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1 General introduction

Maize and small-grain cereals

Globally, cereal crops like maize (Zea mays L.) and small-grain cereals, such as rye (Secale
cereale L.), triticale (xTriticosecale), durum wheat (Triticum turgidum ssp. durum) and
common (bread) wheat (Triticum aestivum ssp. aestivum) serve as indispensable sources of
food for humans and feed for livestock. Indisputably, cereals provide more than half of global
caloric intake (FAO, 2020). The consumption of cereals is expected to increase at 1.2 % per
year, between 2019 and 2028, with increasing demand in Asia and Africa (OECD/FAQ, 2019).
The production of cereal crops also provides employment for millions of people throughout

the world.

Maize is a diploid (2n = 20) cross-pollinating species and has a variable genome size of 2106
- 2500 Mbp (Diez et al., 2013; Jiao et al., 2017; Schnable et al., 2009). In the year 2018, the
quantity of maize produced worldwide (about 1.1 billion metric tons) exceeded all cereal crops
and it is ranked among the topmost consumed cereal crops (FAO, 2020; Chaudhary et al.,
2014). Europe produced 11.21 % of the world maize production in 2018. Maize is a staple food
for billions of people, especially in Africa, where it accounts for approximately 60 % of dietary
calories (FAO, 2020). Currently, maize constitutes 19.5 % of global caloric intake (Pariona,
2019, June 7) and demand is expected to increase by 189 million metric tons, mainly driven by
expanding animal production (OECD/FAOQ, 2019). In Germany, the largest proportion of the

maize produced is used to feed livestock (Federal Ministry of Food and Agriculture, 2019).

Rye is a diploid (RR, 2n = 2x = 14) and allogamous small-grain cereal crop. It belongs to the
Triticeae group and has a large genome size of ~7.9 Gbp (Bartos et al., 2008). Rye is the male
parent of triticale (Ammar et al., 2004). About 11.3 million metric tons of rye was produced

worldwide in 2018, about 74 % being produced by Germany, Poland, Russia, Finno-



Scandinavia, Belarus and Ukraine together (FAO, 2020). The grains are used to make bread
and livestock feed. Similar to other cereal crops produced in Germany, close to 60% of rye is
used as animal feed (Federal Ministry of Food and Agriculture, 2019). Rye is more tolerant to
biotic and abiotic stresses compared to triticale and wheat (Arseniuk et al., 1999; Bartos et al.,
2008; Miedaner et al., 2001; Myskow et al., 2018; Villareal et al., 1998). As a result, some
desirable agronomic and resistance traits have been transferred from rye into wheat (Crespo-
Herrera et al., 2017; Kim et al., 2004). Modern hexaploid triticale (AABBRR, 2n = 6x = 42) is
an artificially produced small-grain cereal obtained from a cross between durum wheat and rye
(Ammar et al., 2004). Unlike rye, it is self-pollinating. Out of approximately 12.8 million
metric tons of triticale produced in 2018 worldwide, 90 % was produced in Europe alone (FAO,
2020). Triticale grains are used exclusively to feed animals because of poor baking quality of
the flour (Tsen et al., 1971). Durum wheat is a tetraploid species (AABB, 2n = 4x = 28) of
wheat and the female parent of modern hexaploid triticale (Ammar et al., 2004). It is self-
pollinating. It accounts for up to 8 % of global wheat production, and is primarily used for
making pasta because of its hard kernels, and for animal feed (Boyacioglu, 2017, October 23).
Bread wheat is an allohexaploid (AABBDD, 2n = 6x = 42) and autogamous species of Triticeae
tribe with a large genome size of ~17 Gbp (The International Wheat Genome Sequencing
Consortium, 2014). On a global-scale, the quantity of wheat produced in 2018 (734 million
metric tons) closely followed that of rice (782 million metric tons), making it among the three
most important cereal crops. About 33 % of the world wheat produced occurred in Europe
(FAO, 2020). Common (bread) wheat is widely used in making bread, biscuits, pies, cakes,

pizzas, muesli, etc. and for animal feed.

Maize and small-grain cereal crops production must be scaled up in order to feed the world’s
rapidly growing population. Undeniably, cereal crops can be seen as the foundation for
achieving sustainable global food security, eliminating hunger by 2030 (United Nations, 2015).
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Therefore, it is highly imperative to tackle the risk factors, such as biotic and abiotic stresses

that mitigate against large production and utilization of quality cereal grains.

Fusarium ear infections and management

Fusarium species are important fungal species that cause many diseases leading to yield loss
and mycotoxin contaminations in cereal grains. The commercially most important Fusarium
diseases are ear rots (ER) in maize and Fusarium head blight (FHB) or scab in small-grain

cereals such as rye, triticale, durum wheat and bread wheat.

In maize, there are different types of toxigenic ER caused by Fusarium spp. depending on the
geographical location and climate or weather. Gibberella ear rot (GER) is caused by Fusarium
graminearum (telemorph/sexual stage: Gibberella zeae) species complex, and it is the major
type of ER found in cooler regions like Europe, northern United States, Canada, South
America, and higher altitudes in Africa (Fingstag et al., 2019; Mouton, 2014; Pfordt et al.,
2020; Wise et al., 2016). However, Fusarium ear rot (FER) caused by Fusarium verticillioides
(Sacc.) Nirenberg (syn. F. moniliforme Sheldon) and related species such as F. proliferatum,
F. subglutinans, F. temperatum sp. nov may prevail in warmer years also in Germany and the
United States (Pfordt et al., 2020). FER is one of the most predominant ERs found in Africa
because of the prevailing climate. In small-grain winter cereal crops such as rye, triticale,
durum wheat and bread wheat, F. graminearum and F. culmorum are among the major
Fusarium spp. that cause FHB in Europe. Typical symptoms of GER, FHB and Fusarium-

damaged kernels (FDK) in maize and small-grain cereals are shown in Figure 1.
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Figure 1. Typical symptoms of (a) Gibberella ear rot on a maize ear (whitish to reddish or pinkish mold), (b)
Fusarium head blight (blighted spikelets), and (c) Fusarium-damaged kernels (whitish, pinkish or dark-red,
shrivelled kernels) in rye, triticale, durum wheat and bread wheat

F. graminearum and F. culmorum are hemibiotrophic fungi and produce dangerous
mycotoxins namely, zearalenone (ZON) and deoxynivalenol (DON) in maize and small-grain
cereals during their necrotrophic stages (Bolduan et al., 2009; Martin et al., 2012; Miedaner et
al., 2010; Pasquali et al., 2016; Suchowilska et al., 2010; Trail, 2009). These toxins can cause
serious reproductive and other health problems among animals and humans. DON causes
abdominal pain, diarrhea, acute nausea, vomiting, Kidney disorders, equine
leucoencephalomalacia, fever, poor growth rate, etc. and ZON causes infertility, abortion and
premature puberty, especially among livestock (Massart et al., 2008; Pinton & Oswald, 2014;
Zhou et al., 2018). The role of DON synthesis as a virulence factor for increasing severity of
Fusarium diseases in cereals has been reported (Desjardins et al., 1996; Gunupuru et al., 2017,
Harris et al., 1999). Studies with artificial infection showed high positive genotypic correlations
between GER severity and Fusarium mycotoxin contaminations, DON and ZON (r = 0.73 —
0.98) in maize and small-grain cereals (Bolduan et al., 2009; Martin et al., 2011; Miedaner et
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al., 2004). Mycotoxins may still be present among kernels having no visible ER or FHB
symptoms. National and international regulatory bodies have set recommended limits for
mycotoxins in cereals and cereal products because of the adverse health and economic effects
associated with them (FAO, 2003; Foroud et al., 2019; The Commission of the European
Communities, 2006). For example, in the European Union, the limit imposed on DON is 1.75
mg kg in maize, durum wheat and oats, and 1.25 mg kg in other small-grain cereals meant
for human consumption. The allowable limits of DON in animal feed are 0.90 -12.00 mg kg™,
depending on the type and age of animals (The Commission of the European Communities,

2006).

The negative effect of Fusarium spp. on maize and small-grain cereals is increasing due to
climate change and changing farming methods such as mono-cropping, narrow rotations, and
reduced soil tillage. In addition, the genomic structure of Fusarium spp. relating to
pathogenicity is evolving (Lofgren et al., 2018; Sperschneider et al., 2015) and there is large
seasonal plasticity in the occurrence and aggressiveness among and within Fusarium spp.
(Castiblanco et al., 2020; Pfordt et al., 2020). These factors make management of Fusarium
diseases more complicated. Fusarium diseases and mycotoxins can be controlled using
chemicals, biocontrol agents such as some species of Trichoderma, Bacillus, Lysobacter and
Pseudomonas, crop rotation and soil tillage (Anderson et al., 2017; Fingstag et al., 2019;
Mielniczuk & Skwaryto-Bednarz, 2020; Pfordt et al., 2020). Individual methods such as
chemical and biological control may be ineffective because of the negative effects of
environmental conditions and high disease pressure (Anderson et al., 2017). Besides, fungicide
application on cereal crops after certain growth stages is strictly regulated in some countries
like the European Union. Integration of resistant cultivars into Fusarium disease management
methods is the most sustainable, efficient and ecologically beneficial way to reduce the
negative impact of Fusarium ear diseases and mycotoxin accumulations in maize and small-
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grain cereals, especially in endemic regions and seasons. Therefore, genetic improvement of

cultivars for GER and FHB resistances across multi-environments is very crucial.

Pure line breeding (either by single cross, three-way cross or four-way/double cross) is the
major method used to produce wheat and triticale cultivars because of their self-pollinating
nature. However, there are attempts to introduce hybrid wheat and triticale breeding in some
countries by exploiting the advantage of genetic or chemically induced male sterility
(Baenziger, 2016; Ayalew et al., 2018). Hybrid breeding is commonly used in rye and maize
breeding programs. In rye, hybrid cultivars are composed of each of two inbred lines developed
from two heterotic groups that are crossed for seed production by cytoplasmic-male sterility
(Miedaner and Laidig, 2019). For maize, homozygous inbred lines are generated by self-
pollination (controlled) or DH technology and the superior hybrid combinations selected to
produce hybrid cultivars. The inbred lines are first evaluated for line per se and testcross
performance. Historically, maize was introduced in Europe after Columbus discovered the new
world. The European flint maize landraces were introduced in Europe from South and North
America around the 16" to 17" century (Rebourg et al., 2003; Tenaillon and Charcosset, 2011).
According to Rebourg et al. (2003), the adaptation of maize in Europe should be attributed to
the cross-pollination events that occurred between the South and North American flint

germplasms.

Genetics for Fusarium resistances and genomics-assisted breeding

The genetic architecture of ER and FHB resistances is complex, affected by multiple loci, the
environment and genotype-environment interaction (G x E) (Becher et al., 2013; Martin et al.,
2012). Significant genotype-isolate interaction was reported for ER severity and mycotoxin
concentrations among elite maize lines inoculated with eight isolates each of F. graminearum
and F. verticicillioides (Miedaner et al., 2010). However, they did not find change in ranking

of the genotypes under the different isolates. Studies showed additive, dominance, digenic
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(dominance x dominance) and epistatic genetic effects on the inheritance of Fusarium ear
disease resistances in cereals with additive gene action being the most predominant effect
(Butrén et al., 2015; Chungu et al., 1996; Fakhfakh et al., 2011; Martin et al., 2012; Miedaner
& Geiger, 1996). In previous research, molecular analyses confirmed the important role of
additive and epistatic genetic control of Fusarium resistance in maize and small-grain cereals
(Han et al., 2018; Ma et al., 2006; Martin et al., 2012; Martin et al., 2011). Maternal effects
might play no important role on resistance to Fusarium ear infections in cereals (Buerstmayr et
al., 2000; Pereira et al., 2017), making the choice of a pollen donor or a female parent from

among selected candidates in a breeding program non-problematic.

Over the past years, genomic tools such as quantitative trait loci (QTL or linkage) mapping,
genome-wide association studies (GWAS), transcriptomics, proteomics and metabolomics
have been used to decipher the molecular mechanisms for Fusarium ear disease resistances in
maize and small-cereals (Chapter 4; Buerstmayr et al., 2019; Kazan & Gardiner, 2018; Ma et
al., 2020). In maize, >100 QTLs scattered across the 10 chromosomes have been reported for
ER resistances, of which 87 were incorporated into a meta-QTL map to derive 29 meta-QTLs
(Xiang et al., 2010). About 198 candidate genes (CGs) have been reported for F. graminearium
resistance in maize using transcriptomics and proteomics (Kebede et al., 2018; Mohammadi et
al., 2011; Yuan et al., 2020). However, it has been difficult to employ these multiple QTLs or

CGs in marker-assisted selection (MAS) to improve GER resistance in maize.

In small-grain cereals, many QTLs were reported for FHB resistance in durum wheat
(Buerstmayr et al., 2019; Miedaner et al., 2017), bread wheat (Arruda et al., 2016; Buerstmayr
et al., 2019; Venske et al., 2019), and triticale (Dhariwal et al., 2018; Galiano-Carneiro et al.,
2019; Kalih et al., 2015). For bread wheat alone, ~550 FHB QTLs were found across the entire
genome (i.e A, B, D) and have been reduced to 65 meta-QTL (Venske et al., 2019). Most of

the QTLs contributed only small proportions of the genotypic variance for FHB resistance.
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Attempts are being made to introduce a few major QTLs of Chinese origin (e.g., Fhbl, Fhb5,
Fhb6) into wheat and triticale breeding materials for FHB resistance across the globe (Bai et
al., 2018; Ma et al., 2020; Miedaner et al., 2019a; Ollier et al., 2020; Prat et al., 2017).
Individual QTLs with large impact on FHB resistance in wheat have been successfully applied
in MAS in US and China (Ma et al., 2020). However, QTL analyses for FHB resistance in rye
are missing in literature. In the meantime, previous studies involving triticale, a progeny of
wheat x rye crosses, found QTLs on chromosome 3R, 4R, 5R and 7R originating from rye

(Dhariwal et al., 2018; Galiano-Carneiro et al., 2019; Kalih et al., 2015).

A large majority of QTLs detected in the past decades remain unutilized for MAS in practical
breeding for GER and FHB resistances because of low validation rate, high cost and the
tendency of fixing large portions of the genome (Brauner et al., 2017; Miedaner & Korzun,
2019). Therefore, genomic selection (GS) has been proposed as an option to facilitate the
application of genomics in crop improvement. Genomic prediction (GP) involves using
genome-wide high-density marker profiles to estimate the genomic breeding values of
individuals to be selected. Once the effects of markers are estimated in GP models, non-tested
genotypes can be predicted and selected. This strategy reduces large-scale phenotyping and
enhances selection gains (Edwards et al., 2019; Wallace et al., 2014). Larger proportion of
genetic variation may be captured in GS than in MAS, especially when the trait is mainly
controlled by a multitude of rare additive alleles (Newell & Jannink, 2014). Factors, limitations
and prospects of GS for complex traits have been extensively reviewed (Goddard & Hayes,
2007; Leng et al., 2017; Robertsen et al., 2019). As a result, GP has been used to predict
resistance of maize to lethal necrosis (Gowda et al., 2015), Diplodia ear rot (dos Santos et al.,
2016) and Northern corn leaf blight (Technow et al., 2013). Two studies have suggested that
GS might accelerate breeding for GER resistance in maize (Han et al., 2018; Riedelsheimer et
al., 2013). Furthermore, the prospects of genomic selction for FHB resistance breeding in
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triticale (Galiano-Carneiro et al., 2019), durum wheat (Miedaner et al., 2017; Moreno-Amores
et al., 2020) and bread wheat (Arruda et al., 2016; Mirdita et al., 2015; Rutkoski et al., 2012)
have been studied. However, the potential of GS for breeding against FHB resistance in rye is
unknown. Maize landraces are genetically diverse populations which habour many locally
adapted traits (Bohm et al., 2017; Holker et al., 2019; Mayer et al., 2017; Strigens et al., 2013).
In order to exploit new sources of resistance, it is worthwhile to tap the wide diversity in maize

landraces for GER resistance breeding using integrated genomic methods.

Objectives of the study
The main objective of this research was to analyze four winter small-grain cereals and two
European maize landrace populations for resistance to Fusarium ear diseases, using genome-

based approaches. The specific objectives were to:

1. Compare rye, triticale, durum wheat, and bread wheat for their FHB resistance and
DON accumulation

2. Identify QTLs for FHB resistance in rye using GWAS and assess the potential of
genomic prediction

3. Conduct a state-of-the-art literature review on QTLs, candidate genes and genomic
selection for ER resistances and reduced mycotoxin contaminations in maize

4. Analyze phenotypic and genotypic data for GER resistance, across and within two
European maize landraces, “Kemater Landmais Gelb” (KE) and “Petkuser Ferdinand
Rot” (PE), to be used for multi-locus GWAS

5. Compare MAS and genomic selection for GER resistance in combined (COMB),

between and within KE and PE DH libraries

12
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1 | INTRODUCTION

Fusarium species cause diseases, reduce yield and produce several
mycotoxins in all cereal crops, for example stalk and ear rots in maize
and Fusarium head blight (FHB) or scab in small-grain cereals such as
rye, triticale, durum wheat and bread wheat. These cereals provide
72% of the total small-grain production in the European Union with

Barbel Lieberherr |

Hans Peter Maurer |

Abstract

Small-grain winter cereal crops can be infected with Fusarium head blight (FHB) lead-
ing to mycotoxin contamination and reduction in grain weight and quality. Although
a number of studies have investigated the genetic variation of genotypes within each
small-grain cereal, a systematic comparison of the winter crops rye, triticale, durum
and bread wheat for their FHB resistance, Fusarium-damaged kernels (FDK) and de-
oxynivalenol (DON) contamination across species is still missing. We have therefore
evaluated twelve genotypes each of four crops widely varying in their FHB resistance
under artificial infection with one DON-producing F. culmorum isolate at constant
spore concentrations and additionally at crop-specific concentrations in two envi-
ronments. Rye and triticale were the most resistant crops to FHB followed by bread
and durum wheat at constant and crop-specific spore concentrations. On average,
rye accumulated the lowest amount of DON (10.08 mg/kg) in the grains, followed
by triticale (15.18 mg/kg) and bread wheat (16.59 mg/kg), while durum wheat had
the highest amount (30.68 mg/kg). Genotypic variances within crops were signifi-
cant (p <.001) in most instances. These results underline the differing importance of
breeding for FHB resistance in the different crops.

KEYWORDS
deoxynivalenol concentration, Fusarium culmorum, Fusarium head blight resistance, small-
grain cereals

7.4, 11.7, 8.8 and 141.5 million tons harvested in 2017, respectively
(FAO, 2019). Modern hexaploid triticale is a cross between tetra-
ploid durum wheat {2n = 28 = AABB, seed parent) and diploid rye
(2n = 14 = RR, pollen parent; Ammar, Mergoum, & Rajaram, 2004).
Fusarium culmorum is one of the major Fusarium species in
Europe causing FHB among small-grain cereals and contaminating
the grain with deoxynivalenol (DON) or nivalenol and zearalenone

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.
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in cooler areas of Northern, Central and Western Europe (Pasquali
et al., 2016; Suchowilska, Kandler, Sulyck, Wiwart, & Krska,
2010). Among these mycotoxins, DON is of high public health
cencern as the strict EU regulations only allow 1.75 mg/kg in
durum wheat and oats and 1.25 mg/kg in the other small-grain
cereals for human consumption (The Commission of the European
Communities, 2006).

In Central Europe, rye is used fer bread making, bicenergy pro-
duction and animal feed. Triticale is used for both animal feed and
bicenergy producticn, durum wheat for pasta production and bread
wheat mainly for bread making and feeding livestock. New wheat
varieties can be registered in Germany only if they are at least mod-
erately resistant to FHB infection (Miedaner, Schulthess, Gowda,
Reif, & Longin, 2017) hecause the Fusarium mycotoxins produced in
grains pose sericus health prehlems to humans and animals when
ingested (Pierron, Alassane-Kpembi, & Oswald, 2016).

High demand for uncontaminated grains for feod and feed calls
for a continuous research into durable and effective ways ef reduc-
ing FHB infecticn and DON contamination in small-grain cereals.
The use of host-plant resistance is an effective and ecologically safe
strategy of reducing Fusarium head infection and mycotoxin content
in grains. FHB resistance in small-grain cereals can be divided into
active or passive resistances (Mesterhazy, 1995). The active resis-
tance is made up of five types: type 1, which is resistance to initial
pathogen infection; type 2, which involves resistance to the spread
of infection within infected spikes; type 3, resistance to kernel in-
fection; type 4, tolerance to infection; and type 5, resistance to
mycotoxins. The passive resistance involves the role of agre-mor-
phological traits, such as plant height, flowering time, presence or
abhsence of awns and spikelet density (Mesterhézy, 1995). In most
cereals, genotypes are evaluated for active resistance types 1 and
2 (Burlakoti, Mergoum, Kianian, & Adhikari, 2010). Resistance to
FHB disease is quantitatively inherited and influenced hy multiple
genes, the environment and genotype x envirecnment (G x E) inter-
action in all cereals (Becher, Miedaner, & Wirsel, 2013). Hundreds
of quantitative trait loci (QTL) have been identified in all genomes
(i.e., A, B, D and R) of small-grain cereals (e.g., Arruda et al, 2016;
Galiano-Carneiro, Boeven, Maurer, Wirschum, & Miedaner, 2019;
Ruan et al.,, 2012), mainly with low effects. Only a few QTL from
Chinese origin have a higher impact on FHB resistance in bread
wheat (e.g., Fhbi, Fhb5, Fhbé; Bai, Su, & Cai, 2018), and efforts are
heing made to introgress these QTL into European breeding materi-
als. In durum wheat, individual QTL detected across the A and B ge-
nomes explained about 1%-19% of the genotypic variance for FHB
resistance (Miedaner, Sieber, et al,, 2017; Prat et al, 2017; Ruan et
al, 2012; Zhao, Leng, Chao, Xu, & Zhong, 2018). In triticale, single
QTL explained between 0.3% and 42% of the genotypic variance
for FHB resistance (Dhariwal et al., 2018; Galiano-Carneire et al,,
2019; Kalih, Maurer, & Miedaner, 2015). There are no studies on
QTL for FHB resistance in rye. However, previcus studies in triticale
identified FHB QTL on chromosomes 3R, 4R, 5R and 7R donated
by rye (Dhariwal et al,, 2018; Galiano-Carneiro et al., 2019; Kalih et
al., 2015). The reduced height (Rht) genes Rht-B1 and Rhi-D1 used
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glehally in bread and durum wheat breeding programmes have been
associated to higher FHB susceptibility (Draeger et al., 2007; Lu et
al, 2013; Miedaner, Sieber, et al, 2017; Miedaner & Voss, 2008;
Srinivasachary et al., 2009). In rye and triticale, much less work has
heen dene on the effect of dwarfing genes, but the effect of one of
these genes, Ddwi, is also increasing FHB severity (Kalih, Maurer,
Hackauf, & Miedaner, 2014).

