 Problem 1 | 2-chains, pj = 1 | γ
In this section we investigate problem 1 | 2-chains, pj = 1 | γ. Recall that in this problem we
have an even number of jobs (2n), and relation ≺ partitions the set of jobs into n disjoint pairs,
i.e., each jobs has exactly one predecessor or one successor, but not both. In Section 5.3.1 we
reformulate the ILP of Section 5.1.3 to make our notation easier and reflect that each chain
consists of two jobs. The problem 1 | 2-chains, pj = 1 | ∑ wj,σj is shown to be strongly NP-hard
in Section 5.3.2. In Section 5.3.3 we analyze the polyhedron spanned by the feasible solutions
of our integer programming formulation, namely, we determine its dimension, and then in
Section 5.3.4 we show that some of the inequalities from Section 5.2 are facet-defining.

5.3.1 Problem formulation

In order to simplify our notation, in this section let J = {J1, . . . , J2n} be the set of unit-time
jobs, and C = {C1, . . . , Cn} be the set of 2-chains, where Ci = (J2i−1, J2i), that is, J2i−1 ≺ J2i for
each i = 1, . . . , n. We say that job J2i−1 (J2i) is the first (second) job of chain Ci. In addition, let
P = {1, . . . , 2n} be the set of positions.

Let sij (eij) indicate whether the first (second) job of chain Ci ∈ C is assigned to position j ∈
P . Note that we just renamed the variables of the formulation (5.2)–(5.7), that is, sij := x2i−1,j

and eij := x2i,j, thus we get the following equivalent formulation:

2n

∑
j=1

sij = 1 for all i = 1, . . . , n (5.16)

2n

∑
j=1

eij = 1 for all i = 1, . . . , n (5.17)

si,2n = 0 for all i = 1, . . . , n (5.18)

ei,1 = 0 for all i = 1, . . . , n (5.19)
n

∑
i=1

si,1 = 1 (5.20)

n

∑
i=1

(
sij + eij

)
= 1 for all j = 2, . . . , 2n− 1 (5.21)

n

∑
i=1

ei,2n = 1 (5.22)

k+1

∑
j=1

eij ≤
k

∑
j=1

sij for all i = 1, . . . , n, and k = 1, . . . , 2n− 2 (5.23)

sij, eij ∈ {0, 1} for all i = 1, . . . , n, and j = 1, . . . , 2n. (5.24)

Constraints (5.16)–(5.17) and (5.20)–(5.22) are the job-position assignment constraints (cf. (5.2)
and (5.3)). Inequality (5.23) ensures that each first-job precedes the corresponding second-job
(cf. (5.4)). Finally, constraints (5.18)–(5.19) forbid to assign a first-job to the last, or a second-job
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1 2 3 4

C1 C2
C

P

Figure 5.1: Representation of point P = (s, e) ∈ S2-chains
4 with s1,1 = e1,3 = s2,2 = e2,4 = 1

to the first position (cf. (5.6)–(5.7)). Similarly to the general case in Section 5.1.3, we introduce
the set of feasible solutions S2-chains

2n := {(s, e) ∈ {0, 1}n×2n × {0, 1}n×2n : (5.16)− (5.23) holds},
and the polytope of feasible solutions P2-chains

2n := conv(S2-chains
2n ) of (5.16)–(5.24).

Preliminaries

For a given point P = (s, e) ∈ S2-chains
2n , let s(P, i) = j (e(P, i) = j) if sij = 1 (eij = 1). For a

given i = 1, . . . , n let σi(P) be a 2-dimensional vector such that σi(P) = (s(P, i), e(P, i)), and
σ(P) be a 2n-dimensional vector such that σ(P) = (σ1(P), . . . , σn(P)). For example, for the
point P indicated in Fig. 5.1 we have P = (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1), σ1(P) = (1, 3),
σ2(P) = (2, 4), and σ(P) = (1, 3, 2, 4).

5.3.2 Complexity of problem 1 | 2-chains, pj = 1 | ∑ wj,σj

In Theorem 5.4 we will show that problem

1 | 2-chains, pj = 1 | ∑ wj,σj (?)

is NP-hard in the strong sense.

Sketch of proof of Theorem 5.4. We will transform the Independent Set Problem (ISP) to prob-
lem (?). Recall that an instance of ISP is given by an undirected graph G = (V, E) with
node set V = {v1, . . . , vn}, and a maximum size subset of nodes I ⊆ V is sought such that
|{u, v} ∩ I| ≤ 1 holds for each edge {u, v} ∈ E. The basic idea of the transformation can be
seen in Fig. 5.2, where we depict the construction for the 2-length path (without the dummy
chains). Briefly stated, we will create a chain ti for each node vi and two chains fij and gij for
each edge {vi, vj} of the ISP instance, and some additional dummy chains. To each of these
chains we will designate two potential start and two potential end positions. First, by deter-
mining appropriate weights we ensure that in each solution with non-positive total weight,
each of these chains either starts and ends at its first start and end position, respectively, or
at its second start and end position. In Fig. 5.2 we depict the two potential states of these
chains. Second, by designating these positions properly, it is guaranteed that each solution
with a non-positive total weight represents an independent set in the ISP instance and vice
versa. Namely, a node is in the independent set if and only if the corresponding chain starts
and ends its second start and end position, respectively. Note that the role of the edge-chains
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v1 v2 v3

t1 t2 t3 t1 t2 t3f1,2 f1,2 g1,2 g1,2
f2,3 f2,3 g2,3 g2,3

Figure 5.2: [Sketch of proof of Theorem 5.4] Construction for the 2-length path where we
depict the possible states of chains (dummy chains are not depicted)

v1 v2 v3

t2 t1 t3f1,2 g1,2
f2,3 g2,3

t1 t3 f1,2 g1,2
f2,3 g2,3

t2

Figure 5.3: [Sketch of proof of Theorem 5.4] Solution representing independent set {v2}

is to ensure that for adjacent vertices one of the corresponding node-chains must start and
end at its first start and end position, respectively, i.e., at most one of these nodes can be in the
independent set. For example, in Fig. 5.3 we depict the solution that represents the indepen-
dent set {v2} (without the dummy chains). Note that since chain t2 starts/ends at its second
start/end position, i.e., v2 is in the independent set, thus chains g1,2, f1,2 and therefore t1 must
start/end at its first start/end position, i.e., v1 cannot be in the independent set. Similarly,
t3 cannot start/end at its second start/end position, that is, v3 cannot be in the independent
set. In Fig. 5.4 we depict the solution that represents the independent set {v1, v3} (without the
dummy chains).

Theorem 5.4. Problem 1 | 2-chains, pj = 1 | ∑ wj,σj is strongly NP-hard.

Proof. We transform the Independent Set Problem (ISP) problem to problem (?). Let G =

(V, E) be an instance for ISP with node set V = {v1, . . . , vn} and edge set E, and let ~E :=
{(vi, vj) : {vi, vj} ∈ E, i < j} be the set of directed edges, i.e., we replace undirected edge
{vi, vj} by directed edge (vi, vj) for i < j. For a node vi let succ(i) := {vj : (vi, vj) ∈ ~E}

v1 v2 v3

t2 f1,2 g1,2
f2,3 g2,3

t2t1 t3 f1,2 g1,2
f2,3 g2,3

t1 t3

Figure 5.4: [Sketch of proof of Theorem 5.4] Solution representing independent set {v1, v3}
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α(t1)

1

β(t1)

2

α(tn)

2n− 1

β(tn)

2n

ᾱ(t1)

2n + 1

β̄(t1)

2n + 2

ᾱ(t2) β̄(t2) ᾱ(tn) β̄(tn)
· · · · · · · · · · · ·

Figure 5.5: [Proof of Theorem 5.4] Designated positions for node-chains

vi

vj1
vj2
vj3

ᾱ(ti)
β̄(ti)

α( fij1)
β( fij1)

ᾱ( fij1)

α( fij2)
β( fij2)

ᾱ( fij2)

α( fij3)
β( fij3) ᾱ( fij3) β̄( fij1) β̄( fij2) β̄( fij3) ᾱ(ti+1)

· · ·
Figure 5.6: [Proof of Theorem 5.4] Designated positions for edge-chains (part 1)

(pred(i) := {vj : (vj, vi) ∈ ~E}) denote its immediate successors (predecessors). Based on the
ISP instance we will construct an instance for problem (?) with 2|V|+ 3|E| chains (that is, we
will create 1 chain for each node, 2 chains for each edge, and |V| + |E| additional dummy
chains), and 4|V|+ 6|E| positions.

For each vi ∈ V we create a node-chain ti, and for each edge (vi, vj) ∈ ~E we create edge-
chains fij and gij. Let TV = {ti : vi ∈ V} and T~E = { fij, gij : (vi, vj) ∈ ~E}. To each node-chain
ti ∈ TV we designate four distinct positions: α(ti) < β(ti) < ᾱ(ti) < β̄(ti) such that

(i) 2i− 1 = α(ti) = β(ti)− 1 for all i = 1, . . . , n,
(ii) 2n + 1 = ᾱ(t1) = β̄(t1)− 1, and

(iii) β̄(ti) < ᾱ(ti+1) = β̄(ti+1)− 1 for all i = 1, . . . , n− 1,
see Fig. 5.5. To each edge-chain fij ∈ T~E we designate four distinct positions: α( fij) <

β( fij) < ᾱ( fij) < β̄( fij). Consider a node vi ∈ V and its immediate successors succ(i) =

{vj1 , . . . , vj|succ(i)|}. Let
(iv) α( fi,j1) = β̄(ti),
(v) α( fi,j`) = β( fi,j`)− 1 = ᾱ( fi,j`)− 2 for all ` = 1, . . . , |succ(i)|,

(vi) ᾱ( fi,j`) = α( fi,j`+1) for all ` = 1, . . . , |succ(i)| − 1,
(vii) ᾱ( fi,j|succ(i)|) = β̄( fi,j1)− 1 = β̄( fi,j2)− 2 = . . . = β̄( fi,j|succ(i)|)− |succ(i)|,

(viii) β̄( fi,j|succ(i)|) < ᾱ(ti+1),
see Fig. 5.6. Finally, to each edge-chain gij ∈ T~E we designate four distinct positions: α(gij) <

β(gij) < ᾱ(gij) < β̄(gij). Consider a node vj ∈ V and its immediate predecessors pred(j) =

{vi1 , . . . , vi|pred(j)|}. Let
(ix) β̄(gi1,j) = ᾱ(tj),
(x) β(gi`,j) = ᾱ(gi`,j)− 1 = β̄(gi`,j)− 2 for all ` = 1, . . . , |pred(j)|,

(xi) β(gi`,j) = β̄(gi`+1,j) for all ` = 1, . . . , |pred(j)| − 1,
(xii) α(gi`,j) = β̄( fi`,j) for all ` = 1, . . . , |pred(j)|,

(xiii) β̄(tj−1) < β(gi1,|pred(j)|),
see Fig. 5.7.

For each vi ∈ V we have created 1 chain and designated 4 positions, and for each (vi, vj) ∈
~E we have created 2 chains and designated 8 positions, however, positions α( fij), β̄(gij) and
β̄( fij) coincide with other positions (see (iv), (vi), (ix), (xi), and (xii)), hence we have |V|+ 2|E|
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vjvi1

vi2

vi3 ᾱ(tj)
β̄(tj)

β(gi1 j)
ᾱ(gi1 j)

β̄(gi1 j)

β(gi2 j)
ᾱ(gi2 j)

β̄(gi2 j)
β(gi3 j) ᾱ(gi3 j)

β̄(gi3 j)β̄( fi1 j)

α(gi1 j)

β̄( fi2 j)

α(gi2 j)

β̄( fi3 j)

α(gi3 j)

· · · · · · · · ·
Figure 5.7: [Proof of Theorem 5.4] Designated positions for edge-chains (part 2)

chains, and 4|V|+ 5|E| distinct positions. Thus, we also create |V|+ |E| dummy chains and
|E| dummy positions, therefore we have 2|V| + 3|E| chains and 2× (2|V| + 3|E|) positions,
that is, we have a valid instance for problem 1 | 2-chains, pj = 1 | ∑ wj,σj .

Let M > n. For each ti ∈ TV let

ws(ti, j) :=





M if j = α(ti),
0 if j = ᾱ(ti),

2M otherwise,

and we(ti, j) :=





−M if j = β(ti),
−1 if j = β̄(ti),
2M otherwise.

For each tij ∈ T~E (tij is either fij or gij) let

ws(tij, k) :=





M if k = α(tij),
0 if k = ᾱ(tij),

2M otherwise,

and we(tij, k) :=





−M if k = β(tij),
0 if k = β̄(tij),

2M otherwise.

Finally, let ws(t, j) := we(t, j) := 0, for each dummy chain t and for all j = 1, . . . , (4|V|+ 6|E|).

Remarks 5.1. By construction, in any feasible solution for the constructed problem, for each t ∈ TV

we have

∑
j

ws(t, j) + ∑
j

we(t, j) =





0 if st,α(t) = et,β(t) = 1,
−1 if st,ᾱ(t) = et,β̄(t) = 1,
≥ M otherwise,

and for each t ∈ T~E we have

∑
j

ws(t, j) + ∑
j

we(t, j) =

{
0 if st,α(t) = et,β(t) = 1 or st,ᾱ(t) = et,β̄(t) = 1,

≥ M otherwise.

Remark that M > n = |TV |, thus a solution for the created problem has non-positive total weight if
and only if each chain t ∈ TV ∪ T~E starts/ends either its first start/end or its second start/end position.

Proposition 5.2. Let I ⊆ V an independent set in G = (V, E). Then the corresponding scheduling
problem instance admits a feasible solution of total weight −|I|.

Proof. If vi /∈ I, then let sti ,α(ti) := eti ,β(ti) := 1, for each (vi, vj) ∈ ~E let s fij,α( fij) := e fij,β( fij) := 1,
and for each (vk, vi) ∈ ~E let sgki ,ᾱ(gki) := egki ,β̄(gki)

:= 1 (see Fig. 5.8). Otherwise, if vi ∈ I,
then let sti ,ᾱ(ti) := eti ,β̄(ti)

:= 1, for each (vi, vj) ∈ ~E let s fij,ᾱ( fij) := e fij,β̄( fij)
:= 1, and for each

(vk, vi) ∈ ~E let sgki ,α(gki) := egki ,β(gki) := 1 (see Fig. 5.9). The variables for dummy chains can
be arbitrarily fixed. First, we claim that this assignment yields a feasible solution. We need
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ᾱ(ti) β̄(ti)

α( fij1)
β( fij1)

ᾱ( fij1)

α( fij2)
β( fij2) ᾱ( fij2)β̄(gk1i)

β(gk2i) ᾱ(gk2i)
β̄(gk2i)

β(gk1i)
ᾱ(gk1i)

fij1 fij2gk1igk2i

Figure 5.8: [Proof of Theorem 5.4] Assignments for node vi ∈ V \ I

ᾱ(ti) β̄(ti)

α( fij1)
β( fij1)

ᾱ( fij1)

α( fij2)
β( fij2) β̄( fij1)β̄(gk1i)

α(gk1i) ᾱ(gk2i)
β̄(gk2i)

β(gk1i)
ᾱ(gk1i)

ti fij1gk1i

· · ·· · ·

Figure 5.9: [Proof of Theorem 5.4] Assignments for node vi ∈ I

to show, that each position that designated to multiple jobs is assigned to a single job. It is
easy to check that it is true for positions α( fij) and β̄(gij). We also know, that β̄( fij) = α(gij)

for all edge (vi, vj) ∈ ~E (see (xii)), however, we assigned position β̄( fij) to job fij and position
α(gij) to job gij if and only if vi ∈ I and vj ∈ I, respectively, however it is impossible, since I is
independent. Second, it is clear that the weight of the solution is equal to −|I|.

Proposition 5.3. For an independent set problem in graph G = (V, E), suppose the corresponding
scheduling problem admits a feasible solution of value W < 0. Then there is an independent set I in G
with |I| = −W.

Proof. Since W is non-positive, according to Remark 5.1, for each t ∈ TV ∪ T~E we have either
st,α(t) = et,β(t) = 1 or st,ᾱ(t) = et,β̄(t) = 1. We claim that the node set I = {vi ∈ V : sti ,ᾱ(ti) =

eti ,β̄(ti)
= 1} is independent.

Suppose for a contradiction that there is an edge (vi, vj) ∈ ~E such that vi, vj ∈ I. Let
succ(i) = {vj1 , . . . , vj|succ(i)|} be the set of the immediate successors of node vi. Since eti ,β̄(ti)

= 1
and by construction β̄(ti) = α( fij1), thus s fij1 ,α( fij1 )

= 0 and therefore s fij1 ,ᾱ( fij1 )
= e fij1 ,β̄( fij1 )

=

1. Again, by construction ᾱ( fij1) = α( fij2), thus s fij2 ,α( fij2 )
= 0 and therefore s fij2 ,ᾱ( fij2 )

=

e fij2 ,β̄( fij2 )
= 1. Similarly, we can show that s fij`

,ᾱ( fij`
) = e fij`

,β̄( fi,j`
) = 1 holds for all ` =

1, . . . , |succ(i)|, moreover, since j = j` for some ` ∈ {1, . . . , |succ(i)|} we have e fij,β̄( fij)
= 1.

