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Mass transfer in the Frenkel-Kontorova chain initiated by molecule impact

A. Moradi Marjaneh,1,* Danial Saadatmand,2 I. Evazzade,3 R. I. Babicheva,4 E. G. Soboleva,5 N. Srikanth,6 Kun Zhou,4

E. A. Korznikova,7,8 and S. V. Dmitriev7,9

1Young Researchers and Elite Club, Quchan Branch, Islamic Azad University, Quchan, Iran
2Department of Physics, University of Sistan and Baluchestan, Zahedan, Iran

3Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436, Mashhad, Iran
4School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore

5Yurga Institute of Technology (Branch), National Research Tomsk Polytechnic University, 652050 Yurga, Russia
6Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore

7Institute for Metals Superplasticity Problems, Russian Academy of Sciences, Ufa, 450001 Russia
8Ufa State Aviation Technical University, 450008, Ufa, Russia

9National Research Tomsk State University, Lenin Avenue 36, 634050 Tomsk, Russia

(Received 21 May 2018; published 23 August 2018)

The Frenkel-Kontorova chain with a free end is used to study initiation and propagation of crowdions (antikinks)
caused by impact of a molecule consisting of K atoms. It is found that molecules with 1 < K < 10 are more
efficient in the initiation of crowdions as compared to a single atom (K = 1) because the total energy needed to
initiate the crowdions by molecules is smaller. This happens because a single atom can initiate in the chain only
sharp, fast-moving crowdions that require relatively large energy. A molecule has finite length, and that is why it
is able to excite a wider crowdion with a smaller velocity and smaller energy. Our results can shed light on the
atomistic mechanisms of mass transfer in crystals subject to atom and molecule bombardment.
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I. INTRODUCTION

Bombardment of a crystal surface by ionized or neutral
atoms or molecules is a phenomenon observed either at
ambient conditions or during technological surface treatment
such as ion implantation, plasma surface treatment, magnetron
sputtering, etc. [1–7]. As a result, desired or undesired struc-
ture transformations near the crystal surface can take place
due to the mass transfer inside the crystal initiated by the
bombardment.

Point defects such as vacancies and interstitial atoms play
a very important role in the physics of crystalline solids trans-
porting mass during plastic deformation [8–14], irradiation
[15–20], heat treatment [21,22], etc. Thermally activated dif-
fusion mainly occurs through vacancy migration mechanism
[21,22]. Energy of interstitial atoms is larger, therefore their
concentration in thermal equilibrium is much smaller than
that of vacancies. The role of interstitials largely increases in
far-from-equilibrium processes with energy flux through the
crystal. Interstitials can be immobile [23] or mobile; in the latter
case they are located in close-packed atomic rows in the form
of crowdions [24]. Very often crowdions have lower potential
energy than immobile interstitials [24,25]. Crowdions can be
at rest, or they can move with a speed below or above the speed
of longitudinal sound [26,27]. Standing or subsonic crowdions
have a kink profile in a close-packed atomic row, spanning
over half a dozen of atoms. However, supersonic crowdions
are highly localized with only one or two atoms moving with
a high speed at the same time [27,28].
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Crowdions can be viewed as topological solitons being very
efficient in mass and energy transport [13,29–36]. Moving
excitations in crystals are actively studied in order to explain
various nontrivial experimental results such as annealing of
defects deep inside a germanium single crystal with a surface
plasma treatment [37] or tracks in mica crystals [27,38–
43]. Discrete breathers [44–48], crowdions [27,49,50], and
quodons [51] have been considered as movable excitation
candidates in mica. Collisions of supersonic crowdions in
two-dimensional (2D) model crystals have been studied in
Ref. [52]. The ability of supersonic crowdions and discrete
breathers to carry an electric charge has been analyzed by
Kosevich [53].

Static crowdions have been investigated using first prin-
ciples simulations [54–57], while their dynamics have been
analyzed with the use of the molecular dynamics method
[27,58–60].

It has been demonstrated by high-angle annular dark field
scanning-transmission electron microscopy that an Y atom can
form a crowdion between two neighboring Mg atoms in an Mg
alloy [61].

