
Future Generation Computer Systems 102 (2020) 723–737

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Osmotic computing-based servicemigration and resource scheduling
inMobile Augmented Reality Networks (MARN)✩

Vishal Sharma a, Dushantha Nalin K. Jayakody b,∗, Marwa Qaraqe c

a Department of Information Security Engineering, Soonchunhyang University, Asan-si 31538, South Korea
b School of Computer Science and Robotics, National Research Tomsk Polytechnic University, Russia
c Hamad Bin Khalifa University, Qatar

a r t i c l e i n f o

Article history:
Received 20 April 2019
Received in revised form 19 August 2019
Accepted 6 September 2019
Available online 18 September 2019

Keywords:
Osmotic computing
Edge-computing
Augmented reality
Resource scheduling
Service migrations

a b s t r a c t

Resources and services between the servers in Mobile Augmented Reality Networks (MARN) are tedious
to manage. These networks comprise users possessing Augmented Reality (AR)-Virtual Reality (VR)
applications. Low latency, robustness, and tolerance are the key requirements of these networks,
which can be attained by using near-user solutions such as edge computing. However, management
of services and scheduling them to near-user servers in an integrated environment of edge and
public/private infrastructure are complex tasks. These require an optimal solution, which can be
obtained by using ‘‘Osmotic Computing’’, that has been recently proposed as a paradigm for the
integration of edge and public/private cloud. This paper uses osmotic computing for effectively
migrating and scheduling the services between the servers of the different layers. The paper also
presents the details on various components that are used for applying osmotic computing to a network
followed by core applications, types, service classification, migration, and scheduling through the rules
of osmotic game formulated for its operations. The evaluations are conducted on 100,000 requests and
the proposed approach shows significant performance with the probability of the error being 0.1 at
55.72% conservation of the energy and memory resources for the entire network despite the increasing
number of users. The proposed approach also satisfies the conditions of the joint optimization functions
presented in the system model and demonstrates that the system holds true even with varying users,
thus, proving its robustness and tolerance against the number of users.

© 2019 Published by Elsevier B.V.

1. Introduction

Networks are playing a crucial role in connecting the real
world applications through logical and algorithmic solutions
ranging from traffic management to processing. Realistic services
and applications demand a tremendous amount of resources in
the next generation of wireless communication [1]. The advent
of higher spectrum allows better resources for the users and also
supports the applications that lay an enormous burden on the
network [2,3].

Network services operating through real-time traffic have
formed the background for the development of Mobile Aug-
mented Reality Networks (MARN) that focus on Augmented Re-
ality (AR) and Virtual Reality (VR) applications [4,5]. The applica-
tions developed by these industries are heavy on resources and

✩ This work was funded, in part, by the framework of Competitiveness
Enhancement Program of the National Research Tomsk Polytechnic University,
Russia.
∗ Corresponding author.

E-mail addresses: vishal_sharma2012@hotmail.com (V. Sharma),
nalin@tpu.ru (D.N.K. Jayakody), mqaraqe@hbku.edu.qa (M. Qaraqe).

require effectual management for efficient services and control
with low-complex solutions for the transmission of multimedia
traffic [6,7]. Most of the solutions rely on the network layout and
vary depending on the configurations of the packet and routing
strategies. The current standards and solutions are incapable of
providing a generic solution for most of the real-time applica-
tions [8]. This raises the requirement of an efficient solution
which operates irrespective of the configurations and the type
of the network.

These applications are also seen as potential seekers for the
formation of edge networks [9,10]. Edge networks allow near
user-site evaluations by reducing the burden on the core of the
network [11–13]. This protects the centralized server from the
burden of simultaneous requests generated by a large number
of applications [14–17]. Edge networks rely on various schedul-
ing algorithms and resource allocation strategies for effective
communication with users involving AR-VR applications. Inter-
hop distance, multi-path facilities, routing protocols, distributed
control, and management are the other key challenges associated
with the networks serving AR-VR applications. Network accessi-
bility and portability of resources play a key role in supporting

https://doi.org/10.1016/j.future.2019.09.008
0167-739X/© 2019 Published by Elsevier B.V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic archive of Tomsk Polytechnic University

https://core.ac.uk/display/395458967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.future.2019.09.008
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.09.008&domain=pdf
mailto:vishal_sharma2012@hotmail.com
mailto:nalin@tpu.ru
mailto:mqaraqe@hbku.edu.qa
https://doi.org/10.1016/j.future.2019.09.008

724 V. Sharma, D.N.K. Jayakody and M. Qaraqe / Future Generation Computer Systems 102 (2020) 723–737

Fig. 1. An exemplary illustration of MARN with challenges and requirements.

Table 1
Requirements of MARN w.r.t. devices [17].
Parameters Handheld Wearable Desktop

Connection-Type Wireless Wireless Wired/Wireless
Storage Available Low Low High
Transmission Range Moderate Low High/Moderate
Latency Issue Moderate High Low
Visibility 3D 3D 3D
Reconfigurability Required Required Required
Local Caching N/W dependent N/W dependent N/W dependent

users in AR networks. Usually, applications for AR-VR are ded-
icated and uses their own set of protocols for communications
which are sometimes greedy and result in overpowering other
crucial applications on the same device [18].

The next generation of mobile Apps industry is focused on the
combination of AR and VR with mobile networks [19]. In general,
AR uses a series of computing algorithms which illustrates the
physical world entities into visually displayable sensory informa-
tion. This information is interpreted by the displaying devices and
displayed on the screen. With a combination of AR with VR, the
sensory information is presented as a logical real world to its
users. Earlier, majority of the applications were developed as a
stand-alone solution such as simulation-based pilot training [20],
evaluation of Supervisory Control and Data Acquisition (SCADA)
systems [21], or inter-terrestrial image transmissions [22]. But
now, the scale of such applications has improved and the majority
of the applications uses a centralized server for managing infor-
mation from one application and mixes it with the other for a new
VR interface for the end users. Such applications involve online-
gaming, tactical planners for pilots, or even drone-maneuvering.
The current deployment depends on the communication network
for the transmission of real-time feed necessary for the success-
ful operations of AR-VR Apps. Most recently, these systems are
studied as MARN, as shown in Fig. 1. These networks are subject
to high throughput and low-latency communications [17]. These
requirements, as shown in Table 1, can be handled by the use
of high-frequency networks as planned under 5G-PPP. However,
because of high-frequency, these networks involve using more
intermediate hops leading to more computations and raise the
issue of computational offloading. Even with the cached infor-
mation, the processing needs to be faster with fewer delays.
The processing issues in MARN are handled by the extremely
reliable and fast computing algorithms. However, the support for

communication between these far-operated algorithms is still an
issue. There are several algorithms and protocols available focus-
ing on the transmission of multimedia traffic with less latency,
yet these are subject to investigation considering the new de-
ployment of networks as their incapability in managing near-user
evaluations [6–8].

The network architecture plays a crucial role in MARN. With
the advent of the edge-enabled network, it becomes relatively
easy to manage user requests near to them without many traver-
sals. Not all the requests can be managed near the user; some
require dependencies on additional traffic while some are bound
by the constraints of network resources. Thus, it becomes nec-
essary to identify a solution that can support these requirements
and can efficiently manage the requests between the core and the
user-site servers. All these issues can be handled by the efficient
deployment of osmotic computing, which is a novel paradigm
for integrating edge-cloud and public/private infrastructure [23].
But, the current implementation of osmotic computing is in its
early stage and requires further extensions for various problems
discussed in the next section.

2. Problem statement and motivation

With a large number of devices demanding an equal amount
of time and resources for similar or different types of appli-
cations in MARN, it is important to manage their operations
efficiently. This management is dependent on regulating the de-
mands and traffic for users with efficient utilization of resources
and congestion-free transmission. The key problems with the
existing architectures are:

• There is no facility for near-user decision system which can
regulate the traffic between the cloud and edge infrastruc-
tures especially focusing the MARN applications.
• The existing solutions are unable to deal with the counterfeit

mobility issues of users in edge-enabled networks for AR.
Maintaining consistent flow across the network is still an
open issue.
• Reduction in latency while migrating the services across the

layers is a key challenge.
• Optimized allocation of resources and classification of ser-

vices into macro- and micro-units is a major requirement
for efficient migration and scheduling.
• The existing osmotic solutions do not use optimal theory for

handling users in edge-enabled MARN.

V. Sharma, D.N.K. Jayakody and M. Qaraqe / Future Generation Computer Systems 102 (2020) 723–737 725

Osmotic computing is one of the promising concepts for inte-
gration of edge and public/private cloud infrastructure. Initially
proposed by Villari et al. [24] and extended for an application
(management of service heterogeneity) by Sharma et al. [25,
26], osmotic computing is a new research paradigm to look
forward to, especially in resolving the research and engineering
aspects associated with the fully-fledged implementation of edge
computing [23,27,28]. The recent study shows that the lack of
inferential control over the AR-VR-based devices makes it difficult
to use edge solutions [19]. This issue is one of the reasons for en-
terprises to avoid investments in edge-solutions. These challenges
motivated us to developing a framework that can handle the
classification of services as well as efficient resource scheduling
by utilizing the osmotic paradigm.