Let pred(j) = {vi1 , . . . , vi|pred(j)|} be the set of the immediate predecessors of node vj. Sim-
ilarly, we can show that sgi` j,α(gi` j) = egi` j,β(gi` j) = 1 holds for all ` = 1, . . . , |pred(j)|, and since
i = i` for some ` ∈ {1, . . . , |pred(j)|} we have sgij,α(gij) = 1.

To sum up, we have e fij,β̄( fij)
= sgij,α(gij) = 1 which yields a contradiction, since by construc-

tion β̄( fij) = α(gij).

Finally, it is easy to see that our transformation is a pseudo-polynomial transformation,
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thus the problem is NP-hard in the strong sense.

Corollary 5.1. Problem 1 | chains, pj = 1 | ∑ wj,σj is strongly NP-hard even in the case of chains of
length at most 2.

Corollary 5.2. Problem 1 | prec, pj = 1 | ∑ wj,σj is strongly NP-hard.

Corollary 5.3. Problem 1 | or-prec, pj = 1 | ∑ wj,σj is strongly NP-hard.

5.3.3 Dimension of P2-chains
2n

In this section we investigate the dimension of the polytope P2-chains
2n .

Theorem 5.5.

dim(P2-chains
2n ) =





0 if n = 1,
4 if n = 2,

4n2 − 6n + 1 if n ≥ 3.

Sketch of the proof of Theorem 5.5 (n ≥ 3). In the case of n ≥ 3 we will use Proposition 2.1 to
prove the theorem. That is, we will provide an equation system for P2-chains

2n (see Theorem 5.6)
with rank 6n − 1 (see Proposition 5.6), which gives that the dimension of P2-chains

2n ⊆ R4n2

is 4n2 − (6n− 1). The detailed proof of Theorem 5.5 can be found at the end of Section 5.3.3.

Theorem 5.6. Let n ≥ 3. The equation set E := {(5.16)− (5.22)} is an equation system for P2-chains
2n .

Proof. Clearly, the equations of E hold for every point of P2-chains
2n , since they are defining

equations for this polyhedron. In order to show that E is an equation system for P2-chains
2n , we

show that any other equation which holds for all points of P2-chains
2n is a linear combination of

the equations of E . Assume that

n

∑
i=1

2n

∑
j=1

αijsij +
n

∑
i=1

2n

∑
j=1

βijeij = γ (5.25)

holds for all (s, e) ∈ P2-chains
2n . To show that equation (5.25) is a linear combination of equa-

tions (5.16)–(5.22) we explicitly create a linear combination (5.26), and in Proposition 5.4 and
Proposition 5.5 we prove that (5.25) and (5.26) are the same. In those proposition we use
Lemma 5.2, however, for its proofs we refer to the appendix.

Lemma 5.2. Equation (5.25) satisfies the following properties:
(i) αp,j′′ − αp,j′ = βq,j′′ − βq,j′ for all p, q = 1, . . . , n and 1 < j′ < j′′ < 2n,

(ii) αp,j′′ − αp,j′ = αq,j′′ − αq,j′ for all p, q = 1, . . . , n and 1 ≤ j′ < j′′ < 2n,
(iii) βp,j′′ − βp,j′ = βq,j′′ − βq,j′ for all p, q = 1, . . . , n and 1 < j′ < j′′ ≤ 2n.

Note that in the case of (i) p may be equal to q.

Consider the linear combination of equations (5.16)–(5.22) with coefficients λ5.16
i , λ5.17

i ,
λ5.18

i , λ5.19
i , λ5.20, λ5.21

j , λ5.22 (i = 1, . . . , n, j = 2, . . . , 2n− 1), respectively, where
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• λ5.16
i = αi,1 − α1,1 for all i = 1, . . . , n,

• λ5.17
i = βi,2n − β1,2n + β1,2 − α1,2 for all i = 1, . . . , n,

• λ5.18
i = αi,2n − αi,1 + α1,1 for all i = 1, . . . , n,

• λ5.19
i = βi,1 − βi,2n + β1,2n − β1,2 + α1,2 for all i = 1, . . . , n,

• λ5.20 = α1,1,
• λ5.21

j = α1,j for all j = 2, . . . , 2n− 1,
• λ5.22 = β1,2n − β1,2 + α1,2.
Let

n

∑
i=1

2n

∑
j=1

α̂ijsij +
n

∑
i=1

2n

∑
j=1

β̂ijeij = γ̂ (5.26)

be the equation obtained. Note that the left-hand side can be written as

n

∑
i=1

(
(λ5.16

i + λ5.20)si,1 + (λ5.16
i + λ5.18

i )si,2n + (λ5.17
i + λ5.19

i )ei,1 + (λ5.17
i + λ5.22)ei,2n

)
+

+
n

∑
i=1

2n−1

∑
j=2

(
(λ5.16

i + λ5.21
j )sij + (λ5.17

i + λ5.21
j )eij

)
.

Proposition 5.4. Equation (5.26) satisfies the following:
(I) α̂ij = αij for all i = 1, . . . , n and j = 1, . . . , 2n.

Proof. Let i = 1, . . . , n be fixed. For j = 1 we have

α̂i,1 = λ5.16
i + λ5.20 = (αi,1 − α1,1) + α1,1 = αi,1,

and for j = 2n we have

α̂i,2n = λ5.16
i + λ5.18

i = (αi,1 − α1,1) + (αi,2n − αi,1 + α1,1) = αi,2n.

For a given j = 2, . . . , 2n− 1 we have

α̂ij = λ5.16
i + λ5.21

j = (αi,1 − α1,1) + α1,j
(ii)
= αij,

where for the last equation we use statement (ii) of Lemma 5.2 with p = 1, q = i, j′ = 1 and
j′′ = j.

Proposition 5.5. For linear combination (5.26) the following statement holds:
(II) β̂ij = βij for all i = 1, . . . , n and j = 1, . . . , 2n.

Proof. Let i = 1, . . . , n be fixed. For j = 1 we have

β̂i,1 = λ5.17
i + λ5.19

i = (βi,2n − β1,2n + β1,2 − α1,2) + (βi,1 − βi,2n + β1,2n − β1,2 + α1,2) = βi,1,

and for j = 2n we have

β̂1,2n = λ5.17
i + λ5.22 = (βi,2n − β1,2n + β1,2 − α1,2) + (β1,2n − β1,2 + α1,2) = βi,2n.
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For a given j = 2, . . . , 2n− 1 we have

β̂ij = λ5.17
i + λ5.21

j = (βi,2n − β1,2n + β1,2 − α1,2) + α1,j
(iii)
= βi,2 − α1,2 + α1,j

(i)
= βij.

since βi,2n− β1,2n + β1,2 = βi,2 according to statement (iii) of Lemma 5.2, and βi,2− α1,2 + α1,j =

βij due to statement (i) of Lemma 5.2.

Corollary 5.4. Equation (5.26) is equivalent to (5.25).

Proof. According to Propositions 5.4 and 5.5, the left-hand-sides of (5.26) and (5.25) are the
same. Since both of them are satisfied by all the points in P2-chains

2n , the right-hand-sides also
coincide.

Proposition 5.6. Let n ≥ 3. The rank of the equation system E = {(5.16)− (5.22)} is 6n− 1.

Proof. Consider a linear combination of equations (5.16)–(5.22) with coefficients λ5.16
i , λ5.17

i ,
λ5.18

i , λ5.19
i , λ5.20, λ5.21

j , λ5.22 (i = 1, . . . , n, j = 2, . . . , 2n− 1), respectively. This linear combina-
tion can be written as

n

∑
i=1

(
(λ5.16

i + λ5.20)si,1 + (λ5.16
i + λ5.18

i )si,2n + (λ5.17
i + λ5.19

i )ei,1 + (λ5.17
i + λ5.22)ei,2n

)
+

+
n

∑
i=1

2n−1

∑
j=2

(
(λ5.16

i + λ5.21
j )sij + (λ5.17

i + λ5.21
j )eij

)
= λ5.20 + λ5.22 +

n

∑
i=1

(
λ5.16

i + λ5.17
i

)
+

2n

∑
j=1

λ5.21
j .

The expression above reduces to the zero-equation (0 · s + 0 · e = 0) if and only if λ5.18
i =

−λ5.16
i = λ5.20, λ5.16

i = −λ5.21
j = λ5.17

i and λ5.19
i = −λ5.17

i = λ5.22 hold for all i = 1, . . . , n,
j = 2, . . . , 2n − 1 and the right-hand side is zero. On the one hand, it is clear that we can
easily choose non-zero coefficients that yield the zero-equation, thus the equations are linearly
dependent. On the other hand, if we omit a single equation from (5.16)–(5.22), that is, we
fix a single coefficient from λ5.16

i , . . . , λ5.22 to zero, then all the remaining coefficients will
be zero, that is, that remaining equations are linearly independent. Hence, the equation
system {(5.16)− (5.22)} containing 6n equations has rank 6n− 1.

Proof of Theorem 5.5. In the case of n = 1, S2-chains
2 consists of a single point P with σ(P) =

(1, 2), thus dim(P2-chains
2 ) = 0.

In the case of n = 2 in order to prove that dim(P2-chains
4 ) = 4 we show that the maxi-

mum number of affinely independent points in S2-chains
4 is 5. We have S2-chains

4 = {P1, . . . , P6},
where σ(P1) = (1, 2, 3, 4), σ(P2) = (1, 3, 2, 4), σ(P3) = (1, 4, 2, 3), σ(P4) = (2, 3, 1, 4), σ(P5) =

(2, 4, 1, 3), σ(P6) = (3, 4, 1, 2), see Fig. 5.10. The linear combination of these points with coeffi-
cients λ1, . . . , λ6, respectively, is

(λ1 + λ2 + λ3)s1,1 + (λ4 + λ5)s1,2 + λ6s1,3 + (λ4 + λ5 + λ6)s2,1 + (λ2 + λ3)s2,2+

+λ1s2,3 + λ1e1,2 + (λ2 + λ4)e1,3 + (λ3 + λ5 + λ6)e1,4 + λ6e2,2+

+(λ3 + λ5)e2,3 + (λ1 + λ2 + λ4)e2,4.
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1 2

(a) σ(P1) = (1, 2, 3, 4)

1 2

(b) σ(P2) = (1, 3, 2, 4)

1 2

(c) σ(P3) = (1, 4, 2, 3)

1 2

(d) σ(P4) = (2, 3, 1, 4)

12

(e) σ(P5) = (2, 4, 1, 3)

12

(f) σ(P6) = (3, 4, 1, 2)

Figure 5.10: [Proof of Theorem 5.5] The six points in S2-chains
4

Clearly, we get the zero-vector if and only if λ1 = 0, λ6 = 0 and λ2 = −λ3 = λ5 = −λ4. On
the one hand, we can easily choose non-zero λ2, . . . , λ5 coefficients to get the zero-vector such
that λ1 + . . . + λ6 = 0 also holds, thus points P1, . . . , P6 are affinely dependent. On the other
hand, if we omit for example P2, i.e., we fix λ2 = 0, we could get the zero-vector if and only if
λ1 = . . . = λ6 = 0, that is, points P1, P3, P4, P5, P6 are linearly and hence affinely independent.
Therefore dim(P2-chains

2 ) = 4.

Finally, assume that n ≥ 3. According to Theorem 5.6, the equation set E = {(5.16)−
(5.22)} is an equation system for P2-chains

2n , and according to Proposition 5.6, the rank of this
system is 6n− 1. Since we have 4n2 variables, thus the dimension of P2-chains

2n is 4n2 − (6n−
1).

5.3.4 Parity inequalities

In the case of general chain-precedence constraints we showed that parity inequalities (5.14)
and (5.15) are valid for Pchain

n (see Section 5.2), thus they are also valid in the case of 2-chains.
Using the replacement of the variables (remark that sij = x2i−1,j and eij = x2i,j) the following
parity inequalities are valid for P2-chains

2n :

∑
i∈S

2k

∑
j=1

(
sij − eij

)
−∑

i/∈S

2k

∑
j=1

(
sij − eij

)
≤ |S| − 1,

for all odd-subset S ⊆ [n], and k < n, (5.27)

and

∑
i∈S

2k−1

∑
j=1

(
sij − eij

)
−∑

i/∈S

2k−1

∑
j=1

(
sij − eij

)
≤ |S| − 1,

for all even-subset S ⊆ [n], and k ≤ n. (5.28)

In this section we show that some of the inequalities (5.27) are facet-defining for P2-chains
2n .

Similarly, one can show that a subset of inequalities (5.28) are also facet-inducing.
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Let 3 ≤ t < n be a fixed odd number, 1 ≤ k < n such that t < 2k and t < 2(n− k) hold,
and S ⊆ [n] with cardinality |S| = t. To simplify our notation, without loss of generality, we
assume that S = {1, . . . , t}. The corresponding parity inequality is:

t

∑
i=1

2k

∑
j=1

(sij − eij) ≤ t− 1 +
n

∑
i=t+1

2k

∑
j=1

(sij − eij). (5.29)

Theorem 5.7. Let 3 ≤ t < n be a fixed odd number, 1 ≤ k < n such that t < 2k and t < 2(n− k)
hold, and S = {1, . . . , t}. Inequalities (5.29) are facet-defining for P2-chains

2n .

Remarks 5.2. Consider a point from S2-chains
2n . We say that a chain Ci = (J2i−1, J2i) is active in inter-

val [2k, 2k + 1] if ∑2k
j=1(sij − eij) = 1 holds (that is, its first job J2i−1 is assigned before position 2k + 1,

and its second job J2i is assigned after position 2k). A point from S2-chains
2n satisfies (5.29) with equality

if and only if
• exactly t − 1 chains from {1, . . . , t} and no chain from {t + 1, . . . , n} are active in interval
[2k, 2k + 1]; or

• exactly t chains from {1, . . . , t} and exactly 1 chain from {t + 1, . . . , n} are active in interval
[2k, 2k + 1].

Sketch of the proof of Theorem 5.7. Let us define the set of points

Sparity
2n := {(s, e) ∈ S2-chains

2n : (s, e) satisfies (5.29) with equality},

and the polyhedron of their convex hull Pparity
2n := conv(Sparity

2n ). Note that Pparity
2n is a proper

face of P2-chains
2n . To prove that inequalities (5.29) are facet-defining for P2-chains

2n , we will show
that Pparity

2n is a facet of P2-chains
2n , i.e., dim(Pparity

2n ) = dim(P2-chains
2n ) − 1. To do this, we ap-

ply a similar procedure as in Section 5.3.3, that is, we will prove that the set E ′ := E ∪
{(5.30)} = {(5.16)− (5.22), (5.30)} of equations contains a minimal equation system for Pparity

2n

with rank dim(P2-chains
2n )− 1, where we have

t

∑
i=1

2k

∑
j=1

(sij − eij) +
n

∑
i=t+1

2k

∑
j=1

(eij − sij) = t− 1. (5.30)

The detailed proof can be found in the end of Section 5.3.4.

Theorem 5.8. The equation set E ′ = {(5.16)− (5.22), (5.30)} is an equation system for Pparity
2n .

Proof. Clearly, the equations of E ′ hold for every point of Pparity
2n since they are defining equa-

tions for Sparity
2n . Assume that

n

∑
i=1

2n

∑
j=1

αijsij +
n

∑
i=1

2n

∑
j=1

βijeij = γ (5.31)

holds for all (s, e) ∈ Pparity
2n . In order to show that equation (5.31) is a linear combination

of equations (5.16)–(5.22) and (5.30) we explicitly create a linear combination (5.32), and in
Propositions 5.7 to 5.10 we prove that (5.31) and (5.32) are the same. In those proposition we
use Lemmas 5.3 and 5.4, however for their proofs we refer to the appendix.
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Lemma 5.3. For equation (5.31) the following statements hold:

(i) αp,j′′ − αp,j′ = αq,j′′ − αq,j′ for all p, q = 1, . . . , t and 1 ≤ j′ < j′′ ≤ 2k,
(ii) αp,j′′ − αp,j′ = αq,j′′ − αq,j′ for all p, q = 1, . . . , t and 1 ≤ j′ ≤ 2k < j′′ ≤ 2n− 1,

(iii) βp,j′′ − βp,j′ = βq,j′′ − βq,j′ for all p, q = 1, . . . , t and 2k < j′ < j′′ ≤ 2n,
(iv) βp,j′′ − βp,j′ = βq,j′′ − βq,j′ for all p, q = 1, . . . , t and 2 ≤ j′ ≤ 2k < j′′ ≤ 2n,
(v) αp,j′′ − αp,j′ = βq,j′′ − βq,j′ for all p, q = 1, . . . , t and 1 < j′ < j′′ ≤ 2k,

(vi) αp,j′′ − αp,j′ = βq,j′′ − βq,j′ for all p, q = 1, . . . , t and 2k < j′ < j′′ < 2n.

Note that in the case of (v) and (vi) p may be equal to q.

Lemma 5.4. For equation (5.31) the following statements hold:

(vii) αp,j′′ − αp,j′ = αq̄,j′′ − αq̄,j′ for all p = 1, . . . , t, q̄ = t + 1, . . . , n and 1 ≤ j′ < j′′ ≤ 2k,
(viii) βp,j′′ − βp,j′ = βq̄,j′′ − βq̄,j′ for all p = 1, . . . , t, q̄ = t + 1, . . . , n and 2k < j′ < j′′ ≤ 2n,

(ix) αp,j′′ − αp,j′ = βq̄,j′′ − βq̄,j′ for all p = 1, . . . , t, q̄ = t + 1, . . . , n and 1 < j′ < j′′ ≤ 2k,
(x) αp,j′′ − αp,j′ = βq̄,j′′ − βq̄,j′ for all p = 1, . . . , t, q̄ = t + 1, . . . , n and 1 < j′ ≤ 2k < j′′ < 2n,

(xi) βp,j′′ − βp,j′ = αq̄,j′′ − αq̄,j′ for all p = 1, . . . , t, q̄ = t + 1, . . . , n and 1 < j′ ≤ 2k < j′′ < 2n,
(xii) βp,j′′ − βp,j′ = αq̄,j′′ − αq̄,j′ for all p = 1, . . . , t, q̄ = t + 1, . . . , n and 2k < j′ < j′′ < 2n.