Recently the notion of supersonic N -crowdions has been
introduced based on molecular dynamics simulations [62,63].
N -crowdions can carry more than one interstitial atoms along
a close-packed atomic row. For their excitation equal initial
momentum was given to N neighboring atoms in a close-
packed row along the row. For 2D and three-dimensional (3D)
Morse crystals, it has been shown that N -crowdions transport
interstitial atoms more efficiently than classical 1-crowdions
because they travel longer distances having lower initial
energy [62,63]. On the other hand, there remains the question
of knowing how N -crowdions can be excited in reality. It is
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very difficult to construct a scenario when several neighboring
atoms in a close-packed atomic row simultaneously gain a
relatively large momentum along the row in the bulk of a
crystal. On the other hand, this can be easily achieved when a
molecule hits the surface of the crystal.

In the present study, we consider a simple one-dimensional
(1D) Frenkel-Kontorova model to demonstrate that kicks by
molecules are more efficient in the initiation of mass transfer
by crowdions than the case of a single-atom impact.

The outline of the paper is as follows. In Sec. II the
model and simulation details are described. Our main result
is presented in Sec. III, where bombardment of the Frenkel-
Kontorova chain with single atoms and molecules is simulated.
In order to better understand the results of Sec. III, we
analyze properties of antikinks (crowdions) in Sec. IV. Finally,
conclusions are presented in Sec. V.

II. THE MODEL AND SIMULATION SETUP

The main results of this study are obtained in the frame of
the 1D Frenkel-Kontorova model described in Sec. II B. First,
we analyze the 3D fcc Morse crystal in Sec. II A to justify the
choice of parameters of the 1D model.

A. 3D Morse crystal

The fcc lattice with the lattice parameter d and interatomic
distance a = d/

√
2 is considered. As shown in Fig. 1, a

Cartesian coordinate system is used with the x, y, and z

axes oriented along 〈110〉, 〈110〉, and 〈001〉 close-packed
crystallographic directions, respectively.

Atoms interact via the classical Morse pair potential [64]

U (ξ ) = D(1 + e−2α(ξ−rm ) − 2e−α(ξ−rm ) ), (1)

where U is the potential energy of two atoms at a distance ξ

apart, D is the depth of the potential (bond energy), U has a
minimum at the equilibrium distance ξ = rm, and α defines the
bond stiffness. We use dimensionless units and, without loss
of generality, set atom mass m equal to 1 and

D = 1, rm = 1. (2)

FIG. 1. Atoms of the fcc lattice shown in xy projection with
the x, y, and z axes along 〈110〉, 〈110〉, and 〈001〉 close-packed
crystallographic directions, respectively. Atoms of two neighboring
atomic planes parallel to the xy plane are shown with circles of
different sizes. a is the interatomic distance. Atoms of one close-
packed row (shown by yellow circles) are numbered with the index n.

For the bond stiffness we set the typical value of

α = 4. (3)

With this choice, U (ξ ) is negligibly small for ξ > 5rm so
that this value is taken as the cutoff radius. The equilibrium
interatomic distance in this case is a = 0.90142. Thermal
fluctuations are not taken into account, i.e., simulations are
done at 0 K. The computational cell contains 3840 atoms
having dimensions 40a × 8a × 12a/

√
2. Periodic boundary

conditions are used.
Atoms of one close-packed atomic row parallel to the x

axis are numbered with index n as shown in Fig. 1. In this row,
in the center of the computational cell, we create a crowdion
(antikink) using the ansatz

un = a

2
{1 − tanh[β(n − x0)]}, (4)

where un is the initial displacement of nth atom along the x

axis, and β = 0.3 and x0 = 40 are the crowdion inverse width
and initial position, respectively. Initial velocities of all atoms
in the computational cell are equal to zero. Note that application
of the ansatz (4) makes the site n = 0 vacant. The choice of
the ansatz (4) can be motivated as follows. In Sec. IV A, it will
be shown that the sine-Gordon kink does not describe well
the kinks in the studied Frenkel-Kontorova model. Here we
use the simplest tanh profile as the ansatz because in some
Klein-Gordon lattices it can be an exact static kink solution
[65,66].