3. Our contribution

In this paper, the concept of osmotic computing is further
extended by providing detailed definitions of the key components
required for its operations. A novel MARN architecture is consid-
ered for the deployment of osmotic servers in combination with
the public/private infrastructure. Various types and applications
of the demonstrated architecture are also presented. The pro-
posed approach resolves the issues related to the migration and
scheduling of services in MARN by following the novel classifica-
tion of services on the basis of size and bounds. A novel osmotic
game helps in scheduling through user-initiated osmosis or edge-
initiated osmosis. Further, the system model is formulated into
algorithms to provide an overall idea of the proposed solution.
Next, the theoretical analyses are presented along with perfor-
mance evaluation for a large set of users. The proposed approach
provides a significant contribution in managing services across
the edge and the public/private infrastructures with robust de-
cision making and tolerance while conserving available resources
(energy and memory) against the increasing number of incoming
requests.

4. Background: Osmotic computing

Osmotic computing is the paradigm for migrating components
across different processing layers to facilitate the end users. Here,
components refer to any tangible computing entity or resource.
Fig. 2 illustrates the chemical osmosis, which inspired the forma-
tion of osmotic computing. The details of osmotic computing are
as follows:

4.1. Definitions

Let U be the set of all the users and services that migrate
between different layers of servers such that for an ideal state,
S = φ, where S is the set of unhandled services or pending user
requests.

• Solute— Like osmosis, solute represents the dissolvable part
of the chemical solution. In computing, solute refers to
the network properties and entities, such as memory, en-
ergy, processing time, overheads, load, connections, etc. A
computing paradigm may have a varying amount of solute
which leads to the formation of an equilibrium state. The
ratio of solvent present in the network for consuming the
solute drives the equilibrium in osmotic computing.
• Solvent— These are the components of solution which ab-

sorbs the solute to maintain the fluid state. In osmotic
computing, solvent refers to the applications, layered in-
terfaces, users and services that undergo migration in a
network. This is the movable part of the network which
requires scheduling and allocation depending on the state
of the network as well as equilibrium conditions.

• Concentration— It is the ratio of the solute to the solvent.
In [25], it is the ratio of services to computational resources,
whereas, in this paper, it is the cumulative ratio of ev-
ery component treated as a solute to every computational
resource treated as a solvent.
• Semipermeable Membrane— This is the decision-making

system of the osmotic computing. It is the most crucial
entity which decides on the maintenance of equilibrium
and balance of services and applications in the network.
This paper proposes an Osmotic Decision System (ODS),
which handles migrations and scheduling of the resources
and services across the network. For an optimized net-
work, the semipermeable membrane should operate with
low-complexity and fewer overheads.
• Solution— This is the combination of U , S and osmotic-

decision support system. Usually, solution refers to the en-
tire network, but, depending on the scale of implemen-
tation and applicable solutions, a solution can also refer
to subgroups which combine together to form the entire
network.
• Properties-Following are the general decisions which form

the key properties of the proposed osmotic computing
model:

– If, during any time in the network, |S| = max, then the
existing servers cannot handle extra users. Such situ-
ations are manageable by load balancing, the addition
of solvent, or removal of unwanted solute.

– Centralized servers should not affect the decision for
load balancing. Rather, these should be user initiated,
but, such scenarios raise need for security solutions
to confirm a user before migrations. In the proposed
model, both users as well as infrastructure (Edge)-
initiated approaches manages the services and the
scheduling of resources.

4.2. Application scenarios

This paper presents two major applications of edge-enabled
networks for handling a large number of users requiring AR-VR
traffic. These users are the crucial part of the proposed model
and an efficient formation of the osmotic network can ease their
operations in edge-setup. The descriptions of these are as follows:

• Service Migration— It is one of the major applications of
osmotic computing for integration of edge-public/private
cloud infrastructure. As stated in [25], public/private cloud
or the osmotic layer handles the services by dividing them
into multiple sets.
• Resource Scheduling— After classification of services and

clustering of potential servers with a label for handling
a particular service, the network uses an osmotic game
for optimized scheduling. This helps in the allocation of
resources without much latency as well as overheads. Re-
source scheduling is applicable to a much lower level and
classified services are divisible into tasks or jobs for migra-
tion. Thus, resource scheduling is applicable by performing
service migration, job to job, or process to process migration.

4.3. Types

There are two ways of implementing osmotic computing:

• Intra-Osmosis: Consider a network with many servers with
variation in computational resources on the same tier. Now,
the applications are migrated and scheduled on these
servers of same tier allowing applicability of the concept

726 V. Sharma, D.N.K. Jayakody and M. Qaraqe / Future Generation Computer Systems 102 (2020) 723–737

Fig. 2. An illustration of osmotic computing for service migration and resource scheduling.

of intra-osmosis. Intra-osmosis is applicable when decisions
are made in a single network and there is no hierarchy in
the servers. The upcoming networks with flattened archi-
tectures can take advantage of this approach for efficiently
handling its resources.
• Inter-Osmosis: Inter-osmosis applies to a network when

two different hierarchical servers are involved in service
provisioning for users. Usually, inter-osmosis operates be-
tween different type of technologies, e.g. between the edge
cloud and private/public cloud. Inter-osmosis holds the true
concept of osmosis and balances the load in the network.
The existing hierarchical networks that especially focus on
the applications of augmented reality are good candidates
for this approach.

5. Network model

The augmented reality network comprises an edge layer near
to the users, the osmotic layer, and the core (public/private cloud)
for handling the users denoted by a set U as shown in Fig. 3. The
osmotic layer is the integration layer as suggested by its initial
definition. The ODS for identifying the services are installed on
the edge layer as well as on the user devices. The initial task is to
formalize the components of the system which helps in allocating
the services generated from the users to appropriate servers. This
is followed by the load balancing and scheduling depending on
the type and arrival rate of services.

In general, a network can have multiple osmotic layers be-
tween the edge layer and the public/private cloud. Every layer
can operate with a set of servers with similar or different con-
figurations. To support common applications these servers must
be made available as generic support for the services which are

configured to be operating over the entire network. However,
depending on the deployment, osmotic computing can also be
considered in a private mode, but such discussions are beyond
the scope of this article. Let K be the set of osmotic layers, such
that each layer has set N of servers and every server can handle
a maximum of m users. In the system model, it is assumed that
each user generates some services denoted by j. Such that total
services for a server are represented as a set M with elements
j1, j2, . . . , jm denoting services from m users. Now, with j = 1
for every user, total load, which can be handled by the osmotic
network, is given as1:

Losmotic =

|K|∑
i=1

(
|N |∑
r=1

(|M|)r

)
i

, for j1...m = 1. (1)

Now, the model operates towards the formation of memory,
energy, time and capacity model to facilitate a migration network
between the edge layer, osmotic layer and the public/private
cloud. Considering that each server has memory represented by
β , the total memory βT is given as:

βT =

|K|∑
i=1

(
|N |∑
r=1

(β)r

)
i

, (2)

which can be distributed equally on the basis of available memory
across the servers in each osmotic layer. Let b be the memory
consumed by services from each user (assuming a single service

1 Following notations have same meaning in the article (A, B, C are used as
simple variables without any physical meaning):-

∑B
i=1(A)i =

∑B
i (A) =

∑B
i A

and
∑B

i=1(
∑C

j=1(A)j)i =
∑B

i
∑C

j (A)

V. Sharma, D.N.K. Jayakody and M. Qaraqe / Future Generation Computer Systems 102 (2020) 723–737 727

Fig. 3. An illustration of osmotic computing for edge-initiated and user-initiated service-migrations in MARN.

per user), then the available memory will be calculated as:

βA = βT −

|U |∑
i=1

(b)i . (3)

Now, with F as a fresh set of services each having same memory
needs, the total services that can be accommodated depending
on the memory requirements can be calculated as βA

|F | . This model
can be extended to each osmotic layer as well as to a single server,
such that

β
(K)
A =

βT

|K|
−

|Z|∑
i=1

(b)i , s.t.
|Z|∑
i=1

(b)i ≤
|U |∑
j=1

(b)j ,Z ⊆ U, (4)

where Z and β
(K)
A represent the set of users and the available

memory, respectively, of a single osmotic layer.
Let Ep be the per service energy consumption with ET being

the total energy of the network across all the servers, such that
available energy in the network is given as:

EA = ET −
|U |∑
i=1

(
Ep
)
i . (5)

Similar to memory model, energy model can also be applied
for a single osmotic layer such that E (K)

A =

(
ET
|K| −

∑
|Z|
j=1

(
Ep
)
j

)
.

Each service in the network requires some time for processing
given by τp. The processing time is affected by the parallel runs,
i.e. number of services which can be operated simultaneously.
Thus, considering this, the processing time per server can be
calculated as:

τ
(K)
T =

(
|M|
γ

)
τp, (6)

where γ is the number of parallel units of services for each server
that can run simultaneously.