Consider the linear combination of equations (5.16)–(5.22) and (5.30) with coefficients λ5.16
i ,

λ5.17
i , λ5.18

i , λ5.19
i , λ5.20, λ5.21

j , λ5.22 and λ5.30, (i = 1, . . . , n, j = 2, . . . , 2n− 1) respectively, where

• λ5.30 = λ, where λ := (α1,2 − α1,2k+1 − β1,2 + β1,2k+1)/2,

• λ5.16
i =

{
αi,1 − α1,1 if i = 1, . . . , t,
αi,1 − α1,1 + 2λ if i = t + 1, . . . , n,

• λ5.17
i = µi, where µi :=

{
β1,2 − α1,2 + 2λ if i = 1,
βi,2n − β1,2n + µ1 if i = 2, . . . , n,

• λ5.18
i =





α1,2n if i = 1,
αi,2n − αi,1 + α1,1 if i = 2, . . . , t,
αi,2n − αi,1 + α1,1 − 2λ if i = t + 1, . . . , n,

• λ5.19
i =

{
βi,1 + λ− µi if i = 1, . . . , t,
βi,1 − λ− µi if i = t + 1, . . . , n,

• λ5.20 = α1,1 − λ,

• λ5.21
j =

{
α1,j − λ if j = 2, . . . , 2k,
α1,j if j = 2k + 1, . . . , 2n− 1,

• λ5.22 = β1,2n − µ1.

Let

n

∑
i=1

2n

∑
j=1

α̂ijsij +
n

∑
i=1

2n

∑
j=1

β̂ijeij = γ̂ (5.32)
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be the resulting equation. Note that the left-hand side can be written as

t

∑
i=1

(
(λ5.16

i + λ5.20 + λ5.30)si,1 + (λ5.17
i + λ5.19

i − λ5.30)ei,1

)

+
n

∑
i=t+1

(
(λ5.16

i + λ5.20 − λ5.30)si,1 + (λ5.17
i + λ5.19

i + λ5.30)ei,1

)

+
n

∑
i=1

(
(λ5.16

i + λ5.18
i )si,2n + (λ5.17

i + λ5.22)ei,2n

)

+
t

∑
i=1

2k

∑
j=2

(
(λ5.16

i + λ5.21
j + λ5.30)sij + (λ5.17

i + λ5.21
j − λ5.30)eij

)

+
n

∑
i=t+1

2k

∑
j=2

(
(λ5.16

i + λ5.21
j − λ5.30)sij + (λ5.17

i + λ5.21
j + λ5.30)eij

)

+
n

∑
i=1

2n−1

∑
j=2k+1

(
(λ5.16

i + λ5.21
j )sij + (λ5.17

i + λ5.21
j )eij

)
.

Proposition 5.7. For linear combination (5.32) the following statement holds:
(I) α̂ij = αij for all i = 1, . . . , t and j = 1, . . . , 2n.

Proof. By construction, the statement clearly holds for i = 1. Let i = 2, . . . , t be fixed. For j = 1
we have

α̂i,1 = λ5.16
i + λ5.20 + λ5.30 = (αi,1 − α1,1) + (α1,1 − λ) + λ = αi,1,

and for j = 2n we have

α̂i,2n = λ5.16
i + λ5.18

i = (αi,1 − α1,1) + (αi,2n + α1,1 − αi,1) = αi,2n.

For a given j = 2, . . . , 2k we have

α̂ij = λ5.16
i + λ5.21

j + λ5.30 = (αi,1 − α1,1) + (α1,j − λ) + λ = α1,j − α1,1 + αi,1
(i)
= αij,

where for the last equation we use statement (i) of Lemma 5.3 with p = 1, q = i, j′ = 1, and
j′′ = j. Finally, for a given j = 2k + 1, . . . , 2n− 1 we have

α̂ij = λ5.16
i + λ5.21

j = α1,j − α1,1 + αi,1
(ii)
= αij,

where for the last equation we use statement (ii) of Lemma 5.3 with p = 1, q = i, j′ = 1 and
j′′ = j.

Proposition 5.8. For linear combination (5.32) the following statement holds:
(II) β̂ij = βij for all i = 1, . . . , t and j = 1, . . . , 2n.

Proof. First, assume that i = 1. For j = 1 we have

β̂1,1 = λ5.17
1 + λ5.19

1 − λ5.30 = µ1 + (β1,1 + λ− µ1)− λ = β1,1,
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and for j = 2n we have

β̂1,2n = λ5.17
1 + λ5.22 = µ1 + (β1,2n − µ1) = β1,2n.

For a given j = 2, . . . , 2k we have

β̂1,j = λ5.17
1 + λ5.21

j − λ5.30 = (β1,2 − α1,2 + 2λ) + (α1,j − λ)− λ = β1,2 + α1,j − α1,2
(v)
= β1,j,

where the last equation clearly holds for j = 2, and for 2 < j we can use statement (v) of
Lemma 5.3 with p = q = 1, j′ = 2 and j′′ = j. For a given j = 2k + 1, . . . , 2n− 1 we have

β̂1,j = λ5.17
1 + λ5.21

j = β1,2 + α1,j − α1,2 + 2λ = α1,j − α1,2k+1 + β1,2k+1
(vi)
= βij,

according to statement (vi) of Lemma 5.3 with p = q = 1, j′ = 2k + 1 and j′′ = j. Now, let
i = 2, . . . , t. For j = 1 we have

β̂i,1 = λ5.17
i + λ5.19

i − λ5.30 = µi + (βi,1 + λ− µi)− λ = βi,1,

and for j = 2n we have

β̂1,2n = λ5.17
i + λ5.22 = (βi,2n − β1,2n + µ1) + (β1,2n − µ1) = βi,2n.

For a given j = 2, . . . , 2k we have

β̂ij = λ5.17
i + λ5.21

j − λ5.30 = (βi,2n − β1,2n + β1,2 − α1,2 + 2λ) + (α1,j − λ)− λ

= βi,2n − β1,2n + β1,2 − α1,2 + α1,j
(v)
= βi,2n − β1,2n + β1,j

(iv)
= βij,

since β1,2 − α1,2 + α1,j = β1,j according to statement (v) of Lemma 5.3 with p = q = 1, j′ = 2
and j′′ = j, and βi,2n − β1,2n + β1,j = βij due to statement (iv) of Lemma 5.3 with p = 1, q = i,
j′ = j and j′′ = 2n. Finally, for a given j = 2k + 1, . . . , 2n− 1 we have

β̂ij = λ5.17
i + λ5.21

j = βi,2n − β1,2n + α1,j − α1,2k+1 + β1,2k+1
(vi)
= βi,2n − β1,2n + β1,j

(iv)
= βij,

since α1,j − α1,2k+1 + β1,2k+1 = β1,j according to statement (vi) of Lemma 5.3 with p = q = 1,
j′ = 2k + 1 and j′′ = j, and βi,2n − β1,2n + β1,j = βij due to statement (iv) of Lemma 5.3 with
p = 1, q = i, j′ = j and j′′ = 2n.

Proposition 5.9. For linear combination (5.32) the following statement holds:
(III) α̂ij = αij for all i = t + 1, . . . , n and j = 1, . . . , 2n.

Proof. Let i = t + 1, . . . , n be fixed. For j = 1 we have

α̂i,1 = λ5.16
i + λ5.20 − λ5.30 = (αi,1 − α1,1 + 2λ) + (α1,1 − λ)− λ = αi,1,

and for j = 2n we have

α̂i,2n = λ5.16
i + λ5.18

i = (αi,1 − α1,1 + 2λ) + (αi,2n − αi,1 + α1,1 − 2λ) = αi,2n.



68 Problem 1 | 2-chains, pj = 1 | γ

For a given j = 2, . . . , 2k we have

α̂ij = λ5.16
i + λ5.21

j − λ5.30 = (αi,1 − α1,1 + 2λ) + (α1,j − λ)− λ = α1,j − α1,1 + αi,1
(vii)
= αij,

where for the last equation we use statement (vii) of Lemma 5.4 with p = 1, q̄ = i, j′ = 1 and
j′′ = j. Finally, for a given j = 2k + 1, . . . , 2n− 1 we have

α̂ij = λ5.16
i + λ5.21

j = (αi,1 − α1,1 + α1,2 − β1,2 + β1,2k+1 − α1,2k+1) + α1,j

(vi)
= αi,1 − α1,1 + α1,2 − β1,2 + β1,j

(vii)
= αi,2 − β1,2 + β1,j

(xi)
= αij,

since β1,2k+1 − α1,2k+1 + α1,j = β1,j according to statement (vi) of Lemma 5.3 with p = q = 1,
j′ = 2k + 1 and j′′ = j, and αi,1 − α1,1 + α1,2 = αi,2 according to statement (vii) of Lemma 5.4
with p = 1, q̄ = i, j′ = 1 and j′′ = 2, and αi,2 − β1,2 + β1,j = αij due to statement (xi) of
Lemma 5.4 with p = 1, q̄ = i, j′ = 2 and j′′ = j.

Proposition 5.10. For linear combination (5.32) the following statement holds:
(IV) β̂ij = βij for all i = t + 1, . . . , n and j = 1, . . . , 2n.

Proof. Let i = t + 1, . . . , n be fixed. For j = 1 we have

β̂i,1 = λ5.17
i + λ5.19

i + λ5.30 = µi + (βi,1 − λ− µi) + λ = βi,1,

and for j = 2n we have

β̂1,2n = λ5.17
i + λ5.22 = (βi,2n − β1,2n + µ1) + (β1,2n − µ1) = βi,2n.

For a given j = 2, . . . , 2k we have

β̂ij = λ5.17
i + λ5.21

j + λ5.30 = βi,2n + α1,j − β1,2n − α1,2k+1 + β1,2k+1

(viii)
= α1,j − α1,2k+1 + βi,2k+1

(x)
= βij,

since βi,2n − β1,2n + β1,2k+1 = βi,2k+1 according to statement (viii) of Lemma 5.4 with p = 1,
q̄ = i, j′ = 2k + 1 and j′′ = 2n, and α1,j − α1,2k+1 + βi,2k+1 = βij due to statement (x) of
Lemma 5.4 with p = 1, q̄ = i, j′ = j and j′′ = 2k + 1. Finally, for a given j = 2k + 1, . . . , 2n− 1
we have

β̂ij = λ5.17
i + λ5.21

j = βi,2n − β1,2n + α1,j − α1,2k+1 + β1,2k+1
(vi)
= βi,2n − β1,2n + β1,j

(viii)
= βij,

since α1,j − α1,2k+1 + β1,2k+1 = β1,j according to statement (vi) of Lemma 5.4 with p = 1, q̄ = i,
j′ = 2k + 1 and j′′ = j, and βi,2n − β1,2n + β1,j = βij due to statement (viii) of Lemma 5.4 with
p = 1, q̄ = i, j′ = j and j′′ = 2n.

Corollary 5.5. Linear combination (5.32) yields equation (5.31).
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Proof. According to Propositions 5.7 to 5.10, the left-hand sides of (5.31) and (5.32) are the
same. Since both of them are satisfied for the points from Sparity

2n , the right-hand sides also
coincide with each other.

Proof of Theorem 5.7. First, by definition, rank(E ′) ≤ rank(E) + 1, thus (according to Theo-
rems 5.6 and 5.8) dim(Pparity

2n ) ≥ dim(P2-chains
2n )− 1. Second, dim(Pparity

2n ) ≤ dim(P2-chains
2n )− 1

since Pparity
2n is a proper face of P2-chains

2n , thus dim(Pparity
2n ) = dim(P2-chains

2n )− 1 and Pparity
2n is a

facet of P2-chains
2n .

5.4 Computational results

In this section we present the results of our computational experiments, where the main goal
was to examine the effectiveness of our parity inequalities. Since we proved that some of
these inequalities are facet-defining if each chain has length two, our experiments focused on
problems 1 | 2-chains, pj = 1 | ∑ wj,σj and 1 | chain-length ∈ {1, 2}, pj = 1 | ∑ wj,σj , where in the
latter case each chain has length at most two.

5.4.1 Test environment and implementation

All the computational experiments were performed on a workstation with 8GB RAM and
Intel(R) Xeon(R) CPU E5-2630 v4 of 2.20 GHz, and under Linux operating system using a
single thread only. Our solution method is implemented in C++ programming language
using CPLEX Optimizer (CPLEX, version 12.6.3.0) as a branch-and-cut framework.

5.4.2 Instances

For problem 1 | 2-chains, pj = 1 | ∑ wj,σj we generated two families of instances, Family 1
and Family 2, that differ in the method of generating the cost functions, and for prob-
lem 1 | chain-length ∈ {1, 2}, pj = 1 | ∑ wj,σj one family of instances, Family 3, is gener-
ated. Both families consist of 30 instances, which can be further divided into problems with
n ∈ {50, 100, 150} jobs, i.e., 10 instances for each n. In order to generate challenging instances,
for each first-job we assigned higher weight for the early positions than for the late ones, how-
ever, for each second-job we assigned lower weight for the early positions than for the late
ones. Formally, in the case of Family 1, we partitioned the set of positions into 9 sets such that
Pk = {d(k− 1) · 2n/9e+ 1, . . . , dk · 2n/9e} for each k = 1, . . . , 9, then for job Ji and position j
we chose wij uniformly at random such that

• wij ∈ {10(10− k), . . . , 10(11− k)− 1} if Ji is a first-job, and j ∈ Pk,
• wij ∈ {10k, . . . , 10(k + 1)− 1} if Ji is a second-job, and j ∈ Pk.
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Table 5.2: Solver settings of the different methods (symbols ’F’ and ’·’ indicate if the
corresponding component is used by the method or not)

CPLEX Parity cuts

Method Presolve Heuristics Cuts Root Non-root Time limit

BnB · · · · · 600 s
BnC (Default) F F F · · 600 s
BnC (Parity)–1 · · · · F 600 s
BnC (Parity)–2 · · · F F 600 s

In the case of Family 2, we partitioned the set of positions into 17 subsets such that Pk =

{d(k− 1) · 2n/17e+ 1, . . . , dk · 2n/17e} for each k = 1, . . . , 17, then for job Ji and position j we
chose wij uniformly at random such that

• wij ∈ {10k, . . . , 10(k + 1)− 1} if Ji is a first-job, k ≤ 9, and j ∈ Pk,
• wij ∈ {10(18− k), . . . , 10(19− k)− 1} if Ji is a first-job, 9 < k, and j ∈ Pk,
• wij ∈ {10(10− k), . . . , 10(11− k)− 1} if Ji is a second-job, k ≤ 9, and j ∈ Pk,
• wij ∈ {10(k− 9), . . . , 10(k− 8)− 1} if Ji is a second-job, 9 < k, and j ∈ Pk.

In the case of Family 3, we considered an n-length path (in terms of number of its nodes) as
the precedence graph, and we randomly removed arcs from that path such that the remaining
sub-paths (i.e, chains) have length at most two. We used the same weight-generation method
similarly to Family 1.

5.4.3 Experiments

In these experiments we compared three solution approaches, more precisely, four scenar-
ios corresponding to the settings summarized in Table 5.2. Method BnB is a pure branch-
and-bound procedure, where we turned off all the presolves, heuristics and forbid CPLEX
to generate built-in cuts. Method BnC (Default) refers to the default CPLEX settings (i.e.,
CPLEX performs presolves and heuristics, and generates built-in cuts). Methods BnC (Parity)–
1 and BnC (Parity)–2 use the same solver settings as method BnB, but we also separate parity
inequalities, i.e., both of these methods separate parity inequalities in enumeration tree node
of depth at least 1, but method BnC (Parity)–1 does not generate any cuts in the root, while
method BnC (Parity)–2 does. In each case we had a runtime limit of 600 seconds, i.e., the
search was stopped upon reaching the time limit.

We summarize our results in Tables 5.3 to 5.5, where we indicate the number of jobs
(n), the settings of the solver (Method), the lower bound after the root node is solved (LBr),
the final lower and upper bounds (LB f and, UB f ), the final gap (Gap f ) calculated as 100×
(UB f − LB f )/LB f , the number of investigated enumeration tree nodes (#Nodes), the number
of generated parity inequalities (#Cuts), and the execution time (Time) in seconds.