The role of DON as aggressiveness factor in wheat FHB was orig-
inally proved by Proctor, Hohn, and McCormick (1995) and shortly
after confirmed by several authors (Bai, Desjardins, & Plattner, 2001;
Desjardins et al., 1996). Although DON does not support initial in-
fection (type 1 resistance), it is an important factor for the fungus to
spread into the wheat head {type 2 resistance). Later on, Langevin,
Eudes, and Comeau (2004) demonstrated that this effect is depen-
dent on the cereal species. While in rye, triticale and bread wheat
the DON-deficient isolate could not spread within the ear, a limited
spread occurred in durum wheat.

Previous studies indicated differing associations between FHB
symptems, FDK rating and DON concentration in small-grain cere-
als, depending on the envirenment and the crop species (Géral &
Ochedzki, 2017; Géral et al,, 2018; Miedaner, 1997; Miedaner &
Perkowski, 1996). Usually, genotypes with more symptoms have
higher toxin contents. For example, a high correlation {r = .77) be-
tween DON and FHB symptoms in wheat was reported (Miedaner et
al., 2004). Burlakoti et al. (2010) alsc cbserved a positive correlation
(r=.67) between FHB severity and DON concentration across 113 F,
recombinant inbred lines evaluated for two years under greenhouse
cenditions. In a meta-study, FDK rating had the strongest average
associaticn with DON content (r = .73, Paul, Lipps, & Madden, 2005).
In triticale, however, a low association (v = .32, p < .001) between
FHB severity and DON concentration was detected (Miedaner,
Kalih, GreBmann, & Maurer, 2018).

Studies have been conducted te separately evaluate rye
(Miedaner 1996),
Weissmann, Miedaner, & Maurer, 2016; Miedaner et al., 2014),
durum (Miedaner & Longin, 2014) and bread wheat (Géral et al,,
2018; Miedaner et al., 2004) for FHB resistance and mycotoxin ac-

& Geiger, triticale (Boeven, Wdirschum,

cumulation in the grains. Durum wheat was generally described as
highly susceptible to FHB infection (Langevin et al,, 2004). A pre-
vieus comparisen ef winter triticale, bread wheat and rye in field
experiments used highly varying numbers of cultivars for each spe-
cies that were not prescreened for their FHB resistance (Arseniuk,
Foremska, Géral, & Chetkowski, 1999). To allow a fair comparison of
the winter cereals rye, triticale, durum wheat and bread wheat for
resistance to F. culmorum head infection (FHB severity, FDK rating)
and DON accumulation under field conditiens, in our study twelve
cultivars per crop with a highly differing resistance level were inoc-
ulated with one F. culmeorum isclate at constant and crop-specific
inoculum concentrations. Qur ohjectives were (a) to determine the
difference in susceptibility between small-grain cereals; (b) to mea-
sure FDK rating and DON centent; and (¢) to analyse whether there
is a difference in ranking of creps when different inoculum concen-

trations are used.
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2 | MATERIALS AND METHODS

2.1 | Plant materials, field design and inoculation

Plant materials used for this study consisted of 12 cultivars or ad-
vanced genotypes of winter rye (Secale cereale L), winter triticale (X
Triticosecale Wittmack), winter durum (Teiticum turgidum ssp. durum)
and winter bread wheat (Triticum aestivum ssp. aestivum) selected
on the basis of their known resistance to FHE and representing the
maximum genetic variation within one crop in Germany (Table 1). All
crops were mechanically sown at once in all environments. The same
standard agronemic practices were carried out for the four winter
cereal crops in all envirenments. Weeds were controlled two times
hy herbicides, first with Hereld SC (400 g/L flufenacet, 200 g/L dif-
lufenican) at BBCH 13 (Meier et al., 2009) and second with Ariane C
(2.5 g/L florasulam, 100 g/L fluroxypyr, 80 g/L clopyralid) at BBCH
32-39 depending on the vear. Insecticide Karate Zeon (250 g/L
Lambda-Cyhalothrin) was sprayed two times at BBCH 49-65 to avoid
insect damage. Te prevent infecticn by fungal pathcgens and com-
plex interactions hetween F. culmorum and other fungi (Miedaner,
Reinbrecht, Lauber, Schollenberger, & Geiger, 2001), the fungicides
Brave 500 (500 g/L chlorothalonil) and Acanto (250 g/L picox-
ystrobin) were sprayed at BBCH 31/33 in 2017. In the 2018 trials,
the fungicides Capalo (75 g/L metrafencne, 62.5 g/L epoxiconazole,
200 g/L fenpropimorph) at BBCH 30 and Adexar (62.5 g/L epoxicon-
azole, 62.5 g/L fluxapyroxad) at BBCH 39 were used. Plant growth
regulators CCC + Moddus (chlormequat chloride 66% +250 g/L
Trinexapac-ethyl) were applied at BBCH 31 with 1,000 + 400 ml/
ha in both years and additionally Camposan (660 g/L Ethephon) at
BBCH 37 with 200 ml/hain 2018 to prevent preharvest lodging.
The highly aggressive single-spore and DON-producing isclate
of F. culmorum FC46 (=IPO 39-01; Snijders & Perkowski, 1990) was
used for incculum production. Incculum was prepared on auteclaved
wheat kernels as described in detail by Miedaner, Gang, and Geiger
(1996). At 75% flowering (according to anther extrusion), incculation
was done separately for each genotype by spraying the heads frem
ahbove with inoculum using a moter-driven backpack sprayer. Each
plot was inoculated with about 100 ml/m? incculum. Two experi-
ments were conducted to evaluate the four winter small-grain cereal

crops.

2.1.1 | Experiment1

In Experiment 1, all four winter cereals with 12 genotypes each were
inoculated with a constant spore concentration of 4 x 10° spores/
ml. They were evaluated in three envircnments at the experimental
stations of the University of Hohenheim, Germany, in Hohenheim
(HOH) near Stuttgart in 2017 and 2018, and Oberer Lindenhof near
Reutlingen (QOLI) in 2018. To compare the cereal species, the experi-
ment was randomized in a split-plot design with two replications.
Cereal crop species were assigned to the main plots and randomized

as a complete block design, and genctypes within species were
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assigned to the subplots randomized as 4 x 3 alpha-lattice design.
Each subplot was 0.6 m? in size in HOH and 0.4 m? in OLI. The HOH
location is at Heidfeldhof (9°12/58''E, 48°42'50'N; 400 m ahove sea
level) with 717.9 mm (2017) and 543.7 mm (2018) precipitation per
annum {p.a.) and 10.5°C (2017) and 11.5°C (2018) average tempera-
ture p.a. OLl is located on the Swabian Alb in Germany, (9°18'12"E,

48°28/26'N; 700 m above sea level) with average annual precipita-

a

tion and temperature of 612.2 mm and 2.1°C, respectively, in 2018.
Temperatures and sums of precipitation during the incculation peri-

ods of the different crops are given in Table 51.

2.1.2 | Experiment 2

In Experiment 2, 12 genotypes each of the four winter cere-
als were inoculated with a crop-specific spore concentration of
1 x 10* spores/ml for rye, 7.5 x 10° spores/ml for triticale (Boeven
et al, 2016) and 2 x 10° spores/ml for durum and bread wheat
(Miedaner, Schulthess, et al., 2017) according to the observed differ-
ences of FHB susceptibility between the crops in the previous year.
Experiment 2 was carried out in 2018, adjacent to experiment 1, in
two locatiens, HOH and QLI The experimental design was the same

as described for experiment 1.

2.2 | Traits recorded

Number of days to heading (HD), plant height (PH) and FHB severity
(%) were assessed visually and plotwise for both experiments. HD
was recorded when 75% of crop heads emerged from the top leaves.
PH was measured from the ground level to the tip of the heads incm
after flowering. FHB severity was assessed cn a scale of 0%-100%
of infected spikelets per plot at the onset of the first FHB symp-
tems, 13 days after inoculation (DAI) in OLI 2018 and 18 DAl in HOH
2017 and HOH 2018. Subsequently, the FHB ratings were done at
constant intervals of 2 days in HOH and three days in OLI until the
start of the yellow ripening. The system of disease rating employed
tock into account both type 1 and type 2 FHB resistance. The rat-
ing was adjusted to the same time interval after inoculation date for
each crop to allow a cemparison and vielded in total five ratings.
Ineculatien and disease rating periods for the four crop species are
shown in Table 52.

After full ripening, all heads from each plot from experiment 1
were manually harvested with a sickle and threshed with a thresher
at low wind speed to reduce loss of infected kernels with low weight.
The grains were later cleaned by a machine with a lew amount of
ferced air to get also small, light-weighted kernels into the sample
fraction. All fragments of glumes and rachis were carefully removed
manually. Rating of Fusarium-damaged kernels (FDK) was assessed
using a linear scale of 1-2, where 1 = no FDK in the sample and
9 = 100% FDK rating. Kernels which were soft, shrivelled, shrunken
and/or possessing white, pink or dark-red discoloration were re-
garded as FDK {(Mesterhazy et al., 2005).
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TABLE 1 Adjusted means of FHB, FDK and DON concentration for tested rye, triticale, durum and hread wheat cultivars with the
indication of the presence of a dwarfing (dw) locus across the three environments after inoculation with constant spore concentration

Crop Cultivar

Rye Amilo
Conduct
Dank. Diament
Dukato
Helltop
Inspector
KWS Bono
KWS Daniello
KWS Gatano
SU Cossani
SU Performer
SU Santini
LSDy,

Triticale Adverdo
Agastino
Fredro
Lombardo
Partout
Remiko
Rhenio
Securo
SU Agendus
Tantris
Team PZO
Vuka
LSD,,

Durum W11010-133-233

wheat W11014-120-220

W10029-207-305
W10021-204-307
Cliodur
WO09026-113-212
W09028-114-213
6.009/03/03
6.040/05/01
Lupidur
Tempadur
Wintergold
LSD.,

dw locus
None
Nane
None
Nane
Nane
None
Nane
None
Nane
Nane
None

Nane

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Rhi-B1b®

T T o o T T T o T T T oo

FHB (%) FDK (1-9) DON (mg/ke)
4,04 3.27 8.76
2499 3.32 11.09
5.67 3.65 6.82
6.48 3.49 7.64
5.68 476 1191
2.06 3.02 8.56
6.69 3.54 1173
4.64 3.52 13.46
3.32 3.49 9.85
401 3.57 10.88
7.06 3.84 10.33
447 4.20 10.70
1.58 0.46 2.42
7.59 3.86 20.34
4,52 3.47 13.44

10.32 452 21.08
8.03 3.62 25.45
3.75 3.25 12.10
236 2.80 12.03
4.88 2,02 8.10
231 3.01 11.83
5.73 6.17 18.23
8.27 411 15.72
5.61 3.21 13.53
6.72 281 15.40
214 0.84 6.66

18.73 3.88 13.71

30.21 6.71 2592

28.76 6.55 23.75

50.73 8.81 78.81

28.37 779 52.84

28.02 6.14 2319

21.28 5.67 17.00

21.99 298 10.79

2799 5.47 10.62

38.68 7.05 55.56

19.94 6.66 21.56

1693 246 14.35
3.98 0.76 10.12

For measuring DON cencentratien, grains of the twelve geno-

types of each crop species from experiment 1 were analysed using

a commercially available enzyme-linked immunosorbent assay
(ELISA, RIDASCREEN FAST DON, R-Biopharm AG). About 200 g

of the cleaned grains from each genctype was milled to a particle

16

{Continues)

size of approximately 1 mm with a laboratory mill and stored frozen
(-20°C) until analysis. DON was extracted from 5 g of each milled
sample and quantified following the guidelines provided by the
manufacturer. A microtiter plate spectrophotometer (Spectra Basic,

TECAN Deutschland GmbH) was used to measure the absorbance at
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TABLE 1 (Continued)

dw locus®

Crop Cultivar Rht-B1 Rht-D1

Bread wheat Anapolis a® b
Bernstein a a
Elixer b a
Franz a b
Helmond a a
Inspiration a b
KWS_Maddox a b
Moschus a b
RGT_Reform a b
Spontan a a
Tobak b a
Toras a b
LSDs,,

FIW L Planteeas WILEY--2*

FHB (%) FDK (1-9) DON (mg/kg)
14.47 5.15 10.27
33.95 6.63 2575
28.04 5.61 19.18
54.12 8.47 2192
12.16 3.55 9,57
50,97 8.02 22.83
49.24 8.46 21.23
28.79 5.42 8.86
29.21 6.21 17.28
23.06 459 9.13
57.23 8.79 26.30
21.86 3.94 11.65
450 0.68 6.16

Abbreviations: DON, deoxynivalenol; FDK, Fusarium-damaged kernels; FHB, Fusarium head blight; LSD.,,, least significance difference at 0.05

probability level; NA, not available.

#Personal information by E. Ebmeyer, KWS LOCHOW GmbH.
bun

450 nm. A special software package (the RIDA SOFT Win.net) pro-
vided by the manufacturer was used to evaluate the immunocassays.
The limit of detection for DON was 0.2 mg/kg (ppm).

2.3 | Dataanalysis

The five ratings of FHB severity were averaged for each genotype
and used for analysis of variance. ASRem| package (Butler, 2009)
within the statistical seftware R (R Core Team, 2018) was used to
estimate means and variance components for each recorded trait.
Adjusted means of each trait per crop (main plot) and genotypes
within crops (subplots) were calculated based on best linear unbi-
ased estimation (BLUE) while variance components were estimated
based on best linear unbiased prediction (BLUP). Akaike information
criterion was used to select the best model and te make assump-
tion on heterogeneous residual variance across environments or
otherwise. The following hierarchical model with genotypes nested
in the cereal crop species was used to estimate means and variance

components:
Yy = 1 +E+ G+ (CE)y + G:Cppy +{GCE)y + By + Ry + €y

where ijkim

cereal crop j in environment i, replication k, incomplete hlock I, and,

= ohserved phenotypic value for genctype m nested in

« = commen mean, E, = effect of the ith environment, CJ = effect of
the jth crop species j, (CE)". = environment by crop species interaction,

im = envi-

G:C,, = effect of mth genotype within jth crop species, (G:CE)

ronment by genotype interaction within jth crop species, B, | = effect of

ikt
Ith incomplete block, Rv‘jk = effect of kth replication in ith envirenment
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a" refers to the tall allele, "b" refers to the short allele of the respective reduced height (Rht) gene.

and ey,

= error. Variance components were determined by the re-
stricted maximum likelihoed (REML) method assuming a full random
model. Best linear unhiased estimates were estimated across environ-
ments assuming fixed effects for the genctype, envircnment and crop
species.

Heterogeneous residual variance and equal distribution of
means across replication and blocks were assumed for crop spe-
cies main effects. To estimate the means of cultivars within each
crop species, the same model was used as above with omitting
factor C and assuming homogeneous residual variance. The "Wald
test” in ASReml R package was applied to establish the statistical
significance of fixed effects at 5% significance level. Significance
of variance components was determined using the likelihood ratio
test. Significance differences hetween means of each trait across
crop species as well as FHB severity under constant and crop-spe-
cific cencentration were determined by using Tukey's methoed of
multiple mean comparison (p = .05). Broad sense (entry-mean)
heritahility (H?) was estimated by using modified equations pro-

posed by Hallauer, Carena, and Filho (2010) for each crop species

separately:
2 2
HQ:ﬂQ/(ong £+gi)
Y6 F U ER”

where, oé = genotypic variance, ggE = genotype x environment inter-
action variance, og = residual error, E = number of envircnments and
R = number of replications per environment. The phenotypic associ-
ation between recorded traits was estimated by Pearson correlation
tests using the “cortest” function in R statistical software (R Core
Team, 2018).
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3 | RESULTS

Even though all crop species were planted at the same time, flower-
ing time differed and, hence, also the inoculation periods and the
carresponding mean temperatures and sums of precipitation {Table
51).

3.1 | Experiment1

Among the four winter crops, rye and triticale showed significantly
lower FHB severities and FDK ratings than durum and bread wheat
{Figure 1, Table 1, Table 53). For DON concentration, bread wheat
had a mean value similar to rye and triticale; durum wheat had a
significantly higher content. Variation among genotypes was lowest
in rye and highest in bread or durum wheat, depending on the trait
{Table 1). For HD, rye cultivars were the earliest among crops fol-
lowed by triticale, durum and bread wheat cultivars {Table §3). The
largest variation of average HD was found in triticale, followed by
durum wheat and bread wheat. The average HD in rye was less vari-
able. Durum wheat was the shortest crop, followed by bread wheat
and triticale while rye was by far the tallest.

The variance among crop species and the genotypic variances
within crops were significantly (p < .001) different from zero in most
instances (Table 2}. Crop * environment and genotype x environ-
ment interaction variances in durum and bread wheat were also
significant in most instances (p < .001). In rye and triticale, the vari-
ances varied from non to highly significant depending on the trait
{Table 2). Heritabilities were moderate to high with the exception of
FHB severity in triticale.

Associations among FHB severity, FDK rating and DON concen-
tration revealed stronger relationships between the resistance traits

and DON concentration in durum and bread wheat than in rye and

triticale {Table 3). Highly significant correlations (p = .001) were de-
tected between FHB and DON in all crop types with the exception
of rye. FDK rating and DCN concentration as well as FHB severity
and FDK rating correlated significantly only for durum and bread
wheat due to their larger variation between genotypes (Figure 2).
Coefficients of correlation hetween FHB severity and heading date
ranged fromr = -.04 to r = 47 in rye, triticale and bread wheat and
were significant only in durum wheat {r = .72, p < .01). Between FHB
severity and plant height, no significant {(p < .1) correlation occurred
{r=-.04to -.48).

3.2 | Experiment 2

A constant spore concentration did not lead to a significantly
{p > .05) different FHB severity than the inoculation with a crop-spe-
cific spore concentration that was adapted to the basic susceptibility
of a crop (Table 4. Rye and triticale had a slightly higher FHB sever-
ity when inoculated with crop-specific, that is higher spore concen-
trations, and durum and bread wheat a slightly lower FHB severity

because they got lower spare concentrations {Table 4).

4 | DISCUSSION

In this study, we wanted to compare four winter cereal crops im-
portant for Central and Northern Europe for their FHB severity,
FDK rating and DON concentration: rye, triticale, durum wheat and
bread wheat. To allow a fair comparison, we selected 12 cultivars
and advanced genotypes per crop with a maximum range of FHB
severity on the basis of the official trials for wheat {BSL, 2017) and
own experiments for the other cereals. Further, we used the same

time interval between inoculation date and rating date for each crop.
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FIGURE 1 Boxplots showing ranking of rye, triticale, durum and bread wheat for (a) Fusarium head blight severity, (b) Fusarium-damaged
kernels and {c} deoxynivalenol concentration after inoculation with constant spore concentration. Black dots and horizontal lines in boxes
represent the means and medians, respectively. Boxes sharing the same letters are not significantly different {p > .05) according to Tukey's
test, BW, bread wheat; DW, durum wheat; TCL, triticale [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 Variance components and

i
Al

L Planteecins WILEY |27

I P; 1 FHB (% FDK (1-92 DON 7k HD (d PH
entry-mean heritabhility (H?) of FHB arameter (%) e (mg/ke) ke it
severity, FDK, DON content, HD and gé 200.61%* 1.68* 28.61 61.09%** 609.47%%*
PH across the four crop species in three Ué 10.94 .57 % 22.9g%k 2. 5k 31,897
environments combined .
Rye
Jé 1.06%** 0.11 1.95 0.85%+* 93.87++*
o2 .00 015 1.27 0.08 7.98*
GxE
Jg 1.72 0.13 8.24 0.41 16.84
H? .79 0.61 .52 0.90 0.94
Triticale
Ué 1.6% 0.78" 18.20™* 5,757 43.46%
o2 5417 0.03 0.13 0.13 11.83%
GxE
gg 3.58 044 32.83 0.86 318
H? 041 0.0 0.77 0.97 0.89
Durum wheat
gé 69,227 1.55%** 405454 1,945 20,755
oéxE 54,517+ 0.98%** 53.90 0.25%* 1.13
ag 17.03 0.37 88.78 0.36 6.09
H? 0.77 0.80 .93 0.93 0.924
Bread wheat
aé 223,227 3.077 2765 1,137 37.95%
géxE 50,95 0.80™ 21.53 0.57** 10.39%
gg 16.09 .26 37.11 0.33 522
H? 0.92 0.91 0.67 0.82 0.90

Notes: Ué = crop species variance, o

2

2 = crop species by environment interaction variance,

o2 = genotypic variance, géxg = genotype by environment interaction variance, Ui = error variance,
H? = broad sense heritability.

Abbreviations: DON, deoxynivalenol; FHB, Fusarium head blight; FDK, Fusarium-damaged kernels;
HD, heading date; PH, plant height.

Significantly different from zero at (.05%, .01** and 0.001*** probability level, respectively,
according to the likelihood ratio test.

TABLE 3 Phenotypic correlation coefficients among FHB
severity, FDK rating and DON concentration for the 12 genotypes
per crop

Correlation Rye Triticale Durumwheat  Bread wheat
FHB—FDK 0.29 0.39 0.81%* 0.96™*
FHB—DON 0.02 O.77%%* 0.0 0.82%%*
FDK—DON 0.34 0.34 0.89% 0.85%

Abbreviations: DON, deoxynivalenol; FDK, Fusarium-damaged kernels;
FHB, Fusarium head blight.
#*Significantly different from zero at 0.001 probability level.

4.1 | Crops are different in their FHB
susceptibility and DON accumulation

A methodological challenge with this experiment is that the different
crops flower at different times although they have been sown at the
same date (Table 52). This could not be changed because in winter
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crops a different seeding time does not necessarily result in a similar
flowering date. We tock this intc account by inoculating each crop,
and each genotype within the crop, at its respective flowering time.
This still provides different weather conditions, but the develop-
mental stage should be of higher importance for FHB severity (Siou
et al., 2014). The largest difference in flowering time was ohserved
between rye and wheat with 8-11 days difference in the start of
the inoculation period, hetween triticale and wheat with 4-11 days,
while rye and triticale and the two wheat species had a maximal dif-
ference of 4 and 2 days, respectively. However, under farmer's field
conditicns the flowering times of the crops vary even more than in
our experiment because different sewing dates are usual. So, the
different flowering times could also be seen as an inherent charac-
teristic of the crop.

Among the four crop species, rye and triticale consistently exhib-
ited very low mean levels of FHB severity compared to both wheat
species. Even the most resistant wheat genotypes were more suscep-
tible than the worst rye or triticale genotypes (Table 1). Accordingly,
kernels of rye and triticale were less damaged by Fusarium infection
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FIGURE 2 Association between (a) Fusarium head blight {(FHB} severity and deoxynivalenol {DON]) concentration, (b} FHB severity and
Fusarium-damaged kernels (FDK) and {c) FDK and DON concentration in each of 12 cultivars of rye, triticale, durum wheat and bread wheat

after inoculation with constant spore concentration

TABLE 4 Means of Fusarium head blight {FHB) severity in rye,
triticale, durum wheat and bread wheat under constant and crop-
specific spore concentrations across two environments

FHE {%)
Crop species Constant Crop-specific
Rye 4.24a 5.56a
Triticale 492 a 8.76a
Durum wheat 2546b 23.01b
Bread wheat 3679 c 30.70¢

Notes: Means in the same column or rows sharing the same letters are
not significantly different {p > .05) according to Tukey's test,

than the kernels of durum and bread wheat cultivars according to the
low mean resistance level of the latter to FHB infection. FHB sever-
ity was highly correlated with FDK rating only in both wheat species.
Correlations were generally not significant for rye, and for triticale only
significant for FHB and DON concentration due to the low, although
significant, amount of genotypic variation within these crops {Table 2.
Because for each correlation only 12 genotypes were available, these
data should, however, not be overestimated. Because we used the
same time interval between inoculation and rating date for each crop,
we might have underestimated the FHB severity of rye and triticale
to some extent because in these crops the incubation period is usu-
ally longer and a later rating date might have yielded somewhat higher
values. However, this should have no large impact because FDK rating
after harvest showed exactly the same proportions like FHB severity.