6. Proposed approach

The proposed approach aims at efficient service migrations
and resource scheduling between the edge servers and the pub-
lic/private cloud setup. As stated in the system model, osmotic
layers serve the edge layer of the network comprising near-user
servers, which are controlled by local Access Points (APs). On the
contrary, a network can only have APs which themselves act as
the osmotic servers and manage the purpose of edge layer near
to a user. In such a case, the service migrations and scheduling
occur only between the APs and the public/private cloud. Despite
the type of architecture, the proposed approach supports low-
latency solution for service migration. The proposed approach can
serve as one of the key solutions for the low-complex and low-
latent deployment of augmented reality networks. The details of
the proposed approach are provided below:

6.1. Service classification

‘‘Service classification’’ refers to the difference in the charac-
teristics of operations and requirements of resources associated
with a particular task. The existing solutions rely on the difference
in computational characteristics of the entire application and
schedule them according to the availability of serving servers.
However, such situations can lead to mixed allocation of services
to a single server. This means a single server has to perform
computations for both heavy and light applications, which lead
to complex optimization issues. These issues can overburden a
single server and waste the resources available with the other
servers. Of course, load balancing is available for such situations,
but load balancing is applied as a failure-resilient solution when
a particular server is unable to handle the requests. However,
load balancing does not account for the difference in the types of
services, and this difference in services arises when a server sup-
ports different kinds of application or even acts as a lookup server
for the demanded services. Thus, it is important to understand
the heterogeneity of the services in a network and classify them
for efficient migration and scheduling. The proposed approach
classifies the services on the basis of:

728 V. Sharma, D.N.K. Jayakody and M. Qaraqe / Future Generation Computer Systems 102 (2020) 723–737

• Size: The heterogeneous nature of services can be under-
stood by their divisibility on the basis of size. Such divis-
ibility classifies the services into macro-and micro-services
by identifying the resources demanded by each of them. The
division can be accounted for the batch size of each service,
which takes into account the number of resources required
by each service. The one with requirements of high compu-
tational resources for execution of its batch are the macro-
services, while with relatively lesser requirements are the
micro-services. The division of services into macro and mi-
cro parts is manageable by defining a threshold limit on each
of the configuration-resources, such as energy, memory and
processing time as stated in [26], such that

β
(macro)
R > βT H ≥ β

(micro)
R , (7)

E (macro)
R > ET H ≥ E (micro)

R , (8)

and

τ (macro)
p > τT H ≥ τ (micro)

p , (9)

where β
(macro)
R , β

(micro)
R , E (macro)

R , β
(micro)
R , τ

(macro)
p , and τ

(micro)
p

are the memory requirements, energy requirements, and
processing time for macro and micro classification of ser-
vices, respectively. The subscript T H denotes the thresholds
for memory, energy and processing time. The details on
the thresholds and their values are provided during perfor-
mance evaluation (Section 8). The initial approach begins
with analyzing whether the load can be handled by the os-
motic network or not, which is allowed if

∑
macroservices+∑

microservices ≤ L. The load helps to check the sus-
tainability of osmotic layer for incoming requests. τT H is
set by ODS on the basis of minimum response time. This
controls the flow of macro- and micro-services across the
network. ET H is set by considering the available energy in
(5). It is to be ensured that max(E (macro)

R) ≤ E (K)
A , provided

that there are free servers for handling such large requests.
In the simplest of form, ODS shifts macro-services to the
public/private cloud. But for augmented reality networks, it
should first decide on handling these at the near-user layer
and perform shifting when no other options are available.
The above formulation is subject to linear modeling in the
defined system model. The three equations for the energy,
memory, and processing time in (3), (5), and (6) can be
given as y3 = x3 − c3, y2 = x2 − c2, and y1 = x1,
respectively. Now, x3 can be given as τp

(
|M|
γ

)
x1, which

gives y3 =
(

τp|M|
γ

)
x1 − c3, where τp is the processing

time of services. By ignoring the constraints of intercepts,
y2 = x2y1, which can be rewritten as y2 = x2

(
|M|
γ

)
x1.

From these, y3 = τp

(
y2
x2

)
, which shows that the energy

equations can be defined only as the function of memory
while fixing the thresholds for size-based osmosis. Thus,
size-based osmosis is presentable as a joint optimization
problem of the servers with constraints of processing time.
Now, if f (ER) and f (βR) are the functions for energy and
memory, respectively, the common optimization problem
for osmotic involvement will be given by:

min (G (f (ER), f (βR))) , (10)

s.t.

τp(j) ≤ τT H,∀j ∈M,∀K,∀N ,

ER(j) ≤ ET H,∀j ∈M,∀K,∀N ,

βR(j) ≤ βT H,∀j ∈M,∀K,∀N ,

S → φ or max(|S ′|),
max(Losmotic),∀M,∀K,∀N

Lpublic = min (L) . (11)

The formal values of variables in (10) are discussed in the
theoretical analysis (Section 7) of the proposed approach.
• Bounds: The arrival rate and density affects the service mi-

gration policies. Arrival rate is the incoming service requests
from the users and density is defined as the grouping of ser-
vices on a single serving gateway or AP. Both these factors
allow classification of services into hardbound and soft-
bound services. The softbound services are handled by the
osmotic layers, whereas the hardbounds are transferred to
public/private infrastructure. The proposed approach needs
to minimize the dependency over a singled osmotic server
or layer on the basis of arrival rate of services. Thus, apart
from migration, the classification on the basis of bounds
should manage the affects of density and arrival rate of
services. For high availability of the proposed approach in
support of augmented reality, QoS plays a critical role. Thus,
if α is the arrival rate, and ω is the density, the model pro-
ceeds towards min(ω) ∀K and min(α) ∀K, ∀N . This allows
appropriate handling of services by the osmotic servers.
However, with these two factors, the possibilities for QoS
and their corresponding effects on time, energy and memory
are shown in Table 2.
Now, for ith ODS,

ωi =
ηiγi

Od
≤ ωT H, (12)

where ηi and γi represent the number of applications and
number of services per application, respectively, associ-
ated with the ith decision system. Od represents the total
ODSs and ωT H represents the common threshold for all
ODSs. A network can have all or some of its APs as ODS.
For α, there are two possibilities at ODS, one to send to-
wards the osmotic manager and the other towards the
public/private infrastructure. This is also subject to avail-
ability of resources. In the proposed approach, it is assumed
that the local servers maintain a cache for every application
which is used frequently. The service requests may arrive
at same time, but these are independent, thus, exponential
distribution is used to mark the arrival of each application,
such that each AP’s probability density function is given as:

Pa = αe−αηx , ηx =
∑

η. (13)

Now, for applications equaling the number of users |U|, the
system can be represented as a 3-tuple, such that
X1(ω1, τp,1, α1),X2(ω2, τp,2, α2), . . . ,Xj(ωj, τp,j, αj), where
j = |U|. The probability of handling the applications by
the osmotic layer is driven by negative binomial distribution
(referring to handling by public/private as a success), such
that

P(X1,X2, . . . ,Xj) =
∑(

j− 1
j′

)
pj
′

(1− p)j
′′

, (14)

j′ is the number of applications allotted to public/private
infrastructure, j′′ is the remaining applications such that p
is the probability of each application having ω > ωT H
and τp > τT H. If Td is the decision time for selecting a
particular layer for the incoming applications, then it should
be minimized. The decision time is affected by ω. This can be
controlled by understanding the upper bounds on the ω for
its threshold value. Generally, the threshold changes w.r.t.

V. Sharma, D.N.K. Jayakody and M. Qaraqe / Future Generation Computer Systems 102 (2020) 723–737 729

classification and configuration of the network. However, by
fixing these limits, the approach can continue irrespective of
the network variations.
In general, the density of services for all the ODSs follows a
normal distribution such that their probability distribution
is given as:

Pd(ω, σ , ω) =
1

√
2πσ 2

e−
(ω−ω)2

2σ2 , (15)

where ω is the mean density of services over ODSs, and
σ being the standard deviation. Now, from the definition
of likelihood on normal distribution, the maximum likeli-
hood estimators of mean and variance are give as ω̂ =
1
Od

∑Od
i=1 ωi and σ̂ 2

=
1
Od

∑Od
i=1

(
ωi − ω̂

)2, respectively. As-
suming that the confidence level of a server is denoted by ϑ ,
which is obtained from the probability of number of services
with osmotic layers in (14), the approximate confidence
interval [29] for ω is given as:

−
1
√
2π

∫
∞

H1−ϑ

e−
(ω)2
2 dω <

ω̂ − ωT H

σ̂
<

1
√
2π

∫
∞

H1−ϑ

e−
(ω)2
2 dω. (16)

Thus, the upper bound on ωTH will be given as:

ωU
TH ≤ ω̂ +H1−ϑ σ̂ , (17)

where

H1−ϑ = 1−
1
√
2π

∫ 1−ϑ

0
e−

(ω)2
2 dω. (18)

Now, considering the first two conditions in Table 2, a
joint cost function by using Bayesian inference is required
which can be minimized to maintain the flow across osmotic
layers. This joint function can be given as:

Cα,ω =
ϵ1

ϵ1 + ϵ2
Pa +

ϵ2

ϵ1 + ϵ2
Pd, (19)

which is formulated as:

min
(
Cα,ω

)
,∀K,∀N , (20)

s.t.