Position-based scheduling of chains on a single machine 71

Table 5.3: Computational results for Family 1 (averages over 10 instances)

n Method LBr LB f UB f Gap f #Nodes #Cuts Time

50 BnB 2521.1 2525.4 2525.4 0.0 3196.1 0.0 17.2
BnC (Default) 2522.3 2525.4 2525.4 0.0 839.9 0.0 7.7
BnC (Parity)–1 2521.1 2525.4 2525.4 0.0 4.3 19.7 1.1
BnC (Parity)–2 2525.0 2525.4 2525.4 0.0 2.3 20.2 0.6

100 BnB 5004.8 5006.9 5021.9 0.3 14 017.2 0.0 416.9
BnC (Default) 5005.1 5007.5 5011.0 0.1 10 670.4 0.0 397.2
BnC (Parity)–1 5004.8 5008.5 5008.5 0.0 140.0 35.7 25.0
BnC (Parity)–2 5006.9 5008.5 5008.5 0.0 127.6 26.4 23.3

150 BnB 7500.0 7500.0 7513.7 0.2 3740.6 0.0 346.6
BnC (Default) 7500.0 7500.0 7500.1 0.0 1257.2 0.0 227.5
BnC (Parity)–1 7500.0 7500.0 7500.0 0.0 12.8 35.4 42.8
BnC (Parity)–2 7500.0 7500.0 7500.0 0.0 82.8 26.7 82.0

Experiments on problem 1 | 2-chains, pj = 1 | ∑ wj,σj

In Tables 5.3 and 5.4 we summarize our results on Family 1 and Family 2, while for the
detailed results we refer to (Horváth and Kis, 2019b, Tables 6–11). Our observations are the
followings.

• Methods BnC (Parity)–1 and BnC (Parity)–2 significantly outperformed the other ones
in all aspects. First, only these methods were able to solve all instances optimally (one
can see that the average gap is always 0.0). Second, for each instance, method BnC
(Parity)–1 needed shorter execution time than methods BnB and BnC (Default). Note
that on average, method BnC (Parity)–2 was also significantly faster than methods BnB
and BnC (Default) (often faster than method BnC (Parity)–1 as well), however, for some
instances one of the other two methods outperformed it. Finally, both of the methods
BnC (Parity)–1 and BnC (Parity)–2 significantly reduced the number of the explored
enumeration tree nodes as well.
• Separating parity inequalities at the root node (method BnC (Parity)–2) yielded the best

(i.e., highest) lower bounds at the root node, however, on large instances with 150 jobs
the separation procedure at the root node took a lot of time, which resulted in longer
execution times than method BnC (Parity)–1. For example, in the case of Family 1
and n = 150, where the LP-relaxation of the problem (see column LBr of the pure
branch-and-bound method BnB) is basically strong, separating these inequalities at the
root node could not help a lot, and method BnC (Parity)–1 outperformed method BnC
(Parity)–2.
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Table 5.4: Computational results for Family 2 (averages over 10 instances)

n Method LBr LB f UB f Gap f #Nodes #Cuts Time

50 BnB 1800.4 1816.5 1816.5 0.0 925.1 0.0 3.3
BnC (Default) 1815.9 1816.5 1816.5 0.0 14.7 0.0 0.6
BnC (Parity)–1 1800.4 1816.5 1816.5 0.0 3.5 2.7 0.3
BnC (Parity)–2 1816.3 1816.5 1816.5 0.0 1.7 2.6 0.2

100 BnB 3596.2 3598.6 3663.4 1.8 63 707.8 0.0 600.0
BnC (Default) 3602.3 3616.5 3644.5 0.8 14 762.8 0.0 600.0
BnC (Parity)–1 3596.2 3642.1 3642.1 0.0 4.3 27.1 5.4
BnC (Parity)–2 3642.1 3642.1 3642.1 0.0 4.5 16.9 5.2

150 BnB 5340.7 5340.9 5399.8 1.1 9099.5 0.0 600.0
BnC (Default) 5344.3 5352.8 5360.5 0.1 4944.9 0.0 574.0
BnC (Parity)–1 5340.7 5360.4 5360.4 0.0 5.0 6.9 15.4
BnC (Parity)–2 5360.4 5360.4 5360.4 0.0 6.8 10.0 18.1

Experiments on problem 1 | chains, chain-length ∈ {1, 2}, pj = 1 | ∑ wj,σj

In Table 5.5 we summarize our results on Family 3, and for detailed results we refer to
(Horváth and Kis, 2019b, Tables 12–14). Similarly to the previous experiments, methods BnC
(Parity)–1 and BnC (Parity)–2 outperformed the other ones. For smaller instances with 50
and 100 jobs, method BnC (Parity)–2 slightly outperformed method BnC (Parity)–1 in terms
of enumeration tree nodes and total running time, but on large instances with 150 jobs, the
method BnC (Parity)–1 proved better.

5.4.4 Conclusions and final remarks

The computational results presented in the previous section show that separating parity in-
equalities (5.14) and (5.15) can significantly improve an LP-based branch-and-bound proce-
dure if the length of each chain is at most two. Although these inequalities are also valid
in the case of chain-precedence constraints with arbitrary chain-lengths, according to our
preliminary computational experiments, separating these inequalities could not improve a
branch-and-bound procedure in that case.
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Table 5.5: Computational results for Family 3 (averages over 10 instances)

n Method LBr LB f UB f Gap f #Nodes #Cuts Time

50 BnB 2039.6 2056.1 2056.1 0.0 28 892.6 0.0 47.0
BnC (Default) 2049.8 2056.1 2056.1 0.0 851.1 0.0 2.0
BnC (Parity)–1 2039.6 2056.1 2056.1 0.0 4.2 7.8 0.3
BnC (Parity)–2 2055.6 2056.1 2056.1 0.0 2.9 5.3 0.3

100 BnB 4053.6 4056.1 4087.7 0.8 60 305.6 0.0 600.0
BnC (Default) 4056.8 4070.4 4078.7 0.2 26 954.3 0.0 590.3
BnC (Parity)–1 4053.6 4076.7 4076.7 0.0 56.0 16.0 8.6
BnC (Parity)–2 4075.7 4076.7 4076.7 0.0 44.4 8.5 6.9

150 BnB 6062.4 6062.8 6109.5 0.8 16 331.7 0.0 600.0
BnC (Default) 6063.7 6068.3 6084.3 0.3 9923.6 0.0 600.0
BnC (Parity)–1 6062.4 6081.8 6081.8 0.0 32.9 16.4 23.3
BnC (Parity)–2 6081.4 6081.8 6081.8 0.0 196.9 10.6 38.3





Chapter 6

Multiple-depot vehicle and crew
scheduling problem

The vehicle scheduling and the crew scheduling problems are two main planning problems
that arise in the operational phase of the planning process of public transport companies, and
have several real-world applications. Briefly stated, the aim of these problems is to find an
assignment of minimum cost of a given set of trips to vehicles, and to create a minimal cost set
of crew duties that cover tasks resulted from vehicle schedules. In the traditional sequential
approach, the vehicle scheduling problem is solved first and then the crew scheduling problem
next, but scheduling vehicles independently of the crew is seriously criticized, because in
the mass transit case crew costs mostly dominate vehicle operating costs. The integrated
vehicle and crew scheduling problem aims to schedule vehicles and the crew simultaneously,
rather than sequentially. In this chapter we present a novel mathematical formulation for the
integrated problem, and we propose a branch-and-price solution procedure. The motivation
for our contribution was the fact that to our best knowledge, the only paper proposing an
exact method for the integrated problem in the case of multiple depots is that of Mesquita et al.
(2009), however, in that paper a variant of the problem is studied, but in that variant some of
the common assumptions other authors make on feasible crew schedules are neglected. Thus,
our branch-and-price procedure is the first exact solution approach for the general case with
multiple depots.

6.1 Introduction

6.1.1 Problem definition

A trip is a project for vehicles to carry passengers between two given stations, and we assume
that each trip is timetabled, that is, it has fixed departure and arrival time. A fleet of vehicles
may consist of different vehicle types, and some trips may not be operated by all vehicle types.
Thus, although a depot basically is a storage facility, where vehicles can be parked when not
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in use, we treat a depot as a facility with homogeneous fleet of vehicles (that is, if such a facility
consists of several vehicle types, we partition its inhomogeneous fleet into homogeneous ones).
The Vehicle Scheduling Problem (VSP) can be stated as follows: we are given a set of trips,
a fleet of vehicles divided into depots and the goal is to find an assignment of trips to vehicles
such that each trip is assigned exactly once; each vehicle performs a feasible sequence of
trips; each sequence starts and ends at the same depot; and assets and operational costs are
minimized. Based on the number of depots, we have the Single-Depot Vehicle Scheduling
Problem (SDVSP), or the Multiple-Depot Vehicle Scheduling Problem (MDVSP).

A vehicle itinerary describes the route of a vehicle, i.e., the movements made by the vehicle,
e.g., performing a trip, waiting at a station or in a depot, pulling out from/pulling in a depot,
performing a deadhead (that is, traveling between stations without passengers). Each vehicle
itinerary starts with a pull-out and ends with a pull-in, but vehicles can return to the depot
at any time. A vehicle block is the part of the vehicle itinerary between a pair of consecutive
pull-out and pull-in (both included). In Fig. 6.1 we depict a vehicle itinerary consisting of
two vehicle blocks. Some vehicle movements require driver attendance (e.g., performing a
trip/deadhead or pulling out from/pulling in a depot), while typically no driver is required
to be present if the vehicle is waiting in a depot. Drivers can board/leave the vehicle only at
relief points, these are the depots and certain designated stations. Moreover, each trip has at
most two relief points: one at the beginning and one at the end of the trip, i.e., drivers cannot
board/leave the vehicle while it is performing a trip. According to these restrictions, each
vehicle itinerary defines tasks that have to be assigned to drivers. More precisely, a task is
a sequence of driver requiring vehicle movements between two consecutive relief points, i.e.,
tasks are the most elementary portion of work that can be assigned to a driver. For example, in
Fig. 6.1 we present a situation, where a driver is required to be present if a vehicle is outside
of the depot, and the only relief point other than the depot is station C. Thereby, vehicle
block I and vehicle block II consist of 3 and 1 tasks, respectively. A piece of work is a sequence
of tasks without any break (i.e., each task in a piece of work begins at the time point when
the previous one ends), and a (driver) duty is either a single piece of work or a sequence of
pieces of work separated by breaks. The first three tasks in Fig. 6.1 could define six pieces of
work (these are (task I), (task II), (task III), (task I, task II), (task II, task III) and (task I, task II,
task III)), while task IV can be contained by only one piece of work. In this figure we depict
only three pieces of work. Again, these three pieces of work could define four driver duties
(these are (piece of work I), (piece II), (piece III), and (piece II, piece III)), however we depict
only one.

The Crew Scheduling Problem (CSP) can be stated as follows: find a set of duties for a
given set of tasks such that each task is covered by a duty that can be performed by a single
driver; each duty satisfies a wide variety of federal laws, safety regulations, and (collective)
in-house agreements; and labor costs are minimized.

Finally, the Integrated Vehicle and Crew Scheduling Problem (VCSP) can be stated
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Figure 6.1: Vehicle itinerary with driver activities (based on (Steinzen, 2007, Figure 1.4))

as follows: for a set of trips find a minimum cost set of vehicle itineraries and driver duties
such that both the vehicle and the crew schedules are feasible and compatible with each other
(that is, the driver schedule is feasible according to tasks determined by the vehicle sched-
ule). Again, based on the number of depots we have the Single-Depot Vehicle and Crew
Scheduling Problem (SDVCSP), or the Multiple-Depot Vehicle and Crew Scheduling
Problem (MDVCSP).

Assumptions

In the followings we introduce our assumptions about MDVCSP.

Rule 1. Each vehicle is assigned to a depot where its daily schedule starts end ends. Each depot is
unlimited in capacity, that is, it can store an unlimited number of vehicles.

Rule 2. A vehicle returns to its depot if the idle time between two consecutive trips is long enough to
perform a round trip to the depot.

Rule 3. Each driver is assigned to a depot and may only conduct tasks on vehicles from this particular
depot. However, a duty does not necessarily start and end in this depot.

Rule 4. A piece of work is only restricted by its duration. It may have a minimum and maximum
duration.

Rule 5 (continuous attendance). A driver is required to be present if a vehicle is outside of a depot,
while no driver is needed when the vehicle is parked in the depot.

Rule 6 (restricted changeover). Drivers may only change their vehicle during a break, i.e., between
two pieces of work.

Rules 1 to 6 are customary assumptions in the literature (Huisman, 2004; Huisman et al.,
2005; Steinzen, 2007; Steinzen et al., 2010).
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Rule 2 was originally proposed for vehicle scheduling problems to reduce the number of
constraints by introducing the concept of short arcs, and long arcs, see e.g., Freling et al. (1995).
Basically, in their network model arcs representing vehicle movements with appropriate long
idle time were replaced with so-called long arcs representing round trips to the depot, and
for such arcs they did not require the continuous attendance. This idea was applied for
integrated problems as well (e.g., Freling et al. (2003); Huisman et al. (2005); Steinzen et al.
(2010)), however, it is worth mentioning that omitting such long waiting and deadheads may
change the set of potential tasks (see Rule 5), hence the set of feasible duties can be changed.
Rule 2 can create another problem when time-space network approaches are used for VCSP.
Steinzen (2007) and Steinzen et al. (2010) suggest to eliminate appropriate (long) arcs from
network to ensure Rule 2, but it is not sufficient by itself as we will show in Section 6.1.4. That
is why we will handle Rule 2 as a lazy rule, i.e., we will eliminate long arcs from the network
model of the problem, but we will not make further efforts to satisfy Rule 2.

To ensure Rule 6 we need to redefine the concept of a piece of work, that is, in the rest of
this chapter a piece of work is a sequence of tasks without any break that is performed by the
same vehicle. Remark that pieces of work in Fig. 6.1 correspond to the new concept.

Rule 7. A duty consists of one or two pieces of work. Each duty starts with a sign-on and ends with a
sign-off by the driver. Feasibility of a duty can depend only on earliest/latest (sign-on) start/(sign-off)
end time; minimum/maximum piece length; minimum/maximum break length; minimum/maximum
working time; minimum/maximum spread time.

In our terminology working time is the time that driver spends on the vehicle (i.e., the total
duration of the pieces of work consisted by the duty), and spread time is the total duration of
the sign-on, the sign-off, the pieces of work and the breaks.

Rule 8. Vehicle cost is a combination of a fixed asset cost for using the vehicle and a variable operation
cost. Asset cost depends only on depot. Operation cost is a linear function of travel and idle time
outside the depot.

Rule 9. Duty cost is a combination of a fixed driver cost for using a driver and a variable working cost.
Driver cost depends only on depot. Working cost is a linear function of working time.

In fact, fixed costs in Rules 8 and 9 are not restrictions as we assumed that each depot
consists of a homogeneous fleet of vehicles and crew is a group of anonymous drivers.

6.1.2 Literature review

Sequential vehicle and crew scheduling

MDVSP is shown to be NP-hard by Bertossi et al. (1987), which is in strong contrast with the
polynomial solvability of SDVSP, see e.g., (Freling et al., 2001). An overview of different ve-
hicle scheduling models can be found in (Bunte and Kliewer, 2009), and for heuristic solution
approaches for MDVSP we refer to (Pepin et al., 2006).
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Both of VSP and CSP can be interpreted as an assignment problem, however, CSP is more
complicated than VSP because of the wide variety of working rules (e.g., minimum/maximum
working time for drivers, minimum/maximums spread time for duties, etc.). Fischetti et al.
(1987, 1989) show that CSP is NP-hard if either spread time or working time constraints are
present.

Partial integration

Until the late nineties the complete integration of vehicle scheduling and crew scheduling
was computationally intractable, thus most of the early approaches are based on a heuristic
integration.

Ball et al. (1983) propose the first partially integrated approach for the single-depot case.
They schedule crew first including vehicle scheduling considerations and construct a feasible
vehicle schedule afterward. Similar heuristics for the single-depot case are proposed by Tosini
and Vercellis (1988), Falkner and Ryan (1992), and Patrikalakis and Xerocostas (1992).

Other approaches schedule vehicles first but include crew scheduling considerations and
subsequently generate feasible crew schedules, see e.g., (Scott, 1985) and (Darby-Dowman
et al., 1988).

Gintner et al. (2008) apply another partial integration approach for the multiple-depot
case. They perform vehicle scheduling first and crew scheduling afterward, but they use a
time-space network approach for vehicle scheduling that allow to change the corresponding
optimal vehicle schedule without loss of optimality in the crew scheduling phase.

Complete integration – Single-depot case

In Table 6.1 we collect the core of modeling and solution approaches of completely integrated
models, details are explained below.

Freling et al. (1995) propose the first fully integrated approach for the single-depot case.
Their integer programming model uses a so-called connection-based network and consists of
three components: a quasi-assignment formulation for vehicle scheduling, a set partitioning
formulation for crew scheduling, and additional linking constraints that ensure the compati-
bility of vehicle and crew schedules. Their solution approach uses column generation in com-
bination with Lagrangian relaxation. That is, linking constraints are relaxed in a Lagrangian
way and the crew scheduling part is relaxed to a set covering formulation that yields two inde-
pendent Lagrangian subproblems: a single-depot vehicle scheduling problem and a selection
problem. They solve the Lagrangian dual problem with a subgradient algorithm, and suggest
a two-phase pricing method to generate new columns (i.e., duties) for the crew scheduling
part. They apply several heuristics to obtain feasible integer solutions for the original prob-
lem. This modeling and solution approach provides the basis for many other publications,
e.g., Freling et al. (2003); Huisman (2004); Huisman et al. (2005); Steinzen (2007); Steinzen et al.
(2010).
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Friberg and Haase (1999) propose the first exact algorithm for the single-depot case. Their
mathematical programming formulation is a combination of set partitioning formulations for
the vehicle scheduling problem and for the crew scheduling problem, respectively. They
develop a branch-and-cut-and-price algorithm, i.e., the LP-relaxation in each node of the
enumeration tree is solved by column generation, moreover, polyhedral cuts are added to
strengthen the relaxation. Columns for the vehicle scheduling subproblem are generated by
solving shortest path problems on acyclic graphs, however, the pricing problem for the crew
scheduling subproblem is modeled as a resource constrained shortest path problem which is
solved by a dynamic programming algorithm.