We then apply the relaxation procedure to find the equilib-
rium configuration of the on-site crowdion. This procedure is
done for two cases: (i) all atoms in the computational cell are
movable and (ii) only atoms in the close-packed atomic row
containing the crowdion are movable. In the latter case, the
atoms surrounding the row with crowdion create a rigid on-site
potential, while in the former case they are free to relax.
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FIG. 2. Relaxed crowdion profiles. Triangles and filled circles
show the results for a 3D fcc Morse lattice, cases (i) and (ii),
respectively (see the text). Open squares and open circles are for the
1D Frenkel-Kontorova model, for A = 1 and 2, respectively. The inset
shows the effective on-site potential created by the atoms of the 3D fcc
lattice for a close-packed atomic row. Dots show the numerical result,
and the line is the fit E = A[1 − cos(2π�x/a)] with A = 1.22.

023003-2



MASS TRANSFER IN THE FRENKEL-KONTOROVA CHAIN … PHYSICAL REVIEW E 98, 023003 (2018)

In Fig. 2 we present the relaxed crowdion profiles for the
case (i) by triangles and for the case (ii) by filled circles. As
expected, the crowdion width is smaller in the case (ii).

Our next step is to calculate the on-site potential created by
the atoms surrounding a close-packed atomic row. To do so, we
shift the close-packed atomic row as a rigid body along the x

axis by �x and calculate the potential energy of an atom of the
row, E. In the inset of Fig. 2, we plot E as a function of �x/a by
dots. The height of the potential is 2.44 ≡ 2A. With a solid line,
we show the sinusoidal function E = A[1 − cos(2π�x/a)]
of amplitude A = 1.22. The maximal difference between the
numerical data and the sinusoidal fit is less than 2.5%. This
estimation of the on-site potential height will be used in the
formulation of the 1D Frenkel-Kontorova model.

B. 1D model

We consider the Frenkel-Kontorova chain of M particles
placed in the sinusoidal on-site potential. A molecule consist-
ing of K particles moves with the velocity V0 and hits the left
end of the chain (see Fig. 3). The total number of particles in
the system is N = K + M . Particles interact with the nearest
neighbors via the Morse potential. The Hamiltonian of the
system is given by

H =
N∑

n=1

m

2

(
dun

dt

)2

+
N−1∑
n=1

U (un+1 − un) +
N∑

n=1

V (un), (5)

where longitudinal coordinates of the particles as the functions
of time, un(t ), are to be determined.

The first term in Eq. (5) gives the kinetic energy of the
system. We take m = 1 for particle mass, which can always be
achieved by a proper choice of time unit. The second term in
Eq. (5) gives the Morse interaction between nearest neighbors
described by Eq. (1) with the parameters used for the 3D fcc
crystal.

The on-site potential is represented by the third term in
Eq. (5) which is taken in the form

V (η) =
{

0 for η � 0,

A[1 − cos(2πη)] for η > 0.
(6)

The on-site potential has amplitude A; its period is equal to
unity to be commensurate with the interparticle distance, and

FIG. 3. Scheme of the simulation setup. A molecule of K particles
moves with the initial velocity V0 and hits the end of the Frenkel-
Kontorova chain of M particles placed in a sinusoidal on-site potential
of depth 2A. Each particle interacts with the nearest neighbors via
the Morse potential. The total number of particles in the system is
N = K + M; they are numbered by index n.

it acts only in the region x > 0, as schematically shown in
Fig. 3.

As was shown in Sec. II A, in the 3D fcc Morse crystal
A = 1.22 (see also the inset in Fig. 2). In order to see the effect
of A, we consider two values for the amplitude of the on-site
potential in the 1D model: A = 1 and A = 2. Static antikink
profiles calculated numerically for the 1D model are shown
in Fig. 2 by open squares for A = 1 and by open circles for
A = 2. It can be seen that they have slopes close to the slopes
of crowdions in the 3D fcc crystal. Naturally the antikink slope
is larger for larger A.

From the Hamiltonian specified by Eqs. (5), (1), and (6),
the following equations of motion can be derived:

mün = 2αD[e−α(un+1−un−rm ) − e−2α(un+1−un−rm )

+ e−2α(un−un−1−rm ) − e−α(un−un−1−rm )]

−H (un)2πA sin(2πun). (7)

Here H (η) is the Heaviside step function.