The high susceptibility of durum wheat was reported earlier sev-
eral times {Langevin et al.,, 2004; Miedaner, Sieber, et al., 2017). In
our study, the most susceptible durum wheat cultivar showed 6.5%
less symptoms than the most susceptible bread wheat cultivar be-
cause we have chosen the most susceptible bread wheat cultivar to
demonstrate the full range of this crop (Tahle 1),
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In previous QTL studies in triticale {Dhariwal et al., 2018;
Galiano-Carneiro et al., 2019; Kalih et al., 2015), FHB resistance was
attributed to the A and B genomes but also to several rye chromo-
somes. This might explain the lower susceptibility of hexaploid triti-
cale compared to durum wheat, from which it was derived as female
parent. Similarly, Arseniuk et al. (1999) and Miedaner et al. (2001)
reported that bread wheat cultivars were less resistant to FHB in-
fection than rye and triticale and always contained a higher amount
of DON. Rye and triticale were also found to be more resistant to
F. graminearum than bread wheat and durum wheat concerning type
2 resistance in the greenhouse {Langevin et al., 2004). Heterogeneity
of population and hybrid cultivars in rye {Miedaner & Laidig, 2019)
might contribute to the low susceptibility of the crop. In contrast, the
other crops include only homogeneous and homozygous cultivars.
But still, triticale is only slightly more susceptible for FHB than rye.

For the differences between crop species, passive resistance
mechanisms might play a larger role than in assortments within sin-
gle crops. Among them, plant height, anther extrusion, spike mor-
phology or waxy layer might be of importance. The high basic level
of susceptibility of durum and bread wheat to F. culmorum head in-
fection could be partly attributed to the presence of reduced height
genes (Rht), such as Rht-B1b and Rht-D1b that are widely distrib-
uted among Central and Northern European bread wheat cultivars
{Miedaner & Voss, 2008} and ubiquitously found in durum wheat
cultivars {Miedaner, Sieber, et al., 2017, Table 1). There is strong ev-
idence for the highly significant and negative association between
FHB infection and the presence of the semi-dwarfing Rht-B1b and
Rht-D1b alleles {Draeger et al., 2007; Lu et al., 2013; Srinivasachary
et al., 2009}, In earlier studies, the German bread wheat cultivar
“Toras' known to contain the Rht-B1b allele was also found to be
quantitatively resistant to FHB (Miedaner & Voss, 2008). Therefore,
it was concluded that the presence of FHB resistance QTL in wheat
cultivars could counterbalance the negative effects of Rht genes and
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this has heen proved in the meantime (Miedaner, Herter, Ebmevyer,
Kollers, & Korzun, 2019). However, this requires a larger population
size for selecting short, FHB-resistant cultivars in wheat hreeding.
In rye, semi-dwarfness plays no rele in commercial cultivars and
in triticale only a few semi-dwarf cultivars are known (Kalih et al,,
2014). Thus, rye and triticale are much taller crops than hoth wheat
species, a fact that might contribute te their higher resistance level,
because plant height per se has a positive effect on FHB resistance
(Mesterhazy, 1995). In wheat, it was shown that genotypes extruding
their anthers readily after flowering are less prone to FHB infecticn
than those retaining their anthers inside the florets to a high propor-
tion (Buerstmayr & Buerstmayr, 2015). Moreover, this trait is linked
with Rht genes in the sense that the semi-dwarf lines have a high
proportion of retained anthers and, thus, increased FHB susceptibil-
ity (Buerstmayr & Buerstmayr, 2018). In the outcrossing rye, all an-
thers are fully extruded at flowering. Also, triticale tends to extrude
anthers more readily than wheat. In triticale and both wheats, the
flowers are very close to the rachis and to each other. Wheat geno-
types have, on average, three flowers per rachis node and a denser
head than rye and triticale. Genotypes with the semi-dwarfing al-
leles Rhit-B1bk and Rht-D1b have an even denser head. In contrast,
rye has only one flower per rachis node and a less dense head. Both
should give a better aeration than in the other creps and additionally
provide a longer distance for the fungus when spreading through the
rachis. Also, the waxy layer on the heads is much thicker in rye, and
partially in triticale, than in wheat. Caused by the different colours
of the ears in triticale, the presence of awns and anthocyanins, and
the greyish waxy layer in rye, these crops are more difficult to score
visually for FHB severity because the differences between the co-
lour of the ears and the symptoms are less prencunced than in the
wheat species. This might also cause the lower cerrelations ameng
resistance traits in rye and triticale. All these morpheclogical traits
may centribute to a lower basic susceptibility of rye and triticale.
Deoxynivalenol accumulation hasically reflected the different
FHB severities of the crops with rye having the lowest mean values,
followed by triticale. Caused by the large variation among genotypes,
bread wheat had a similar mean DON coencentration to triticale and
rye, but a broader variation. This is due to the fact that we have
now some rather resistant wheat cultivars on the market. However,
durum wheat had, on average, considerably higher (46% more) DON
concentrations than bread wheat although exposing a rather similar
mean FHB severity. Hence, the mechanism that regulates FHB se-
verity may be at least partially different from the one that regulates
DON accumulation, depending on the cereal species (Draeger et al.,
2007; Miedaner et al., 2018). The level of DON produced in the ker-
nels of the four cereal crops by isolate FC46 in our study was higher
than the DON concentrations reported elsewhere (Arseniuk et al.,
1999; Géral & Ochodzki, 2017), but similar to the levels reported
by Miedaner et al. {(2001). This confirms the high DON-producing
ahility of isolate FC46. Durum and bread wheat cultivars accumu-
lated, on average, 67% and 39% more DON, respectively, than rye.
Furthermore, similar to the observation of Miedaner et al. (2001),

triticale cultivars accumulated on average 38% more DON than rye.
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Obviously, the different crop species provide a different suitahil-
ity to serve as substrate for DON production of F. culmorum. It is
totally unclear whether special ingredients of the crops are respon-
sible for this or whether the differing DON levels just reflect a dif-
ferent fungal colonization of the tissue. There might be compounds
suppressing fungal growth in rye and triticale or, alternatively, com-
pounds favouring infection in durum and bhread wheat. In previous
studies, phenolic acids, such as gallic, chlorogenic and caffeic acids
were reported to inhibit F. graminearum and F. culmorum growth as
well as mycotoxin production (Gauthier et al,, 2016; Pagnussatt,
Medeiros, Ponte, & Garda-Buffon, 2014). Differing breeding efforts
could not he the cause hecause in wheat breeding and research
much more attention is given to FHB resistance than in rye or triti-
cale breeding.

Summarizing the results, the cereal crop species with high lev-
els of FDK rating accumulated higher levels of DON (Figure 2) and
this was confirmed hy the high correlation between FDK rating and
DON, especially in the most susceptible crop species, durum and
bread wheat. In comparison, rye and triticale showed hy far the low-
est FHB severity and FDK rating and DON concentrations. Durum
wheat displayed higher DON concentrations than bread wheat.
There are hints that different regulatory mechanisms are involved in
the symptom development and DON accumulation in bread wheat
{He, Dreisigacker, Singh, & Singh, 2019).

4.2 | Significant genetic variation occurs within
all crops

Significant genetic variation was found between genotypes within
each crop species (Table 1). Within bread and durum wheat, a wider
genetic variation for FHB resistance and FDK rating was feund than
within rye and triticale. This explains the higher heritahility values
detected in bread wheat for these traits compared to the other crop
species. For DON concentration, the widest genetic variation was de-
tected in durum wheat with a high heritahility. Similar to our findings,
Miedaner, Schneider, and Geiger (2003) reported a lower heritability
for DON concentration in rye than in bread wheat. G x E interaction
variances were important for the majority of the Fusarium-related
traits as known from literature (Miedaner et al,, 2001), and this might
be partly due to large differences in average temperature and sum of
precipitation in the different environments {locatiocn-year combina-
tions, Table S1). The large difference in the wheat species is caused
by the selection of FHB-resistant germplasm by breeders. Some cul-
tivars among bread wheat (such as 'Helmond', ‘Anapolis’ and Toras”)
and durum wheat (such as ‘Tempodur’, ‘6134/14' and ‘Wintergold’,
Tahle 1) had lower FHB severity and may carry several resistance
FHB QTL in their genome. On the other hand, there are still highly
susceptible cultivars in the market (such as ‘Tobak’, ‘Franz' and
‘Inspiration’ in bread wheat) greatly enlarging the genetic variation.
Accordingly, there is a threefold difference in DON concentrations
between the lowest and the highest DON-accumulating cultivar in

bread wheat and even a more than sevenfeld difference in durum
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wheat (Table 1). In triticale, the difference is threefold and in rye
twofeld only. This shows the large potential of resistance hreeding
for reducing DON cencentration in the mest susceptible crops and
the relative advantage of rye and triticale in this respect. Given the
exclusive use of durum wheat for human consumpticn as pasta, the
high DON concentrations of some released cultivars are alarming.
But the best durum wheat "Wintergold' has almost the same level
of FHB resistance as the best bread wheat ‘Helmond' (16.93% and
12.16%) with similar DON concentrations (14.35 and 9.57 mg/kg).

4.3 | Inoculum concentration did not change the
ranking of crops

According to the considerably different ranking of the crops for FHB
severity in the first year, we adjusted in the second year the spore
concentrations in an additienal experiment in such a way that the
more resistant rye and triticale got higher concentrations (1 x 10°,
7.5 % 10° spores/ml, respectively) and the more susceptible durum
and bread wheat a lower concentration (2 x 10° spores/ml) than ini-
tially (4 x 10° spores/ml). The different concentrations, however, did
not significantly change ranking of crops for FHB severity (Tahle 4).
Though the crop-specific concentrations caused somewhat higher
FHB severity in rye and triticale and somewhat lower FHB severity
in the two wheat species, the differences observed in mean values
between the two inoculum concentrations were neot significantly
(p > .03) different. Different F. culmorum spore concentration levels
have been used in different studies to evaluate small-grain cereal
crops for FHB resistance and low mycotoxin accumulation (Arseniuk
et al., 1999; Boeven et al., 2016; Géral & Ochodzki, 2017; Géral et
al., 2018; Miedaner et al., 20168). Qur finding, however, demonstrates
that a concentration level of 4 x 10° spores/ml is adequate for com-
paring genotypes of these four crop species against FHB infection

without being hiased to any of the crop species studied.

5 | CONCLUSIONS

Rye was the most resistant crop te FHB and had the lowest DON
content and kernel damage while durum wheat was the crop with
the highest kernel damage and DON concentraticn. The cutcome of
this study suggests that durum and bread wheat which are among
the topmost grown cereal crops worldwide are most susceptihle to
FHB and may accumulate high levels of DON that are hazardous for
human consumption and animal welfare as well. And DON is only
one of the Fusgrium mycotoxins, in the same grain lot additional
toxins can be expected. Suchowilska et al. (2010) reported 11 toxic
metabolites, including DON, 3-acetyl DON and DON-3-glucoside,
isolated from hulled wheat when inoculated with one F. culmorum
isolate. Hence, breeding for FHB resistance and low DON concentra-
tion must have a high priority in these crops. The significant genetic
variation within rye, triticale, durum and bread wheat for all FHB-

related traits illustrates that genetic progress should he possible. In
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the meantime, the best durum genotypes nearly reach the FHB level
of the most resistant bread wheat. The transfer of resistance QTL
from rye to wheat might be a long-term goal. In the past, wheat-
rye translocations were a great success in terms of resistances to
powdery mildew and rusts and high grain yield, but unfortunately
never gave rise te a gooed baking quality. Future studies to compare
FHB resistance levels of rye, triticale, durum wheat and bread wheat
should incorporate the effect of different isolates. Further research
is required to hetter understand the regulatory mechanisms of DON

accumulation in small-grain cereal crops.
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SUPPORTING INFORMATION

S1 Average temperature ("C) and sum of precipitation (mm) during inoculation period of rye,

triticale, durum and bread wheat in HOH 2017, HOH 2018 and OLI 2018

Crop species

Environment

Temperature (°C)

Precipitation (mm)

Rye

Triticale

Durum wheat

Bread wheat

HOH2017
HOH2018
OLI2018

HOH2017
HOH2018
OLI2018

HOH2017
HOH2018
OLI12018

HOH2017
HOH2018
OLI12018

18.8
13.4
18.8

21.5
14.3
17.7

16.5
18.0
18.5

14.6
20.1
18.5

0.0
15.7
0.1

2.9
39.8
12.3

37.9
0.0
3.8

4.3
0.0
3.8

HOH = Hohenheim, OLI = Oberer Lindenhof

S2 Inoculation and rating periods of rye, triticale, winter durum and bread wheat in HOH
2017, HOH 2018 and OLI 2018

Crop species

Environment

Inoculation period

Rating period

Rye

Triticale

Durum wheat

Bread wheat

HOH2017
HOH2018
OLI12018

HOH2017
HOH2018
OL12018
HOH2017
HOH2018
OL12018
HOH2017
HOH2018
OLI12018

May 25-27, 2017
May 14-16, 2018
May 26-28, 2018

May 29-June 2, 2017
May 14-22, 2018
May 28-June 1, 2018
June 2-8, 2017

May 25, 2018

June 4-7, 2018

June 4-8, 2017

May 25-27, 2018
June 4-7, 2018

June 12-24, 2017
June 1-11, 2018
June 8-23, 2018

June 16-26, 2017
June 1-17, 2018
June 10-28, 2018
June 20-30, 2017
June 11-19, 2018
June 17-July 2, 2018
June 22-July 2, 2017
June 11-21, 2018
June 17-July 2, 2018

HOH = Hohenheim, OLI = Oberer Lindenhof
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S3 Adjusted means and ranges of FHB (%), FDK (1-9), DON (mg kg'l), HD (days) and PH
(cm) in rye, triticale, durum and bread wheat across three environments

Crop species Para- FHB (%) FDK (1-9) DON HD (days) PH (cm)
meter (mg kg'l)
Rye Mean 5.09 a 3.64 a 10.08 a 131.97 a 144.83 a
Range 3.32-7.06 3.02-4.76 6.82-13.46 130.67-133.33 132.15-157.67
Triticale Mean 6.17a 3.90a 15.18 ab 140.51 b 110.30 b
Range 3.75-10.32 2.80-6.17 8.10-25.45 134.83-144.49 99.66-122.80
Durum wheat Mean  27.72b 6.17b 30.68 b 14793 ¢ 90.73 ¢
Range 16.93-50.73 3.88-8.81 10.62-78.81 146.17-151.50 84.50-98.00
Bread wheat Mean  33.57b 6.24b 16.59 ab 148.96 ¢ 92.64 c
Range 12.16-57.23 3.55-8.78 8.86-26.30 147.56-150.17 84.64-105.67

Means for each trait sharing the same letters are not significantly different at 0.05 probability
level according to Tukey's test. FHB = Fusarium head blight, FDK = Fusarium-damaged
kernel, DON = deoxynivalenol, HD =heading date, PH = plant height
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1 | INTRODUCTION

Winter rye was grown in Northeastern Europe on 3.2 million hect-
ares in 2017 (Food and Agriculture Organization of the United
Nations (FAQ), 2019). Germany, Poland, Russia, Finno-Scandinavia,

Abstract

Rye is a multi-purpose cereal crop grown in Central and Eastern Europe as well as in
Western Canada. Fusarium head blight (FHB) is one of the diseases that have a severe
negative impact on rye, but knowledge about FHB resistance at the genomic level is
totally missing in rye. The objective of this study was to elucidate the genetic archi-
tecture of FHB resistance in winter rye using genome-wide association (GWA) map-
ping complemented by genomic prediction (GP) in comparison with marker-assisted
selection (MAS). Additionally, plant height and heading stage were analysed. A panel
of 465 S;-inbred lines of winter rye was phenotyped in three environments (location-
year combinations) for FHB resistance by inoculation with Fusarium culmorum and
genotyped with a 15k SNP array. Significant genotypic variation and high heritabili-
ties were found for FHB resistance, heading stage and plant height. FHB did not cor-
relate with heading stage, but was moderately correlated with plant height (r = -.52,
p < .001) caused by some susceptible short inbred lines. The GWA scan identified 15
QTL for FHB resistance that jointly explained 74% of the genotypic variance. In ad-
dition, we detected 11 QTL for heading stage and 8 QTL for plant height, explaining
26% and 14% of the genotypic variance, respectively. A genome-wide prediction ap-
proach resulted in 44% higher prediction abilities than marker-assisted selection for
FHB resistance. In conclusion, genomic approaches appear promising to improve and
accelerate breeding for complex traits in winter rye.

KEYWORDS
agronomic traits, Fusarium resistance, genomic prediction, GWAS, QTL, rye

Belarus and Ukraine together contribute 74% of the worldwide har-
vest (FAO, 2019). Rye grain is traditionally used for bread making,
but also as home-grown feed and as a substrate for bioethanol and
biogas production (Miedaner & Laidig, 2019). Rye is an allogamous
and diploid {RR, 2n = 2x = 14) small-grain cereal crop belonging to the
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Triticeae and is reported to have a large genome of appreximately 7.9
Ghp (Bartoi et al,, 2008). It is the paternal denor for triticale (Ammar,
Mergoum, & Rajaram, 2004) and has been used to improve important
agronomic traits of wheat (Kim, Johnson, Baenziger, Lukaszewski, &
Gaines, 2004; Schlegel & Korzun, 1997; Zhou et al,, 2007). Hybrid
rye is the most common cultivar type in Central Europe, commer-
cially available in Germany, Austria, Denmark, Sweden, Poland,
Belarus and Russia. Hyhrid breeding is based on the development
of inbred lines from two heterctic pools that are subsequently se-
lected for line per se and testcross perfermance (Miedaner & Laidig,
2019). Hybrid cultivars cover about 80% of the total rye acreage in
Germany and yield 15%-20% more grain than pepulation cultivars,
the alternative type of cultivars (Laidig et al., 2017).

Generally, rye has been reported te be more resistant to biotic
(Arseniuk, Foremska, Géral, & Chetkowski, 1999; Gaikpa, Lieberherr,
Maurer, Longin, & Miedaner, 2019; Miedaner, Reinbrecht, Lauber,
Schollenberger, & Geiger, 2001) and abioctic (Barto3 et al., 2008;
Myskéw, Goralska, Lenarczyk, Czyczylo-Mysza, & Stojatowski,
2018; Villareal, Bafuelos, Mujeebh-Kazi, & Rajaram, 1998) stress fac-
tors compared to wheat and triticale. However, rye can be infected
with several diseases including Fusarium head hlight (FHB), reducing
grain size and grain yield and contaminating the grains with myco-
toxins, like deoxynivalenol (DON) and zearalencne (ZON) (Miedaner
& Geiger, 1996). These mycotoxins pose health threats to humans
and animals (Pierron, Alassane-Kpembhi, & Oswald, 2016) and are
therefore strictly regulated in the European Union. For rye and bread
wheat, the same limits apply, being 1.25 and 0.1 mg/kg for DON
and ZON, respectively, in unprocessed lots for human censumption
(The Commission of the European Communities, 2006). In bread,
the maximum allowed levels are 0.5 mg DON/kg and 0.05 mg ZON/
kg. For feed, different guidance values are recommended, of which
the lowest is for pigs with 0.2 mg DON/kg. In naturally infected rye
grains from Denmark, F. graminearum, F. culmorum, F. avenaceum and
F. pooe dominated among the Fusarium species (Nielsen et al,, 2011).
Integration of resistant cultivars into other disease management
practices such as crop rotaticn and good scil tillage is an efficient,
cost-effective and ecologically safe methed of reducing the impact
of FHB in cereals. Hence, breeding fer FHB resistance in rye is cru-
cial given its use as bread cereal with 22% of the harvest and for feed
with 64% of the harvest in Germany (BLE, 2018).

FHB resistance in rye is quantitatively inherited and mainly gov-
erned hy additive gene action, similar to the other cereal species,
with a large genotypic variation in breeding populations (Miedaner,
Borchardt, & Geiger, 1993; Miedaner & Geiger, 1998). Highly resis-
tant material, however, can rarely be found in existing nurseries.
Genotypic correlation coefficients between FHB symptems and
DON showed a tight association (r = .8-.9), allowing an indirect selec-
tion for a reduced DON centent by selecting for high FHB resistance
(Miedaner, Wortmann, & Geiger, 2003). Genotype-by-environment
(G x E) interaction played a major role, illustrating the necessity of
selecting in several environments (location % year combinations).

The genetic architecture of FHB resistance has been investi-

gated in bread wheat, durum wheat and to some extent in triticale,
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but no information is available for rye. In bread wheat (2n = éx = 42,
genome composition AABBDDY), about 550 QTL located on all chro-
mesomes were reperted for FHB resistance that could be reduced
to 65 meta-QTL (Venske et al., 2019). Some major QTL, that is Fhb1,
Fhb5 and Fhbé from Chinese wheat, have higher effects on FHB
resistance (Bai, Su, & Cai, 2018), and attempts are being made to
intrcduce Fhb1 into Eurcpean durum wheat breeding programmes
(Prat et al., 2017). For triticale, several minor QTL for FHB resistance
were reported on rye chromosomes (Dhariwal et al., 2018; Galiano-
Carneiro, Boeven, Maurer, Wirschum, & Miedaner, 2019; Kalih,
Maurer, & Miedaner, 2015).

In rye, genomics is still lagging behind other small-grain cereals.
A few previous studies reported QTL for agronomic traits such as
plant height (PH), flowering time, yield-related and quality traits
(Falke, wilde, Wortmann, Geiger, & Miedaner, 2009; Hackauf et al.,
2017; Miedaner et al., 2012, 2018), frost tolerance (Li et al., 2011) as
well as drought tolerance (Myskéw et al., 2018). However, no QTL
or genome-wide association study (GWAS) has been reported in
rye for FHB resistance. Because FHB resistance is generally caused
by many QTL with minor effects, genomic selection (GS) might be
more appropriate for improving the trait. GS utilizes genome-wide
marker data to predict the genctypic values of individuals to be
selected, thus reducing phenotyping once the marker effects have
been estimated (Edwards et al., 2019). GS methods were applied in
rye for kernel weight and quality traits in twe introgression libraries
{(Mahone et al, 2015) and two bi-parental populations (Schulthess
et al, 2016; Wang et al,, 2014) as well as diverse hreeding material
(Bernal-Vasquez et al., 2014). A comprehensive genetic map based
on a large SNP array is meanwhile available for rye (Bauer et al,
2017). For FHB resistance, GS yielded cross-validated prediction ac-
curacies of 0.59 to 0.25 in bread wheat (Mirditaet al., 2015; Rutkeski
et al,, 2012), durum wheat (Miedaner, Herter, Ebmeyer, Kollers, &
Korzun, 2019; Miedaner et al., 2017) and triticale (Galiano-Carneirc
et al, 2019). Therefore, it is worthwhile to assess the prospects of
GS in winter rye as the only cut-crossing small-grain cereal.