Haase et al. (2001) propose another exact solution approach for the single-depot case. In
their view each driver duty must start and end in the depot. Their crew-based mathemat-
ical model is a multicommodity flow formulation that relies on a so-called driver network
structure. Side constraints are used to guarantee that an optimal compatible vehicle schedule
could be derived. That formulation uses a set of path flow variables for drivers and only
one additional variable to count vehicles. They propose a branch-and-price algorithm, where
cutting planes are added to the master problem to reinforce linear relaxations throughout the
enumeration tree. Each pricing problem is transformed into a shortest path problem with
resource constraints and solved by a dynamic programming algorithm.

Laurent and Hao (2008) consider a situation where all vehicles are parked in the same
depot, however, the vehicles may belong to different categories. Thus, their case is more
general than a single-depot case, but more special than the general multiple-depot case which
we consider in this chapter. They also use simplified crew constraints in contrast to Rule 7,
e.g., they have restrictions only for the spread and working times. Their formulation relies on a
constraint satisfaction and optimization model, and they apply a heuristic greedy randomized
adaptive search procedure to solve the problem.

Complete integration – Multiple-depot case

In Table 6.1 we collect the core of modeling and solution approaches of completely integrated
models, details are explained below.

Gaffi and Nonato (1999) introduce the integrated problem for the multiple-depot case.
However, their approach is developed for the extra-urban mass transit setting, where drivers
are virtually tied to their vehicles. Hence, for example, they assume that a driver is assigned
to the same vehicle during the whole duty, and all pieces of work start and end in the depot.
Their heuristic procedure is based on column generation in combination with Lagrangian
relaxation.

Huisman (2004) and Huisman et al. (2005) propose the first general approaches for the
multiple-depot case. Huisman (2004) explicitly introduces Rules 1 and 3 to 6, and Rule 2 is
applied in his mathematical formulation to reduce the number of constraints. That formu-
lation complies also with Rules 7 to 9. Huisman (2004) and Huisman et al. (2005) extend
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Table 6.1: Modeling and solution approaches for the complete integration

Reference Modeling approach Solution approach

Networka Vehicle scheduling part Crew scheduling part Typeb Core

Single-depot case
Freling et al. (1995) CB quasi-assignment set partitioning H LR-CGc

Friberg and Haase (1999) CB set partitioning set partitioning E BCPd

Haase et al. (2001) DB side constraints multicommodity flow E BCP
Freling et al. (2003) CB quasi-assignment set partitioning H LR-CG
Laurent and Hao (2008) (constraint programming approach) H GRASPe

Multiple-depot case
Gaffi and Nonato (1999) CB quasi-assignment set partitioning H LR-CG
Huisman et al. (2005) CB multicommodity flow set partitioning H LR-CG
Borndörfer et al. (2008) CB multicommodity flow set partitioning H LR-CG
Mesquita and Paias (2008) CB multicommodity flow set partitioning/covering H PBf

Mesquita et al. (2009) CB multicommodity flow set partitioning/covering H/E BPg

Steinzen et al. (2010) TS multicommodity flow set partitioning H LR-CG

a CB: connection-based; DB: driver-based; TS: time-space
b H: heuristic approach; E: exact method
c Lagrangian relaxation based column generation
d branch-and-cut-and-price
e greedy randomized adaptive search procedure
f (LP-relaxation based) price-and-branch
g branch-and-price

the modeling and solution approaches of Freling et al. (2003) and Haase et al. (2001) for the
multiple-depot case. That is, they use a multicommodity flow formulation for the vehicle
scheduling part which is based on connection-based networks, and additional constraints are
used to link duty and flow variables. In the first phase of their solution approach they calcu-
late a lower bound on the optimum using a column generation algorithm where the master
problem is solved with Lagrangian relaxation by a subgradient algorithm. For generating
duties they apply a two-step procedure similar to that of Freling et al. (1995), that is, they
generate pieces of work with shortest path algorithms, while duties are generated by a simple
enumerating procedure. Feasible solutions are obtained in the second phase. Huisman (2004)
and Huisman et al. (2005) propose an alternative formulation obtained from the previous one
containing only variables related to crew duties. However, additional constraints are added
to count the number of vehicles and to consider fixed vehicle costs. They apply a solution
approach similar to the one for the previous formulation.

In (Huisman, 2004; Huisman et al., 2005) the authors propose their randomly generated
instances which are widely used in the literature (Borndörfer et al., 2008; Mesquita and Paias,
2008; Mesquita et al., 2009; Steinzen, 2007; Steinzen et al., 2010) and in this chapter as well.

Borndörfer et al. (2008) use a modeling approach similar to that of (Freling et al., 1995).
Their solution approach also relies on a Lagrangian relaxation based column generation pro-
cedure, but they use inexact proximal bundle method to solve Lagrangian dual problems. The
bundle method is embedded in a backtracking procedure to produce an integer solution in
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the second phase.

Mesquita and Paias (2008) propose a modeling approach similar to that of Huisman (2004).
However, there are some fundamental differences between the problem definition of Mesquita
and Paias (2008) and of Huisman (2004). For example, in (Mesquita and Paias, 2008) the
authors consider each end location of a trip as a potential relief point. Moreover, they allow
drivers to change vehicles whenever there is a relief point, and to use vehicles from any
depot, that is, their model do not comply with Rules 3 and 6. They use a multicommodity
flow formulation for the vehicle scheduling part, and set partitioning/covering formulations
for the crew scheduling part. They apply a price-and-branch algorithm, that is, they solve the
LP-relaxation of the problem with a column generation approach, and if the resulted optimal
solution is fractional they apply a branch-and-bound procedure to obtain feasible integer
solution to the problem. The pricing problems are modeled as resource constrained shortest
path problems and are solved by a dynamic programming algorithm.

Mesquita et al. (2009) propose exact and non-exact branch-and-price procedures for the
same problem definition and formulation as in (Mesquita and Paias, 2008).

Steinzen (2007) and Steinzen et al. (2010) use a similar modeling approach for the multiple-
depot case as in (Huisman, 2004), however, their mathematical formulation is based on time-
space networks. Their Lagrangian relaxation based column generation approach is also sim-
ilar to that of Huisman (2004), but in their case pricing problems are modeled by resource
constrained shortest path problems on time-space networks which are solved by a dynamic
programming algorithm. Finally, they devise a heuristic branch-and-price procedure which
alternates between vehicle and crew scheduling to obtain feasible solutions.

6.1.3 Our contribution

We present a novel problem formulation for MDVCSP, where we combine the advantages
of the existing modeling approaches. While most of the known MILP formulations model
the vehicle and crew schedules separately, and join the two parts by linking constraints, we
model crew schedules along with some extra variables and constraints that ensure that from
any integer feasible solution a valid vehicle schedule can be deduced as well. Our modeling
approach is quite general, the set of columns represents the valid crew schedules, and a subset
of it is generated in the course of the solution procedure guided by the rules to be observed
by valid driver schedules.

We developed an exact branch-and-price procedure including (i) an effective pricing pro-
cedure based on that of Freling et al. (1995) using several acceleration strategies, (ii) some
branching strategies, and (iii) a simple primal heuristics. To our best knowledge, the only
paper proposing an exact method for the multiple-depot integrated vehicle and crew schedul-
ing problem is that of Mesquita et al. (2009), where a variant of the problem is studied in
which some of the common assumptions we and other authors make on feasible crew sched-
ules are neglected. Their MILP formulation, unlike ours, models vehicle and crew schedules



Multiple-depot vehicle and crew scheduling problem 83

station A

station B

station C

depot

t1

t2

t3

t4 t5

t6

time

trip arc
pull-out/in arc
waiting arc
circulation arc
deadhead arc

Figure 6.2: Example for a time-space network

separately and contains additional linking constraints to join the two parts.
We also present our computational results compared with other well-known solution ap-

proaches. As we discussed above, several problem definitions have been proposed for the
(integrated) vehicle and crew scheduling problem. Because of the differences between these
assumptions, fair comparisons cannot be established between all approaches. That is, a fea-
sible solution for a given approach may not be feasible for another one, and vice-versa. As
we mentioned in Section 6.1.1, our assumptions comply with those of Huisman et al. (2005);
Steinzen et al. (2010), however, they differ from the assumptions of Mesquita and Paias (2008);
Mesquita et al. (2009).

6.1.4 Problem formulation

Now we discuss our mathematical formulation for MDVCSP, and we shortly present the well-
known time-space network structure the formulation bases on.

Time-space network structure

In a time-space network each node represents a (time, space) pair (where space is either a
station or the depot), and arcs represent vehicle movements. In the following we present how
we build a time-space network for a given depot. For a detailed description about building
time-space networks we refer to (Kliewer et al., 2006).

For each trip that can be operated from the depot we add four nodes to the network
representing the (departing time, departing station), (arriving time, arriving station), (pull-
out time, depot) and (pull-in time, depot) pairs, respectively. Additionally, we add a trip arc
to the network from the departing node to the arriving node, and a pull-out arc (pull-in arc) from
the pull-out node (arriving node) to the departing node (pull-in node). Of course, if a node or
a pull-in/out arc already exists we do not duplicate them (e.g., arriving node of trip t3 and
departing node of trip t4 are the same in Fig. 6.2).

To represent waiting at a station or in the depot we create for each space its timeline, that
is, we collect all nodes that represent this space and sort them in increasing order according
to their represented time, then we add a waiting arc between consecutive nodes. Let s and t
be the first and last node of the timeline of the depot, respectively. We add an extra circulation
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arc from t to s. Note that at a station it is sufficient to start that connecting process with the
first node that represents arriving event, since there is no reason for a vehicle to wait at a
station until a trip ends there. Moreover, according to Rule 2 we do not connect consecutive
nodes together if the duration of that waiting arc would not be shorter than the duration of a
round trip. As you can see in Fig. 6.2 we do not connect the arriving node of trip t1 with the
departing node of trip t2 at station C, since there is enough time for a vehicle to perform a
round trip. It is worth mentioning that both of the two waiting arcs are necessary at station B
— as they ensure the connections between trips t2 and t4, and trips t3 and t5, respectively —
however, a vehicle operating trips t2 and t5 can use these arcs to wait in station B instead of
performing a round trip as required by Rule 2. That is why we mentioned that omitting long
arcs is not sufficient to satisfy Rule 2, and that is why we do not strive to satisfy Rule 2 in the
rest of our solution approach.

To represent deadhead movements between stations we add deadhead arcs connecting the
arriving node of a trip with the departing node of an another trip. One of the most important
properties of time-space networks is that we should not represent all of the deadhead move-
ments explicitly. For example, in Fig. 6.2 trips t3 and t6 are compatible (i.e., can be performed
by the same vehicle), thus we connect their corresponding arriving/departing nodes with a
deadhead arc. However, trips t2 and t6 are also compatible, but is not necessary to add any
deadhead arc between them, since these can be operated by the same vehicle by using the first
waiting arc and the deadhead arc. Of course, we omit a deadhead arc if it is longer than the
corresponding round trip.

Note that each path from s to t corresponds to a vehicle itinerary (and vice versa), and
a piece of work can be represented as a path between two relief points using nondepot-arcs
only.

Problem formulation of Steinzen et al. (2010)

Let D = {d1, d2, . . . , d|D|} be the set of depots, and T be the set of trips. Let Dd = (Vd, Ad) be
the time-space network for depot d ∈ D, and let Ãd ⊂ Ad be the set of nondepot-arcs (i.e., all
arcs but the arcs of the timeline of the depot and the circulation arc). It is worth mentioning
that Ãd is the set of arcs that require both of vehicle and driver activities. Remember that
a path between two nodes that correspond to relief points and using nondepot-arcs only
represents a piece of work. Let Kd be the set of feasible duties that can be operated from
depot d ∈ D and Kd(i, j) ⊆ Kd the set of duties covering arc (i, j) ∈ Ãd. For depot d ∈ D we
denote by Ad(t) ⊆ Ad the set of arcs corresponding to trip t ∈ T . Note that Ad(t) is empty if
trip t cannot be operated from depot d, otherwise it contains a single arc.

Steinzen et al. (2010) use two types of variables. First, they associate a flow variable yd
ij

with each arc (i, j) ∈ Ad indicating whether that arc is used and assigned to depot d ∈ D. The
binary duty variables xd

k (k ∈ Kd) indicate whether duty k is selected for depot d ∈ D.

On the one hand, Steinzen et al. (2010) assign a vehicle cost cd
ij to each arc (i, j) ∈ Ad. That
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is, cd
ij is the asset cost for using a vehicle if (i, j) is the circulation arc of Dd; cd

ij is the operation
cost of the represented vehicle movement if (i, j) ∈ Ãd; otherwise cd

ij is equal to zero. On the
other hand, one could associate a working cost gd

ij with each arc (i, j) ∈ Ãd. With this, the
duty cost f d

k of duty k ∈ Kd is the sum of the fixed driver cost, and the working cost of its
pieces of work. The formulation of Steinzen et al. (2010) is the following:

minimize ∑
d∈D

∑
(i,j)∈Ad

cd
ijy

d
ij + ∑

d∈D
∑

k∈Kd

f d
k xd

k (6.1)

∑
d∈D

∑
(i,j)∈Ad(t)

yd
ij = 1 for all t ∈ T (6.2)

∑
j:(j,i)∈Ad

yd
ji − ∑

j:(i,j)∈Ad

yd
ij = 0 for all d ∈ D, and i ∈ Vd (6.3)

∑
k∈Kd(i,j)

xd
k − yd

ij = 0 for all d ∈ D, and (i, j) ∈ Ãd (6.4)

0 ≤ yd
ij ≤ ud

ij, yd
ij ∈N for all d ∈ D, and (i, j) ∈ Ad (6.5)

xk
d ∈ {0, 1} for all d ∈ D, and k ∈ Kd. (6.6)

The objective (6.1) minimizes the sum of vehicle and crew costs. Constraint set (6.2) ensures
that the set of trips are partitioned among the depots and each trip is covered by a single
vehicle. Constraints (6.3) are the flow conservation constraints corresponding to the multi-
commodity flow formulation for the vehicle scheduling problem. Constraint set (6.4) links the
vehicle and crew schedules, that is, each nondepot-arc should be covered by the same number
of vehicles and duties. Constraints (6.5) ensure that the maximum capacity of flow variables is
satisfied. Steinzen et al. (2010) set ud

ij to 1 on trip arcs (i, j) ∈ Ãd, however, these constraints are
redundant according to (6.2). They also set ud

ij to 1 on pull-in/out arcs (i, j) ∈ Ãd, which are
technical constraints (note that they use unique pull-in/out arcs for each trip). For all other
arcs they use maximum capacity ud equal to the number of vehicles available in depot d ∈ D.

Our problem formulation

Our mathematical programming formulation is obtained from that of Steinzen et al. (2010)
described above by dropping the redundant and technical capacity constraints from (6.5), and
eliminating most of the flow variables by substituting them using constraints (6.4).

However, our formulation can also be interpreted directly from the problem definition.
We use the same notations as before. Further on, let Ād = Ad \ Ãd be the set of depot-arcs
(i.e., the arcs of the timeline of the depot and the circulation arc), and V̄d ⊂ Vd be the set
of depot-nodes of Dd (i.e., nodes of the timeline of the depot). For depot d ∈ D we denote
by Kd(t) ⊆ Kd the set of duties covering trip t ∈ T , furthermore, we denote by Kd

−(i) ⊆ Kd

(Kd
+(i) ⊆ Kd) the set of duties that contain a piece of work starting (ending) in node i ∈ Vd.

We also use two types of variables. First, we associate a flow variable yd
ij with each depot-

arc (i, j) ∈ Ād indicating the number of vehicles that cross arc (i, j). To ensure continuous
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attendance (Rule 5), and restricted changeover (Rule 6), the second type of our variables
combines drivers and vehicles outside of a depot. Remember that a path between two nodes
that correspond to relief points and using nondepot-arcs only represents a piece of work.
From a different angle, such a path can be considered as a part of some vehicle block, that
is why we can handle a piece of work as a driver-vehicle pair. That is, binary duty variable
xd

k indicates whether duty k ∈ Kd is selected for depot d ∈ D, if so, it means that a driver is
assigned to duty k and for each piece of work of the duty a vehicle is assigned.