ϵ1, ϵ2 ≥ 0,
ϵ1 + ϵ2 ≥ ~,

ωTH ≤ ~ ≤ ωU
TH . (21)

Here, ϵ1 and ϵ2 are the Bayesian weights associated with
arrival rate and density of services across ODSs, respectively.
Note that, ~ is s.t. ω, as from Table 2 it is evident that its
value affects the system when α is maximum. The above
problem is similar to the barrier-penalty method [30]. Thus,
the barrier function for the given cost can be given as:

Cα,ω(ζ , ϵ) =
ϵ1 Pa

ϵ1 + ϵ2
+

ϵ2 Pd

ϵ1 + ϵ2
+ ζ

Od∑
i=1

(
−1

−ϵ1 − ϵ2 + ~

)
i
,

(22)

where ζ is the barrier parameter which drives the cost func-
tion barriers. At each moment in the network, Pa and Pd at-
tains a constant value. Thus, by taking gradient ∇ϵCα,ω(ζ , ϵ)
equal to zero for a single system, either ζ = 0 with ~− ϵ >
0, which is achievable at ~ = ωU

TH and ϵ = ωTH , or ζ ̸= 0
with ~ = ϵ. Thus, considering these, the objective function
can be simplified as:

min
(
1
2

(Pa + Pd)

)
, ~ = ϵ1 = ϵ2,∀K,∀N , (23)

Table 2
Effects on QoS in terms of availability (✓: Affect, ✗: No affect).
Conditions τ E β

max(α), max(ω) ✓ ✓ ✓

max(α), min(ω) ✓ ✗ ✗

min(α), min(ω) ✗ ✗ ✗

min(α), max(ω) ✗ ✓ ✓

which is further deducible, such that

min
(
1
α
+ ω

)
,∀K,∀N . (24)

6.2. Formation of osmotic game

Once the network is finalized for its components and the
servers are installed with the desired capabilities for osmosis,
the next step uses the osmotic game. The osmotic game helps to
decide how the services will be migrated across the networks and
who will initiate the migrations. The osmotic game has two major
participants, the first involves the user and the second involves
ODS or osmotic server. The main focus of the osmotic game is to
migrate services either by following the requirements of a user or
burden of the network. The former can be greedy and the later
can be optimal. Both these differ in implementation and have
their own pros and cons associated with their implementation.
Considering these, the osmotic game can be divided into two
parts, namely, user-initiated osmosis or edge-initiated osmosis.
Both these operate towards the integration of user to edge to the
public/private cloud allowing efficient implementation of service
migrations. Since both have to be optimally driven and must obey
each other rules, Semi-Markov Decision Processes (SMDP) [31]
can be one of the optimal strategies for them. SMDP helps to iden-
tify the type of osmosis better suited in the network at a given
instance and also helps in maintaining a balance of resources in
the network.

According to this model, the service requests, from the users,
form the system space each having three possible actions: user-
initiated, edge-initiated, or hybrid. The system space is formu-
lated into policies which are based on the optimization criteria
and helps to decide which the best possible outcome for a par-
ticular service is. Let total time for the service being split into τp
and Td, and the sum of both denotes the sojourn time τp+d. Now,
by definition [31], this expected waiting time can be given as:

τp+d(U,X) = lim
τs→∞

∫ τs

o

(
1− P(X1,X2, . . . ,Xj) Cα,ω(t)

)
dt, (25)

where τs is the time slots for which the decision is to be taken
such that τp+d ≤ τs.

Usually, SMDP is operated by the service vendors and helps
in supporting the decision of going for user-initiated or edge-
initiated osmosis. Also, SMDP helps the decision metrics on the
user and osmotic servers to check the present state for moving
the services. This also forms the background for osmotic resource
scheduler. Now, the expected osmotic burden O(E)

B can be de-
rived by using the similar concept of SMDP. At any instance, the
number of services on the osmotic layer is given as

ℜ(t) = |M|c(t)+ |M|i(t)− |M|o(t), (26)

and service per server load can be calculated as
ℜ(t)
|K|u|N |u

=
|M|c(t)+ |M|i(t)− |M|o(t)

|K|u|N |u
, (27)

where |M|c is the current services, |M|i is the incoming services,
|M|o is the outgoing services. The subscript u denotes the utilized

730 V. Sharma, D.N.K. Jayakody and M. Qaraqe / Future Generation Computer Systems 102 (2020) 723–737

servers on the osmotic layer. Now, the considering continuous op-
erations of ODS, the osmotic burden can be obtained by integral,
i.e.,∫ τs

0

ℜ(t)
|K|u|N |u

dt =
∫ τs

0

|M|c(t)+ |M|i − |M|o(t)
|K|u|N |u

dt, (28)

such that

OB =

∫ τs

0

ℜ(t)
|K|u|N |u

dt. (29)

Now, by definition of SMDP [31],

O(E)
B (M,K,N) = lim

τs→∞

∫ τs

o

(
1− P (E)

B
ℜ(t)
|K|u|N |u

)
dt, (30)

where

P (E)
B = P(X1 ∥ X2 ∥ . . . ∥ Xj). (31)

If the osmotic network handles the maximum load of the network
at any given time, then,

max
(

lim
τs→∞

∫ τs

o

(
1− P (E)

B
ℜ(t)
|K|u|N |u

)
dt
)

, (32)

which is achievable at minimizing of the negative binomial prob-
ability (P (E)

B). The number of osmotic transitions per unit time by
following (13) and definition of SMDP, is given as:

O(t)
S =

(
1− e−αηx

)
−

(1− P(X1,X2, . . . ,Xj))Cα,ω∑
η≤ηx

τ
(p)
p+d(1− P(X1,X2, . . . ,Xj))Cα,ω

,

(33)

where

τ
(p)
p+d = lim

τs→∞

∫ τs

o
P(X1,X2, . . . ,Xj) Cα,ω(t)dt. (34)

Now, the probability of error [32] that some services are trans-
ferred to public/private cloud even on the satisfaction of osmotic
criteria is given as:

P (E)
P =

1
|K||N |

∑
i

∑
j

(1− P(X1,X2, . . . ,Xj))Cα,ω∑
i τ

(p)
p+d(1− P(X1,X2, . . . ,Xj))Cα,ω

,

=
1
|K||N |

∑
i

∑
j

(
1−

(
e−αη
+ O(t)

S

))
,

j ≤ ηx, i = |M|. (35)

The network needs to reconfigure itself if the associativity be-
tween the osmotic and the public/private cloud servers decreases.
This associativity is expressed as the difference between the
observed value and expected value of the osmotic burden w.r.t
decision time, such that:

O(A)
B =

Ω

Td
|OB − O(E)

B |, (36)

which is governed by the principle that O(A)
B (t) should be mini-

mum, where Ω is the per service transitions. This can be attained
by controlling P (E)

P irrespective of the number of osmotic shifts.
However, in real scenarios, the osmotic shifts will affect the
performance; thus, following conditions should be satisfied for
the given network:

max
(
P (E)
P

)
, (37)

s.t. O(t)
S ≤ O(A)

S ,

where O(A)
S is the allowed number of osmotic transitions per unit

time for each osmotic layer. These are governed by the initially
derived conditions of energy, memory and processing time. By

using the SMDP approach, the proposed approach uses movement
reward functions F

(t)
R for identifying the state of the network.

Whenever, a service request is handled by the osmotic server,
the burden of the network is reduced. The load over osmotic
server as derived previously can be obtained through queries
to every server. However, this will be time as well as resource
consuming. Alternatively, F(t)

R can lead to exact state, which will
help monitoring of servers at any instance. Now, by definition of
SMDP [31],

F
(t+1)
R = OB + τp+d

(
−O(A)

B

)
, t ≤ τs, (38)

where F
(t+1)
R has to be maximized s.t.

max

⎛⎝ 1
|K||N |

∑
i

∑
j

P(X1,X2, . . . ,Xj)Cα,ω∑
i τ

(p)
p+dP(X1,X2, . . . ,Xj)Cα,ω

⎞⎠ , (39)

and

max
(
O(t)

S

)
, (40)

which has to balance the tradeoff between the rate of incoming
requests and the decision time. Thus, average τp+d should be less
to satisfy this condition and it will be driven by the performance
of the configured ODSs.

6.2.1. User-initiated osmosis
Irrespective of configurations, user-initiated osmosis are suit-

able for both intra- as well as inter-osmosis. However, user-
initiated osmosis requires additional infrastructure, which can
identify in-place requirements of the requests generated by the
users. In real applications, this is supported by an Osmotic Client
Application (OCA) which is installed on the gateway and connects
the users to the nearest ODS. The OCA is responsible for dividing
the decision operations of actual decision system. However, the
services which are transferred on the osmotic servers by the OCA
also require scheduling. OCA, in some cases, can be greedy as
it is unaware of the actual conditions of the network. However,
such implementations are left on the capacity and capability of
osmotic resource scheduler. User-initiated osmosis is supported
by a local data warehouse, which caches the frequently accessed
information to reduce the routing-gap between the user and the
core servers. One of the examples of such an implementation is
centralized augmented centers that are used for gaming or virtual
reality applications. User-initiated osmosis operates only with
computational issues, which are identified by the OCA. This is one
of the trivial approaches for implementing osmotic computing as
also discussed in Ref. [26]. These steps are illustrated in Algorithm
1. This algorithm checks the initial condition of Cα,ω and F

(t+1)
R

from (19) and (38). Once satisfied, the algorithm iterates for
incoming service requests and check their computational burden
and migrates them to the osmotic schedule for allocation to
appropriate osmotic layer and osmotic server.