C. Initial conditions

The equations of motion (7) are integrated numerically for
the initial coordinates

un = n − K − 5, for n = 1, . . . , K,

un = n − K − 1, for n = K + 1, . . . , N (8)

and initial velocities

dun

dt
= V0, for n = 1, . . . , K,

(9)
dun

dt
= 0, for n = K + 1, . . . , N,

of the particles. With these initial conditions the initial distance
between particles K and K + 1 is equal to 5, so that the
molecule does not interact with the chain. The molecule moves
toward the chain with the velocity V0, and it starts to interact
with the chain when they get closer.

The initial energy of the molecule is

E0 = KmV 2
0

2
. (10)

D. Dispersion relation and phonon velocities

In the case of small-amplitude vibrations, the higher order
nonlinear terms can be neglected, and Eq. (7) reduces to

mün = 2α2D(un−1 − 2un + un+1) − 4π2Aun. (11)

The solutions of the above equation are the linear combinations
of normal modes un ∼ exp[i(qn − ωqt )] with wave number q

and frequency ωq obeying the dispersion relation

ω2
q = 4

m
[π2A + α2D(1 − cos q )]. (12)

The dispersion relation (12) is shown within the first
Brillouin zone in Fig. 4 for A = 1 (dashed line) and A = 2
(solid line). It suggests that the system supports the small-
amplitude running waves (phonons) with frequencies rang-

ing from ωmin = 2π

√
A
m

to ωmax = 2√
m

√
π2A + 2α2D. The
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FIG. 4. Dispersion relation for the small-amplitude waves
(phonons) supported by the considered chain of particles for two
different values of the on-site potential depth, A = 1 (dashed line)
and A = 2 (solid line).

phonon’s group velocity is defined by

vg = dωq

dq
= α2D sin q√

m
√

π2A + α2D(1 − cos q )
. (13)

The group velocity vanishes for q → 0 and q → ±π . For the
considered model parameters, this function has a maximum
value of vmax

g = 3.3348 (vmax
g = 2.7504) at q = 1.22 (q =

1.33) for A = 1 (A = 2).

E. Static antikink (crowdion) in 1D model

An equilibrium antikink (crowdion) was obtained in a 1D
Frenkel-Kontorova model by setting initial atomic displace-
ments with the help of the ansatz (4) with a = 1, β = 0.3,
and x0 = 41 and subsequent relaxation. The resulting static
antikink profiles are shown in Fig. 2 by open squares and
open circles for A = 1 and A = 2, respectively. Naturally, the
antikink is narrower for a deeper on-site potential, i.e., for
A = 2. With the chosen parameters, the antikinks in the 1D
model have a width close to the width of crowdions in a 3D
Morse crystal; the latter ones are shown in Fig. 2 by triangles
and filled circles for two different relaxation procedures, as
described in Sec. II A.

III. MOLECULE BOMBARDMENT

Let us discuss the results of numerical simulation of
molecule bombardment.

First, we find the minimal velocity V min
0 of the molecule

of K atoms needed to initiate a crowdion. With the use of
Eq. (10), we calculate the corresponding minimal energy of
the molecules Emin

0 required to produce a crowdion. The results
are presented in Fig. 5 for the on-site potential depth A = 1
(open circles) and A = 2 (squares). It is clear that a single
atom (K = 1) needs a higher initial velocity to launch mass
transport along the chain as compared to the molecules (K >

1). Minimal initial energy for K = 1 is higher than that for
2 � K � 9 in the case of A = 2, and even for longer molecules
for A = 1.

FIG. 5. Minimal velocity of the molecule of K atoms required to
initiate a kink by hitting the chain at the end. Results for the sinusoidal
potential amplitude A = 1 (A = 2) are shown in black (red).