We also assign vehicle costs cd
ij to each arc (i, j) ∈ Ad, and a working cost gd

ij to each
arc (i, j) ∈ Ãd. With this, the driver cost (vehicle cost) of a piece of work is the cost of the
corresponding path according to arc costs gd

ij (cd
ij), and the combined duty cost f̃ d

k of duty
k ∈ Kd is the sum of the fixed driver cost, the vehicle cost of its pieces of work, and the
working cost of its pieces of work. Now, we formulate MDVCSP as:

minimize ∑
d∈D

∑
(i,j)∈Ād

cd
ijy

d
ij + ∑

d∈D
∑

k∈Kd

f̃ d
k xd

k (6.7)

∑
d∈D

∑
k∈Kd(t)

xd
k = 1 for all t ∈ T (6.8)

∑
k∈Kd

+(i)

xd
k − ∑

k∈Kd
−(i)

xd
k = 0 for all d ∈ D, and i ∈ Vd \ V̄d (6.9)

∑
(i,j)∈Ād

yd
ij + ∑

k∈Kd
+(i)

xd
k − ∑

(j,i)∈Ād

yd
ji − ∑

k∈Kd
−(i)

xd
k = 0 for all d ∈ D, and i ∈ V̄d (6.10)

0 ≤ yd
ij, yd

ij ∈ Z for all d ∈ D, and (i, j) ∈ Ād (6.11)

xk
d ∈ {0, 1} for all d ∈ D, and k ∈ Kd. (6.12)

The objective (6.7) minimizes the sum of vehicle and crew costs, as the fixed asset costs for
the vehicles are built in the first term of (6.7), and all the other costs are contained in the
second term of (6.7). Constraint (6.8) ensures that each trip is covered by exactly one duty.
Constraints (6.9)–(6.10) connect flow variables with the vehicle part of duty variables. That
is, (6.9) specifies for a nondepot-node i that the number of pieces of work ending in node i
(i.e., the number of vehicles arriving at node i) must be equal to the number of pieces of work
starting in node i (i.e., the number of vehicles departing from node i). Constraint (6.10) is
analogous for depot-nodes, but it takes into consideration that vehicles can wait in the depots.
Note that flow variables are implicit integer, that is, they are always integer if duty variables
are integer.

It is worth mentioning that in our formulation a duty variable (i.e., the corresponding col-
umn) contains only relevant information about the duty, namely, the start/end nodes of the
piece(s) of work of the duty and the trips covered by the duty, if any. Notice that deadhead
routes (e.g., routes between two consecutive trips) are not considered by the constraints. More-
over, the rules concerning the feasibility of duties do not appear explicitly in this formulation,
only in the set Kd.
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Note that limits on the number of vehicles in depots can be imposed by adding the con-
straints yd

ts ≤ ud to the model, where (t, s) is the circulation arc of the corresponding depot.
By construction, we have the following result.

Proposition 6.1. Each optimal solution of the formulation (6.7)–(6.12) corresponds to an optimal
solution for MDVCSP, and each optimal solution for MDVCSP is represented as an optimal solution
for the formulation (6.7)–(6.12).

6.2 Solution approach

In this section we present our solution method for MDVCSP which is a branch-and-price
procedure to solve master problem (6.7)–(6.12). That is, we compute a MILP containing just a
few columns of the master problem (called restricted master problem) and perform a branch-and-
bound procedure such that in each node of the enumeration tree we may add new columns
(i.e., duties) to the LP-relaxation of the current restricted master problem.

More precisely, we create an initial restricted master problem (described in Section 6.2.1).
We solve each node-LP optimally, that is, for each node we generate new duties until no one
with a negative reduced cost is left as we describe in Section 6.2.2. At the root node we apply
a two-stage approach. In the first stage we generate duties that contain one or two pieces
of work starting and ending in the depot, and at the end of this stage we perform a primal
solution search (described in Section 6.2.4). The reason for this is that with such a column
set the constraints (6.9)–(6.10) are easy to satisfy, hence we expect that the search procedure
can quickly find a good primal solution. In the second stage we generate duties without
any limitations for their start and end locations, and we may also perform a primal solution
search at the end of the stage. We describe our branching rules in Section 6.2.3. Our primary
branching strategy is to assign trips to depots, and we use the SPP-based branching strategy
as a secondary rule (if the primary rule failed to branch), and as a last resort, one may rely on
the default branching strategy of the MILP solver.

6.2.1 Initial restricted master problem

The initial restricted master problem contains all of the flow variables and a set of initial duty
variables that we create by obtaining a feasible solution for MDVCSP by using a sequential
procedure. That is, we first formulate MDVSP as a minimum cost multicommodity flow
problem on the time-space networks using the given vehicle costs as in (Kliewer et al., 2006),
and solve the MILP model with a standard software. Then, independently for each depot we
create a set-partitioning formulation for CSP (e.g., (Freling et al., 2003)) to assign drivers to
the obtained vehicle schedules. We solve the LP-relaxations of these problems with a column
generation approach similar to the one we discuss in Section 6.2.2, then we solve the resulting
restricted master problems with branch-and-bound, and use the solutions as initial column
set for MDVCSP.
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Note, that if we failed to obtain feasible integer solution for any of CSPs, we could use
fictive columns for the initial restricted master problem penalized by a high cost, or we could
start branch-and-price with an initial restricted master problem containing no duty variables
(see Farkas pricing in Section 6.2.2).

6.2.2 Pricing variables

Once the corresponding restricted master problem is solved we attempt to price out new
variables (i.e., new duties) by using the dual information of the solution. Let λt (t ∈ T )
and µd

i (i ∈ Vd, d ∈ D) be the dual variables associated to constraints (6.8) and (6.9)–(6.10),
respectively.

To generate feasible duties we use a two-phase procedure similar to the one proposed by
Freling et al. (1995), that is, in the first phase we generate a set of feasible pieces by using a
so-called piece generation network, and in the second phase we derive feasible duties. Since
we generate pieces of work and duties independently for each depot, in the rest of this section
we fix a depot d ∈ D.

Generation of pieces of work

For each depot we derive a piece generation network from the corresponding time-space
network consisting of all original arcs but depot-arcs, that is, the piece generation network
for depot d is D̂d = (Vd, Ad \ Ād). We recall that each path in D̂d between two nodes that
correspond to relief points represents a piece of work. For a piece of work p let A[p] and T [p]
be the set of arcs and the set of trips covered by p, respectively, and let s[p] and e[p] be the
start and the end node of p, respectively. The combined cost h of a piece of work p is the sum
of vehicle and driver costs for all arcs covered by the piece of work, formally

h(p) := ∑
ij∈A[p]

cd
ij + gd

ij.

The reduced cost ĥ of a piece of work p (and the reduced cost of the corresponding path) is

ĥ(p) := h(p)− µd
s[p] + µd

e[p] − ∑
t∈T [p]

λd
t .

For the sake of efficiency, we do not generate all of the pieces of work, but obtain a set of
feasible pieces by considering only the minimum reduced cost path between any two nodes
in D̂d. To do this, we predetermine a processing order of nodes of D̂d (which is a topological
order in case the network is acyclic). By that, for any given node we can determine the shortest
path arborescence in O(|A|) time, thus we can determine the minimum reduced cost path for
each pair of nodes in O(|A||V|) total time.

At the root node of the enumeration tree it is clear that considering only the minimum
reduced cost paths is sufficient in the sense that we will find at least one piece of work with
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negative reduced cost, if any. However, when branching decisions are to be considered this
strategy may fail to find appropriate pieces. For example, assume that piece of work p corre-
sponding to the minimum reduced cost path between nodes u and v is infeasible according to
some of the branching decisions, but there is an another u–v path with negative reduced cost
that admits a piece of work p′ which is feasible according to all of the branching decisions. It
is clear that we will fail to find the feasible piece of work p′, since it is overshadowed by the
infeasible piece of work p. That is why we should take branching decisions into consideration
during piece or/and duty generation. We postpone the details until Section 6.2.3.

Generation of duties

Duties consisting of one piece of work can be easily generated by iterating over the previously
obtained piece of work set. To generate combined duties (i.e., duties consisting of two pieces of
work) we apply a straightforward pairing procedure using proper data structures and several
acceleration techniques in order to avoid enumerating inherently infeasible pairs. For details
we refer to (Horváth and Kis, 2019a).

Farkas pricing

After branching is performed the restricted master problem of a new node may be infeasible
due to fixings, but it does not mean that the master problem of the node is infeasible, so the
node cannot be pruned.

Again, one could resolve this issue by adding fictive columns to the LP penalized by
a high cost, but instead, in such cases we perform a so-called Farkas pricing. That is, if
the restricted master problem is infeasible we can obtain dual Farkas multipliers λ̄t and µ̄d

v

associated with constraints (6.8) and (6.9)–(6.10), respectively, to prove infeasibility according
to the Farkas-Lemma. To make restricted master problem feasible we have to find a new
column that violates this proof. It can be shown that this pricing problem is similar to the
pricing problem for reduced cost pricing, but now we use a zero objective function and the
dual Farkas multipliers instead of the original objective function and the dual solution. Thus,
we can use the pricing method discussed in Section 6.2.2 with a minor modification to make
the restricted master problem feasible.

6.2.3 Branching strategies

Now, we present our strategies to perform branch in an enumeration tree node where the
optimal solution for the final restricted master problem is fractional. Remark, that flow vari-
ables yd

ij are implicit integer, hence it is sufficient to take only duty variables xd
k into consider-

ation.
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Assign trips to depots

Our first branching strategies can be used in the multiple-depot case when there exists a
trip that belongs to several depots in the current LP-relaxation. Formally, consider a fractional
solution (x̄, ȳ) to the relaxation of the corresponding restricted master problem, and let Cx̄(t, d)
denote the commitment of trip t to depot d, that is

Cx̄(t, d) := ∑
k∈Kd(t)

x̄d
k .

If 0 < Cx̄(t, d) < 1 holds for a trip t and a depot d, i.e., trip t is committed to mul-
tiple depots according to solution x̄, we choose a trip t̄ and a depot d̄ such that (t̄, d̄) =

arg min(t,d) |Cx̄(t, d)− 0.5|. We have two possibilities to perform branch on pair (t̄, d̄):
1. Partitioning: We create exactly two branches. We require to cover trip t̄ by a duty from

depot d̄ on the one branch, and to cover by a duty from a depot that differs from d̄ on
the other branch. Formally,

∑
k∈Kd̄(t̄)

xd̄
k = 1 (binding branch) (6.13)

∑
k∈Kd̄(t̄)

xd̄
k = 0 (banning branch). (6.14)

2. Splitting: Assume that trip t̄ can be performed from depots di1 , di2 , . . . , diq . We create
q branches, and force to cover trip t̄ by a duty from depot dij on the jth branch (1 ≤ j ≤ q).
Formally, for the jth branch we have

∑
k∈K

dij (t̄)

x
dij
k = 1. (6.15)

Note that these two branching strategies are the same if we have exactly two depots.
As we remarked above, these branching strategies are not complete in the sense that they

cannot be used if each trip t is committed for a single depot, i.e., Cx̄(t, d) = 1 holds for
some depot d. However, handling these branching rules is quite easy without adding any
inequalities of (6.13)–(6.14) or (6.15) to the problem. That is, on the one hand we can easily
fix the appropriate existing variables to zero according to the corresponding branch. On the
other hand, if a trip is forbidden to cover by a duty from the depot for which we want to price
out new duties, we just erase the corresponding trip-arc from the piece generation network
of the depot, and the pricing procedure described in Section 6.2.2 can be used without any
modification.

SPP-based branching

Our branching strategy based on the branching scheme proposed by Ryan and Foster (1981)
(see Section 2.6.5), that is, we branch on duty variables utilizing the set partitioning structure
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of constraints (6.8). Consider a fractional solution (x̄, ȳ) to the relaxation of the corresponding
restricted master problem, and for trips t, u and depot d let

Bx̄(t, u; d) := ∑
k∈Kd(t,u)

x̄d
k ,

where Kd(t, u) ⊂ Kd is the set of duties covering both trips t and u. We select a pair of
trips (t̄, ū) and a depot d̄ to branch on such that (t̄, ū; d̄) = arg min(t,u;d) |Bx̄(t, u; d)− 0.5|. The
branching scheme requires to cover trips t̄ and ū by the same duty from depot d on one branch
and not to cover by the same duty from depot d on the other. Formally,

∑
k∈Kd̄(t̄,ū)

xd
k = 1 (same branch) (6.16)

∑
k∈Kd̄(t̄,ū)

xd
k = 0 (diff branch). (6.17)

Note that this branching strategy can be used for both of the single-depot and the multiple-
depot case if there exists trips t, u and a depot d such that 0 < Bx̄(t, u; d) < 1.

Again, we do not intend to add any of the inequalities (6.16)–(6.17) to the restricted master
problem, however, handling this branching rule in the pricing procedure is a bit cumbersome
as we explain in the following. Assume that in a node we would like to generate new feasible
duties for a given depot, but a branching decision requires not to cover trips t and u by the
same duty. In addition, assume that a combined duty consisting of pieces of work pt and pu

has a negative reduced cost, where pieces of work pt and pu contain trips t and u, respectively.
This duty is infeasible according to the branching decision, and it may shadow a feasible duty
with negative reduced cost. Thus we have to ensure that pieces of work (i) containing trip t,
(ii) not containing trip t, (iii) containing trip u, (iv) not containing trip u are also generated.
These terms are going to be more complicated in nodes with higher depth. In order to resolve
this difficulties we apply a two-step procedure. That is, in the first step we generate duties
as we described before until no more duties with negative reduced cost are left. If in the last
pricing round we do not refuse any duties according to branching decisions, we can stop (i.e.,
the node is solved optimally), since no overshadowed duties with negative reduced costs are
left. Otherwise, in the second step we choose a duty which was refused in the last pricing
round and generate all duties that may be overshadowed by this duty. More specifically,
assume that the refused duty consists of pieces of work p1 and p2 where pi refers to an ui-
vi path for i = 1, 2, respectively. We construct a piece of work set S by generating all pieces of
work that correspond to an ui-vi path (i = 1, 2). To generate duties in the second step we use
the piece of work set corresponding to the shortest paths along with the piece of work set S.
We repeat this procedure until no duties with negative reduced cost are left or refused.

Default 0-1 branching

As we mentioned before, when all of our strategies failed to branch, as a last resort we rely
on the default branching strategy of the MILP solver. That is, a fractional duty variable xd

k is
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chosen, and it is forced to 0 on the first branch and 1 on the second branch. In the former
case we need to ensure that this forbidden duty will be not regenerated during the pricing
procedure. Again, for details we refer to (Horváth and Kis, 2019a).

6.2.4 Primal heuristics

Any time during the solution method we can perform an obvious primal solution search
approach, that is we solve problem (6.7)–(6.12) with the current column set. However, such a
problem can be hard to solve, so it is not worth to apply this method frequently.

6.3 Computational results

In this section we present our computational experiments, where the main goals were
• to evaluate our integrated method, and
• to compare our method with other solution approaches from the literature.

6.3.1 Test environment and implementation

All the computational experiments were performed on a workstation with 4GB RAM, and
XEON X5650 CPU of 2.67 GHz, and under Linux operating system using a single thread only.
Our solution method is implemented in C++ programming language using SCIP Optimization
Suite (SCIP, version 3.1.1) as a branch-and-price framework. We also used FICO Xpress Solver
(Xpress, version 28.01.09) to solve certain phases; and Library for Efficient Modeling and
Optimization in Networks (Lemon, version 1.3.1) to handle graphs and to perform network
algorithms.

6.3.2 Instances and problem parameters

We tried to comply with Steinzen et al. (2010) as much as possible, that is, we used the same
instance set, the same duty parameters and the same costs as in (Steinzen et al., 2010).

We used the randomly generated problem instances of Huisman et al. (2005) available
in (Huisman, 2003). These instances are classified into two classes according to travel speed
(i.e., length of the trips), that is, class A consists of shorter trips than class B, hence vehicle
blocks and duties cover more trips, thus instances in class A can be considered more diffi-
cult. In class A for each n = 80, 100, 160, 200, 320 there are 10 instances (one trip-file and one
deadhead-file) containing n trips and requiring 4 depots and 4 or 5 stations.

In accordance with Huisman (2004) we used five types of duties with the properties de-
scribed in Table 6.2. A tripper duty consists of one piece of work with length between 30 min-
utes and 5 hours, while the combined duties (early, day, late, split) contains exactly two pieces
of work separated by a break. For duties starting (ending) in a depot we assessed a sign-on
(sign-off) time of 10 (of 5) minutes, and for duties starting (ending) at a station we assessed a
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Table 6.2: Properties of duty types

Tripper Early Day Late Split

Min Max Min Max Min Max Min Max Min Max

start time 8:00 13:15
end time 16:30 18:14 19:30
piece length 0:30 5:00 0:30 5:00 0:30 5:00 0:30 5:00 0:30 5:00
break length - - 0:45 0:45 0:45 1:30
spread time 9:45 9:45 9:45 12:00
working time 9:00 9:00 9:00 9:00

sign-on (sign-off) time of 15 minutes plus the deadhead time between the start (end) station
and the depot. Start and end times in Table 6.2 correspond to the sign-on start and sign-off
end time of the duty, respectively.

We assigned a fixed cost of 1000 for each vehicle and a cost of 1 for each minute a vehicle
is outside of the depot. We assigned a fixed cost of 1000 for each duty and a cost of 0.1 for
each minute a driver is working.

6.3.3 Experiments

In these experiments we solved problems with gap limit set to 0.5%, and time limit set to
20 × |T | seconds, i.e., the solution process could be stopped due to three reasons: (i) the
best solution was proven to be optimal, (ii) the gap limit was reached (i.e., the relative gap
between the lower bound and the current best solution was at most 0.5%), (iii) the time limit
was reached (i.e., the execution time exceeded 20× |T | seconds).

As we mentioned in Section 6.2, at the root node we used a two-stage approach for gener-
ating duties. At the end of the first stage we applied our primal heuristics, that is, we called
Xpress with time limit set to 60 seconds to solve the current restricted master problem. At
the end of the second stage we applied this heuristics only if the number of variables did not
exceed 30 000.