Our ohjectives were to (a) assess the genetic variation for FHB
resistance and associated traits in rye, (b) identify QTL for FHB re-
sistance by GWA mapping and estimate their effects, (c) investigate
their co-localization with QTL for heading stage and plant height,
and (iv) compare the potential of marker-assisted selection and ge-
nomic prediction (GP) to improve breeding for FHE resistance in
winter rye. For this, a large population of 465 rye inbred lines was

analysed by inoculation with F. culmorum.

2 | MATERIALS AND METHODS
2.1 | Plant materials and field experiments

A panel of 465 rye (Secale cereale L) S, lines from the company
HYBRO Saatzucht GmbH & Co. KG were used for the study. The
lines descended from the ‘Carsten’ heterotic pool that is used as

pollinator poel and were made up of 372 lines that were selected
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for FHB resistance in a recurrent selection (RS) programme across
five cycles. The RS procedure was a typical 5;-line testing (Lynch
& Walsh, 1998) with a three-year cycle: (a) selfing and testcrossing
of non-inbred materials, (b) multi-environment selection of FHB rat-
ing for inbred line and testcross performance, respectively, with a
weighted index of 3:1 and (c) recombination of the superior lines.
To widen genetic variation, 23 lines unselected for FHB resistance
were added to the last RS cycle that was analysed here. All lines were
evaluated in three environments (location x year combinations) at
the experimental stations of the University of Hochenheim, Germany,
in Hohenheim (HOH) near Stuttgart in 2017 and 2018, and of the
company HYBRO Saatzucht GmbH & Co. KG in Wulfsode (WUL)
near Wriedel, Lower Saxony in 2017. Entries were mechanically
sown in single-row ohservation plots 0.8-1.2 m long at a sowing
density of 270 kernels/mZ. In HOH17 and WUL17, the experimental
design used was a-lattice design with two replicates. Each replicate
consisted of 54 incomplete blocks and 10 genotypes per block. To
fill up the field design, standard lines were used. For the field trial
in HOH18, a row-column partially replicated design was used he-
cause less seeds were available for some genotypes. The number
of rows and columns was 40 and 23, respectively. Eighty-five per
cent (85%) of the genotypes were replicated. All genctypes were
treated with standard agrenomic practices as described by Gaikpa
et al. (2019). Genotypes were inoculated with one Fusarium culmo-
rum isolate (FC46) at a concentration of 7.5 x 10° spores/ml using a
tractor-driven sprayer. The incculation hegun at the onset of flower-
ing of early genotypes and was repeated for 4-5 times at 2-8 days
intervals to ensure that all entries were inoculated at least once at
mid-anthesis.

The traits recorded included FHB severity, heading stage (HS)
and plant height (PH). On plot hasis, FHB severity was visually
rated using a scale of 0%-100% of infected spikelets per geno-
type, starting from the onset of FHB symptoms differentiaticn
(Miedaner et al., 2001). Two successive ratings were taken in
WUL17, five ratings in HOH17 and four ratings in HOH18. HS was
rated on 1-9 scale, where 1 = the ear/head of the crop still remain
in the leaf sheath and 9 = ear stalk is at least 10 cm long under the
ear or ahove the leaf sheath. Plant height (cm) was measured from
the ground level to the tip of the heads after full flowering using

a metre rule.

2.2 | Phenotypic data analysis

Two, four and five FHB ratings from WUL17, HOH18 and HOH17,
respectively, were averaged to get mean FHB severity for each gen-
otype per envircnment and used for all analyses. Adjusted means
and variance components of each trait were calculated based on
hest linear unbiased estimaticn (BLUE) and best linear unbiased
prediction (BLUP), respectively. ASReml package (Butler, 2009)
within the statistical software R (R Core Team, 2018) was used for
all phenctypic analyses. Because of the different ficld designs used

in 2017 and 2018, a two-step analysis was done te get the adjusted
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means and variance components. At the first step, means for each
trait in WUL17 and HOH17 were estimated separately using the
model:
YUK:#+GJ+RJ+EM+€W,

where YU.k = the obhserved phenotypic mean for genotype i in replicate
jand block k, ;¢ = general mean, G; = effect of the ith genotype, R =ef
fect of the jth replicate, Bjk = effect of the kth block in the jth replicate
and ey, = residual error.

For HOH18, means were estimated using the model:

YW:;;+Gt+Rj+Wk+c,+ew,
where YU.k = the observed phenotypic mean for genotype i in replicate
J, row kand column |, = general mean, G, = effect of the ith genotype,
Ry = effect of the jthreplicate, W, = effect of the kth row and C, = effect
of the lth column and ¢, = residual error.

Row, column and genotype were treated as fixed effects and
blocks and replicates considered as random effects. Adjusted
entry means and corresponding standard errors of genotypes
from each environment were analysed in the second step to ob-

tain genotypic means across envircnments by using the following

mixed model:
Y =p+G+E+GE;+e,

where Y”. = the ohserved phenotypic mean for genotype i in environ-
ment j, « = general mean, G, = effect of the ith genotype, EI. = effect of
the jth environment, GE”. = effect of genotype-environment interac-
tion and e; = residual error.

A weighting factor of cne divided by the squared standard
errer of each mean from the first step was used, so the resid-
ual variance was set to one, according to method 3 proposed by
Méhring and Piephe {2009). BLUEs were estimated across envi-
ronments assuming fixed effects for the genotypes and enviren-
ments. Variance compenents were determined by the restricted
maximum likelihcod (REML) method. Genotype, environment
and genctype-environment interacticn were treated as randem..
Significance of variance components was determined using the
likelihced ratio test.

Broad sense (entry-mean) heritability (H%) was estimated based
on the generalized method proposed by Cullis, Smith, and Cecombes
(2006) as follows:

where VBLUP is the squared average standard error of difference of the
BLUPs and 55 = genotypic variance. Phenotypic asscciation between
FHB and heading ratings as well as FHB and plant height were esti-
mated by Pearson correlation tests using the “cor.test” function in the
R statistical software (R Core Team, 2018).
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2.3 | Molecular data analysis

Fresh leaves were collected from the 465 rye lines at four-leaf
stage, and genotyping was performed by a commercial laboratory
by lllumina Technology (/llumina, San Diego) with a 15 k in-house
single nucleotide polymorphism (SNP) chip vielding 8,942 polymor-
phic SNPs. We checked the quality of the markers using the “check.
marker ( }” function in the R package GenABEL {Aulchenko, Ripke,
Isaacs, & van Duijn, 2018) and removed SNPs which showed more
than 20% missing genotypes or had a minor allele frequency <5%
from further analyses. In the end, 7,728 SNPs were available for the
genome-wide association mapping across the 465 genotypes. Only
2,719 SNPs in our marker data overlapped with the markers in an
already published linkage map (Bauer et al., 2017). To increase the
number of mapped markers for our study, we established a con-
sensus map including the 2,719 already mapped SNPs from Bauer
et al. {2017) and unpublished maps created from nine bi-parental
rye populations in our working group with MergeMap (Wu, Close,
& Lonardi, 2008). All markers were used for the analysis. To perform
genome-wide prediction, missing values in the marker data were
imputed using the software Beagle version 5.0 {Browning, Zhou, &
Browning, 2018).

A genome-wide association scan was performed to analyse
marker-trait associations for FHB resistance, heading stage and
plant height using the R package GenABEL {Aulchenko et al., 2018).
Principal component analysis based on the distance matrix of ge-
nomic kinship showed two major clusters in the association panel
(Figure 1). Therefore, both the genomic kinship matrix (K) and the
first principal component were included in the linear mixed model
of the “polygenic{ )" function to correct for the confounding effects
of family and population structure in the data set (Price et al., 2006;
Wiirschum, 2012; Yu et al., 2006). The “ibs( )* function of GenABEL
package was used to estimate the kinship matrix based on the SNPs.
We conducted the GWA mapping assuming additive effects of mark-
ers using the Q + K mixed linear model {Yu et al., 2006):

Y=Xf+5z+Quv+Zu+te,

where y = a vector of observed phenotypic means, X/ = the fixed ef-
fects other than the SNP under testing and the population structure,
£ = a vector of fixed effects other than SNP or population group ef-
fects, @ = a vector of SNP effects, v = a vector of population effects,
u~N (OAUS?) = a vector of random polygenic background effects with
A being the genomic relationship matrix of the lines and 0'32, the additive
genetic variance, e = a vector of residual effects, Q = a matrix from the
structure relating y to v, and S, X, Z = incidence matrices of 1s and Os
relating y to 4, «« and u, respectively.

To control for multiple testing, significant SNP-trait associations
were determined using a Bonferroni-corrected threshold of p < .05
(0.05/number of hypothesis tested) and in addition by an explor-
atory significance threshold of p < .0001. To identify the likely chro-
mosomal position of unmapped significantly associated SNPs, we
assessed the linkage disequilibrium {LD) between these markers and
allmapped SNPs. We estimated the LD (rz) values between the SNPs
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FIGURE 1 Principal component (PC) analysis of 465 S, lines

of winter rye with the first and second PCs and the percentage

of variation explained in brackets. Green filled circles = rye lines
selected for Fusarium head blight {(FHB) severity {n = 372), black
filled rectangles = rye lines unselected for FHB severity (n = 93)
[Colour figure can be viewed at wileyonlinelibrary.com]

by applying the function “r2fast( )” which was based on a slightly
maodified code of Hao, Di, and Cawley (2007). A pair of SNPs having
r? values >.60 were considered as being in LD. In addition, we used
the LD values to correct all significantly associated SNPs for collin-
earity, that is to determine which of the significant markers likely
identify the same putative QTL. The total proportion of genotypic

variance (,)G) explained by the identified QTL was estimated as:

2
adj

Pc= e’
where H2is the heritability of the trait, and Rgdi is the adjusted R? {Utz,
Melchinger, & Schén, 2000). The adjusted R? was obtained by fitting all
significant SNPs simultaneously in a linear model in a decreasing order
of the strength of their association with the trait, that is they were fit-
ted beginning with the SNP that had the lowest P-value {Wirschum,
Langer, & Longin, 2015). The linear model can be represented as:

Y=m+m+m.+m_+e,

where yis the calculated phenotypic mean, m, m; and m, are the marker
effects where the P-value of m; <m; <m, <m_{i.e.in a decreasing order
of the strength of their association with y‘.jk) and e is the residual error.
The pg of individual QTL was estimated by using the sums of
squares obtained from the analysis of variance of the linear model
including the significant SNPs {Wiirschum et al., 2015), that is:

= (Ssmfsstomlj' /hzx 100%,
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where 55 refers to the sums of squares of the individual SNP and
SS¢ia refers to the total sums of squares. In addition, we calculated the
additive effect (x-effect) of each significant SNP by fitting only one
SNP at a time in a linear model.

Furthermore, a genomic prediction (GP) approach was applied
to expleit the additive effects of small-effect QTL which cannot be
identified inthe GWA mapping. The GP was conducted by ridge re-
gression-BLUP (RR-BLUP) with the R package “rrBLUP” (Endelman,
2011; Endelman & Jannink, 2012) using imputed SNPs, including
hoth mapped and unmapped markers. A weighted ridge regres-
sion-BLUP (wRR-BLUP) was alsc performed, where the significant
SNPs from the GWA mapping, explaining more than 5% of the
genotypic variance, were treated as fixed effect in the GP model
(Spindel et al., 2016; Zhao, Mette, Gowda, Longin, & Reif, 2014).
Additionally, we compared the predictive ability of MAS and GP.
For each trait, the significant SNPs explaining »5% of the geno-
typic variance in the GWA mapping were used for MAS and all ge-
ncme-wide SNPs were used for GP (Miedaner et al., 2017). Fivefcld
cross-validation was done for both MAS and GP by dividing the
465 lines into two sets, (a) estimation set consisting of 80% of the
genotypes and (b) prediction set consisting of the remaining 20%
of the genotypes (Liu et al_, 2013; Wirschum, Abel, & Zhao, 2014;
Wiarschum & Kraft, 2014). Resampling of the lines was repeated
1,000 times. The predictive ability was calculated as the correla-
tion coefficient between the predicted and ohserved trait values of
20% of the genotypes hased on the effect estimates from the 80%
of the genotypes.

For MAS, we used the model:

Y=Xp+e

and for the wRR-BLUP approach the medel:

Y=X§+Zu+e,

where Y =the vector of phenotypic observation, § = the vector of fixed
marker effects, u = the vector of random marker effects, X and Z = the
design matrices coded as -1, 0, 1 relating to 8 and u, respectively, in ¥
and e = the residual error. For RR-BLUP, the same model of wRR-BLUP
was used by emitting the factor X5. We assumed additive effects of

markers.

3 | RESULTS

3.1 | Phenotypic variation among rye genotypes

The F. culimorum isolate FC46 caused FHB infection in all three envi-
ronments with a slightly higher infection level occcurring in HOH18
(Table 1). Heading was earlier in WUL17 compared to HOH17 and
HOH18. The highest mean plant height was observed in WUL17. In
the comhined analysis across environments, wide ranges of mean
FHB severity, heading stage and plant height were chserved ameng
the rye lines. Both the genotypic variance and the genotype-by-

environment interaction variance were significantly different from
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zero for all recorded traits (p < .001). Broad sense heritahilities were
high throughout, being 0.80 for FHB severity and heading stage
and 0.89 for plant height. The correlation hetween FHB severity
and heading stage was low and not significant (r = -.05). Between
FHB and plant height, a moderate correlation (r = -.52, p £ .001) was
found that was mainly triggered by some very short susceptible lines
(Figure 1). For the selected lines, the correlation was considerably
lower, although significant (r = -.22, p = .001). They were, on av-
erage, 13.52 cm taller than the non-selected lines, but also 11.9%
more FHB resistant (Table 52). Heading stage, by contrast, showed
no substantial difference between the selected and the unselected
subpopulations (5.37 vs. 4.95, Table 52).

3.2 | Genome-wide association mapping and
genocmics-assisted selection

Principal coordinate (PC) analysis showed two major population sub-
structures reflecting the genetic background of the lines used in this
study (Figure 1). The first and second PC explained 60.6% and 15.2%
of the variation, respectively. The larger group comprised of 372 5,
lines selected for FHB resistance in a recurrent selection breeding
programme across five cycles, and the smaller group comprised of
98 5, lines not previcusly selected for FHB resistance. As a result,
we used the first PC and the K matrix to correct for population sub-
structure and familial relatedness, respectively.

The GWA scan revealed ten SNP-trait associations for FHB
severity on chremesomes 1R, 3R, 5R and 6R that exceeded the
Bonferroni-corrected significance thresheld with a P-value of 8.13E-
06 (Figure 2). At the exploratory threshold (p < .0001), significant
associations for FHB severity were found on all chromosomes ex-
cept for chromosome 7R (Table 2, Figure 2). Intotal, 15 putative QTL
were identified with this threshold fer FHB severity which jointly ex-
plained 74% of the genotypic variance. Each QTL explained between
0.22% and 33.12% of the genotypic variance, five explaining more
than 5% p (Table 2). The SNP Contigl930 significantly associated
with the major QTL cn chromoseme 1R, explaining about 33% of the
genotypic variance for FHB severity, was not co-localizing with any
of the other significant SNPs at the selected LD thresheld (r? > .60).
Additive effects of the FHB QTL ranged from -4.41to 7.76. The FHB
resistance QTL, that explained more than 5% of the genotypic varia-
tion, had additive effects except for one locus (isotigl15981) that was
dominant for the resistant allele and another (isotig14873) that was
deminant for the susceptible allele. Generally, the heterozygotes
showed intermediate resistance to FHB (Figure 3).

Three SNP-trait associations were identified for heading stage
(1R, 2R, 5R) at the Bonferroni-corrected significance threshold (p-
value = 8.13E-06, Figure 51). At the exploratory significant thresh-
old, we found significantly asscciated SNPs on all chromosemes
except chromosome &R (Tahle 2, Figure 51). Overall, 11 QTL were
detected for heading stage and jointly explained 26% of the genc-
typic variances, with the p. of single QTL ranging between 0.01%
and 12.02%. Two SNPs explained more than 5% p for this trait.
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TABLE 1 Means and repeatabilites
(in brackets) of 465 rye lines evaluated
for Fusarium head blight (FHB) severity,
heading stage and plant height in three

Parameter

HOH17
environments and means, ranges,
. . WUuL17
genotypic variance component (né?),
HOH18

genotype-by-environment interaction
variance (agxc), residual error variance (02)
and entry-mean heritability (H?) of these
traits across three environments

Cambined analysis
Mean
Minimum
Maximum
G
oL,
gza
2

*Error term was set to one.

Individual environments

J{F.IH il PlantBreeding _WI L,]'E.YJﬂ

FHB severity (%) Heading stage (1-9)  Plant height (cm)
14.33(0.87) 4.44(0.78) 114.23(0.83)
12.59 (0.83) 6.64(0.64) 124.93(0.80
17.82 (0.70) 4.78 (0.69) 107.84 {0.78)
14.97 5.29 115.66

537 2.14 74.30
83.55 8.67 135.98
48.50*"* 1.10%** 77.00**
24,92+ 0.39*" 1213

1.00 1.00 1.00

0.80 0.80 0.89

PBased on the method described by Cullis et al. (2006).
**=Significantly different from zero at p < .001.

FIGURE 2 Manhattan plot of the 104
genome-wide association scan for .
Fusarium head blight (FHB) severity

(%). Bon. = Bonferroni-corrected
significance threshold at p < .05 and

Expl. = Exploratory significance threshold
at p < .0001 [Colour figure can be viewed
at wileyonlinelibrary.com]

~log,,(p-value)

Additive effects of the QTL ranged from —0.62 to 0.44 for heading
stage. SNPs isotig12834 and isotig32608 showed an additive and a
dominance effect, respectively, for heading time.

For plant height, one significant SNP was found at the Bonferroni-
corrected threshold on chromosome 2R. Three significant asso-
ciations exceeding the exploratory threshold were identified on
chromosomes 2R, 3R and 7R, with several significantly associated
markers located on chromosome 3R (Table 2, Figure S1). In total, 8
putative QTL were identified for plant height with the exploratory
significance threshold. These QTL jointly explained 14% of the geno-
typic variance and individually between 0.06% and 5.42% {Table 2).
Only two SNPs explained slightly more than 5% p. Additive effects
of the QTL for plant height ranged from -2.40 to 3.01. Both loci, iso-
tig24773 and isotig23589, showed dominant allelic effects for mean
plant height {Figure 3).

No common QTL were found for FHB severity and heading
stage. The significantly associated SNP isotig18865 on chromosome
3R was common to heading stage and plant height. There was a high
LD between SNP isotig 15,081 (FHB QTL) and SNP isotig24773
{plant height QTL) on chromosome 3R (r* = 0.84).
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Chromosome

Because of the apparent presence of additively inherited mi-
nor-effect QTL contributing to the total genotypic variance of FHB
severity, heading stage and plant height, we compared the potential
of MAS and GS in a fivefold cross-validation procedure (Figure 4). GS
was clearly superior over MAS for all three traits. For FHB severity,
the prediction ability of MAS approach was 44% less than the pre-
diction ability of the two genomic prediction approaches. Similarly,
genome-wide predictions were 42% and 63% higher than MAS for
heading stage and plant height, respectively (Figure 4). A weighted
GS approach, incorporating the identified medium- to large-effect
QTL as fixed effects, did not yield a higher mean prediction ability
than the non-weighted GS approach. Cross-validated prediction abil-
ity of the RR-BLUP procedure was 0.86 illustrated by a narrow cor-

relation between observed and predicted FHB severities (Figure S2).

4 | DISCUSSION

Knowledge about the genetic architecture of FHB resistance is

vital for genomics-assisted resistance breeding, but to date nothing
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TABLE 2 Significant SNP marker detected for Fusarium head blight (FHB) severity, heading stage (HS) and plant height (PH) projected on
the map of Bauer et al. (2017) and proportion of explained genotypic variance () and additive (2) effect

Trait SNP marker

FHB Contigd0343°
Contig1930°
isotig19181

isotig15081%"
isot/g23601*"
isot/g17662°
isotig14873
isot/g10804°
Isatigho091?
isot/g25802°
C8381_458°
isotig18993°
isotig20329°
isot/g20610°
isotig25815
Total

HS Contig1914*°
isotig22616
isotig32608°
CBY04_1380
Contig1405
isotig18865
Contig1056
isotig12834°
isotig21263
isotig21879
isotig11542
Total

PH Contigg08°
isotig28930
isotig30768
isotig33248
isotig24773
isotig18865
isotig26122°
isotig23589
Total

Chromosome
1R
1R
2R
3R
3R
3R
4R
5R
5R
5R
5R
5R
5R
6R
6R

1R
2R
2R
3R
3R
3R
AR
5R
5R
5R
7R

2R
3R
3R
3R
3R
3R
3R
7R

Positicn (cM)

264.33
294.29
80.43
207.56
263.32
290.69
108.76
0.00
226.68
311.06
377.30
396.33
413.57
?4.99
105.65

184.57
255.79
453.72
294.55
356.51
379.90
200.04
40745
645,37
641.72
26548

134.34
136.25
157.49

158.27
167.77

379.90
401.83
84.06

?Position assigned based on linkage disequilibrium with mapped markers.