This effect can be understood taking into account the fact
that a static (or slowly moving) crowdion has a width of a half
dozen atoms; see Fig. 2. A single atom cannot produce a wide,
slowly moving crowdion, but it can produce only relatively
sharp fast-moving crowdions, which requires high energy.
Already a molecule with K = 2 atoms has a nonzero size, and
it is much more efficient in initiation of crowdions. Indeed,
for A = 1 (A = 2) the molecule of two atoms needs 4.4 (2.7)
times smaller energy than a single atom to initiate a crowdion.
The reduction of energy required to create a crowdion is more
pronounced for shallower on-site potential, i.e., forA = 1. This
is because the crowdion is wider for A = 1, and it is more
difficult for a single atom to produce it.

Note a local minimum of Emin
0 at K = 6 for the case of

A = 1 in Fig. 5(b). This is because the molecule of this size is
compatible with the crowdion width. For the case of A = 2, a
similar tendency of reduction of Emin

0 is observed for K = 5
and 6, in line with the fact that the crowdion width in this case
is somewhat smaller than for A = 1.

We have also calculated the speed of crowdions moving
along the chain as a function of the initial molecule velocity
V0 for the molecules with K = 1, 2, 3, and 4. For A = 1
(A = 2) the results are shown in Fig. 6 (Fig. 7). For sufficiently
large V0, more than one crowdion can be initiated by the
molecule impact, and we plot velocities of the first and second
fastest crowdions in (a) and (b), respectively. Clearly, the
molecules with K > 1 need a considerably smaller minimal
initial velocity to produce crowdions as compared to a single
atom. The molecules initiate crowdions propagating at a higher
speed. Note that the crowdions have preferable propagation
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FIG. 6. Velocity of the fastest (a) and second fastest (b) crowdions
created in the chain by molecule bombardment as the functions of the
molecule initial velocity. The case of single atom (K = 1) is shown by
the black line. Results for the molecules with K = 2, 3, and 4 atoms
are shown by blue dashed, thick red, and thin green lines, respectively.

velocities, and this issue will be addressed in Sec. IV. Within
the studied range of initial velocities V0, molecules are able to
produce more than one crowdion, in contrast to a single atom.

Overall, we conclude that bombardment with molecules is
much more efficient in initiation of mass transport along the
chain than bombardment with single atoms.

IV. CROWDIONS IN A 1D CHAIN

In order to better understand the results presented in
Sec. III, we analyze here properties of crowdions in the con-
sidered Frenkel-Kontorova chain. First, we derive the moving
crowdion solution under the assumption of harmonic inter-
atomic coupling. Unfortunately, this solution is valid only for

FIG. 7. Same as in Fig. 6, but for the on-site potential depth A = 2.

very wide crowdions, but not for the crowdions spanning over
a half dozen atoms considered here. That is why we then
study crowdions numerically for the chain with the Morse
interatomic interactions.

A. Analytical treatment

In the long-wave approximation, |un+1 − un| � 1 for all n,
Eq. (7) can be simplified by linearizing the interatomic forces.
This results in the Frenkel-Kontorova model with harmonic
interparticle interactions

mün = 2α2D(un−1 − 2un + un+1) − 2πA sin(2πun). (14)

Introducing the new variable

wn = 2πun, (15)

we rewrite Eq. (14) in the form

ẅn = 1

h2
(wn−1 − 2wn + wn+1) − g2 sin(wn), (16)

where

h2 = m

2α2D
, g2 = 4π2A

m
. (17)

In the continuum limit, h → 0, Eq. (16) reduces to the sine-
Gordon equation

wtt − wxx + g2 sin w = 0, (18)

which has the well-known moving kink solution

w(x, t ) = 2π ± 4 arctan

[
exp

(
g

x − x0 − vt√
1 − v2

)]
, (19)

where v defines the kink velocity and x0 represents its initial
position. For the upper (lower) sign we actually have a kink
(crowdion) solution.

Returning to the original variable un and taking into account
x = nh, we write the approximate kink solution to Eq. (14) in
the following form:

un(t ) = 1 ± 2

π
arctan

{
exp

[
g

h(n − x0) − vt√
1 − v2

]}
. (20)

From this solution, the actual kink velocity is equal to Vkink =
v/h. Since |v| < 1, the kink velocity is within the range

|Vkink| <
1

h
. (21)

From Eq. (17), we find that for parameters used in our study
|Vkink| < 5.66.