Experiments on branching strategies

In these experiments we aimed to compare the partitioning and splitting branching strategies
described in Section 6.2.3. In order to make a more extensive experiment we matched all of
the trip-files with all of the deadhead-files for these tests, i.e., we used 10× 10 = 100 problem
instances. In Table 6.3 we present our results where we indicate the summarized solution
status (Status) (these are, the number of instances that solved optimally (O), the number of
instances where gap limit was reached (G), the number of instances where solving process
was stopped due to time limit (T)); the best lower (Lower) and upper bound (Upper) and the
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Table 6.3: Summary of experiments on branching strategies

Instances Strategy Status Bound Best solution Time

O/G/T Lower Upper Gap v d v+d

80A Partitioning 9/50/41 34 772.2 35 410.8 1.8% 9.5 18.5 28.0 755.6
Splitting 8/49/43 34 769.4 35 481.4 2.0% 9.5 18.6 28.0 777.5

100A Partitioning 6/49/45 41 624.0 42 464.2 2.0% 11.4 22.1 33.5 1136.6
Splitting 5/43/52 41 621.7 42 533.2 2.2% 11.4 22.1 33.6 1205.4

corresponding gap (Gap) which is calculated as 100× (Upper− Lower)/Lower; the number
of vehicles (v) and the number of drivers (d) in the best solution; and the execution time in
seconds (Time).

Both for 80-trip and 100-trip instances, the partitioning based branching strategy gave the
best results in terms of execution time, and the quality of solutions as well. Moreover, more
instances were solved within the time limit with that rule. According to these results, in the
following experiments we used the partitioning rule as the primary branching strategy.

Evaluation of the integrated method

In these experiments we evaluated or integrated method, and we present the results on 80-
trip and 100-trip instances in Tables 6.4 and 6.5. In these tables we indicate the solution
status (Status) (optimal: the instance is solved optimally; gap/time limit: the solving process
is stopped due to the gap/time limit was reached); the lower bound at the root node (Root),
and at the end of the procedure (Global); the value of the best solution (Upper bound); the
corresponding gap (Gap) which is calculated as 100× (Upper bound−Global)/Global; and
the execution time in seconds (Time).

We can see that 2 out of 10 80-trip instances are solved optimally, and 3 other instances are
solved with gap less than 0.5%, moreover, the average gap of the 80-trips instances is 2.5%.
For the 100-trip instances we also solved 2 out of 10 instances optimally, and 4 more instances
are solved with gap limit, while the average gap is 2.2%.

We also remark that most of the computation time was spent at the root node for finding
the optimal LP solution which sometimes required the generation of thousands of columns.
In the other enumeration tree nodes, finding the optimum solution took much less effort in
general.

Comparison of methods

In these experiments we considered four scenarios in order to compare of our sequential and
integrated methods, and the integrated method of Steinzen et al. (2010). Method Seq. refers
to the sequential approach we used to obtain in the initial restricted master problem, while
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Table 6.4: Summary of the evaluation of the integrated method on instance set 80A

Instance Status Lower bound Upper bound Gap Time

Root Global

1 gap limit 31 619.6 31 619.6 31 702.3 0.3% 88.6
2 time limit 27 497.8 27 498.3 29 079.7 5.8% 1602.5
3 optimal 32 750.7 32 750.7 32 750.7 0.0% 87.1
4 time limit 34 162.4 34 169.8 34 922.2 2.2% 1600.6
5 gap limit 32 175.4 32 175.4 32 188.6 0.0% 112.0
6 time limit 31 393.9 31 407.5 32 879.4 4.7% 1602.6
7 gap limit 36 133.7 36 133.7 36 266.6 0.4% 115.9
8 time limit 43 017.6 43 040.9 44 419.3 3.2% 1601.1
9 optimal 34 638.4 34 638.4 34 643.9 0.0% 734.0

10 time limit 42 583.6 42 619.4 45 716.3 7.3% 1601.3

average 34 597.3 34 605.4 35 456.9 2.5% 914.6

Table 6.5: Summary of the evaluation of the integrated method on problem set 100A

Instance Status Lower bound Upper bound Gap Time

Root Global

1 optimal 49 183.8 49 183.8 49 183.8 0.0% 390.8
2 time limit 41 311.8 41 326.8 43 552.4 5.4% 2002.3
3 time limit 35 896.6 35 910.3 38 519.5 7.3% 2000.8
4 gap limit 40 217.2 40 217.2 40 255.5 0.1% 175.1
5 optimal 45 424.8 45 424.8 45 424.8 0.0% 344.5
6 gap limit 35 543.3 35 543.3 35 543.8 0.0% 230.0
7 time limit 36 242.3 36 257.3 37 231.3 2.7% 2003.2
8 gap limit 45 403.5 45 403.5 45 453.4 0.1% 237.1
9 time limit 50 566.0 50 572.6 53 708.4 6.2% 2002.7

10 gap limit 33 912.2 33 912.2 34 001.5 0.3% 683.7

average 41 370.2 41 375.2 42 287.4 2.2% 1007.0
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Table 6.6: Comparing sequential and integrated methods

Instance set Method Best solution Time

v d v+d Cost

80A Seq. 1 9.2 24.3 33.5 40 588.0 1.2
Int. (first) 1 9.6 18.6 28.2 35 668.5 4.1
Int. (timelimit) 1 9.5 18.5 28.0 35 456.9 914.6
Int. (Steinzen et al.) 2 9.2 19.1 28.2 235.0

100A Seq. 11.0 28.2 39.2 47 792.7 1.6
Int. (first) 11.4 22.0 33.4 42 428.5 31.8
Int. (timelimit) 11.4 21.9 33.3 42 287.4 1007.0
Int. (Steinzen et al.) 11.0 22.7 33.7 369.0

1 our methods; tested on a workstation with 4GB RAM, and XEON X5650 CPU of 2.67
GHz, and under Linux operating system.

2 integrated method of Steinzen et al. (2010); tested on a Dell OptiPlex GX620 personal
computer with an Intel Pentium IV 3.4 GHz processor and 2 GB of main memory under
Windows XP.

the next two methods refer to our integrated approach. In the case of method Int. (first) we
interrupted the solution procedure right after we found a feasible solution to the problem.
In the case of method Int. (timelimit) we interrupted our procedure only when the time limit
was reached (or we found a good enough solution). Method Int. (Steinzen et al.) refers to
the integrated approach of Steinzen et al. (2010) which was tested on a Dell OptiPlex GX620
personal computer with an Intel Pentium IV 3.4 GHz processor under Windows XP.

In Table 6.6 we summarize our comparison of sequential and integrated methods where
we indicate the number of vehicles (v), the number of drivers (d), the cost of the best solution
(Cost); and the execution time in seconds (Time). For the detailed results we refer to (Horváth
and Kis, 2019a, Tables 7–8).

Our remarks and observations are the following.

• Note that in the case of method Int. (Steinzen et al.) we do not indicate the solution
costs since these are not provided in (Steinzen et al., 2010). We contacted the authors,
however, they could not provide these detailed results.
• On the one hand, our experiments re-proved that one can obtain better solutions using

the integrated approach instead of the sequential method. On the other hand, observe
that we could improve on the first integer solution if we run the procedure until a time
limit or a gap limit is reached, however, the average improvement over the first integer
feasible solution is 1.1% in the 80-trip case, and 0.3% in the 100-trip case.
• One can see that our integrated method found solutions with fewer vehicles plus drivers

than Steinzen et al. (2010). Both for 80-trip and 100-trip instances, our method found the
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first integer solution quickly in 4.1 and 31.8 seconds, respectively, and on average it was
at least as good as the final solution of Steinzen et al. (2010).

6.3.4 Conclusions and final remarks

Our computational results show that with limited computational resources (computation time
and single CPU thread), near optimal schedules can be found for problems with 80–100 trips
and 4 depots.

Note that Steinzen et al. (2010) present computational results for instances with n =

160, 200, 320, 400, 640, as well, however, solving instances with 160 trips took already about
1600 seconds on average, while 640-trip instances required about 16 hours. We also made
experiments on the 160-trip instances, however, we were not able to solve any of these in-
stances neither optimally nor with gap limit, in fact, the column generation procedure at the
root node required more than 3 hours on average. Our best solutions yielded 11.5% gap on
average, and the average number of vehicles and drivers used in these solutions (v + d = 50.5)
is worse than that of (Steinzen et al., 2010) (v + d = 46.6).

In order to increase the problem size, one possible direction is to exploit multiple CPU
cores/threads, but for that, one needs a parallel branch-and-price solver. Currently, the paral-
lel branch-and-price implementation of SCIP is at the conceptual stage. Another option would
be to get lower bounds faster, for which further acceleration strategies are needed.





Appendix A

Computational results of Chapter 4

A.1 Setting of methods investigated in Section 4.4

In Table A.1 we summarize the settings of methods investigated in Section 4.4. With sym-
bols ’F’ and ’·’ we indicate if the corresponding component is used by the method or not,
respectively.

A.2 Computational results of Section 4.4.4

In Table A.2 we summarize the results of experiments with primal heuristics and variable
fixing procedures described in Section 4.4.4. We indicate the average number of the explored
enumeration tree nodes (#Nodes) and the average running time (Time) of the entire branch-
and-bound procedure in seconds. The detailed computations are provided in (Horváth and
Kis, 2016b, Table A4).

A.3 Computational results of Section 4.4.5

In Table A.3 we summarize the results of experiments with cutting planes based on cuts de-
scribed in Section 4.4.5. We indicate the average number of cutting planes added to the prob-
lem (#Cutting planes), the average number of the explored enumeration tree nodes (#Nodes),
and the average running time (Time) of the entire branch-and-cut procedure in seconds. The
detailed computations are provided in (Horváth and Kis, 2016b, Table A5).

A.4 Computational results of Section 4.4.6

In Table A.4 we summarize the results of experiments with cutting planes based on infeasi-
ble subpaths described in Section 4.4.6. We indicate the average number of cutting planes
added to the problem (#Cutting planes), the average number of the explored enumeration tree
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Table A.2: Summary of experiments with primal heuristics and variable fixing procedures

Method Class #Nodes Time Class #Nodes Time Class #Nodes Time

BnB G1 1360.1 57.7 G5 1499.2 235.3 G9 2165.9 644.7
BnB (Arcfix) 1153.0 52.0 1328.2 211.9 1884.0 554.4
BnB (Varfix) 881.7 19.0 1000.3 54.0 1101.4 93.5
BnB (Heuristics) 1191.3 49.6 1223.9 175.2 1841.0 501.1
BnB (All) 775.3 19.4 877.8 53.6 1090.3 103.5

BnB G2 1883.6 88.9 G6 2621.3 392.9 G10 2308.4 679.9
BnB (Arcfix) 1982.6 93.7 2464.7 375.0 1932.0 623.4
BnB (Varfix) 1351.3 33.5 1149.5 63.5 782.5 71.0
BnB (Heuristics) 1769.3 81.5 2303.7 339.2 2092.1 580.8
BnB (All) 1265.9 31.8 1086.1 66.8 660.6 83.2

BnB G3 4275.3 187.1 G7 4877.5 709.0 G11 5533.7 1400.7
BnB (Arcfix) 4275.3 187.7 4877.5 706.8 5533.7 1407.4
BnB (Varfix) 3775.9 84.5 4281.7 235.4 4864.3 432.6
BnB (Heuristics) 3261.0 134.2 4410.4 615.0 4637.2 1087.5
BnB (All) 3412.2 76.6 3722.3 213.0 3990.3 370.9

BnB G4 3699.0 143.4 G8 4222.5 560.8 G12 6044.6 1434.0
BnB (Arcfix) 3699.0 141.9 4222.5 556.6 6044.6 1429.1
BnB (Varfix) 3294.8 63.9 4620.6 223.2 5636.2 469.2
BnB (Heuristics) 2742.5 101.0 3644.5 444.9 5150.7 1073.3
BnB (All) 3102.2 62.4 3982.5 197.9 5067.4 432.3
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nodes (#Nodes), and the average running time (Time) of the entire branch-and-cut procedure
in seconds. The detailed computations are provided in (Horváth and Kis, 2016b, Table A6).

A.5 Computational results of Section 4.4.7

In Table A.5 we summarize the results of experiments with cutting planes based on infeasible
subpaths described in Section 4.4.7. We indicate the average number of the explored enumer-
ation tree nodes (#Nodes) and the average running time (Time) of the entire branch-and-cut
procedure in seconds. The detailed computations are provided in (Horváth and Kis, 2016b,
Table A7).

A.6 Computational results of Section 4.5.3

In Table A.6 we summarize the results of experiments on instance sets of Santos et al. (2007).
We indicate the average running time over the instance sets in seconds of the Reference Point
Method (RPM), the Pulse Algorithm (PA), and our branch-and-cut algorithm (LPB). The de-
tailed computations are provided in (Horváth and Kis, 2016b, Appendix S).
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Table A.5: Summary of combined experiments

Method Class #Nodes Time Class #Nodes Time Class #Nodes Time

BnC (XC) G1 1744.3 78.0 G5 1450.4 226.7 G9 2215.9 653.4
BnC (GC) 990.1 22.6 904.3 55.7 1142.3 104.3
BnC (NC) 816.0 19.8 886.2 56.5 991.3 96.3
BnC (XC+NC) 1194.9 28.5 1040.9 76.4 1337.5 137.6

BnC (XC) G2 2241.1 106.2 G6 2720.8 447.2 G10 2664.7 826.7
BnC (GC) 1370.6 34.4 1262.0 71.1 994.5 84.6
BnC (NC) 1283.7 33.6 1087.8 65.7 921.8 85.1
BnC (XC+NC) 1617.7 45.6 1489.8 89.2 1112.9 108.6

BnC (XC) G3 4578.3 177.8 G7 4961.6 768.3 G11 5508.8 1515.8
BnC (GC) 3587.6 81.5 3575.7 219.9 4290.4 430.3
BnC (NC) 3362.5 83.5 3623.9 238.8 4156.6 415.5
BnC (XC+NC) 4317.0 109.3 4345.0 326.6 4502.6 541.0

BnC (XC) G4 4341.8 169.0 G8 5021.0 670.9 G12 5777.3 1689.0
BnC (GC) 3133.3 66.2 3859.2 207.4 4830.0 429.2
BnC (NC) 3124.3 82.7 3771.6 239.7 5372.3 530.2
BnC (XC+NC) 4172.3 117.3 4697.7 320.2 5280.8 620.1
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Appendix B

Proofs postponed from Chapter 5

B.1 Proof of Lemma 5.2

Proof of statement (i). Let p, q = 1, . . . , n be distinct elements, 1 ≤ j1 < j2 < j3 < j4 ≤ 2n and
consider points P1 = (s1, e1), P2 = (s2, e2) ∈ S2-chains

2n such that σp(P1) = (j1, j2), σq(P1) = (j3, j4)
and σq(P2) = (j1, j3), σq(P2) = (j2, j4) and σr(P1) = σr(P2) for all r /∈ {p, q}, i.e.,

s1
p,j1 = e1

p,j2 = s1
q,j3 = e1

q,j4 = 1 and s2
p,j1 = e2

p,j3 = s2
q,j2 = e2

q,j4 = 1,

and s1
r,j = s2

r,j, e1
r,j = e2

r,j for all r /∈ {p, q} and j = 1, . . . , 2n. Since P1 and P2 satisfy (5.25), we
have

αp,j1 + βp,j2 + αq,j3 + βq,j4 +
n

∑
r=1

r 6=p,q

2n

∑
j=1

(
αr,js1

r,j + βr,je1
r,j

)
= γ,

and

αp,j1 + βp,j3 + αq,j2 + βq,j4 +
n

∑
r=1

r 6=p,q

2n

∑
j=1

(
αr,js2

r,j + βr,je2
r,j

)
= γ,

thus, by subtracting the second equation from the first one, we have βp,j2 + αq,j3 = αq,j2 + βp,j3

(1 < j2 < j3 < 2n), that is, statement (i) holds for p 6= q.
Since n ≥ 3, we can choose pairwise distinct elements p, q, r = 1, . . . , n, therefore we have

αp,j′′ − αp,j′ = βq,j′′ − βq,j′ = αr,j′′ − αr,j′ = βp,j′′ − βp,j′ ,

that is, statement (i) also holds for p = q.

Proof of statement (ii). Let p, q = 1, . . . , n be distinct elements, 1 ≤ j1 < j2 < j3 < j4 ≤ 2n
and consider points P1, P2 ∈ S2-chains

2n such that σp(P1) = (j1, j3), σq(P1) = (j2, j4) and σp(P2) =

(j2, j3), σq(P2) = (j1, j4) and σr(P1) = σr(P2) for all r /∈ {p, q}. Since P1 and P2 satisfy (5.25),
we have αp,j2 − αp,j1 = αq,j2 − αq,j1 (1 ≤ j1 < j2 < 2n − 1), that is, statement (ii) holds for
j′′ < 2n− 1.
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Now, consider points P3, P4 ∈ S2-chains
2n such that σp(P3) = (j1, 2n− 2), σq(P3) = (2n− 1, 2n)

and σp(P4) = (2n− 1, 2n), σq(P4) = (j1, 2n− 2) and σr(P3) = σr(P4) for all r /∈ {p, q}. Since P3

and P4 satisfy (5.25), we have αp,j1 + βp,2n−2 + αq,2n−1 + βq,2n = αp,2n−1 + βp,2n + αq,j1 + βq,2n−2.
According to statement (i) (note that 1 < 2n − 2) we have βp,2n − βp,2n−2 = βq,2n − βq,2n−2,
therefore αp,j1 + αq,2n−1 = αq,j1 + αp,2n−1, that is, statement (ii) also holds for j′′ = 2n− 1.