6.2.2. Edge-initiated osmosis
Contrary to user-initiated osmosis, edge-initiated osmosis is

less computationally expensive and are most reliable for inter-
osmosis. Although, user-initiated osmosis reduces the decisions
to be taken for every service, yet the ODSs have to check the
flags for identifying whether the incoming requests are directly
from the users or OCA. Apart from this, ODSs can directly own the
entire process and can know about the exact state of the network.
However, latency can be expected for the applications which do
not require any intermediate decisions. Edge-initiated osmosis
is best suited for stand-alone user applications with multiple

V. Sharma, D.N.K. Jayakody and M. Qaraqe / Future Generation Computer Systems 102 (2020) 723–737 731

Algorithm 1 User-initiated Osmosis via OCA
1: Input: Service_Request(β , E , τp), M, S
2: Output: Invoke Scheduler←−Service_Request(β , E , τp), Flag,
3: Evaluate Eqs. (1)–(5)
4: Fetch and store βTH , ETH , τTH from ODS
5: Set counter=count(service_Requests())
6: Set user_osmotic_counter=0, i=1
7: Set thresholds for α and ω

8: Calculate Cα,ω =
ϵ1

ϵ1+ϵ2
Pa +

ϵ2
ϵ1+ϵ2

Pd

9: Calculate F
(t+1)
R and set threshold as F

(t+1)
R (TH)

10: if (min(Cα,ω) = true && max(F(t+1)
R) ≥ F

(t+1)
R (TH)) then

11: while (i ≤ counter) do
12: Select Service_Request(β , E , τp)[i]
13: if (β ≤ βTH , E ≤ ETH , τp ≤ τTH) then
14: shift service to ODS with Flag=1
15: user_osmotic_counter=user_osmotic_counter+1
16: else
17: shift service to ODS with Flag=0
18: end if
19: i=i+1
20: end while
21: else if (Thresholds_variablility=False) then
22: Reset OCA to edge-initiated mode
23: else
24: Alter thresholds for F

(t+1)
R , α and ω

25: Reevaluate Cα,ω , F
(t+1)
R

26: end if
27: Track logs and continue

requests. Also, this does not require any additional infrastruc-
ture and application for osmosis. Edge-initiated osmosis can be
applied as a general network layout where a user is unaware
of the exact source of information. One of the key examples of
edge-initiated osmosis can be the formation of a hybrid sensor
beds with on-site data analysis. Unlike the user-initiated osmosis,
the edge-initiated osmosis uses more set of constraints for an-
alyzing the incoming requests and deciding on shifting services
to osmotic layer or public/private cloud. Algorithm 2 illustrates
the steps for edge-initiated osmosis. The algorithm analyzes the
constraints on osmotic transitions and probability of error along
with resource-constrains similar to user-initiated osmosis.

6.3. Osmotic resource scheduling

Once a decision is taken for the user- or edge-initiated osmo-
sis, the next step involves the scheduling of incoming requests
to appropriate servers while maintaining the optimization con-
ditions of the network. The ODSs are themselves responsible for
scheduling tasks. However, in much sub-network level, there can
be another scheduler that manages the osmotic servers. In such
cases, the decision on the osmotic layer is taken by the ODS
and the decision on the server is taken by the separate osmotic
scheduler. This is the base scenario considered in the proposed
approach, and the scheduling is performed as a collaborative
task between the ODS and osmotic schedulers. Once the service
requests arrive from the end users or OCA, the ODS differentiates
between the ones to be sent to public/private cloud and the
ones meant for osmotic layers. It then evaluates the load of the
each layer and analyzes the excessive service requests it can
handle. Once decided, it sends the service requests to schedulers
which takes into account the values of β , E , τp of the involved
servers and calculate the βA, EA, τp+d. If there is no conflict and
the availability of servers satisfies the requirements, it migrates

Algorithm 2 Edge-initiated Osmosis
1: Input: Service_Request(β , E , τp), M, S
2: Output: Invoke Scheduler←−Service_Request(β , E , τp)
3: Evaluate entire system model
4: Fetch and store βTH , ETH , τTH from ODS
5: Set counter=count(service_Requests())
6: Set edge_osmotic_counter=0, i=1
7: Set thresholds for α and ω

8: Calculate Cα,ω =
ϵ1

ϵ1+ϵ2
Pa +

ϵ2
ϵ1+ϵ2

Pd

9: Calculate F
(t+1)
R and set threshold as F

(t+1)
R (TH)

10: while (i ≤ counter && O(t)
S ≤ O(A)

S) do
11: Select Service_Request(β , E , τp)[i]
12: if (min(Cα,ω) = True && max(F(t+1)

R) ≥ F
(t+1)
R (TH)) then

13: if (β ≤ βTH , E ≤ ETH , τp ≤ τTH) then
14: shift service to Osmotic Scheduler
15: edge_osmotic_counter=edge_osmotic_counter+1
16: else
17: shift service to nearest public/private cloud terminal/server
18: Trace non-osmotic shifts and evaluate P (E)

P

19: if (P (E)
P (t) > P (E)

P (t − 1)) && min(O(A)
B) = True then

20: Adjust ℜ(t) till OB== O(E)
B

21: else
22: Increase O(t)

S by adjusting α and ω or RESET
23: end if
24: end if
25: else
26: Check osmotic feedback and adjust osmotic thresholds
27: Reevaluate Cα,ω , F

(t+1)
R , Td and continue

28: end if
29: i=i+1
30: end while
31: Track logs and wait for input

the services in the order of highest precedence of computational

resources.

Algorithm 3 Osmotic Resource Scheduling-Part A
1: Input: Service_Request(metric_list), flag, scheduler_info, K, Out-

put (Algorithms 1, 2)
2: Output: Service allocation and migration
3: Evaluate entire system model and fetch scheduler count−→ ctr
4: Algorithm 2=True
5: Set osmotic_scheduler_counter=0
6: iteration_counter=0
7: Thresholds_ready=True
8: while (Network_Active=True) do
9: if (Request_OCA(flag)==1 || Request_User=True) then
10: Select layer (K) with β≤β

(K)
A and E≤E (K)

A
11: [feedback,State]=Scheduler(Service_Request(metric_list)): Algo-

rithm 4
12: if (!feedback && State==True) then
13: Continue
14: osmotic_scheduler_counter=osmotic_scheduler_counter+1
15: ctr=ctr+1
16: else
17: Reevaluate request and analyze system for re-osmosis
18: end if
19: else
20: shift service to nearest cloud terminal/server
21: end if
22: iteration_counter=iteration_counter+1
23: end while
24: Maintain logs

732 V. Sharma, D.N.K. Jayakody and M. Qaraqe / Future Generation Computer Systems 102 (2020) 723–737

Algorithm 4 Osmotic Resource Scheduling-Part B
1: Input: Service_Request(metric_list), N , K, Output (Algorithms 1–3)
2: Output: Service scheduling and migration
3: counter_s=count(Service_Requests()), j=1
4: Fetch service request details
5: while (j ≤ counter_s) do
6: Identify requirements of β , E , τp
7: Select Server(N) that satisfies the requirements
8: if (Server_Available==True && Resources==Available) then
9: Shift the traffic and return [NULL, True]
10: else if (Server_Available==True && Resources==Distributed) then
11: Wait until a server is available
12: if (Resources==Available && τp+d ≤ max(τp+d)) then
13: Shift the traffic and return [NULL, True]
14: else if (Resources==Distributed && τp+d ≤ max(τp+d)) then
15: Perform intra-osmosis
16: Shuffle services to ensure β≤β

(K)
A and E≤E (K)

A
17: operate until S! = φ

18: else
19: return [exit(-1), False]
20: end if
21: else
22: return [exit(-1), False]
23: end if
24: j=j+1
25: end while
26: Maintain logs

The issue arises when the overall evaluations of the osmotic
layer show the availability at ODS, but the resources are dis-
tributed between the servers such that at any given instance,
there is no single server on the osmotic layer that can handle the
incoming requests. In such scenario, the schedulers first decide
to carry-forward the request or not. This decision is taken on
the basis of τp+d. If the sojourn time will not affect the expected
value too much extent, it will use a waiting flag for the service
and allocate it to the server once a free slot is available. Further,
if sojourn time is high and there are no other layers to handle
the requests, the scheduler performs intra-osmosis between its
servers for accommodating the incoming requests. This is done by
identifying the services with min(τp) and β ≤ β

(K)
A and E ≤ E (K)

A
for any of the existing servers.