According to the solution Eq. (20), the maximal absolute
value of the kink’s slope is

β = gh

π
√

1 − v2
=

√
2A

α2D(1 − v2)
. (22)

The maximal kink slope diverges as |v| → 1, which means the
kink width vanishes in this limit.

It is worth noting that kinks and crowdions of the Frenkel-
Kontorova model (14) have the same maximal slope, but this
is not the case for the kinks and crowdions of the model (7)
because stiffness of the Morse potential increases (decreases)
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.

.
. .1×10−3

FIG. 8. Maximal absolute value of the slope of the static kink
(green triangles) and crowdion (red squares) as a function of the
on-site potential amplitude obtained numerically by solving Eq. (7).
Straight dashed line gives the analytical solution (22). Open circles are
for the numerical solution of Eq. (14) for both kinks and crowdions.
A sharp increase of β at A ≈ 0.05 for the kink in the Morse lattice
corresponds to the transition from the voidion to the vacancy.

under compression (tension) of the chain, while stiffness of the
linear bonds is strain independent.

B. Numerical results

1. Static kinks and crowdions

Let us assess the accuracy of the kink solution (20)
by calculating numerically the maximal slope of the static
crowdion, β, as a function of the on-site potential depth, A.
To do so, the chain of N = 1000 particles is considered with
the kink placed in the middle using Eq. (20) with x0 = 500.5
and v = 0. With this choice of x0 the intersite kink is obtained,
which has lower energy as compared to the on-site kink. In
order to find equilibrium positions of the atoms, viscosity
was introduced in the system by adding the term γ u̇n to the
left-hand side of Eqs. (7) and (14) with the viscosity coefficient
γ = 0.1. A simulation run is carried out until the maximal force
acting on atoms becomes less than 10−12. Then the maximal
crowdion slope is calculated as the slope of the line connecting
two central atoms of the kink (crowdion).

The results for the relaxed kinks are presented in Fig. 8 using
a log-log scale. The straight dashed line shows the analytical
solution (22), while open circles are for the numerical solution
of Eq. (14). In the case of harmonic interparticle bonds, as was
mentioned earlier, the kink and crowdion have the same β. This
is not true for Eq. (7) with Morse interatomic interactions. For
this case the numerical results for a crowdion (kink) are shown
by red squares (green triangles). Note a sharp increase of β

when A exceeds 0.04 for the Morse kink. For larger A the kink
transforms into a vacancy since one of the Morse bonds breaks.

It can be seen from Fig. 8 that the analytical solution (20)
gives a very good estimation of the kink maximal slope in
the case of harmonic interatomic interactions [Eq. (14)] within
the entire studied range of 10−3 � A � 2. However, for the
original model with Morse interactions [Eq. (7)] the analytical

.

.

.

.

.

.

.

.

.

FIG. 9. Velocity Vkink (circles) and parameter β (squares) of the
crowdion in the regime of steady motion as the functions of the initial
velocity v0 in the ansatz Eq. (23). The on-site potential depth is A = 1.

solution can be used only forA < 10−2, where the relative error
in estimation of β is less than 10%. The reason for such a poor
accuracy is the strong nonlinearity of the Morse potential. As
was shown in Sec. II A, for a 3D Morse crystal A = 1.22, and
in this case the nonlinearity of the interparticle bonds cannot
be neglected.

2. Moving crowdions

For initiation of moving crowdions in the 1D Frenkel-
Kontorova model (7), the following ansatz is adopted:

un(t ) = 1
2 − 1

2 tanh[β0(n − x0 − v0t )], (23)

where β0, v0, and x0 are the initial crowdion inverse width, ve-
locity, and position, respectively. In the chain of 2000 particles,
at t = 0, a crowdion moving with a positive velocity is excited
at the site x0 = 100. The range of crowdion initial velocities
0 < v0 � 25 is studied. For a chosen value of v0, parameter
β0 is found by the trial and error method, aiming to achieve
a minimal radiation from the moving crowdion. At the end of
a numerical run at t = 50, the crowdions achieve a state of
steady motion. The steady crowdion velocity Vkink and inverse
width β are measured. The latter parameter is found by the
least-squares fitting of the kink profile to the expression (23).