Proof of statement (iii). Let p, q = 1, . . . , n be distinct elements, 1 ≤ j1 < j2 < j3 < j4 ≤ 2n
and consider points P1, P2 ∈ S2-chains

2n such that σp(P1) = (j1, j3), σq(P1) = (j2, j4) and σp(P2) =

(j1, j4), σq(P2) = (j2, j3) and σr(P1) = σr(P2) for all r /∈ {p, q}. Since P1 and P2 satisfy (5.25), we
have βp,j4 − βp,j3 = βq,j4 − βq,j3 (2 < j3 < j4 ≤ 2n), that is, statement (iii) holds for 2 < j′.

Now, consider points P3, P4 ∈ S2-chains
2n such that σp(P3) = (1, 2), σq(P3) = (3, j4) and

σp(P4) = (3, j4), σq(P4) = (1, 2) and σr(P3) = σr(P4) for all r /∈ {p, q}. Since P3 and P4

satisfy (5.25), we have αp,1 + βp,2 + αq,3 + βq,j4 = αp,3 + βp,j4 + αq,1 + βq,2. According to state-
ment (i) (note that 3 < 2n) we have αp,3 − αp,1 = αq,3 − αq,1, therefore βp,2 + βq,j4 = βq,2 + βp,j4 ,
that is, statement (iii) also holds for j′ = 2.

B.2 Proof of Lemma 5.3

Proof of statement (i). Let p, q = 1, . . . , t be distinct elements, 1 ≤ j1 < j2 ≤ 2k < j3 < j4 ≤ 2n
and consider points P1, P2 ∈ Sparity

2n such that σp(P1) = (j1, j3), σq(P1) = (j2, j4) and σp(P2) =

(j2, j3), σq(P2) = (j1, j4) and σr(P1) = σr(P2) for all r /∈ {p, q}, i.e.,

s1
p,j1 = e1

p,j3 = s1
q,j2 = e1

q,j4 = 1 and s2
p,j2 = e2

p,j3 = s2
q,j1 = e2

q,j4 = 1,

and s1
r,j = s2

r,j, e1
r,j = e2

r,j for all r /∈ {p, q} and j = 1, . . . , 2n. Note that such points exist
according to Remark 5.2. Since P1 and P2 satisfy (5.31), we have

αp,j1 + βp,j3 + αq,j2 + βq,j4 +
n

∑
r=1

r 6=p,q

2n

∑
j=1

(
αr,js1

r,j + βr,je1
r,j

)
= γ,

and

αp,j2 + βp,j3 + αq,j1 + βq,j4 +
n

∑
r=1

r 6=p,q

2n

∑
j=1

(
αr,js2

r,j + βr,je2
r,j

)
= γ,

thus, by subtracting the first one from the second one, we have αp,j1 + αq,j2 = αp,j2 + αq,j1 .

Proof of statement (iii). Let p, q = 1, . . . , t be distinct elements, 1 ≤ j1 < j2 ≤ 2k < j3 < j4 ≤ 2n
and consider points P1, P2 ∈ Sparity

2n such that σp(P1) = (j1, j3), σq(P1) = (j2, j4) and σp(P2) =

(j1, j4), σq(P2) = (j2, j3) and σr(P1) = σr(P2) for all r /∈ {p, q}. Since P1 and P2 satisfy (5.31) we
have βp,j4 − βp,j3 = βq,j4 − βq,j3 .

Proof of statement (ii). Let p, q = 1, . . . , t be distinct elements and 1 ≤ j1 ≤ 2k < j2 < j3 <

j4 ≤ 2n. First, consider points P1, P2 ∈ Sparity
2n such that σp(P1) = (j1, j3), σq(P1) = (j2, j4)
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and σp(P2) = (j2, j3), σq(P2) = (j1, j4) and σr(P1) = σr(P2) for all r /∈ {p, q}. Since P1 and P2

satisfy (5.31) we have αp,j2 − αp,j1 = αq,j2 − αq,j1 , that is, statement (ii) holds if 2k < j′′ < 2n− 1.
Now, consider points P3, P4 ∈ Sparity

2n such that σp(P3) = (j1, 2k + 1), σq(P3) = (2n− 1, 2n)
and σp(P4) = (2n− 1, 2n), σq(P4) = (j1, 2k + 1) and σr(P3) = σq(P3) for all r /∈ {p, q}. Since P3

and P4 satisfy (5.31) we have αp,j1 + βp,2k+1 + αq,2n−1 + βq,2n = αq,j1 + βq,2k+1 + αp,2n−1 + βp,2n.
According to statement (iii), βp,2n − βp,2k+1 = βq,2n − βq,2k+1, thus αp,j1 + αq,2n−1 = αq,j1 +

αp,2n−1, that is, statement (ii) also holds for j′′ = 2n− 1.

Proof of statement (vi). Let p, q = 1, . . . , t be distinct elements, 1 ≤ j1 < j2 < j3 ≤ 2k < j4 ≤ 2n.
First, consider points P1, P2 ∈ Sparity

2n such that σp(P1) = (j1, j3), σq(P1) = (j2, j4) and σq(P2) =

(j1, j4), σq(P2) = (j2, j3) and σr(P1) = σr(P2) for all r /∈ {p, q}. Since P1 and P2 satisfy (5.31) we
have βp,j4 − βp,j3 = βq,j4 − βq,j3 , that is, statement (iv) holds if 2 < j′ ≤ 2k.

Now, consider points P3, P4 ∈ Sparity
2n such that σp(P3) = (1, 2), σq(P3) = (2k, j4) and

σp(P4) = (2k, j4), σq(P4) = (1, 2) and σr(P3) = σr(P4) for all r /∈ {p, q}. Since P3 and P4

satisfy (5.31) we have αp,1 + βp,2 + αq,2k + βq,j4 = αq,1 + βq,2 + αp,2k + βp,j4 . According to state-
ment (i), αp,2k − αp,1 = αq,2k − αq,1, thus βp,2 + βq,j4 = βq,2 + βp,j4 , that is, statement (iv) also
holds for j′ = 2.

Proof of statement (v). Let p, q = 1, . . . , t be distinct elements, 1 ≤ j1 < j2 < j3 ≤ 2k < j4 ≤ 2n
and consider points P1, P2 ∈ Sparity

2n such that σp(P1) = (j1, j3), σq(P1) = (j2, j4) and σp(P2) =

(j1, j2), σq(P2) = (j3, j4) and σr(P1) = σr(P2) for all r /∈ {p, q}. Since P1 and P2 satisfy (5.31) we
have αp,j3 − αp,j2 = βq,j3 − βq,j2 .

Since 3 ≤ t, we can choose pairwise distinct element p, q, r = 1, . . . , t, therefore we have

αp,j3 − αp,j2 = βq,j3 − βq,j2 = αr,j3 − αr,j2 = βp,j3 − βp,j2 ,

that is, statement (v) also holds for p = q.

Proof of statement (vi). Let p, q = 1, . . . , t be distinct elements, 1 ≤ j1 ≤ 2k < j2 < j3 < j4 ≤ 2n
and consider points P1, P2 ∈ Sparity

2n such that σp(P1) = (j1, j3), σq(P1) = (j2, j4) and σp(P2) =

(j1, j2), σq(P2) = (j3, j4) and σr(P1) = σr(P2) for all r /∈ {p, q}. Since P1 and P2 satisfy (5.31) we
have αp,j3 − αp,j2 = βq,j3 − βq,j2 .

Since 3 ≤ t, we can choose pairwise distinct element p, q, r = 1, . . . , t, therefore we have

αp,j3 − αp,j2 = βq,j3 − βq,j2 = αr,j3 − αr,j2 = βp,j3 − βp,j2 ,

that is, statement (vi) also holds for p = q.

B.3 Proof of Lemma 5.4

Proof of statement (vii). Let p = 1, . . . , t, q̄ = t + 1, . . . , n and 1 ≤ j1 < j2 ≤ 2k < j3 < j4 ≤ 2n.
Consider points P1, P2 ∈ Sparity

2n such that σp(P1) = (j1, j3), σq̄(P1) = (j2, j4) and σp(P2) = (j2, j3),
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σq̄(P2) = (j1, j4) and σr(P1) = σr(P2) for all r /∈ {p, q̄}. Since P1 and P2 satisfy (5.31) we have
αp,j2 − αp,j1 = αq̄,j2 − αq̄,j1 .

Proof of statement (viii). Let p = 1, . . . , t, q̄ = t + 1, . . . , n and 1 ≤ j1 < j2 ≤ 2k < j3 < j4 ≤ 2n.
Consider points P1, P2 ∈ Sparity

2n such that σp(P1) = (j1, j3), σq̄(P1) = (j2, j4) and σp(P2) = (j1, j4),
σq̄(P2) = (j2, j3) and σr(P1) = σr(P2) for all r /∈ {p, q̄}. Since P1 and P2 satisfy (5.31) we have
βp,j4 − βp,j3 = βq̄,j4 − βq̄,j3 .

Proof of statement (ix). Let p = 1, . . . , t, q̄ = t + 1, . . . , n and 1 ≤ j1 < j2 < j3 ≤ 2k < j4 ≤ 2n.
Consider points P1, P2 ∈ Sparity

2n such that σp(P1) = (j3, j4), σq̄(P1) = (j1, j2) and σp(P2) = (j2, j4),
σq̄(P2) = (j1, j3) and σr(P1) = σr(P2) for all r /∈ {p, q̄}. Since P1 and P2 satisfy (5.31) we have
αp,j3 − αp,j2 = βq̄,j3 − βq̄,j2 .

Proof of statement (x). Let p = 1, . . . , t, q̄ = t + 1, . . . , n and 1 ≤ j1 < j2 ≤ 2k < j3 < j4 ≤ 2n.
Consider points P1, P2 ∈ Sparity

2n such that σp(P1) = (j3, j4), σq̄(P1) = (j1, j2) and σp(P2) = (j2, j4),
σq̄(P2) = (j1, j3) and σr(P1) = σr(P2) for all r /∈ {p, q̄}. Since P1 and P2 satisfy (5.31) we have
αp,j3 − αp,j2 = βq̄,j3 − βq̄,j2 .

Proof of statement (xi). Let p = 1, . . . , t, q̄ = t + 1, . . . , n and 1 ≤ j1 < j2 ≤ 2k < j3 < j4 ≤ 2n.
Consider points P1, P2 ∈ Sparity

2n such that σp(P1) = (j1, j2), σq̄(P1) = (j3, j4) and σp(P2) = (j1, j3),
σq̄(P2) = (j2, j4) and σr(P1) = σr(P2) for all r /∈ {p, q̄}. Since P1 and P2 satisfy (5.31) we have
βp,j3 − βp,j2 = αq̄,j3 − αq̄,j2 .

Proof of statement (xii). Let p = 1, . . . , t, q̄ = t + 1, . . . , n and 1 ≤ j1 ≤ 2k < j2 < j3 < j4 ≤ 2n.
Consider points P1, P2 ∈ Sparity

2n such that σp(P1) = (j1, j2), σq̄(P1) = (j3, j4) and σp(P2) = (j1, j3),
σq̄(P2) = (j2, j4) and σr(P1) = σr(P2) for all r /∈ {p, q̄}. Since P1 and P2 satisfy (5.31) we have
βp,j3 − βp,j2 = αq̄,j3 − αq̄,j2 .
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optimizing public transportation. In Proceedings of the 8th International Conference on Applied
Informatics, volume 2, pages 181–190, 2010.

Avella, P., Boccia, M., and Sforza, A. Resource constrained shortest path problems in path
planning for fleet management. Journal of Mathematical Modelling and Algorithms, 3(1):1–17,
2004.

Baldoquin, M. G. and Rengifo-Campo, A. J. A model for solving vehicle scheduling problems:
a case study. Revista Facultad de Ingenierı́a Universidad de Antioquia, (88):16–25, 2018.

Ball, M., Bodin, L., and Dial, R. A matching based heuristic for scheduling mass transit crews
and vehicles. Transportation Science, 17(1):4–31, 1983.

Beasley, J. E. and Christofides, N. An algorithm for the resource constrained shortest path
problem. Networks, 19(4):379–394, 1989.
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Summary

In this thesis we investigate three combinatorial optimization problems with great practical
relevance.

Resource constrained shortest path problem

First, we investigate multi-criteria approximation algorithms for the resource constrained
shortest path problem (RCSPP).
• We show that there is no polynomial time multi-criteria approximation scheme for a set

of k-budgeted combinatorial optimization problems (including RCSPP), if the number
of weight functions is not a constant (i.e., part of the input), unless P = NP.
• We show that there is a fully polynomial time (1; 1+ ε, . . . , 1+ ε)-approximation scheme

for RCSPP, if the number of weight functions is a constant (i.e., not part of the input).
Then, we create linear programming based branch-and-bound solution methods for RCSPP.
• We propose efficient primal heuristics and variable fixing procedures.
• We generalize two classes of valid inequalities for the polytope of feasible solutions. For

the first class we provide a polynomial time exact separation procedure. For the sec-
ond class we prove that separating those inequalities (both the original and generalized
versions) is NP-hard, however, we provide a heuristic separation procedure.
• We make thorough computational experiments to evaluate the efficiency of these com-

ponents, and to compare our solution methods with state-of-the-art methods.

Position-based scheduling on a single machine

• We show that problem 1 | 2-chains, pj = 1 | ∑ wj,σj and thus problem 1 | prec, pj = 1 | ∑ wj,σj

is strongly NP-hard.
• We propose a class of valid inequalities for the polytope associated with the feasible

solutions of problem 1 | chains, pj = 1 | ∑ wj,σj . We show that a subclass of these inequal-
ities are facet-defining in the case of two-chains.
• We make thorough computational experiments to show that our cutting planes can im-

prove a linear programming based branch-and-bound procedure.

Multiple-depot integrated vehicle and crew scheduling problem

• We propose a novel mixed-integer linear programming formulation for the multiple-
depot integrated vehicle and crew scheduling problem (MDVCSP).
• We develop an exact branch-and-price procedure for the proposed formulation consist-

ing of an efficient variable pricing procedure, several problem-tailored branching strate-
gies, and a simple primal heuristics.
• We make computational experiments to evaluate our method, and to compare it with

other solution approaches from the literature.



Összefoglaló

A tézisben három, széles gyakorlati alkalmazással rendelkező kombinatorikus optimalizálási
feladattal foglalkozunk.

Erőforrás-korlátos legrövidebb út feladat

Az erőforrás-korlátos legrövidebb út feladatra (RCSPP) több-kritériumú approximációs algo-
ritmusokat vizsgálunk.
• Megmutatjuk, hogy nem létezik polinomiális idejű több-kritériumú approximációs séma

több k-korlátos optimalizálási feladatra (köztük az RCSPP-re) sem, ha a súlyfüggvények
száma nem konstans (feltéve, hogy P 6= NP).
• Megmutatjuk, hogy ha a súlyfüggvények száma konstans (azaz nem része az input-

nak), akkor létezik teljesen polinomiális idejű (1; 1+ ε, . . . , 1+ ε)-approximációs séma az
RCSPP-re.

Lineáris programozás alapú korlátozás-és-szétválasztás eljárásokat készı́tünk az RCSPP-re.
• Hatékony primál heurisztikát és változó rögzı́tési eljárást készı́tünk.
• A megengedett megoldások politópjára a szakirodalomban ismert vágósı́kok két osztá-

lyát általánosı́tjuk. Megmutatjuk, hogy a második osztálybeli (mind az eredeti, mind az
általánosı́tott) egyenlőtlenségek szeparálása NP-nehéz. Az első osztálybeli egyenlőtlen-
ségekre egzakt, a második osztálybeliekre heurisztikus szeparációs eljárást adunk.
• Átfogó számı́tógépes kı́sérleteket végzünk, melyben az emlı́tett komponenseket kiérté-

keljük, és módszerünket különböző state-of-the-art eljárásokkal összehasonlı́tjuk.

Pozı́ció alapú egy-gépes ütemezési feladat

• Megmutatjuk, hogy a 1 | 2-chains, pj = 1 | ∑ wj,σj probléma, és ezért a 1 | prec, pj =

1 | ∑ wj,σj probléma erősen NP-nehéz.
• Érvényes egyenlőtlenségek egy osztályát adjuk a 1 | chains, pj = 1 | ∑ wj,σj probléma

megengedett megoldásainak politópjára. Megmutatjuk, hogy ezen egyenlőtlenségek egy
rész kettő-láncok esetében a megfelelő politóp lapjait definiálják.
• Számı́tógépes kı́sérleteket végzünk, hogy igazoljuk, vágósı́kjaink használata növelni

tudja egy lineáris programozás alapú korlátozás-és-szétválasztás eljárás hatékonyságát.

Több-depós integrált jármű és vezető ütemezési feladat

• Egy új vegyes programozási felı́rást adunk a több-depós integrált jármű és vezető üte-
mezési feladatra (MDVCSP).
• Egy egzakt szétválasztás-és-árazás eljárást készı́tünk a feladat megoldására, mely tar-

talmaz egy hatékony oszlopgenerálás eljárást, több probléma-specifikus szétválasztási
stratégiát, és egy egyszerű primál heurisztikát.
• Számı́tógépes kı́sérleteinkben kiértékeljük saját módszerünket, melyet utána egy, a szak-

irodalomban fellelhető megközelı́téssel hasonlı́tunk össze.