On the contrary, the schedulers can opt for back-out strat-
egy and immediately communicate with the ODS about the dis-
tributed issue. The ODS then selects the next scheduler and
continue until the requests are not handled. At the ODS, it is
always crucial to maintaining the condition of min(τp+d) for the
entire osmotic network visible to it. At any instance, if the op-
timization criteria are not fulfilled, the ODS can migrate the
services to the public/private cloud and then again proceed for
osmosis once the conditions are satisfied. For efficient operations,
the schedulers should be programmable for operating with all
possibilities as explained in the previous paragraph, or only two
possibilities of either handling the service or reporting it to the
ODS for selecting another scheduler. These steps of selecting the
osmotic layer and operations at a scheduler are illustrated in
Algorithms 3 and 4. Remember that this algorithm illustrates
a single thread between one selected scheduler and its corre-
sponding ODS. The proposed approach is directly applicable to
the MARN-service requests coming either from the user appli-
cation or OCA. The proposed strategy with osmotic scheduling
efficiently manages the offloading issues and helps to realize the
communication demands of AR-VR applications.

7. Theoretical analysis

This section presents the equilibrium and state analysis w.r.t.
the theoretical observation over the defined system model.

Lemma 1. Processing time τ is application specific and itself gets
affected by the memory and energy constraints of the system, and
thus, modeling for optimization in (10) is only formulated using
memory and energy requirements.

Proof. Considering the osmotic load, Losmotic , the constraints of
maximization are observed either at β

(K)
A = βT or at E (K)

A = ET .
Further, from (32), the maximum conditions are dependent only
on ℜ, K and N , thus, satisfying the Lemma 1. □

Lemma 2. The total latency observed by an application can only
be given as the sojourn time of SMDP formulation on the defined
system and it increases with the density of the services while arrival
rate influences only in terms of availability.

Proof. The latency can be calculated by taking a single slot for
τs. Now, from (25) and (34), the sojourn time τp+d is dependent
on the joint function, which is dependent on the mean values for
arrival rate and density of services. Further, τp+d is the sum of
processing and decision time. The decision time depends on Od,
whereas processing time depends on the availability of required
memory and energy resources, thus, satisfying the Lemma 2. □

Lemma 3. For the problem in (10), the joint optimization is attain-
able as a ratio of energy to the memory, which should be minimized
for a defined constant.

Proof. The joint optimization problem in (10) depends on the
definition of the function G(.). Now, considering the linear model,
this function can be given as:

G(f (ER), f (βR)) = f (ER)− (ℓ1 f (βR)+ ℓ2) , (41)

where ℓ1 and ℓ2 defines the energy consumed per memory oper-
ation and excessive energy consumed other than intended oper-
ations by the servers, respectively. Now, minimizing of G(.), as in
(10) and (41), can be expressed as:

f (ER) ≤ ℓ1 f (βR)+ ℓ2, (42)

such that if excessive energy is neglected or reduced to 0, the
joint optimization problem is solvable at
f (ER)
f (βR)

≤ ℓ1 for ℓ2 = 0, (43)

which satisfies the Lemma 3 and can be controlled by min(ℓ1). □

8. Performance evaluation

The proposed approach is evaluated by numerically generating
100,000 requests, equivalent to the number of users, which are
transferred either to the osmotic servers or the public/private
cloud depending on the resource requirements.2 A function for
web server acted as the ODS with 10 (|K|) instances for large-
scale evaluation with 20 servers (|N |) in each osmotic layer.
For simplification of evaluations, the number of applications and
services are synthetically mapped and set to 1 for every active
user and evaluated using MatlabTM. Memory (β) of each server is
1TB and memory requirements (b) of each service is greater than

2 Due to the lack of proper infrastructure for osmotic-based evaluations, only
numerical simulations are presented at the moment.

V. Sharma, D.N.K. Jayakody and M. Qaraqe / Future Generation Computer Systems 102 (2020) 723–737 733

Fig. 4. Cumulative probability of servers in handling incoming services vs. |K|.

Fig. 5. |U| handled vs. service instances.

Fig. 6. OB and O(E)
B vs. |U|.

4096 bytes. Ep is between 3.14b and 6.18b nJ following per byte
energy consumption from [33], τp for each service is between 5
and 40 ms per computation, γ at 4 with thresholds ET H, βT H,
and τT H at 3389.07 nJ, 1284.9 bytes per request, and 505 ms,
respectively with number of total computations equaling 105. The
thresholds are set by following the mean of the previous runs
of the proposed approach until time t at which next calculations
are performed. Pα and Pd of AR-VR services in MARN are of the
order 9.643749E−22 and 0.000840726, respectively. OS for all
the users despite variation in the number of ODS is 0.9 with P (E)

P
attaining a minimum value of 0.1 and τp+d attaining a constant
value of 10 ms.

The arrival rate impacts the performance of MARN as the
excessive services arriving at ODS require much processing. With
an increasing value of α, the cumulative probability of osmotic
servers in handling these services decreases, however, this de-
crease can be lowered by the increasing number of osmotic layers
and servers as shown in Fig. 4. At present, the observation is done
by varying the number of ODS up to 10, which surely at higher
values will give better cumulative probability but at the expense
of high cost. The plot illustrates results for 100,000 requests out
of which 50,000 are actively running applications at the same
instance. The proposed approach migrates incoming services and
schedules them across the osmotic layer by following the size and
bounds on service classification. The proposed approach shifts a

Fig. 7. FR vs. |U|.

Fig. 8. Ep vs. |U|.

Fig. 9. ET vs. |U|.

maximum of 81.02% and a minimum of 50.50% users to osmotic
servers, thus, supporting near user evaluation with low latency.
Fig. 5 presents the difference in the number of users handled by
the osmotic layer, public layer and the total users demanding
services by a single application for 20 service instances. The
number of users handled by osmotic layer is bounded by the
threshold limits and the probability of error while allocating the
services. These are controlled by predicting the osmotic burden of
the entire network. The results in Fig. 6 suggest that the proposed
approach provided efficient estimation of the expected osmotic
burden (O(E)

B) with a difference of ±10 w.r.t. (OB).
Further, these predictions are subjected to the calculation of

reward function (FR), which helps in identifying the state of
the network. FR should be maximized for the incoming requests
from the users as it allows optimal allocation and time-constraint
allocation by the schedulers. The results in Fig. 7 confirm this
increase and demonstrates the effective output of the proposed
solution. As it is difficult to present a common graph for all the
users, a subset of 10,000 user-requests is taken to highlight the
amount of energy consumed, total energy available, and memory
utilized by these users during operations as shown in Figs. 8–
10, respectively. These results suggest that for 10,000 users, the
proposed approach balances load by conserving 65.13% of the
actual resources which otherwise would have been wasted if
these users are handled by public/private cloud layers. Fig. 11
presents the details of the number of active ODS for different
instances configured in simulations. It demonstrates that the

734 V. Sharma, D.N.K. Jayakody and M. Qaraqe / Future Generation Computer Systems 102 (2020) 723–737

Fig. 10. Memory consumption vs. |U|.

Fig. 11. ODS active vs. instances of ODS.

Fig. 12. Scheduling time vs. |K|. Total scheduling time is evaluated as the sum
of the scheduling decision time and the service allocation time.

proposed approach ensures that the load is divided such that the
required number of ODS is always available during operations.
The proposed scheduling procedures operate with a decision time
of 0.682 ms irrespective of the number of applications and the
users. The decision time is dependent on the number of ODS,
however, at the considered number of ODS, this time remains
constant as shown in Fig. 12. Further, this figure shows that the
service allocation time and total scheduling time decrease with an
increase in the number of ODS as alternative servers are available
for shifting services across the osmotic layers. All these results
suggest the high significance of the proposed osmotic computing-
based migration and scheduling in managing services for AR-VR
applications in MARN.

Further, the optimization results of the proposed approach are
illustrated in Figs. 13–16. The results in Fig. 13 and 14 show
the values of Cα,ω for varying number of ODS and its minimum
value required to sustain the operations during migration and
scheduling, respectively. It is noticeable that the values for the
joint function are always lower than the limits fixed during the
operations. The associativity (O(A)

B) of the proposed approach
increases with an increase in the number of uses, but its value
remains constant for any number of ODS at a particular set of
incoming requests. Further, Fig. 16 shows the density of services
handled by the osmotic servers with an increasing number of
ODS for an increasing number of users. The density is affected
by the number of transitions made to the osmotic server by the

Fig. 13. Cα,ω vs. |K|.

Fig. 14. min(Cα,ω) vs. |K|.

Fig. 15. O(A)
B vs. |K|.

migration and scheduling algorithms, and it shows an increasing
trend for an increasing number of servers and user requests. The
final aim of the proposed approach is to conserve resources in
terms of energy and memory while balancing the load according
to the requirements of an application. These results are pre-
sented in Fig. 17 and show that the proposed approach is able
to conserve 55.72% of resources in the considered MARN with
an average load of 44.27% on the public/private infrastructure.
However, the resources conserved follow a decreasing trend as
the available resources go on decreasing with the more incoming
services. This issue can be resolved by finding an optimal solution
to the number of osmotic layers required in a network along with
the number of servers in each layer. This optimization problem

V. Sharma, D.N.K. Jayakody and M. Qaraqe / Future Generation Computer Systems 102 (2020) 723–737 735

Table 3
An overview of the existing solutions that can be enhanced to attain the application-specific requirements of osmotic computing as discussed in this article (✓:
supports, ✗: no support, *: partially).
Approach Ideology Osmotic

Transitions
Service
Classifications

Service
Migrations
in osmotic
setup

Resource
Scheduling
in osmotic
setup

Service
Aggregation
and
Distribution

General
load/service
migrations

General
Scheduling

[25] Computational offloading in
pervasive online social
networks

✓ ✓ ✓ ✗ ✗ ✓ ✗

[34] Energy-aware virtual machine
migration in cloud setup

✗ * ✗ ✗ * ✓ ✓

[35] Service migration from cloud
to fog nodes

✗ * ✗ ✗ * ✓ ✗

[36] Cloud-IoT hybrid architecture ✗ * ✗ ✗ * ✓ ✓

[37] Fault tolerance aware
scheduling in cloud setup

✗ ✗ ✗ ✗ ✗ ✓ ✓

[38] Layered virtual machine
migration in cloud setup

✗ ✗ ✗ ✗ ✗ ✓ ✗

Proposed Service migration and resource
scheduling in MARN

✓ ✓ ✓ ✓ * ✓ ✓

Fig. 16. ω vs. |K|.