®Above Bonferroni-corrected significance threshold at p < .05.

is known ahout QTL that confer this resistance in rye. The aim of

this study was therefore to (a) perform the first GWA mapping to

discover QTL that control FHB resistance in rye and (h) evaluate

the potential of genomics-assisted selection for FHB resistance

breeding.
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Bauer et al., 2017
{Chr.; cM)

1R; 67.47

5R; 112,12
5R; 116.55

6R; 50.04

2R; 134.37

3R; 106.86

3R; 116.37

5R; 196.14
5R; 192.46

3R; 116.37

4.1 | Construction of the GWA population

p-value

1.07E-06
4.87E-10
5.31E-05
744E-08
6.11E-05
1.82E-06
8.91E-05
8.30E-07
2.34E-07
1.14E-08
6.87E-05
3.21E-09
1.43E-035
7.06E-06
6.02E-05

1.71E-05
3.02E-05
6.39E-05
7.64E-05
6.41E-05
5.10E-05
2.40E-05
2.46E-06
2.19E-05
2.26E-05
1.98E-05

1.60E-05
6.37E-05
2.05E-05
8.94E-05
5.26E-05
1.60E-05
5.77E-05
1.61E-05

P %)
0.65
33.12
0.23
5.98
1.21
6.99
7.58
1.00
14.17
3.64
0.58
1.35
0.22
2.14
0.85
74.20
417
0.45
6.03
0.01
1.83
0.67
0.97
12.02
1.53
1.14
0.89
26.10
1.96
0.44
1.10
0.19
5.42
0.06
171
5.34
14.09

a-Effect
5.29
4.79
0.57
-4.41
4.26
776
4,49
2.61
3.62
4.35
1.10
0.54
2.44
1.82
-1.05

-0.32
0.44
-0.27
0.10
-0.14
-0.20
-0.10
-0.62
0.19
-0.33
0.30

1.76
0.08
0.53
1.19
-2.40
0.21
-0.55
3.01

For Eurepean wheat, many QTL with small effects were reperted to

govern FHB resistance, as known for other quantitative traits (Lynch

& Walsh, 1998). In the cross-pollinating rye, we expect many alleles
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FIGURE 3 Box plots showing the allele effects of significant SNPs explaining >5% of genotypic variation for (a) Fusarium head blight
{FHB) severity (b) heading stage, and {c) plant height; n, number of individuals [Colour figure can be viewed at wileyonlinelibrary.com]

per locus {Newell & Butler, 2013). Therefore, a bi-parental mapping
population exploring only the effects of the two parental alleles of
the population is not adequate to identify QTL for FHB. Moreover,
performing a GWAS in unselected populations may not be able to
identify effectively QTL present at low frequency. Therefore, we
followed here the strategy to enrich our GWA population for FHB
resistance by several cycles of recurrent selection. To demonstrate
the genetic progress, we added 93 unselected S, lines to the 372 se-
lected lines. On average, the selected lines showed an 11.9% higher
resistance against FHB than the unselected lines (Table $2). Thus,
this strategy can be expected to improve the chances of identifying

QTL and superior combinations of resistance QTL alleles. Because
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all tested lines belonged to the pollinator gene pool, our population
can serve as a training population for this heterotic group. Whether

it can also be used for the opposite pool requires further research.

4.2 | Phenotypic variation for FHB resistance and
agronomic traits

The rye lines analysed in this study showed a high variation for FHB
resistance, heading stage and plant height (Table 1). The different
genetic background of the genotypes, with selected and unselected

lines, might have contributed to the wide range of FHB severity



516 | GAIKPA ET AL
= L wiLey-BF L Plantees
FHB (%) HS (1-9) PH (cm) 140
& Selected
1.0 A Unselected
T T 130
== T
0.8 Tt 7T
ol -*— 120 4
T . ° E oA
. .'. . rYTYS
1 & E & ' “
Z 0.6 T .i. 1’ = 110+ a"on
5 .?_ 5 PO
[} | [F) ‘
= = A A -
S | =
3 § 100+ a A
B 0.4 I o a a
o 1 | 'y
A
1 | B 90 - i a =
1 a
0.2+ + | A
L 8 o
| 80 4
L
0.04 s .
) 10 20 30 40 50 60 70 80
Mean | 048 086 086|042 072 073 [029 079 079 FHB severity (%)

© § & & § L & & &
S & & & &
& & & & & &

FIGURE 4 Box plots showing the comparison of prediction
abilities of marker-assisted selection {MAS), ridge regression-BLUP
(RR-BLUP), and weighted ridge regression-BLUP {wRR-BLUP)

for Fusarium head blight (FHB) severity, heading stage (HS) and
plant height (PH) in winter rye [Colour figure can be viewed at
wileyonlinelibrary.com]

observed in our study. It should be noted, however, that we used
only elite lines from a commercial hybrid rye breeding programme
without introgression of genetic resources or foreign material. There
was a clear molecular distinction between the selected and the un-
selected lines, although they belong to the same heterotic group
(Figure 1), showing the benefits of recurrent selection in combining
favourable alleles within breeding populations. Although the main
selection trait was FHB resistance, an indirect selection for plant
height might have occurred as illustrated by the moderate negative
association between plant height and FHB resistance (r = -0.52,
p < .001; Figure 5). Several very short and susceptible unselected
lines, however, mainly caused this correlation. If all lines <110 cm
were omitted, the correlation was much lower (r = —0.27, p < .001).
Obviously, in the long-strawed rye the correlation between FHB se-
verity and plant height occurs only when short entries are included.
Heading stage varied among the genotypes but did not correlate
with FHB severity. This result corresponds to a previous report in
triticale (Miedaner, Kalih, GroBmann, & Maurer, 2016) and can partly
attributed to the synchronization of the plant developmental stage
with the date of inoculation, which ensured that each genotype was
inoculated at the optimal growth stage {mid flowering), thus reduc-
ing the confounding effects of heading stage on disease severity.

The finding here indicated that selection for FHB resistance did not
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FIGURE 5 Association between Fusarium head blight severity
{%) and plant height (cm) for 372 selected {green circles) and 93
unselected (black triangles) S, rye lines [Colour figure can be
viewed at wileyonlinelibrary.com]

affect the maturity period of the rye genotypes, hence simultaneous
selection for high FHB resistance and earliness should be possiblein
this breeding material.

Entry-mean heritabilities were high for all traits, which is in part
attributable to the high genotypic variation present in this panel, and
similar to the values reported in previous studies in rye (Gaikpa et al.,
2019; Hackauf et al., 2017; Miedaner et al., 2012; Wang et al., 2014).
Genotype-by-environment interaction variances were significant for
all traits, reflecting the importance of phenotyping across several
environments for quantitative traits (Fowler, N'Diaye, Laudenci-
Chingcuanco, & Pozniak, 2016; Prat et al., 2017; Wirschum et al.,
2015).

4.3 | GWA mapping identified QTL for FHB
resistance inrye

Generally, cross-pollinating, highly heterozygous rye cultivars are
more resistant to FHB than self-pollinating homogeneous triticale,
durum wheat and bread wheat cultivars {Arseniuk et al., 1999;
Gaikpa et al., 2019; Langevin, Eudes, & Comeau, 2004). Therefore,
analysis of the genetic mechanisms underlying the increased resist-
ance in rye is of vital importance. For the first time, we performed
GWAS to elucidate the genomic basis of FHB resistance in winter
rye and identified 15 genomic regions that are associated with FHB
resistance (Table 2). These 15 QTL jointly explained a rather high
proportion of the genotypic variance (74%), which may in part be

due to the accumulation of these QTL in the recurrent selection
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programme. Interestingly, we found two major- and several me-
dium- to minor-effect QTL for FHB resistance. For example, SNPs
Contig1930 on chremesome 1R and isctig09091 on chromosome
5R explained 33.12% and 14.17% of o, respectively, and can thus
he classified as major-effect QTL. SNPs isotig14873 on chromosome
4R as well as isotig 17,662 and isotig15081 on chromosome 3 were
asscciated with medium-effect QTL and explained 7.58%, 6.99% and
5.98% of p, respectively. These five SNPs explaining more than 5%
of p; of FHB severity are candidates for genomics-assisted breeding
for FHB resistance in rye. Their effects on FHB resistance, however,
need to be validated in future experiments.

Previous studies conducted in triticale, where rye is the male
parent, reported QTL for FHB resistance cn chromosomes 3R
(Galiano-Carneire et al., 2019), 4R, 5R, 6R, and 7R (Kalih et al., 2015).
The present study identified a significant marker-trait association
for FHB resistance on all chromesomes except chromeosome 7R
(Table 2).The direct comparison of our QTL to previously reported
QTL form other small-grain cereals was not possible because of the
differencesin the genome of rye and triticale as well as the different
genetic maps and types of marker used. The several miner and cnly
few medium tc major SNP-trait associations demonstrate, however,
that the genetic architecture of FHB resistance in rye is complex and
mainly contrelled by several, additively inherited genes. This agrees
well with the findings of other studies involving related Triticaeae
species such as hexapleid bread wheat, tetraploid durum wheat and
triticale (Arruda et al., 2016; Dhariwal et al.,, 2018; Wang et al., 2017).

4.4 | QTL for heading stage and plant height in rye

Heading stage and plant height are important agronomic traits
which might confer passive resistance to FHB in small-grain cere-
als (Mesterhazy, 1995). Therefore, we took these traits into account
in cur GWAS to investigate their possible co-localization with FHB
resistance QTL.

For heading stage, we found 11 QTL, but none of these QTL
co-localized with the QTL for FHB severity, which is in line with the
lack of phenotypic correlation between these traits. Here, only two
of the significantly associated SNPs explained more than 5% of the
¢ ¢ illustrating the high genetic complexity of the trait. We observed
hoth additive and deminance effects of the QTL alleles for heading
stage. Recently, Hackauf et al. (2017) reported 7 QTL that jointly ex-
plained 85% of p, for heading time across 272 F,, rye lines derived
frem a hi-parental population not preselected for FHB resistance.
In the present study, by contrast, we used material that was pur-
posefully selected for FHB resistance, but not directly selected for
heading stage, which might partly account for the lower p . explained
hy the 11 QTL for heading stage compared to the QTL identified for
FHB resistance.

In triticale, Kalih et al. (2015) reported QTL on chromosomes 4R,
5R, 6R, 7R, explaining 4.55%-39.82% of p . for heading across four
populations in triticale. Similarly, we identified significant marker-

trait associations for heading stage on all chromosomes except
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chromosome 6R. Interestingly, the SNP with the highest genotypic
effectinour study (isotig12834) is located on chromosome SR where
two large-effect QTL (s = 15.5, 39.8) were previously repcrted in
triticale (Kalih et al., 2015).

The proportion of genotypic variance jointly explained hy the
8 QTL for plant height was lower than the variation explained for
FHB resistance and heading stage. Similar te heading stage, two
QTL explained more than 5% of the 2. for plant height. Nen-additive
genetic factors, such as QTL x QTL and QTL x envircnment inter-
actions, might partly account for the remaining unexplained total ge-
notypic variance. Plant height was controlled by dominant alleles for
the two most prominent QTL (Figure 3). SNP isotigl5081 on chro-
mosome 3, which was significantly associated with FHB resistance,
was in LD with the SNP isotig24773 associated with plant height
on chromosome 3 (r” = .84). Interestingly, these SNPs had medium
effects on their respective traits and may partly explain the negative
phenctypic correlation chserved between FHB severity and plant
height. No major dwarfing gene segregated in this population as
shown by our GWAS results for plant height, where only minor QTL
were found (Table 2). Generally, major genes controlling plant height
are not routinely used in rye breeding to date and the height seems
to be controlled by a plethera of minor QTL as reported previcusly in
rye (Miedaner et al., 2018; Miedaner, Mliller, Piepho, & Falke, 2011)
and triticale (Galiano-Carneiro et al., 2019; Kalih et al., 2015).

4.5 | The potential of marker-assisted and genomic
prediction in winter rye

For all traits analysed, prediction abilities of both RR-BLUP and
WRR-BLUP were hy far higher than predictions based on marker-
assisted selection (MAS, Figure 4) that considers only QTL with me-
dium to major effects. Overall, the mean predicticn abilities of MAS
ranged from 29% to 48%, while the mean prediction abilities of the
genome-wide approach ranged from 72% to 86% for thethree traits
(Figure 4). This implies that improvement of FHB resistance, heading
stage and plant height by MAS will be slower compared to genemic
prediction approaches. This result is in accordance with previous
studies reporting higher predicticn abilities for genomic predic-
tion than for MAS in triticale (Galiano-Carneiro et al., 2019), bread
wheat (Mirdita et al., 2015; Rutkeski et al., 2012) and durum wheat
(Miedaner et al., 2019, 2017). However, in the present study, we oh-
served a higher prediction ahility for FHB resistance than reported
inthe earlier studies and even slightly higher than for heading stage
and plant height. This is likely due te the continuous selection for
FHB resistance, resulting in increased resistance allele frequencies
for the QTL underlying this trait (Figure 2). Thus, recurrent selection
hreeding schemes assisted by genomic prediction appear premis-
ing to improve rye resistance against FHB. It is worth to note that
our prediction accuracies might be overestimated to some extent,
because the training (80% of the lines) and prediction (20%) set
were from the same population and have been tested in the same

envircnments.
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5 | CONCLUSIONS

Resistance towards FHB might hecome a trait of increasing im-
portance in hybrid rye breeding. The observed phenotypic varia-
tion in elite germplasm is an impertant and promising prerequisite
to gain breeding progress with respect to FHB resistance in rye
hreeding programmes. There is great potential to improve FHB
resistance by genome-based approaches. For the first time, GWA
mapping identified several significant marker-trait associations
for FHB severity in winter rye of which two can be classified as
major QTL. These are candidates for further analyses of FHB re-
sistance to increase cur understanding in resistance mechanisms
in rye. No co-localization of QTL for FHB and plant height or
rather heading stage was chserved, which mirrors the moederate
correlation between FHB and plant height. Genomic prediction
yielded similar high prediction abilities with and without weighted
data. Genomics-assisted recurrent selection appears as a promis-
ing tool to accelerate hreeding for complex disease resistances in
rye. These results encourage further research to study FHB re-
sistance in rye hybrids. One opportunity in rye breeding is the re-
duced level of mycotoxins in the harvest compared to wheat that
should facilitate the increase of rye productivity and consumer

protection.
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Table S2. Mean, minimum and maximum values of Fusarium head blight (FHB),
heading stage and plant height for selected and unselected rye lines

Parameter FHB (%) Heading (1-9) Plant height (cm)
Selected Unselected Selected Unselected Selected Unselected
Mean 12.58 24.51 5.37 4.95 118.36 104.84
Minimum 5.37 6.46 3.00 2.14 99.17 74.30
Maximum 26.69 83.55 8.67 8.10 135.98 123.89
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Figure S1. Manhattan plot of the genome-wide association scan for (a) heading stage
(1-9), and (b) plant height (cm). Bon. =Bonferroni corrected significance threshold at
P<0.05 and Expl. = Exploratory significance threshold at P<0.0001
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Abstract

Globally, maize is a very important crop for humans and animals. However, fungal diseases
such as Gibberella, Fusarium and Aspergillus ear rots (ERS) can result in about 30% vyield loss
in most maize-growing regions of the world. These diseases do not only reduce yield, but also
contaminate the grains with mycotoxins such as deoxynivalenol, zearalenone, fumonisins and
aflatoxins, respectively. These mycotoxins pose serious health concerns in both humans and
livestock. Over the past decades, several studies have been conducted to dissect the genetic
architecture of resistance to these three toxigenic ear rots. The review provides spotlight on
studies carried out to identify quantitative trait loci (QTL) and candidate genes (CG) as well as
the application of genome-wide selection in maize for resistance to Fusarium graminearum,
Fusarium verticillioides and Aspergillus flavus. Genetic mapping (linkage mapping and
genome-wide association studies), genomic profiling (proteomics, transcriptomics and
metabolomics) and bioinformatic approaches are used in current studies to propose resistance
genes against maize ear rot fungi. Though a multitude of QTLs and CGs are reported, only a
few specific genes have been cloned and validated to directly confer resistance to ear rots. The
way forward is to combine available gene identification methods. Genome-wide selection
might speed up ER resistance breeding, but this area is not adequately exploited yet. Tapping

resistance alleles from genetic resources may improve resistance in elite maize materials.
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Abstract

Key message High genetic variation in two European maize landraces can be harnessed to improve Gibberella ear
rot resistance by integrated genomic tools.

Abstract Fusarium graminearum (Fg) causes Gibberella ear rot (GER) in maize leading to yield reduction and contamination
of grains with several mycotoxins. This study aimed to elucidate the molecular basis of GER resistance among 500 doubled
haploid lines derived from two European maize landraces, “Kemater Landmais Gelb” (KE) and “Petkuser Ferdinand Rot”
(PE). The two landraces were analyzed individually using genome-wide association studies and genomic selection (GS). The
lines were genotyped with a 600-k maize array and phenotyped for GER severity, days to silking, plant height, and seed-set
in four environments using artificial infection with a highly aggressive Fg isolate. High genotypic variances and broad-sense
heritabilities were found for all traits. Genotype-environment interaction was important thronghout. The phenotypic (r) and
genotypic (7,} correlations between GER severity and three agronomic traits were low (r=-0.27 to 0.20; r,= - 032 to
0.22). For GER severity, eight QTLs were detected in KE jointly explaining 34% of the genetic variance. In PE, no significant
QTLs for GER severity were detected. No common QTLs were found between GER severity and the three agronomic traits.
The mean prediction accuracies (p) of weighted GS (wRR-BLUP) were higher than p of marker-assisted selection (MAS)
and unweighted GS (RR-BLUP) for GER severity. Using KE as the training set and PE as the validation set resulted in very
low p that could be improved by using fixed marker effects in the GS model.

Introduction

Ear rot infections caused by Fusarium graminearum, I, ver-
ficilliotdes, Aspergillus flavus, and/or Stenocarpella maydis
are global threats to maize production. In Germany, a recent
survey on the prevalence of Fusarium species showed that
F. graminearum (Fg) and F. verfictllioides (Fv) were domi-
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nant, their relative occurrence depending on temperature and
humidity (Pfordt et al. 2020). F. graminearum (sexual stage:
Gibberella zeae) causes Gibberella ear rot (GER) which
reduces the quantity and quality of maize kernels and more
importantly, contaminates the grains with mycotoxins such
as deoxynivalenol (DON) and zearalenone (ZON) (Trail
2009; Ding et al. 2011; Martin et al. 2012a; Mesterhdzy
et al. 2012). These mycotoxins are associated with serious
health problems such as kidney diseases, poor growth, and
disorders of reproduction in animals and humans (Pinton and
Oswald 2014; Zhou et al. 2018). Empirical studies revealed
high correlations between GER severity and DON as well
as ZON contents in European maize by artificial infection
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with individual isolates (Bolduan et al. 2009; Martin et al.
2012a; Mesterhazy et al. 2020). Because of the adverse
health and economic effects of mycotoxins, regulatory bod-
ies in most parts of the world have set recommended limits
in maize kernels and products (FAO 2003; The Commission
of the European Communities 2006; Foroud et al. 2019). An
integrated disease management strategy can support exist-
ing efforts to reduce ear rots and associated mycotoxin con-
taminations in maize with GER resistant cultivars being an
essential prerequisite.

In maize, GER resistance is inherited quantitatively with
mostly small-effect quantitative trait loci (QTLs) (Xiang
et al. 2010; Martin et al. 2012a). In the past years, a genome-
wide association study (GWAS) was performed to identify
QTLs for GER resistance using single-locus models (Han
et al. 2018). However, multi-locus models such as fixed and
random model circulating probability unification (FarmCPU;,
Liu et al. 2016) have been found to be more powerful in
detecting SNP-trait associations with a lower rate of false
positives and false negatives than single SNP-based models,
especially for traits with complex genetic architecture (Abed
and Belzile 2019; Kaler et al. 2020; Malik et al. 2019; Miao
et al. 2019; Odilbekov et al. 2019; Wei et al. 2017; Xu et al.
2018; Zhang et al. 2019; Zhu et al. 2018).

For complex polygenic traits, genomic selection (GS)
offers an attractive alternative to conventional or marker-
assisted selection (Meuwissen et al. 2001). The potential
of GS for improving quantitative resistances has been ana-
lyzed for several pathosystems, e.g., for resistance to lethal
necrosis (Gowda et al. 2015), Diplodia ear rot (dos Santos
et al. 2016) and Northern corn leaf blight (Technow et al.
2013). Two studies (Han et al. 2018; Riedelsheimer et al.
2013) investigated the prospects of GS for GER resistance
in European elite maize lines.

Landraces serve as repositories of diverse alleles of agro-
nomic importance and have great potential for broadening
the genetic diversity of elite maize germplasm as illustrated
for several agronomical traits (Yao et al. 2007; Strigens et al.
2013; Bedoya et al. 2017). European maize landraces have
experienced several hundred years of adaptation to Euro-
pean growing conditions and can have a higher chance of
successful allele transfer to elite backgrounds compared to
non-adapted lines. The molecular diversity of 35 European
maize landraces was investigated by Mayer et al. (2017)
using high-density genotypic data and landraces, “Kemater
Landmais Gelb” (KE, originating from Austria) and “Pet-
kuser Ferdinand Rot” (PE, originating from Germany) rep-
resented a high proportion of the total molecular diversity
(Mayer et al. 2017; Holker et al. 2019). Thus, they were
chosen for large-scale production of doubled haploid (DH)
lines, which were extensively genotyped and phenotyped
for numerous agronomic traits but not for Fusarium diseases
(Holker et al. 2019).
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Our objective was to investigate the genetic architecture
of Fg resistance in two DH libraries derived from landraces
KE and PE and the potential of genetic improvement by
marker-assisted (MAS) and genomic selection (GS). Specifi-
cally, we aimed to (1) estimate variances and covariances
for GER severity and the agronomic traits, days to silking,
plant height, and seed-set, (2) map QTLs using a multi-SNP
GWAS model based on the markers from a 600 k SNP array,
and (3) compare the prediction accuracies of MAS and two
GS approaches for GER severity. Therefore, 250 DH lines
from each landrace were artificially infected by F. gramine-
arum in four environments.

Materials and methods

Plant materials, experimental design and data
collected

Plant materials consisted of a panel of 500 DH lines pro-
duced from two BEuropean flint landrace populations, KE
and PE by KWS SAAT SE & Co. KGaA, Einbeck, Germany.
We phenotyped 250 DH lines per population plus 10 checks
(including the two original source populations) in 2018 and
2019 at Hohenheim (HOH) near Stuttgart, Germany, and
at Gondelsheim (GON) near Karlsruhe, Germany. The DH
lines represent a random sample of the DH lines described
by Holker et al. (2019). The experimental design was a
51x10 alpha lattice design (10 genotypes per 51 incom-
plete blocks) with 2 replicates in both locations and years.
Sowing was done mechanically. Each plot was a single row
of 3 m length and consisted of 20 plants at intra-row spacing
of 15 cm. Inter-row spacing was 75 cm. Eight to ten maize
ears per plot, leaving out border plants, were inoculated with
inoculum prepared from a highly aggressive F. graminearum
(Fg) isolate, FG 163 (=1FA 66, Martin et al. 2012a, b) at
a concentration of 1.5x 10* spores mL~!. The isolate was
shared by Prof. Marc Lemmens, BOKU, Vienna, Austria.
Each upper ear was inoculated by a one-needle vaccinator on
the silk channel of the maize cobs with approximately 2 ml
of the inoculum at 4-6 days after 50% silk emergence (Reid
et al. 1996). Though significant genotype-isolate interaction
for ear rot severity and DON content was reported in previ-
ous studies, Miedaner et al. (2010) found no rank reversals
for GER resistance in early maize inbred lines inoculated
with eight . graminearum isolates where our isolate used
in this study was one of them. Therefore, inoculation with
one highly aggressive isolate should be adequate to discrimi-
nate resistant and susceptible lines. Days to silking (DS),
plant height (PHT, cm), seed-set (SS, %), and GER severity
(%) were recorded in all 4 environments (=location X year
combinations). Briefly, days to silking were recorded as the
number of days taken to achieve > 50% female flowering per
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plot. PHT was measured plotwise from ground level to the
first tassel branch using a meter rule in cm. At physiologi-
cal maturity (about 18-20% grain moisture), we manually
dehusked each ear and assessed visually seed-set as the pro-
portion of kernels per cob (%), where 0% =no kernels on the
cob and 100% =cob fully covered with kernels. GER sever-
ity was visually assessed on the same ears on a quantitative
scale from 0 to 100%, where 0% =no Fg mold visible and
100% =entire ear covered with Fg mold.