The results for steadily moving crowdions are presented in
Fig. 9 for the on-site potential depth A = 1 and in Fig. 10 for
A = 2. Shown are Vkink (circles, left scale) and β (squares,
right scale) as the functions of the initial velocity v0 in the
ansatz (23).

Interestingly, two different regimes are observed for slow
and fast crowdions. When v0 < 5, we have Vkink = v0, but
faster crowdions can have only selected velocities. For A = 1,
within the studied range of v0, selected velocities are 5.06, 6.42,
8.45, and 13.2. For A = 2, they are 5.53, 8.05, and 13.1. This
explains the plateaus observed in Figs. 6 and 7 at the velocities
around 8 and 13. Note that the value of velocity separating two
different regimes is close to the estimation of the maximal kink
velocity that follows from the approximate solution reported
in Sec. IV A; see the discussion below Eq. (21). In fact, kinks
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FIG. 10. The same as in Fig. 9 but for A = 2.

propagating in nonlinear chains with selected velocities have
been reported in a number of studies, e.g., in Refs. [67–
73]. Similarly, the crowdion inverse width β monotonically
increases for 0 < v0 < 5, but it has discrete values for faster
crowdions.

It is also instructive to analyze total (kinetic plus potential)
energies of antikinks, Ekink, in the regime of steady motion as
the functions of v0. For A = 1 (A = 2), the result is shown
in Fig. 11 (Fig. 12). Note that slow crowdions (v0 < 5) have
relatively small energy, in the range 10.3 < Ekink < 12 forA =
1 and 15.9 < Ekink < 17.7 for A = 2. Faster crowdions have
a considerably higher energy. The insets in Figs. 11 and 12
show the kink profiles for the smallest and largest value of β

observed in the studied range of parameter 0 < v0 � 25.
Notably, phonon velocities do not play an essential role

in crowdion propagation in a 1D chain. Maximal phonon
velocities were estimated below Eq. (13) to be about 3. In
Figs. 9 to 12, we do not see any peculiarities around this

.

.

.

.

.

.

FIG. 11. Energy of a crowdion in the regime of steady motion as
the functions of the initial velocity v0 in the ansatz (23). The on-site
potential depth is A = 1. The inset shows kink profiles for β = 0.39
(open dots) and β = 0.7 (filled dots).

.

.

.

.

.

.

FIG. 12. The same as in Fig. 11 but for A = 2. The inset shows
kink profiles for β = 0.48 (open dots) and β = 0.77 (filled dots).

velocity. In 2D and 3D crystals, sound velocity does play
an important role in crowdion motion [62,63] because the
close-packed atomic row in which a crowdion propagates
interacts with the surrounding atoms.

The presented results contribute to understanding why
bombardment with molecules (K > 1) produces crowdions
in the chain more efficiently than single atoms (K = 1). As
was pointed out in Sec. III, slow crowdions are rather wide,
and they cannot be excited by single atoms. Fast crowdions
are narrower, and they can be excited by single atoms, but
it requires sufficiently large energy. On the other hand, low-
energy slow kinks can be excited by molecules since they have
nonzero size.

V. CONCLUSIONS

We have simulated mass transfer in a Frenkel-Kontorova
chain by antikinks (crowdions) initiated by single-atom or
molecule bombardment. Parameters of the Frenkel-Kontorova
chain with Morse interatomic interactions were chosen to
mimic crowdions in a 3D fcc Morse crystal. Our main results
can be summarized as follows.

Static or slowly moving crowdions have a width of about a
half dozen atoms. Such wide crowdions cannot be initiated
by an impact of a single atom due to a mismatch of their
sizes. Atoms can initiate only fast crowdions because they are
narrow, but this requires relatively large energy. Molecules can
initiate wide and slow crowdions with small energy, since they
have a size compatible with the crowdion width. That is why
molecules require three to four times smaller energy to initiate
a crowdion propagating along the chain as compared to the
minimal energy of a single atom needed for this.

Our findings are of importance for experimental techniques
where atom or molecule bombardment is used to modify
properties of crystal surface. As a continuation of this study
it would be interesting to estimate the efficiency of molecule
bombardment in mass transfer initiation for real crystals in a
3D setting.
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