Fig. 17. Resources conserved and load transferred to public/private infrastruc-
ture vs. |U|.

is beyond the scope of this paper and will form the part of our
future reports.

Although, there are not so tightly related works available,
which looked on the services from the macro and micro point
of view and used a similar level of modeling for transitions.
However, considering the efficiency and adaptability of existing
methods, certain solutions are summarized in Table 3, which
can be applied for performing service migrations using osmotic
configurations. These approaches use a cloud or cloud-like setup
and can be considered to show their behavior on the same level
and system as discussed in this paper. However, comparisons
from a simulation or experimentation point of view are skipped
at this point of the study.

From the analysis presented in this paper, it is evident that
the proposed approach efficiently handles the service requests

in MARN and performs the efficient migration and scheduling
for users with diversified requests. The results show that the
number of users affects the outputs on the minute scale mak-
ing the proposed solution robust despite the increase in the
number of incoming requests. The major affecting factors in-
clude the deployment strategy for osmotic layers and osmotic
servers, available resources and location of decision making (user
or edge). Thus, the proposed approach can be employed for the
applications that can be cached on to the local servers that
otherwise consume much of the network resources and cause
excessive network burden with avoidable computations.

9. Conclusion

Future networks will focus on applications which demand
high time availability and maximum support from the request
handling servers at zero-latency and high tolerance. One of these
networks is MARN that primarily operates AR-VR applications.
These applications are tedious to manage as these may require
support from edge-infrastructure as well as the public/private
cloud. In this paper, an efficient solution was proposed to handle
this migration between the servers of the different layers by
following the principles of osmotic computing. The proposed
approach supported the scheduling of services to the appro-
priate osmotic servers that help in conserving a lot of avail-
able resources. The results demonstrate significant improvements
in term of load balanced across the osmotic and public/private
servers. The proposed approach showed remarkable performance
with the probability of the error being 0.1 at 55.72% conservation
of the energy and memory resources for the entire network
despite the increasing number of users. The proposed approach
also satisfied the conditions of the joint optimization functions
presented in the system model and showed that the system holds
true even with varying users, thus, proving its robustness and
tolerance against the number of users. The percentage load han-
dled by the osmotic servers varied between 50.50% and 81.02%,
whereas for the public/private servers the load to be handled was
between 18.98% and 49.50%.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

736 V. Sharma, D.N.K. Jayakody and M. Qaraqe / Future Generation Computer Systems 102 (2020) 723–737

References

[1] Z. Tang, X. Zhou, F. Zhang, W. Jia, W. Zhao, Migration modeling and
learning algorithms for containers in fog computing, IEEE Trans. Serv.
Comput. (2018) 1.

[2] A. Prasad, A. Benjebbour, O. Bulakci, K.I. Pedersen, N.K. Pratas, M. Mezzav-
illa, Agile radio resource management techniques for 5G new radio, IEEE
Commun. Mag. 55 (6) (2017) 62–63.

[3] Y. Desmouceaux, P. Pfister, J. Tollet, M. Townsley, T. Clausen, SRLB: The
power of choices in load balancing with segment routing, in: ICDCS, IEEE,
2017, pp. 2011–2016.

[4] E. Bastug, M. Bennis, M. Médard, M. Debbah, Toward interconnected virtual
reality: Opportunities, challenges, and enablers, IEEE Commun. Mag. 55 (6)
(2017) 110–117.

[5] J. Orlosky, K. Kiyokawa, H. Takemura, Virtual and augmented reality on
the 5G highway, J. Inf. Process. 25 (2017) 133–141.

[6] G. Paschos, E. Bastug, I. Land, G. Caire, M. Debbah, Wireless caching:
Technical misconceptions and business barriers, IEEE Commun. Mag. 54
(8) (2016) 16–22.

[7] B. Tang, Z. Chen, G. Hefferman, S. Pei, T. Wei, H. He, Q. Yang, Incorporating
intelligence in fog computing for big data analysis in smart cities, IEEE
Trans. Ind. Inf. 13 (5) (2017) 2140–2150.

[8] Y. Wang, P. Li, L. Jiao, Z. Su, N. Cheng, X.S. Shen, P. Zhang, A data-driven
architecture for personalized QoE management in 5G wireless networks,
IEEE Wirel. Commun. 24 (1) (2017) 102–110.

[9] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu, B.
Amos, Edge analytics in the internet of things, IEEE Pervasive Comput. 14
(2) (2015) 24–31.

[10] W. Chen, D. Wang, K. Li, Multi-user multi-task computation offloading in
green mobile edge cloud computing, IEEE Trans. Serv. Comput. (2018) 1.

[11] O. Skarlat, S. Schulte, M. Borkowski, P. Leitner, Resource provisioning for
IoT services in the fog, in: 9th International Conference on Service-Oriented
Computing and Applications (SOCA), IEEE, 2016, pp. 32–39.

[12] Z. Sanaei, S. Abolfazli, A. Gani, R. Buyya, Heterogeneity in mobile cloud
computing: taxonomy and open challenges, IEEE Commun. Surv. Tutor. 16
(1) (2014) 369–392.

[13] S. Tang, B. Lee, B. He, Fair resource allocation for data-intensive computing
in the cloud, IEEE Trans. Serv. Comput. 11 (1) (2018) 20–33.

[14] F. Bonomi, R. Milito, P. Natarajan, J. Zhu, Fog computing: A platform for
internet of things and analytics, in: Big Data and Internet of Things: A
Roadmap for Smart Environments, Springer, 2014, pp. 169–186.

[15] S.-Y. Lien, S.-C. Hung, H. Hsu, K.-C. Chen, Collaborative radio access of
heterogeneous cloud radio access networks and edge computing networks,
in: International Conference on Communications Workshops (ICC), IEEE,
2016, pp. 193–199.

[16] P. Corcoran, S.K. Datta, Mobile-edge computing and the internet of things
for consumers: Extending cloud computing and services to the edge of the
network, IEEE Consum. Electron. Mag. 5 (4) (2016) 73–74.

[17] T. Braud, F.H. Bijarbooneh, D. Chatzopoulos, P. Hui, Future networking
challenges: The case of mobile augmented reality, in: 37th International
Conference on Distributed Computing Systems (ICDCS), IEEE, 2017, pp.
1796–1807.

[18] M. Chen, Y. Qian, Y. Hao, Y. Li, J. Song, Data-driven computing and caching
in 5G networks: Architecture and delay analysis, IEEE Wirel. Commun. 25
(1) (2018) 70–75.

[19] M. Erol-Kantarci, S. Sukhmani, Caching and computing at the edge for
mobile augmented reality and virtual reality (AR/vr) in 5G, in: Ad Hoc
Networks, Springer, 2018, pp. 169–177.

[20] S. Xue, L. Hu, W. Guanghui, Z. Yaoming, Training effectiveness evaluation of
helicopter emergency relief based on virtual simulation, Chin. J. Aeronaut.
31 (10) (2018) 2000–2012.

[21] C. Wang, L. Fang, Y. Dai, A simulation environment for SCADA security
analysis and assessment, in: 2010 International Conference on Measuring
Technology and Mechatronics Automation, vol. 1, IEEE, 2010, pp. 342–347.

[22] M. Carvalho Marques Neto, R. Kulesza, T. Rodrigues, F.A. Machado, C.A.
Santos, A tool to simulate the transmission, reception, and execution of
interactive TV applications, Int. Sch. Res. Not. 2017 (2017).

[23] M. Villari, A. Celesti, M. Fazio, Towards osmotic computing: Looking at
basic principles and technologies, in: Conference on Complex, Intelligent,
and Software Intensive Systems, Springer, 2017, pp. 906–915.

[24] M. Villari, M. Fazio, S. Dustdar, O. Rana, R. Ranjan, Osmotic computing: A
new paradigm for edge/cloud integration, IEEE Cloud Comput. 3 (6) (2016)
76–83.

[25] V. Sharma, I. You, R. Kumar, P. Kim, Computational offloading for efficient
trust management in pervasive online social networks using osmotic
computing, IEEE Access 5 (2017) 5084–5103.

[26] V. Sharma, K. Srinivasan, D.N.K. Jayakody, O. Rana, R. Kumar, Managing
service-heterogeneity using osmotic computing, 2017, arXiv preprint arXiv:
1704.04213.