Data analysis
Phenotypic analysis

ASReml R package version 3.0 (Butler 2009) was used to
estimate means and variance components for all four traits.
Trait values from each environment were used to calculate
best linear unbiased estimates (BLUES), regarding genotypes
as fixed effects. Estimates of variance components and best
linear unbiased predictors (BLUPs) were calculated by the
following model, regarding genotypes within each popula-
tion and the other factors as random:

Y,

gm = BT+ Gy + B+ Ry + By + PE + GE + e,

where ¥, = the observed phenotypic value for genotype j
from population 7 in replicate / and block r at environment
k, p = general mean, P; = effect of the ith population, G,
= effect of the jth genotype nested in the ith population,
Ey, = effect of the kth environment, Ry, = effect of the /th
replicate nested in the kth environment, 5,, .y, = effect of the
mth block nested in the /th replicate and the kth environment,
PE, = interaction effect between the ith population and the
kth environment, GE;, = interaction effect between the jth
genotype and the kth environment, and e, = residual error.
We assumed heterogeneous variances of residual effects
in different environments. Dummy variables were used to
separate the genotypes into checks and the two landraces
(KE and PE) in the random statement to obtain the variance
components for each population (Piepho et al. 2006). The
likelihood ratio test based on full and reduced models was
used to determine the significance of variance components.
The same model was used for calculations in individual
environments by omitting the environment factor. Repeat-
abilities and broad-sense heritabilities (Hz) were estimated
by standard procedures described by Hallauer et al. (1988).
Pearson correlation coefficient () between BLUES of traits
were estimated using the function “cor.test” in R program-
ming language (R Core Team 2018). Genotypic correlations
(rg) between traits and their P-values were calculated using
bivariate models described in details by Wilson et al. (2010),
in Asreml-R 3.0 (Butler 2009).
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Molecular analysis

The 500 DH lines (250 derived from PE and KE, respec-
tively) were previously genotyped using a high-density
Affymetrix® Axiom® Maize Genotyping Array optimized
for temperate maize (Unterseer et al. 2014, Mayer et al.
2020). SNP markers having call rate < 90%, minor allele fre-
quency < 5%, and too high heterozygosity (false discovery
rate < 1%) were excluded from the marker data. The remain-
ing heterozygous loci were replaced with missing values,
and the new data set without heterozygous loci was filtered
again as described above. Remaining missing values were
imputed using Beagle 5.0 software (Browning et al. 2018).
A total of 388,999 SNPs and 462 DH lines (KE=236,
PE=7226) were left for further statistical analyses after qual-
ity check. Physical positions of all markers are available on
the public maize reference genome, B73 RefGen_v4, AGPv4
Jiao et al. 2017).

Principal component analysis and genomic kinship

Principal component analysis (PCA) was carried out by the
default method in the R package Genome Association and
Integrated Prediction Tool (GAPIT) 3.0 (Lipka et al. 2012).
In addition, a kinship plot was created from the genomic
relationship matrix of the high-density SNP marker data
using the default kinship.algorithm, VanRaden (VanRaden
2008) in GAPIT 3.0 (Lipka et al. 2012).

Genome-wide association studies (GWAS)

The BLUEs and the high density filtered SNPs were used
to perform GWAS for GER severity (%), DS (days), PHT
(cm), and SS (%), employing the multi-locus-based method,
FarmCPU (Liu et al. 2016) implemented in the R package
GAPIT 3.0 (Lipka et al. 2012). The GWAS was conducted
with the filtered DH lines from each population (KE =236
and PE =226) separately. In FarmCPU, false positives are
controlled by using a special kinship (K) matrix created
from pseudo-quantitative traits nucleotides (pseudo-QTNs)
as random effect (Liu et al. 2016). The parameter, “method.
bin” was set to “optimum” for the optimization process,
using the default bin.size = c(5e3,5¢6,5e7) and bin.selec-
tion=seq(10,100,10). The “bin.size” function refers to the
division of the whole genome into bins in kilo base pairs
and represents the window size used to select a probable
QTN. The “bin.selection” indicates the number of possi-
ble QTNs that can be selected into the model as covariates
in loops. After the optimization process in a random effect
model, the marker having the most significant P-value in a
particular bin is used to represent that bin (Liu et al. 2016).
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The two steps of FarmCPU model, which are run iteratively
are described in detail by Liu et al. (2016} and can be rep-
resented as.

Step 1. Fixed effect model (FEM):
v =MD+ MuTo 4+ MT, + S0, + ¢

Step 2. Random Effect Model (REM): ¥y =+

In both FEM and REM, y]:the trait value (i.e., BLUE
across environments) of the fth maize DH line and &= resid-
ual«»N(O,af). In FEM, Mﬂ,Mﬂ, ...,Mﬁz the genotypes of #
pseudo-QTNs, initiated as an empty set (Liu et al. 2016),
T, 15, ..., T,=the corresponding effects of the pseudo-QTNs;
55, = the genotype score of the jth DH line at the nth SNP
marker and e, = the corresponding effect of the nth SNP
marker. In REM, = the total genetic effect of the jth DH
line, where the variance and covariance matrix is repre-
sented by G = 2K¢2, K= the kinship matrix constructed
based on the pseudo-QTNs and 62 = the genetic variance
pertaining to the REM (Liu et al. 2016).

In order to identify which SNPs were most likely associ-
ated with each trait, we adopted an exploratory significant
threshold of P-value <0.0001 (—logl0 (P-value) <4) and
Bonferroni-corrected threshold of (—logl0 (P-value) =6.89).
The total proportion of genotypic variance (p.) explained
by the QTLs detected were calculated using the formula.

Rgdj

Po= 77

where H” is the broad-sense heritability of the trait, and Ri @
is the adjusted R? from a linear model (Utz et al. 2000).
Calculation of Ridj and p; for (a) a simultaneous fit of all

significant QTL and (b) individual QTL followed the pro-
cedure described by Wiirschum et al. (2015).

Candidate gene identification for GER
resistance

‘We searched for possible genes for GER resistance using
the publicly available B73 reference genome version 4 (Zm-
B73-REFERENCE-GRAMENE-4.0, Jiao et al. 2017) from
MaizeGDB (https://www.maizegdb.org/gene_center/gene)
based on the positions of two most important SNPs explain-
ing> 5% of genotypic variance for GER resistance in KE
(i.e., ZmSYNBREED_ 24070 673 on chromosome (chr.)
2 and ZmSYNBREED 53695 527 on chr. 6). Descrip-
tions and ontology terms of genes located within <1 cM
(approx. <250 kb) around the SNPs (Coan et al. 2018) were
obtained from the Gramene Annotations (http:/www.grame
ne.org/).
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Marker-assisted and genomic selection
for GER severity

We evaluated the potential of GS for GER resistance using
two models, ridge regression-BLUP (RR-BLUP) and weighted
ridge regression-BLUP (wRR-BLUP) using the R package
“rrBLUP” (Endelman 2011; Endelman and Jannink 2012). In
wRR-BLUP, the significant SNPs from the GWAS explain-
ing>5% p for GER severity were fitted in the GS model as a
fixed effect, and all other SNPs fitted as a random effect (Zhao
et al. 2014; Spindel et al. 2016). In addition, we compared the
prediction accuracies of marker-assisted selection (MAS, i.e.,
by using the significant SNPs from the GWAS explaining > 5%
P) and the two genome-wide prediction models (RR-BLUP
and wRR-BLUP) for GER resistance.

The quality of prediction of these models was evaluated
by cross-validation using 80% of the data as training set (TS)
and the remaining 20% as validation set (VS) (Liu et al. 2013;
Wiirschum et al. 2014; Wiirschum and Kraft 2014). Sam-
pling was stratified by landrace population and repeated 1000
times. To reduce computation time, we did not perform a de
novo QTL detection for each calibration set for the MAS and
wRR-BLUP. Instead, we predicted based on QTL positions
and effects detected in the whole dataset. For RR-BLUP and
wRR-BLUP, we also investigated the prediction accuracy of
GS for GER resistance across the two landraces. Here, KE
was exclusively used as the TS and PE as the VS, and vice
versa. The prediction accuracy (p) was determined by express-
ing the predictive ability (i.e., correlation coefficient between
the observed BLUEs and the predicted values) as a fraction
of the square root of the broad-sense heritability of the trait.
The model used to estimate marker effects in the TS is given
by the following:

Y=Xp+Zu+e

where =Y the vector of BLUEs for GER; fi = vector of fixed
effects; u ~ N(0, A(ri) = the vector of random marker effects,
A is a relationship matrix and the residuals are normal with
constant variance; X and Z = the design matrices; ¢ = the
residual error (Endelman 2011). We calculated the genomic
estimated breeding values (GEBV) of the individuals of the
VS by using the relation.

Yo =X8 + Zyu

where Y= the vector of GEBV of the VS§; X, and Z, =
design matrixes of individuals in the VS. The predictions
were based on additive effects of markers.
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Results

Phenotypic and genetic variation for GER resistance
and agronomic traits

GER symptoms were observed among maize lines in all four
environments with the highest mean severity in HOH 2019
and the lowest in GON 2018 (Fig. 1). Repeatability values
per environment were moderate to high, ranging from 0.61
to 0.96, depending on the trait (Supplementary Table 1).
Across the four environments, KE source population was

Combined
environments GON 2018 GON 2019 HOH 2018 HOH 2019
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Fig.1 Box plots of adjusted means for Gibberella ear rot (GER)
infection among Kemater (KE) and Petkuser (PE) DH lines at Gon-
delsheim (GON) and Hohenheim (HOH) in 2018 and 2019 plus the
four environments combined. Horizontal thick lines in boxes indicate
the median

(a) Kemater (N=250)
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Fig.2 Histograms showing the distribution of a Gibberella ecar rot
(GER) severity and b seed-set among 250 DH lines within each lan-
drace, across four environments. The red arrows indicate the mean
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slightly more resistant than PE source population (Fig. 2a).
Accordingly, KE DH lines had a lower mean GER severity
than PE lines (Fig. 1 and Fig. 2a). Variation within each
population was high, GER severity ranging from 1 to 87%
for KE and 7% to 97% for PE. On average, KE lines were
about 25 c¢m taller than PE lines while DS was similar for
both landraces. The average SS was slightly higher for KE
than PE lines. Accordingly, the KE source population had
a slightly higher seed set than the PE population (80% vs.
75%) (Table 1, Fig. 2b). We found significant (P <0.0001)
genotypic and genotype—environment interaction variances
and high H? estimates for all traits (Table 1). H? was higher
for KE than PE for most traits. Phenotypic and genotypic
correlations between GER severity and DS and SS were sig-
nificant (£ <0.01) in most cases but very low and similar for
KE and PE (Table 2). DS was significantly and moderately
correlated with SS. No significant correlations were found
between GER severity and plant height.

Principal component analysis and genomic
relationship

The PCA grouped the 462 DH lines used for the molecular
analyses into two major clusters corresponding to the two
maize landrace populations, KE and PE (Supplementary
Fig. 1). The first, second, and third PCs explained 16.75%,
3.36%, and 3.25% of the molecular variation, respectively.
Within KE, the percentage of variation explained by the first
three PCs were 7.27%, 4.41%, and 4.16%, respectively. Simi-
larly, among PE lines, the first three PCs explained 8.56%,

(b) Kemater (N=250)  Source pop.
- v
€
g
2
£

0 20 40 60 80 100

Petkuser (N=250)

ource pop.

Frequency (n)

0 20 40 60 80 100
Seed set (%)

value of GER severity and seed-set for the respective source popu-
lations (replicated 4-fold). Vertical dashed lines represent the mean
disease severily and seed-set of DH lines
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Table 1 Means, genotypic variance (Ué), genotype-environment
interaction variance (aéxg) and residual variance (of) components
and broad-sense heritabilities (H?) of Gibberella ear rot (GER) sever-
ity, days to silking (DS), plant height (PHT), and seed-set (SS) within
landraces

Parameter GER (%) DS (days) PHT (cm) S8 (%)
Kemaier (KE)

Mean 44.12 80.44 133.61 61.34
aé 25130 14.65 37749 473.83
aéx‘g 94.64 2.00 53.35 123.45
ol 305.01 2.53 85.10 182.04
H? 0.80 0.95 0.94 0.90
Petiuser (PE)

Mean 58.57 79.86 108.70 57.88
al, 255.60 14,75 324.03 302.01
Géx}f 146.95 3.57 44.57 143.16
af 305.01 2.53 85.10 182.04
e 0.77 0.92 0.94 0.84
rré and rréxﬁ for all traits and populations were significantly different

from zero at P < 0.0001

Table2 Phenotypic and genotypic (in brackets) correlations between
Gibberella ear rot (GER) severity and days to silking (DS), plant
height (PHT), and seed-set (§8S) within landraces across four environ-
ments

Traits DS PHT S8

Kemater DH

GER severity —0.25 —0.03(-0.04) 0.20(0.22)**
(—0.32)***

DS -0.52

(= 0.56)%+*

Petkuser DI

GER severity —0.27 =0.05(=0.06) 0.18(0.22)**
(—0.31)***

DS —0.54

(— 0.59)%%

*E F4*+Significantly different from zero at P < (.01 and P < 0.0001,
respectively (for both the phenotypic and genotypic correlations)

5.22%, and 3.47% of the molecular variation, respectively.
The genomic relationship plot also showed two major groups
corresponding to KE and PE landraces, with smaller sub-
clusters within each landrace (Supplementary Fig. 2).

QTLs for GER severity

Among KE DH lines (N=236), at #=0.0001, 8 QTLs
collectively explaining 34% of p. for GER severity were
found (Fig. 3a, Table 3). One SNP on chr. 2 (ZmSYN-
BREED_29737_831) exceeded the Bonferroni threshold
(Fig. 3, Table 3). We detected 13, 11, and 1 QTL(s) for DS,
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Fig.3 Manhattan plot of the GWAS scan for Gibberella ear rot
(GER) severity in a “Kemater Landmais gelb” (N=236), and b "Pet-
kuser Ferdinand rot” (N=226). Ex pl. Exploratory threshold at 7 <
0.0001; Bon/f. Bonferroni-corrected threshold at P < 0.03

PHT, and S8, respectively. None of the QTLs identified for
GER severity colocalized with the QTLs detected for the
agronomic traits in KE (Supplementary Table 2).

For PE (N=226), no QTL were detected for GER sever-
ity at #=0.0001 (Fig. 3b). SNP-GER resistance associa-
tions among PE lines were found at or near some of the loci
identified in KE only with a lower significance level (e.g.,
P<0.01). Ten QTLs were detected for DS and PHT while
one QTL was detected for S8S in PE (P=0.0001, Supple-
mentary Table 3).

The two most important SNPs with the largest pg for
GER severity in KE (i.e., ZmSYNBREED_24070_673 and
ZmSYNBREED_53695_527) were placed in 25 protein-
coding genes/genc models in the chosen interval, which
could be placed into 10 functional categories (Supplemen-
tary Table 4).

Genomic prediction versus marker-assisted
selection for GER resistance

We evaluated the prospects of MAS and GS for GER
resistance. For KE, we used the two SNPs explain-
ing>5% pg from the GWAS for MAS (Zhang et al. 20035)
and all 388,999 markers for GS by adopting two mod-
cls, RR-BLUP and wRR-BLUP. In wRR-BLUP, we used
the medium-to-large-effect SNPs associated with GER
QTLs as fixed effects as described in the Material and
Methods. For KE (Npg =189, Nyg=47), MAS and RR-
BLUP yielded similar p for GER severity (~(.40) while
wRR-BLUP yielded the highest p (0.51, Fig. 4). In PE
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Table 3 Significant SNPs

" ) Marker Chr*  Coordinate (cM)  P-value FAF  Additive effect  pg (%)
detected tor Gibberella ear
tot (GER) severity, their ZmSYNBRELD_24070_673 2 49.00 270607 042 5.00 15.04
chromosomal position. Povalue, 7 oyNpREED 20737 851 2 119.54 L176-08  0.26  4.56 1.28
frequency of the favorable ’ : ) - s )
allele (FAF), additive effects ZmSYNBREED_30537_486 2 162,00 L70G-05 041 -3.33 2.84
and proportion of explained ZmSYNBREED 44869 210 4 162.93 2.33B-05 036 327 4.35
genolypic variance (pg) in ZmSYNBREED_47633_944 5 78.30 175E-05 047 341 3.27
Kemater Landmais gelo™ (KE) 5 oyNRREED 53695527 6 3115 636E-07 050 —3.52 6.04
ZmSYNBREED 55609 889 6 91.78 9.50B-05 067 —3.14 0.46
ZmSYNBREED_70955_321 9 110.30 LI18E-05 019 —4.11 3.533
Total 33.69
*Chromesome
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Fig. 4 Box plots showing the prediction accuracies (%) of marker-
assisted selection (MAS), ridge regression-BLUP (RR-BLUP}) and
weighted RR-BLUP (wRR-BLUP) models for Gibberella ear rot
severity (%) in a “Kemater Landmais Gelb”, b *Petkuser Ferdinand
Rot”

(Nyg =181, Nyg=45), the mean p of RR-BLUP was 0.38
(Fig. 4b). For GS across the two landraces, when only DH
lines from KE were used as TS and PE as VS in RR-BLUP,
p for GER severity was 0.03 and vice versa p was -(0.01.
When the two SNPs explaining > 5% p,; for GER severity
in KE were used as fixed effects in the GS model (wRR-
BL.UP), p increased to 0.22 when KE lines constituted the
TS and PE lines the VS.
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PE showed higher genotype X environment variance result-
ing in a slightly higher H? for KE (Table 1). A large effect of
the environmental conditions on ear rot resistance has been
reported several times in the literature (Giomi et al. 2016;
Han et al. 2018; Gali¢ et al. 2019; Morales et al. 2019).
Therefore, it is important to phenotype lines for GER resist-
ance in multi-environmental trials. The broad-sense herit-
ability values were similar Lo previous reports (Martin et al.
2012a, b; Giomi et al. 2016; Han et al. 2016; Kebede et al.
2016).

We analyzed additionally agronomic traits such as DS,
PHT, and SS, because they may lead to physiological
escape or could have pleiotropic effects on GER resistance.
All three traits had high H” estimates ranging from 0.84
to 0.95 (Table 1). Within each population, low correlations
(r=-027100.20, ry== 0.32 10 0.22) were found between
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GER severity and the three agronomic traits analyzed,
though significant in most instances (Table 2). Similarly to
our findings, Han et al. (2018) and Martin et al. (2012¢)
reported low negative correlations between GER severity
and days to silking illustrating that late materials tend to get
less infected.

In wheat, PHT can highly affect severity of Fusarium
head blight infection (Mesterhazy 1995; Gaikpa et al. 2020),
but this was not the case in our study with maize as judged
from the non-significant correlations between PHT and GER
severity (Table 2). This might be explained by the direct
inoculation of the maize ears by hand while in wheat spray
inocunlation from above is commonly practiced.

Seed-set is an important fertility and yield-related trait
in maize and also highly affected by inbreeding depression.
DH lines from landraces are known to suffer more from
inbreeding depression (Béhm et al. 2017; Strigens et al.
2013) because they have not experienced several cycles of
inbreeding like elite material. Fusarium species are noto-
rious in benefitting from host stress and the proportion of
kernels on maize cobs itself might influence GER severity
because many missing kernels reduce the nutrient ability
of the fungus. In both cases, a close correlation between
GER severity and SS should occur. The respective correla-
tion coefficients between the two traits were significant, but
low (Table 2). This implies that those DH lines that were
heavily affected by inbreeding depression and consequently
showing a low SS did not systematically suffer more from
GER. The large differences in SS (Fig. 2b) within our popu-
lations might have been caused also by variation in flowering
date as indicated by moderate negative correlations between
both traits (= —0.32 to —0.54, rg= -0.59 to —-0.56,
P <0.0001). Genotypes flowering late had reduced seed-
set, but this might have been caused by unusually low rain-
fall and higher temperatures towards the end of the silk-
ing period in 2018 and partially also in 2019 rather than by
inbreeding depression. PHT is also affected by inbreeding
depression, but the association between PHT and SS was not
significant (rg =0.02 in KE and —0.06 in PE). Hence, we
conclude that in our study GER was not strongly affected by
inbreeding depression among lines. This is supported by the
fact that the mean of the DH lines is not drastically higher
than the mean of the source populations (Fig. 2a).

Our findings corroborate earlier studies reporting a high
amount of genetic variation among landraces for Fusarium
ear rot caused by F. vertictllioides (Bohm et al. 2017). In the
latter study, some DH lines from landraces were even less
susceptible to FER than elite maize lines. The high pheno-
typic variation observed in this study can be exploited for
GER resistance breeding and can be used for genomic-based
approaches, like GWAS and GS. GER resistance was not
much affected by the three agronomic traits and can, thus,
be selected without undesirable correlated response.
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Marker-trait associations for GER severity
among maize landraces

Although genotypic variation for GER severity found
within PE was similar to KE (Table 1), no significant
QTLs could be detected in PE, whereas in KE, we detected
eight QTLs. This is astonishing as both landraces were
evaluated in the same environments, with about the same
number of genotypes (N~ 230) and a high-density marker
array (N=388,999). As the complexity of a trait highly
affects the outcome of the molecular analyses (Schon et al.
2004), many small-effect QTLs with rare alleles might
control GER resistance in PE that could not be detected
by GWAS at the chosen significant threshold. Though we
did not find QTLs for GER severity within PE, QTLs were
detected for the three other agronomic traits evaluated
{(P=0.0001, Supplementary Table 3). In GWAS, strong
linkage disequilibrium (LD} between a marker and a QTL
allele is required to detect minor-effect QTLs (van Inghe-
landt et al. 2011). As LD decay was faster in PE than in
KE (Mayer et al. 2017, 2020), this might partly explain
the difference in QTL detection between both populations.
Additionally, the presence of rare alleles in a population
can result in low QTL detection power (Korte and Far-
low 2013). At most of the QTL positions, minor alleles
improved GER resistance in KE (Table 3). Also, the study
of Han et al. (2018) found no QTLs for GER severity by
GWAS in a line sortiment, but several QTLs for DON
content, some of which were located in the same bin (2.02)
where GER QTLs were identified in this present study
{Table 3). Similar to the present outcome, QTLs have been
reported on chromosome bins 2.03, 5.04, 6.07, and 9.05
for GER resistance in previous linkage mapping studies
{Giomi et al. 2016; Han et al. 2016; Martin et al. 2011,
2012b). Although we found several QTLs for DS, PHT,
and S§, none colocalized with QTLs for GER severity in
KE. This accords to the low » and r, found between GER
and the agronomic traits.

Our molecular results agree with the assumption that
GER resistance is controlled by many loci each contrib-
uting a small effect to the total genetic variation. Most
intermediate and small-effect QTLs remain undetected
in QTL mapping with small population size and lead to
overestimation of the genotypic variance explained by the
few detected QTLs (Beavis 1998; Melchinger et al. 1998;
Schén et al. 2004; Xu 2003). Thus, larger population sizes
are required to obtain an unbiased estimate of the propor-
tion of explained genotypic variance of detected QTLs.
The unexplained genetic variance by the QTLs detected
in KE might be explained by QTLs with small additive
effects that were below the significant threshold and
QTLs with non-additive genetic effects on GER severity.



Theoretical and Applied Genetics

Increase in population size and precision of disease rat-
ings as well as exploration of GWAS models that can
account for non-additive QTL effects are recommended.
In an analysis combining both landraces KE and PE, how-
ever, we could not detect more QTL than in KE alone
when including population (KE and PE) as a fixed effect
in the model.

Candidate genes associated with GER
resistance

The two prioritized SNPs, ZmSYNBREED 24070_673
(chr. 2), and ZmSYNBREED 53693 527 (chr. 6) detected
for GER resistance in KE, were associated with candidate
genes which code for proteins belonging to families like
cytochrome P450, mitogen-activated protein kinase kinase
kinase (MAP3Ks), serine/threcnine kinase, tetratricopep-
tide repeat (TPR)-like superfamily protein, leucine-rich
repeat (LRR) family protein and armadillo (ARM) repeat
superfamily protein. They are associated with functional
groups such as binding activities, kinase activity, response
to stress/stimulation, signal transduction, catalytic activ-
ity, metabolic and biosynthetic processes (Supplementary
Table 4). Similar functional categories were reported for
differentially expressed genes for F. graminearum (Yuan
et al. 2020) and F. verticillioides (Fv, Yao et al. 2020)
resistances in maize.

In previous studies, cytochrome P450 metabolism was
found to be involved in Fv resistance in maize (Yao et al.
2020) because it regulates lipid metabolism and influ-
ences the production and activity of jasmonic acid as well
as synthesis of secondary metabolites such as flavonoid
and plant hormones (Koo et al. 2011). Mitogen-activated
protein kinases (MAPKSs) are highly conserved and trans-
duce signals from the environment into cellular response
in plants (Sopena-Torres et al. 2018). MAP3Ks YODA
found in the present study was previously reported to
confer broad-spectrum resistance to fungi, bacteria, and
oomycetes in Arabidopsis (Sopefia-Torres et al. 2018).
Additionally, a combined linkage mapping or GWAS and
transcriptomic data identified kinase genes for Fv resist-
ance in maize (Maschietto et al. 2017; Yao et al. 2020).
Han et al. (2018) also found a protein serine/threonine
kinase annotated gene on chr. 2 associated with DON
accumulation in maize. The significant roles of TPR-like
superfamily protein, LRR family protein and ARM repeats
in biotic and abiotic stress regulations have been exten-
sively documented (Shanmugam 2003; Rosado et al. 2006;
Padmanabhan et al. 2009; Sharma and Pandey 2016) and
LLR family protein has been validated to control A. flavus
resistance in maize (Dhakal et al. 2017).
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Weighted genomic selection outperformed
marker-assisted selection for GER resistance

In practice, independent TS and VS are used for GS. How-
ever, in this study, we simulated the prospect of MAS and
GS in the same experimental material using a fivefold
cross-validation procedure (Liu et al. 2013; Wiirschum
et al. 2014; Wiirschum and Kraft 2014). Additionally, the
prospect of using each landrace population exclusively as
TS or VS was evaluated. Within KE, the average predic-
tion accuracy of MAS and unweighted GS (RR-BLUP)
were similar implying that the QTLs detected by the multi-
locus GWAS model (FarmCPU) were able to capture most
of the important additive variance controlling GER sever-
ity. MAS is expected to yield better predictions only when
major QTLs are underlying a trait, e.g., Ffabl, Fhb2, Fhbd,
FhbS5 for Fusarium head blight resistance in wheat (Buerst-
mayr et al. 2002; Ma et al. 2020). The p estimated by RR-
BLUP was similar for both, KE and PE DH libraries (39%
and 38%, respectively). In RR-BLUP, the effects of many
QTLs with small effects are estimated simultaneously
and can result in underestimation of the effects of major
genes in a population (Bernardo 2014). In contrast, the
weighted GS (WRR-BLUP) approach outperformed MAS
and RR-BLUP (Fig. 4). Therefore, we hypothesize that
different information is captured by the fixed compared
to the random effects (Spindel et al. 2016). The superior-
ity of wRR-BLUP agrees with the findings for Fusarium
head blight and Septoria tritici blotch resistance in small-
grain cereals {(Galiano-Carneiro et al. 2019; Herter et al.
2019; Odilbekov et al. 2019). However, estimates of MAS
and wRR-BLUP are likely to be somewhat inflated in our
study, because we based predictions in the VS on QTLs
detected from GWAS in the entire data set. An alternative
for getting an unbiased estimate would be the cross-vali-
dation procedure suggested by Utz et al. (2000). However,
this procedure would be computationally very demanding
for our study with about 390,000 markers as it requires in
each of the »n runs (1) performing GWAS for QTL detec-
tion and (2) establishing the GS model with 80% of the
population in the training set, and application of the model
to the remaining 20% of the population. The unweighted
GS approach is a possibility when most of the low-effect
QTLs underlying a trait cannot be detected by a GWAS
model like in PE.

A close relationship between training set and validation
set is positively influencing GS (Albrecht et al. 2011; Rie-
delsheimer et al. 2013; Kadam et al. 2016; Brauner et al.
2018, 2020; Herter et al. 2019). Prediction across different
maize heterotic pools or highly unrelated individuals can
even lead to a negative mean p (Riedelsheimer et al. 2013;
Han et al. 2018). It should be noted that the materials used
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for our present work were DH lines derived from two lan-
draces both belonging to the same flint pool, but are not as
closely interrelated as lines from bi-parental or intercon-
nected families. Therefore, GS may vield higher p for GER
severity in breeding programs incorporating pre-selected
lines (Albrecht et al. 2011; Brauner et al. 2018).

Across landraces, prediction accuracies close to zero
were expected. Differences among landraces in the linkage
phases between QTL and markers might account for this
result (Brauner et al. 2018; Han et al. 2018), because GS
basically utilizes the L.D between SNPs and QTLs. When
the TS contained only lines from PE even negative p was
found. KE yielded somewhat higher p than PE when used
as TS, especially when the two SNPs with intermediate
to major effects in KE were used as fixed effect in the GS
model. This reflects the results found for each population in
GWAS, i.e., the landrace having no major QTL (i.e., PE) was
a poorer predictor of GER resistance in the landrace where
GER QTLs could be detected (i.e., KE) while the latter was
a slightly better predictor of GER resistance in PE.

In an analysis combining both landraces KE and PE for
GS, the p obtained for GER severity were reduced com-
pared to the results obtained for individual landraces when
accounting for differences in mean GER severity between
populations (KE and PE) (p = —0.03 for RR-BLUP and
0.36 for wRR-BLUP).

Conclusions

This study presents phenotypic and molecular analyses
of GER resistance among DH lines originating from two
European maize landraces, KE and PE. The present findings
suggest that favorable alleles in the two landraces can be
harnessed for improving GER resistance of elite germplasm
with genomic tools. Beneficial QTL alleles from KE need
to be validated and then marker-assisted backcrossed (BC)
into elite flint lines to increase GER resistance in this heter-
otic group. The BC lines should be subjected to testcrossing
for selecting maturity, further adaptation traits, and finally
grain yield. A subsequent selection for GER resistance on
testeross basis could be beneficial, because the correlation
between line and testcross performance for this resistance
trait has been shown to be only moderate (Loffler et al. 2011;
Martin et al. 2012¢). Although no GER QTLs could be
detected within PE, p estimated by RR-BLUP was of similar
magnitude than within KE, indicating that beneficial effects
can be expected also from PE. In future, it might be useful
to cross selected DH lines from KE and PE to accumulate
their respective resistance alleles in the flint heterotic group.
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Supplementary material
Supplementary Tables

Supplementary Table 1 Repeatability values for Gibberella ear rot (GER) severity and agronomic
traits in individual environments

Trait GON 2018 GON 2019 HOH 2018 HOH 2019
Kemater (N=250)

GER (%) 0.71 0.61 0.70 0.75
Silking (days) 0.93 0.93 0.95 0.90
Plant height (cm) 0.90 0.92 0.91 0.91
Seedset (%) 0.88 0.85 0.90 0.87
Petkuser (N=250)

GER (%) 0.81 0.62 0.76 0.61
Silking (days) 0.93 0.93 0.96 0.90
Plant height (cm) 0.88 0.90 0.91 0.90
Seed set (%) 0.85 0.82 0.88 0.80

GON=Gondelsheim, HOH=Hohenheim
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Supplementary Table 2 Significant SNPs detected for days to silking (DS), plant height
(PHT) and seed-set (SS) and the proportion of explained genotypic variance (PG, %) within
“Kemater Landmais Gelb” population (N=236)

Trait Marker Chr Coordinate P-value MAF Effect PG(%)
(cM)

Silking ZmSYNBREED_13571_319
PZE-101177457
ZmSYNBREED 24171 409
PZE-102057292
ZmSYNBREED 25614 200
ZmSYNBREED 30702 382
PZE-103020403
ZmSYNBREED 36594 421
ZmSYNBREED_43496_660
ZmSYNBREED 60539 814
ZmSYNBREED 61375_398

109.74 2.29E-05 0.35 0.76 7.04
173.40 6.95E-07 037 -0.72 4.22
54.70 2.42E-08 0.37 0.92 0.46
68.05 6.88E-06 0.09 -1.16 4.06
85.63 1.24E-07 0.40 -0.93 12.02
179.08 6.63E-05 0.29 0.92 1.30
36.33 8.61E-05 0.49 0.62 3.99
136.27 8.38E-05 0.26 0.60 3.54
135.18 3.07E-05 0.30 0.73 2.58
89.00 5.06E-06 0.42 -0.75 6.38
138.60 1.31E-05 0.28 0.78 2.06
PZE-108043501 53.20 455E-07 0.30 0.88 4,54
ZmSYNBREED 66468 531 134.55 3.06E-07 0.08 1.65 1257
Total 62.21

OO0 NN PP WWDNDNDDNNDN PP PR

PHT SYN25732 1 98.12 2.8E-08 0.05 8.96 6.56
ZmSYNBREED_26883_ 932 2 87.30 2.67E-13 0.26 6.84  14.53
ZmSYNBREED_30884_970 3 18.40 1.04E-06 0.14 -4.61 3.99
ZmSYNBREED_31089_919 3 36.33 9.43E-05 0.32 2.85 1.50
ZmSYNBREED_36058 252 3 114.24 1.56E-11  0.47 5.17  10.58
ZmSYNBREED_45996_103 5 61.00 6.55E-05 0.50 -2.68 2.27
ZmSYNBREED_48515_186 5 79.07 5.54E-05 034 -4.05 14.60
ZmSYNBREED_56241 197 7 10.95 1.22E-06  0.38 3.35 2.74
ZmSYNBREED_64964_415 8 80.15 1.96E-09 0.31 4.64 7.36
ZmSYNBREED_65956_413 8 98.42 9.48E-08 0.22 4.79 8.51
ZmSYNBREED_67307_966 9 47.00 5.32E-08 0.29 -3.75 0.72
Total 71.71

SS SYN34979 5 99.08 4.01E-05 0.07 -12.25 9.84

saChromosome; MAF, minor allele frequency
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Supplementary Table 3 Significant SNPs detected for days to silking, plant height and seed-
set and the proportion of explained genotypic variance (PG, %) within “Petkuser Ferdinand
Rot” population (N=226)

Trait Marker Chr* Coordinate P-value MAF Effect PG(%)
(cM)

Silking ZmSYNBREED_18736_535 1 252.70 1.32E-09 0.46 1.04 3.90
ZmSYNBREED_24440_109 2 66.95 2.06E-11 0.49 -1.36 12.33
ZmSYNBREED_30876_878 3 17.00 2.99E-07 0.08 151 8.38
ZMSYNBREED_44949 124 4 173.20 6.05E-09 0.02 3.11 6.65
ZmSYNBREED_45112 401 5 13.20 3.55E-05 0.38 0.62 2.64
ZmSYNBREED_53883_603 6 37.25 3.2E-06 0.13 -1.03 0.66
ZmSYNBREED_55424 201 6 79.40 1.8E-05 0.44 0.68 0.30
ZmSYNBREED_21984 457 10 61.53 5.52E-06 0.28 0.97 15.42
ZmSYNBREED_23095 276 10 86.50 1.51E-05 0.23 -0.97 5.07
ZmSYNBREED_23313 200 10  102.40 7.33E-08 0.14 131 0.33

Total 53.04

PHT ZmSYNBREED_16431 599 1 164.77 1.04E-05 0.14 -3.73 1.93
PZE-101171667 1 168.80 9.4E-08 0.12 -5.33 7.23
PUT-163a-16927623-1182 2 62.87 3.66E-05 0.47 -2.90 4.28
SYN4699 2 134.28 1.11E-06 0.04 -6.90 241
ZmSYNBREED_42399 177 4 90.51 6.45E-07 0.18 3.97 13.28
ZmSYNBREED_53359 839 6 27.00 2.16E-11 0.35 -6.40 22.81
ZmSYNBREED_55722_432 6 99.00 4.86E-06 0.29 -4.67 7.13
SYN14712 6 135.80 1.32E-05 0.48 -2.39 1.58
ZmSYNBREED_60462_165 7 86.50 4.73E-09 0.50 -3.86 0.02
ZmSYNBREED_66119 558 8 103.30 1.91E-05 0.04 7.52 3.90
Total 62.62

SS ZmMSYNBREED_24191 259 2 55.37 1.9E-05 0.29 7.59 3.60

saChromosome; MAF, minor allele frequency

Supplementary Table 4 Number of candidate genes associated with ontological terminologies for
Gibberella ear rot severity

Functional group/gene ontology term Number of genes*
(ATP, DNA, Protein, lon ) binding activity
(Protein) kinase activity
Molecule/membrane modification/repair
Defense/response to stress or stimuli
Catalytic/transferase activity

Structural component of cell
wall/membrane/ribosome
Compound biosynthesis/metabolism

Protein phosphorylation/signal transduction
Regulation of DNA replication/transcription
Oxidation-reduction process 3
*Some of the 25 protein-coding genes/gene models associated with the two most important SNPs of
GER severity had multiple functions
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Supplementary Figures

e * Kemater Landmais gelb
o'o\: \:.0. . e
0.10- R, S
. ] .® @
.. t.o:? 2 e
i
3 0.05- 4 A .
% 2 & Petkuser Ferdinand rot
o ¢ . e
— ¢ oo.(
. 0.00- *ostt o *de
]
8 .0 L] . ..' ™
* e ": * o* ®
005 w®%E ’
. ..‘:e“‘.. .
. .:..‘: ET.‘},':
0104 % &
o.' *
..: *
-0.15 . *
| | | |
-0.2 -0.1 0.0 0.1

pcs[, 1] (16.7%)
Supplementary Figure 1 Principal component (PC) analysis of the 462 DH lines originating from

two landraces based on the marker data. Percentages of variation explained by the first and second
PCs are shown in the brackets
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Supplementary Figure 2 A heat map of dendrogram and the genomic relationship matrix constructed
using VanRaden algorithm in R package GAPIT.
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6 General discussion

Fusarium spp. are ubiquitous in nature, infecting maize and small-grain cereals such as rye,
triticale, durum wheat, bread wheat and many other crops. Quantitative host plant resistance is
an effective way of reducing the negative impacts of Fusarium ear diseases and mycotoxin
contaminations in maize and small-grain cereals. In this thesis, Fusarium head blight (FHB)
resistance and deoxynivalenol accumulation in four small-grain winter cereal crops were
compared, and the molecular mechanism of FHB resistance examined in rye for the first time.
The thesis also covers the genomics of ear rots (ER) and mycotoxin resistances in maize, and
empirical phenotypic and genomic analyses of Gibberella ear rot (GER) resistance among

doubled-haploid (DH) lines derived from two European flint maize landraces.

FHB resistance and deoxynivalenol accumulation in four winter small-grain
cereals

Systematic comparison of 12 cultivars or advanced genotypes each of rye, triticale, durum
wheat and bread wheat under artificial infection using constant and crop-specific inoculum
concentrations showed differential response to F. culmorum head infection, kernel damage and
DON accumulation (Chapter 2). Interestingly, although FHB severity in durum wheat was
lower than in bread wheat, durum wheat accumulated more DON than bread wheat on the
overage. The higher mean of FHB severity for bread wheat than durum wheat can be attributed
to the presence of two highly susceptible genotypes, Franz and Tobak (Chapter 2). In addition,
the regulatory mechanisms of FHB severity and DON accumulation in these crop species may
be partially different. He et al. (2019) identified two major quantitative trait loci (QTLs) for
DON accumulation among 197 recombinant bread wheat inbred lines by spray-inoculation of
a mixture of five DON producing F. graminearum isolates. The QTL located on chromosome
3BL had only minor impact on FHB resistance while the other QTL on chromosome 3DL had

no impact on FHB. Other factors such as moisture content and phenolic compounds might
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influence symptom development and DON synthesis in small-grain cereals (Gauthier et al.,
2016; Pagnussatt et al., 2014). The strength of association between traits, FHB severity, FDK
and DON depended on the crop species, being high in both wheat species and generally low in
rye and triticale. Hence, it is important to determine mycotoxin contents of cereal crops at the

later stages of variety development.

The ranking of the four winter crop species for FHB severity was not influenced by change in
inoculum concentration (i.e., constant vs. crop-specific concentrations, Chapter 2). Other
authors also found rye to be more resistant to FHB and DON accumulation than triticale and
wheat genotypes (Arseniuk et al., 1999; Langevin et al., 2004; Miedaner et al., 2001). Arseniuk
et al. (1999) found both spring and winter wheat varieties to be more susceptible to FHB than
rye and triticale varieties under artificial infection with a composite isolate of four Fusarium
spp. Triticale might have inherited the high level of resistance from rye. Previous QTL analyses
in hexaploid triticale showed that several rye chromosomes contained QTLs for FHB
resistance, though some QTLs were also found on the A and B genomes (Dhariwal et al., 2018;
Galiano-Carneiro et al., 2019; Kalih et al., 2015). The differential response of these four winter
Triticeae species to Fusarium infection can also be attributed to passive resistance mechanisms
such as variation in anther extrusion, spike morphology, waxy layer and plant height (Chapter
2; Buerstmayr & Buerstmayr, 2015; Mesterhazy, 1995). In addition, the reduced height (Rht)
genes such as Rht-B1b and Rht-D1b in durum wheat and bread wheat highly influence FHB

severity among cultivars of these crops (Miedaner & Voss, 2008; Miedaner et al., 2017).

In future studies, the regulatory mechanisms of mycotoxin accumulation in harvested small-
grain cereal crops should be investigated into more detail. Studies aimed at elucidating the
molecular mechanism of FHB resistance in rye will be worthwhile to understand to which
extent its high resistance level is governed by a high frequency of strong QTL alleles that could

be transferred in future to wheat and triticale.
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Molecular basis of FHB resistance in rye (Secales cereale L.)

Though advances have been made in rye genomics in the last decades, rye still lagged behind
most small-grain winter cereals in terms of genomics (Miedaner et al., 2019b). Few genomic
analyses have been done to identify QTLs for agronomic and quality traits (Falke et al., 2009;
Hackauf et al., 2017; Miedaner et al., 2012, 2018) as well as abiotic stress tolerance (Myskow
et al.,, 2018) in rye. However, QTLs that regulate FHB resistance in rye, the only cross-
pollinating winter small-grain cereal, were unknown until now. Therefore, as part of this thesis,
a premier GWAS and genomic prediction was conducted to unravel the genomic mechanisms

of FHB resistance in rye (Chapter 3).

The high total impact of the QTLs detected for FHB resistance (Chapter 3) can partly be
attributed to the accumulation of FHB resistance alleles in the recurrent selection program
where the material was derived from. According to Beavis (1998), p; of detected QTLs can
greatly be estimated upward when population size, n < 100 because most small effect QTLs
are difficult to detect in small population sizes. Given that close to 500 lines were analyzed
(Chapter 3), the proportion of genotypic variance explained by the detected QTLs might only
be slightly overestimated (Beavis, 1998; Xu, 2003). The two SNPs, Contig1930 located on
chromosome 1R and isotig09091 on chromosome 5R, which explained 33 % and 14 % of p,
respectively, can be investigated further and used as candidates for genomic-assisted breeding
against FHB in rye (Chapter 3). The outcome of this study shows that the genetic architecture
of FHB resistance in rye is complex, controlled by several additive alleles. Similar genetic
architecture was found for FHB resistance traits in other small-grain winter crops (Arruda et
al., 2016b; Dhariwal et al., 2018; Wang et al., 2017) and Gibberella ear rot resistance in maize
(Chapter 4; Chapter 5). No common QTL was found between FHB severity and HS, which
was in consonance with the observed low phenotypic relationship between these traits (Chapter

3). However, one medium-effect FHB QTL (isotig15081, 3R) was in LD (r? = 0.84) with the
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PHT QTL (isotig24773, 3R) and might represent a common QTL between the two traits,
partially explaining the moderate phenotypic correlation found between the two traits (Chapter
3). None of the QTLs for PHT had a large effect, indicating the absence of major dwarfing
genes in the material analyzed. Therefore, resistant lines can be selected without having large

negative impacts on earliness and PHT in hybrid rye breeding programs (Chapter 3).

Because of the presence of several additive genes each with minor effects on the traits analyzed
in rye, MAS (i.e., using marker effects of QTLs explaining >5 % of p;) was compared to GS
using unweighted and weighted GP approaches (Chapter 3). The two GP approaches
outperformed MAS for all three traits, FHB severity, HS and PHT. For example, for FHB
severity, the prediction accuracy, p (i.e., prediction ability divided by the square root of H?) of
MAS was 0.54 while that of both GP approaches was 0.96. This trend corroborates other
reports in triticale (Galiano-Carneiro et al., 2019), bread wheat (Herter et al., 2019; Mirdita et
al., 2015; Odilbekov et al., 2019; Rutkoski et al., 2012) and durum wheat (Miedaner et al.,
2017). The high p can be due to the presence of increased resistance alleles for FHB resistance
and the close relatedness of lines from the elite breeding germplasm. Weighted and unweighted
GP yielded similar prediction abilities. Thus, inclusion of most important QTLs in the GP
model did not result in further improvement of p, because the alleles associated with QTLs for
FHB resistance were already high in the material analyzed GP (Chapter 3). In breeding
materials where few QTLs with small to moderate cumulative effects are present, the inclusion
of detected QTLs as fixed effects may result in higher prediction accuracy (Galiano-Carneiro
etal., 2018; Odilbekov et al., 2019; Herter et al., 2019). In addition, the magnitude of the power
of weighted GP over unweighted GP and MAS is dependent on the trait and the genetic material
evaluated (Chapter 3 and 4). Galiano-Carneiro et al. (2018) detected six QTLs jointly
explaining 56.64 % p; for FHB resistance in triticale by GWAS. They used the four QTLs

explaining >5 % p. as weight in the GP model, which led to about 20 % increase in the p for
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FHB resistance. Hence, breeding programs can target accumulation of QTLs in populations
prior to GP for improved predictability. The findings in Chapter 3 imply that genomic-assisted
recurrent selection scheme can catalyze improvement of rye genotypes against toxigenic
Fusarium head infection. It should be noted that the prediction accuracies reported (Chapter 3)
and other cross-validation studies (Galiano-Carneiro et al., 2018; Herter et al., 2019) might be
over calculated since individuals were evaluated in the same trials and randomly sampled to
constitute the training set, TS (80 %) and the validation set, VS (20 %). However, in real-world
breeding programs, individuals of the TS and VS are evaluated in different trials or
environments, and sometimes, disease symptoms are scored by different people. In this case,
prediction accuracies may be lower than what has been reported in literature. Efforts should be

made to optimize GS in applied breeding by constantly updating the training set.