[27] M. Nardelli, S. Nastic, S. Dustdar, M. Villari, R. Ranjan, Osmotic flow:
Osmotic computing+ IoT workflow, IEEE Cloud Comput. 4 (2) (2017) 68–75.

[28] M. Villari, M. Fazio, S. Dustdar, O. Rana, L. Chen, R. Ranjan, Software defined
membrane: Policy-driven edge and internet of things security, IEEE Cloud
Comput. 4 (4) (2017) 92–99.

[29] W.B. Nelson, Applied Life Data Analysis, vol. 577, John Wiley & Sons, 2005.
[30] A. Auslender, R. Cominetti, M. Haddou, Asymptotic analysis for penalty and

barrier methods in convex and linear programming, Math. Oper. Res. 22
(1) (1997) 43–62.

[31] S.A. Lippman, Semi-Markov decision processes with unbounded rewards,
Manage. Sci. 19 (7) (1973) 717–731.

[32] G.L. Stüber, Principles of Mobile Communication, vol. 2, Springer, 2001.
[33] V. Sivaraman, A. Vishwanath, Z. Zhao, C. Russell, Profiling per-packet and

per-byte energy consumption in the netfpga gigabit router, in: Conference
on Computer Communications Workshops, IEEE, 2011, pp. 331–336.

[34] N.J. Kansal, I. Chana, Energy-aware virtual machine migration for cloud
computing-a firefly optimization approach, J. Grid Comput. 14 (2) (2016)
327–345.

[35] D. Rosário, M. Schimuneck, J. Camargo, J. Nobre, C. Both, J. Rochol, M.
Gerla, Service migration from cloud to multi-tier fog nodes for multimedia
dissemination with QoE support, Sensors 18 (2) (2018) 329.

[36] M. Elhoseny, A. Abdelaziz, A.S. Salama, A.M. Riad, K. Muhammad, A.K.
Sangaiah, A hybrid model of internet of things and cloud computing to
manage big data in health services applications, Future Gener. Comput.
Syst. 86 (2018) 1383–1394.

[37] S.M. Abdulhamid, M.S.A. Latiff, S.H.H. Madni, M. Abdullahi, Fault tol-
erance aware scheduling technique for cloud computing environment
using dynamic clustering algorithm, Neural Comput. Appl. 29 (1) (2018)
279–293.

[38] X. Fu, J. Chen, S. Deng, J. Wang, L. Zhang, Layered virtual machine migration
algorithm for network resource balancing in cloud computing, Front.
Comput. Sci. 12 (1) (2018) 75–85.

Vishal Sharma received the Ph.D. and B.Tech. degrees
in computer science and engineering from Thapar
University (2016) and Punjab Technical University
(2012), respectively. He worked at Thapar University
as a Lecturer from Apr’16–Oct’16. From Nov. 2016 to
Sept. 2017, he was a joint post-doctoral researcher in
MobiSec Lab. at Department of Information Security
Engineering, Soonchunhyang University, and Soongsil
University, Republic of Korea. Dr. Sharma is now a
Research Assistant Professor in the Department of
Information Security Engineering, Soonchunhyang Uni-

versity, The Republic of Korea. Dr. Sharma received three best paper awards
from the IEEE International Conference on Communication, Management and
Information Technology (ICCMIT), Warsaw, Poland in April 2017; from CISC-S’17
South Korea in June 2017; and from IoTaas Taiwan in September 2017. He is the
member of IEEE, a professional member of ACM and past Chair for ACM Student
Chapter-Patiala. He has authored/coauthored more than 90 journal/conference
articles and bookchapters. He served as the program committee member for the
Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable
Applications (JoWUA). He was the track chair of MobiSec’16 and AIMS-FSS’16,
and PC member and reviewer of MIST’16 and MIST’17, respectivelyHe served
as a TPC member of ITNAC-’17, ICCMIT’18, CoCoNet’18, and ITNAC’18. He is
serving as a TPC member of WiMo’19, ETIC’19, and ITNAC’19. He is the Associate
Technical Editor of IEEE Communications Magazine, and Associate Editor of IET-
CAAI Transactions on Intelligence Technology. Also, he serves as a reviewer for
various IEEE Transactions and other journals. His areas of research and interests
are 5G networks, UAVs, blockchain systems, estimation theory, and artificial
intelligence.

Dushantha Nalin K. Jayakody received the Ph. D.
degree in Electronics, Electrical, and Communications
Engineering in 2014, from the University College
Dublin, Ireland. He received his MSc degree in Elec-
tronics and Communications Engineering from the
Department of Electrical and Electronics Engineering,
Eastern Mediterranean University, Turkey (under the
University full graduate scholarship) and ranked as the
first merit position holder of the department, and B. E.
electronics engineering degree (with first-class honors)
from Pakistan and was ranked as the merit position

holder of the University (under SAARC Scholarship.). From 2014–2016, he was
a Postdoc Research Fellow at the Institute of computer science, University of
Tartu, Estonia and Department of Informatics, University of Bergen, Norway.
From summer 2016, he is a Professor at the School of Computer Science &
Robotics, National Research Tomsk Polytechnic University, Russia, where he also
serves as the Director of Tomsk Infocomm Lab. Dr Jayakody has received the
best paper award from the IEEE International Conference on Communication,

http://refhub.elsevier.com/S0167-739X(19)31073-8/sb1
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb1
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb1
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb1
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb1
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb2
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb2
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb2
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb2
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb2
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb3
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb3
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb3
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb3
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb3
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb4
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb4
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb4
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb4
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb4
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb5
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb5
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb5
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb6
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb6
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb6
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb6
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb6
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb7
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb7
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb7
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb7
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb7
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb8
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb8
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb8
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb8
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb8
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb9
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb9
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb9
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb9
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb9
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb10
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb10
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb10
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb11
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb11
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb11
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb11
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb11
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb12
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb12
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb12
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb12
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb12
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb13
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb13
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb13
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb14
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb14
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb14
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb14
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb14
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb15
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb15
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb15
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb15
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb15
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb15
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb15
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb16
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb16
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb16
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb16
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb16
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb17
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb17
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb17
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb17
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb17
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb17
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb17
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb18
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb18
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb18
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb18
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb18
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb19
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb19
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb19
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb19
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb19
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb20
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb20
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb20
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb20
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb20
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb22
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb22
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb22
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb22
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb22
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb23
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb23
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb23
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb23
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb23
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb24
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb24
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb24
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb24
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb24
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb25
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb25
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb25
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb25
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb25
http://arxiv.org/abs/1704.04213
http://arxiv.org/abs/1704.04213
http://arxiv.org/abs/1704.04213
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb27
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb27
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb27
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb28
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb28
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb28
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb28
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb28
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb30
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb30
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb30
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb30
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb30
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb31
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb31
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb31
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb33
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb33
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb33
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb33
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb33
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb34
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb34
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb34
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb34
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb34
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb35
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb35
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb35
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb35
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb35
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb36
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb36
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb36
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb36
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb36
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb36
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb36
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb37
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb37
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb37
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb37
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb37
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb37
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb37
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb38
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb38
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb38
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb38
http://refhub.elsevier.com/S0167-739X(19)31073-8/sb38

V. Sharma, D.N.K. Jayakody and M. Qaraqe / Future Generation Computer Systems 102 (2020) 723–737 737

Management and Information Technology (ICCMIT) in 2017. Dr. Jayakody has
published over 80 international peer reviewed journal and conference papers.
His research interests include PHY layer prospective of 5G communications,
Cooperative wireless communications, device to device communications, LDPC
codes, Unmanned Ariel Vehicle etc. Dr. Jayakody is a Member of IEEE and he has
served as workshop chair, session chair or technical program committee member
for various international conferences, such as IEEE PIMRC 2013/2014, IEEE WCNC
2014–2018, IEEE VTC 2015–2018 etc. He currently serves as a Area Editor the
Elsevier Physical Communications Journal, MDPI Information journal and Wiley
Internet of Technology Letters. Also, he serves as a reviewer for various IEEE
Transactions and other journals.

Marwa Qaraqe received her Ph.D. and Master of Sci-
ence degree in Electrical Engineering from Texas A&M
University in College Station, Texas, USA in May of
2016 and August of 2012, respectively. She graduated
Summa Cum Laude from Texas A&M University at
Qatar in May of 2010. Currently, Dr. Qaraqe is an
Assistant Professor at Hamad bin Khalifa University
in Doha, Qatar. Dr. Qaraqe’s current research interests
lie in the area of early seizure onset detection using
EEG and ECG signals. In particular, she exploits various
signal processing and machine learning algorithms to

detect the earliest signs of electrographic epileptic seizures.

	Osmotic computing-based service migration and resource scheduling in Mobile Augmented Reality Networks (MARN)
	Introduction
	Problem statement and motivation
	Our contribution
	Background: Osmotic computing
	Definitions
	 Application scenarios
	Types

	Network model
	Proposed approach
	Service classification
	Formation of osmotic game
	User-initiated osmosis
	Edge-initiated osmosis

	Osmotic resource scheduling

	Theoretical analysis
	Performance evaluation
	Conclusion
	Declaration of competing interest
	References