Breeding for ear rot and mycotoxin resistances in maize (Zea mays L..)

In the past decades, conventional breeding techniques like backcrossing, single seed descent,
recurrent and multistage or mass selection have been extensively used to breed maize against
toxigenic ear rots (ERs) such as Gibberella ear rot (GER), Fusarium ear rot (FER) and
Aspergillus ear rots (Mesterhazy et al., 2012). However, these traditional methods are time-
consuming and labor intensive. Meanwhile, there is the need to expedite breeding cycles to
increase selection gain to produce safe and more food, to feed the ever-increasing human and
animal populations. The advancement and availability of molecular markers, high-throughput
sequencing technologies and internet-based “omics” data have led to the use of genomic tools
such as linkage mapping, GWAS, gene expression analyses and genomic prediction in ER
resistance breeding programs (Chapter 4). Chitinase gene 2 and geranyl geranyl transferase-
like protein found to contribute to resistance to Fusarium spp. in maize have been cloned
(Dowd et al., 2018a; Dowd et al., 2018b). However, there is slow progress in using the several
QTLs and candidate genes (CGs) detected in real-world resistance breeding due to many
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factors. Major constraints to the power and usefulness of genomic analyses are precision
phenotyping and the highly polygenic nature of ER resistance and mycotoxin accumulation
(Chapter 4; Cobb et al., 2013). Application of automated high-throughput phenotyping
platforms such as 3D scanning to improve transferability and repeatability of assessing ER
symptoms (Kuska & Mabhlein, 2018; Mutka & Bart, 2015) might be a long-term goal. A
possible solution to optimize results from genomic studies is to combine different analytical
methods in order to overcome the inherent weaknesses of each individual method. In addition,
the use of landraces to increase the genetic variation for ER and mycotoxin resistances was

proposed (Chapter 4).

Genome-wide association studies and genomic prediction for harnessing GER
resistance from two European maize landraces

Phenotypic and molecular analyses of Gibberella ear rot (GER) resistance in elite maize
materials have been conducted (Han et al., 2016; Martin et al., 2012; Martin et al., 2011) but
until now, the genetic diversity among landraces of European flint maize is not exploited for
GER resistance breeding using integrated genomic tools. Therefore, 500 doubled-haploid (DH)
lines originating from two flint maize landraces, “Kemater Landmais Gelb” (KE) from Austria
and “Petkuser Ferdinand Rot” (PE) from Germany, were phenotyped and genotyped for F.

graminearum ear rot resistance using silk channel inoculation method (Figure 2a, b).
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(a) “Kemater Landmais gelb” “Petkuser Ferdinand rot”

Figure 2 (a) The source landrace populations, “Kemater Landmais Gelb” and “Petkuser Ferdinand Rot”, (b) Silk
channel inoculation of maize ear, 4-6 days after silk emergence

Maximum phenotypic variation was found for GER severity in both combined DH libraries
(COMB) and within the two landraces evaluated, ranging from approximately 1 % to 87 % in
KE and 7 % to 97 % in PE (Figure 3). This shows that highly resistant and susceptible lines
can be found in maize landraces (Chapter 5; Béhm et al., 2017). Similarly, previous studies
reported high phenotypic and molecular variation for agronomic and quality traits among DH
lines originating from other European flint maize landraces (Boéhm et al., 2017; Mayer et al.,
2017; Stringens et al., 2013). Bohm et al. (2017) evaluated 389 DH lines from six European
flint landraces together with 53 elite flint lines and reported higher phenotypic variation and
broad-sense heritability for landraces than the elite lines for F. verticilliodes ear rot (FER)
severity. They also found improved resistance for FER within landraces than elite lines. The
significance of G x E interaction and the influence of the environment on GER resistance has
been reported several times in literature (Chapter 4 and Chapter 5; Martin et al., 2012; Han et
al. 2018). The importance of G x E in GER resistance makes evaluation of lines in multi-
environments highly necessary, to improve heritability values. Phenotypic and genotypic
correlations between GER severity and the three agronomic traits were weak (P < 0.01).

Similarly, previous research revealed negative but weak to moderate relationships between
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GER severity and days to female flowering (Martin et al., 2011, Han et al., 2016, 2018). This
phenomenon allows simultaneous selection for GER resistance, and the three agronomic traits,

plant height, earliness, and seed-set (Chapter 5).

Because of the high level of genetic diversity found among the landraces (Chapter 5), novel
alleles present can be harnessed to broaden the narrow genetic background of elite breeding
materials. It is important to note that remnant genetic load among DH lines obtained from
landraces can lead to undesirable agronomic traits like poor emergence rate, poor growth,
lodging, low seed-set, and poor grain yield (Chapter 5; Béhm et al. 2017; Strigens et al. 2013).
Besides, inbreeding depression among DH libraries may results in unwanted phenotypes like
leaf chlorosis, tillering, extreme susceptibility to diseases such as maize ear rots, common smut
(Ustilago maydis) and common rust (Puccinia sorghi) (Figure 4; Strigens et al. 2013).
Therefore, introgression of resistance alleles from landraces such as KE and PE into elite
materials may require further selection for superior agronomically adapted traits, to reduce the
effect of detrimental alleles. In a previous study, about 70 % of DH lines derived from European
flint landraces were recommended to be excluded from subsequent breeding program because

of the impact of inbreeding depression (Béhm et al. 2017).

Most resistant DH line Most susceptible DH line

Figure 3 A sample of the most resistant line (from Kemater) and susceptible line (from Petkuser) found in our
field trial in 2019
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Figure 4 Maize plants showing symptoms of (a) common smut and (b) common rust, under natural infection on
the field in 2019

The premier single-SNP based GWAS performed for F. graminearum ear rot resistance in elite
European flint maize detected six QTLs for DON accumulation but none for GER severity
(Han et al., 2018). However, the present GWAS conducted using a multi-locus method, fixed
and random model circulating probability unification (FarmCPU, Liu et al., 2016) detected 14
QTLs for GER severity among DH lines from KE and PE (COMB), when first three principal
components (PCs) were fitted as fixed effects in the model. These SNPs jointly explained about
52 % of p. . Similar to the findings for rye (Chapter 3), though the cumulative effect of QTLs
detected by FarmCPU was large, majority of the single QTLs (10 out of 14) had small effects
for GER severity (i.e., contributed <5 % p,). By classical QTL mapping approaches, other
authors reported several minor-effect and a few medium- to major-effect QTLs for GER
resistance, with cumulative QTL effects ranging from about 20 % to 60 % (Chapter 4).
Generally, compared to most other crops, the linkage disequilibrium (LD) decay in maize is
faster (Miao et al., 2019) which makes QTL detection for complex traits like GER resistance

very difficult (Han et al., 2018). Studies showed that LD decreased even faster in landraces
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than elite lines because of long historical recombination events (Strigens et al., 2013). Among
the landraces analyzed in the present study, LD decreases more rapidly within PE than KE and
the decay pattern is less rapid among lines from COMB (Chapter 5; Mayer et al., 2017). The
findings in Chapter 5 illustrate that large population sizes and increased number of alleles
associated with GER severity at a particular genomic region largely influence the power to
detect QTLs at stringent significant threshold such as the Bonferroni corrected threshold at P
= 0.05. GWAS allows for QTL detection at high resolution but population structure in
association-mapping panels can lead to spurious marker-trait associations (Yu et al. 2006).
However, over the years, GWAS methods such as compressed mixed linear model, CMLM
(Zhang et al., 2010) and FarmCPU (Liu et al., 2016), have been developed to control false
positives and false negatives by the inclusion of kinship matrix and principal components in
the model as covariates. Large population sizes and appropriate GWAS methods help to
overcome “the Beavis effect” (Beavis, 1998). Therefore, since the number of DH lines
analyzed across landraces (n=462, Chapter 5) was similar to the number analyzed in rye
(Chapter 3), the proportion of genotypic variance explained by the QTLs might be close to the
expected value (King and Long, 2017). The remaining unexplained genotypic variance in the
GWAS can partly be attributed to the presence of QTLs having non-additive effects, and QTLs
with rare alleles that could not be detected at the significant threshold applied. In our study,
none of the QTLs detected for DS, PHT and SS colocalized with the QTLs for GER severity,
confirming the low correlations found between these traits in both COMB and within
populations (Chapter 5). Similar trend was found between FHB severity and earliness in rye
(Chapter 3). This outcome implies that there is no strong genetic linkage between the resistance
alleles and the alleles for earliness, plant height and poor seed-set, making the introgression of

GER QTLs into commercial flint germplasms less cumbersome.
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Several candidate genes (CGs) have been reported for ear rots resistance in past studies
(Chapter 4). In this thesis, 25 CGs were associated with two most important SNPs for GER
severity. These CGs encoded for proteins which fall into functionary categories such as
response to stress, molecule binding activities, molecule modification, kinase activity, catalytic
activity, signal transduction, oxidation-reduction process, cellular process , etc., similar to
earlier reports for Fusarium resistance in maize (Han et al., 2018; Lanubile et al., 2017; Yao et
al., 2020; Yuan et al., 2020). The current study (Chapter 5) confirms that GER resistance is
governed by multiple loci containing several genes. For both COMB library and within DH
libraries, multi-SNP GWAS algorithm (FarmCPU) was more powerful than single-SNP based
GWAS (CMLM) for GER QTL detection at stringent significance thresholds (P = 0.0001 and
Bonferroni corrected threshold at P = 0.05, e.g. Table 1, Figure 5). Within KE, FarmCPU
detected eight significant SNPs jointly explaining 34% of genotypic variance for GER severity
wihile CMLM detected only two SNPs on chromosome 2, which jointly explained 15%
genotypic variance for GER severity. Both models failed to detect significant SNPs in PE for
GER severity: However, at less stringent significance thresholds (-log (0.001) = 3), CMLM
detected SNP-trait associations at genomic regions similar to FarmCPU (Figure 5). This
corroborates previous reports illustrating the power of FarmCPU over conventional MLM for
other complex traits (Kaler et al., 2020; Malik et al., 2019; Miao et al., 2019; Wen et al., 2018;
Zhang et al., 2019a). The advantage of detecting more MTAs and CGs become even higher
when both single- and multi-locus GWAS methods are used for the same data set because the
inherent weaknesses of each method is overcome (Abed and Bezile, 2019; Li et al., 2018; Wei
et al., 2017; Zhang et al., 2019a). Single-locus based GWAS methods such as CMLM have
lower power of quantitative trait nucleotides (QTNSs) detection for complex traits and requires
correction for multiple testing to control false positives (Zhang et al., 2018; Zhang et al. 2019a).

When the number of SNPs is large, some important QTL may not be detected under the
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stringent screening criterion such as the Bonferroni correction for multiple testing for
significance, P = 0.05/number of markers (Zhang et al., 2018, Figure 5). This can results in
many false negatives (Liu et al., 2016; Miao et al., 2019). An individual SNP may not be able
to capture existing allelic diversity for complex traits in a given population (Abed and Bezile,
2019). An advantage of single-locus GWAS is that peaks can be localized precisely because
significant markers in LD are not removed (Figure 5). This makes it more beneficial for CG
identification and comparison of QTLs between populations. However, according to Kaler et
al. (2020), single-locus GWAS models can fail to identify other important loci that may have
slightly lower P-value than SNPs in the peaks that are in strong LD with the most significant
SNP. Multi-locus GWAS methods have higher QTL detection power and accuracy than single-
locus GWAS methods (Abed and Bezile, 2019; Kaler et al., 2020; Miao et al., 2019; Malik et
al., 2019). This is because associated markers are fitted as covariates and multiple markers are
tested simultaneously, which reduces the background noise by other loci that may be associated
to the trait (Segura et al., 2012; Liu et al., 2016). Treating SNP effect as random in the multi-
locus GWAS model results in shrinkage estimate of QTL effects which is more stable than the
least square estimate (Wang et al. 2016; Liu et al., 2016). Multi-locus GWAS does not require
correction for multiple testing (Zhang et al., 2019a). On the other hand, multi-SNP GWAS such
as FarmCPU removes significant SNPs that are in LD with the SNPs at detected peaks (Figure
5), but these SNPs in LD at the peaks might provide additional information for MTA validation
purposes and CG identifications. Hence, some information may be reduced in FarmCPU
GWAS compared to CMLM at detected peaks (Wei et al., 2017). The comparison of available

GWAS methods for QTL identification have been reviewed recently (Zhang et al., 2019a).
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Table 1 Number of QTLs detected by CMLM and FarmCPU and the total proportion of explained genotypic
variance (p;) for Gibberella ear rot (GER) severity, days to silking (DS), plant height (PHT) and seed-set (SS) in
combined DH libraries, across four environments

Trait GWAS method Number of QTLs pe (%)
GER severity CMLM 5 28.30
FarmCPU 14 52.20
DS CMLM 16 26.45
FarmCPU 23 56.37
PHT CMLM 13 57.78
FarmCPU 17 53.21
SS CMLM 13 31.12
FarmCPU 13 43.90

GWAS, genome-wide association studies; CMLM, compressed mixed linear model; FarmCPU, fixed and random
model circulating probability unification
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Figure 5 Manhattan plots of (a) compressed mixed linear model (CMLM), and (b) fixed and random model
circulating probability unification (FarmCPU) GWAS methods for GER severity among 462 DH lines (combined
library). Expl. Exploratory threshold; Bonf. Bonferroni-corrected threshold
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In marker-assisted selection (MAS), marker effects of detected QTLs are estimated and used
to predict breeding values of lines in prediction models such as the best linear unbiased
prediction, BLUP (Zhang et al., 2005). However, GWAS may not be able to fully capture
several rare additive alleles that control quantitative traits such as FHB and ER resistances and
agronomic traits (Miedaner and Korzun, 2019; Chapter 3, 4). To account for the effects of
undetected QTL alleles in genetic mapping, estimated genome-wide marker effects can be used
to predict superior lines for selection in GP models, such as ridge regression-BLUP (RR-
BLUP) (Chapter 3; Endelman, 2011; Endelman & Jannink, 2012). To further improve
prediction accuracies, significant SNPs (QTLs) having intermediate to large effects can be
fixed in the RR-BLUP model as fixed effect in a GP approach termed weighted RR-BLUP,
WRR-BLUP (Chapter 3; Bernado, 2014; Spindel et al., 2016; Zhao et al., 2014). MAS based
on medium effect GER QTLs detected from the multi-locus GWAS algorithm (i.e., FarmCPU)
performed similar to the unweighted GP approach (RR-BLUP). However, the weighted GP
approach (i.e., WRR-BLUP) outperformed MAS and RR-BLUP both in the combined DH
libraries and within landraces (Chapter 5). The higher performance of WRR-BLUP over RR-
BLUP and MAS (Chapter 5) is in consonance with what has been reported earlier for Fusarium
resistance in small-grain cereals (Galiano-Carneiro et al., 2019; Herter et al., 2019; Odilbekov
et al., 2019). Using the medium- to major-effect QTLs (i.e., QTLs explaining >5 % p;) as a
weighting factor in the GP model might have reduced the background noise, which improved
the predictability for GER resistance further. Unweighted GP approach seems promising for
populations (e.g., PE) where it is difficult to detect QTLs for MAS. When members of a training
set are unrelated to members of the validation set, p may be very low, even negative in some
materials (Chapter 5; Brauner et al., 2018; Han et al. 2018). Using only DH lines from one
landrace population to predict GER resistance in another population was not promising at all

(Chapter 5). However, fitting the two significant SNPs explaining >5 % p. in KE as fixed
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effect in the GP model where KE library was used exclusively as TS and PE as the VS increased
the p from 3 % to 22 % (Chapter 5). In another study involving six European maize landraces,
GP between pairs of DH libraries resulted in approximately zero p for all landraces and six
agronomic traits analyzed. However p improved when the TS and VS contained lines from
both landraces (Chapter 5; Brauner et al., 2018). Additionally, an increase in the size of TS
resulted in improved p (Chapter 5, Brauner et al., 2018; Schopp et al., 2017). The pattern of
QTL detection and p in GWAS and GP, respectively, in both COMB and within landraces as
well as the GP between landraces (Chapter 5) showed that the population having no or only
few QTLs underlying GER resistance cannot serve as a good TS in GS. Hence, accumulation
of resistance QTLs in a breeding material prior to GP might improve the p for Fusarium
resistance traits considerably (Chapter 3; Galiano-Carneiro et al., 2018). Composition of the
genetic materials, differences in allele frequencies of important QTLs underlying a particular
trait in the TS and VS, population size, GP approach used, etc., largely affect the predictive
ability of GP and have been well document elsewhere (Lozada & Carter, 2019; Robertsen et
al., 2019; Schopp et al. 2017; Zhang et al., 2019b). These factors must be critically considered

and addressed before using results of GP for practical breeding against GER.

This part of the thesis demonstrates that there is maximum genetic variation in KE and PE
landraces and can be exploited using combined genome-based analyses. The QTLs with
medium impacts can be employed in marker-assisted backcrossing (MABC) after validation.
To reduce or eliminate the effect of many negative loci segregating in these landraces (Chapter
5), implementation of GS can be more beneficial after the introgression of best QTLs into elite
materials and selection for agronomically adapted traits. Both phenotypic and molecular
analyses showed that selection gains may be higher when using lines from KE than PE landrace

(Chapter 5).
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Implications for practical breeding against Fusarium ear infections in small-grain
cereals and maize

In small-grain cereals, breeding against mycotoxigenic fungi in durum wheat and bread wheat
should be prioritized. It can be facilitated by the introduction of resistance alleles from rye or
triticale, which will however require several cycles of backcrossing to remove unfavorable
alleles that may be linked to poor flour quality and yield (Chapter 2). Furthermore, genomics-
assisted recurrent selection strategy can be adopted in breeding programs aiming at reducing

FHB and mycotoxins in small-grain cereals.

The wide genetic variation for GER resistance both across and within KE and PE can be
harnessed to improve elite European flint maize against toxigenic Fusarium ear infection. The
DH lines from the landraces (Chapter 5) can be crossed with susceptible elite lines and their
off-springs (F1) backcrossed to the elite parents (F1BC) for better agronomic adaptation, i.e., to
reduce or eliminate the impact of deleterious alleles associated with traits like early
development, lodging, shortness, poor fertility and yield. Application of GS to select resistant
lines from the backcross population is expected to produce higher returns (Holker et al., 2019)
because close genetic relationship between the training set and validation set can improve the
prediction accuracy (Brauner et al., 2018, 2020; Herter et al., 2019; Kadam et al., 2016;
Riedelsheimer et al., 2013). Brauner et al. (2018) found higher prediction accuracy for six
agronomic traits in elite flint lines than within six landraces. GP exploits LD between markers
and the QTLs underlying a trait to predict the genomic estimated breeding values of
individuals, but LD decreases more rapidly among landraces than elite populations (Strigen et
al., 2013). To reduce the problem of unrelatedness of individuals of the TS and the VS in GS,
the TS must be periodically updated by phenotyping about 10 % to 20 % of the population,
which represent parents of used crosses, in subsequent cycles (Chapter 4). Besides, when the

medium- to major-effect GER QTLs are successfully validated and molecular markers such as

77



Kompetitive allele specific PCR markers (KASPs) developed, MABC can be employed to

assist in the transfer of resistance alleles from the landraces into susceptible elite materials.
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7/ Summary

The world’s human and livestock population is increasing and there is the need to increase
quality food production to achieve the global sustainable development goal 3, zero hunger by
year 2030 (United Nations, 2015). However, biotic stresses such as Fusarium ear infections
pose serious threat to cereal crop production. Breeding for host plant resistance against
toxigenic Fusarium spp. is a sustainable way to produce more and safer cereal crops such as
maize and small-grain winter cereals. Many efforts have been made to improve maize and
small-grain cereals for ear rot (ER) and Fusarium head blight (FHB) resistances, using

conventional and genomic techniques.

Among small-grain cereals, rye had the shortest maturity period followed by the descendant,
hexaploid triticale while both wheat species had the longest maturity period. In addition, rye
and triticale were more robust to Fusarium infection and deoxynivalenol accumulation, making
them safer grain sources for human and animal consumption. However, a few resistant cultivars
have been produced by prolonged conventional breeding efforts in durum wheat and bread
wheat. High genetic variation was present within each crop species and can be exploited for
resistance breeding. In this thesis, the genetic architecture of FHB resistance in rye was
investigated for the first time, by means of genome-wide association study (GWAS) and
genomic prediction (GP). GWAS detected 15 QTLs for Fusarium culmorum head blight
severity, of which two had major effects. Both weighted and unweighted GP approaches
yielded higher prediction abilities than marker-assisted selection (MAS) for FHB severity,
heading stage and plant height. Genomics-assisted breeding can shorten the duration of

breeding rye for FHB resistance.

In the past decade, genetic mapping and omics were used to identify a multitude of QTLs and
candidate genes for ear rot resistances and mycotoxin accumulation in maize. The polygenic

nature of resistance traits, high genotype x environment interaction, and large-scale
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phenotyping remain major bottlenecks to increasing genetic gains for ear rots resistance in
maize. Phenotypic and molecular analyses of DH lines originating from two European flint
landraces (“Kemater Landmais Gelb”, KE, and “Petkuser Ferdinand Rot”, PE) revealed high
variation for Gibberella ear rot (GER) severity and three agronomic traits viz. number of days
to female flowering, plant height and proportion of kernels per cob. By employing multi-SNP
GWAS method, we found four medium-effect QTLs and many small-effect (10) QTLs for
GER severity in combined DH libraries (when PCs used as fixed effects), none co-localized
with the QTLs detected for the three agronomic traits analyzed. However, one major QTL was
detected within KE DH library for GER severity. Two prioritized SNPs detected for GER
resistance were associated with 25 protein-coding genes placed in various functional
categories, which further enhances scientific knowledge on the molecular mechanisms of GER
resistance. Genome-based approaches seems promising for tapping GER resistance alleles
from European maize landraces for applied breeding. After several cycles of backcrossing and
sufficient selection for agronomic adaptation traits, the resistant lines identified in this thesis
can be incorporated into existing maize breeding programs to improve immunity against F.

graminearum ear infection. Breeding progress can be faster using KE landrace than PE.

A successful validation of QTLs identified in this thesis can pave way for MAS in rye and
marker-assisted backcrossing in maize. Effective implementation of genomic selection requires
proper design of the training and validation sets, which should include part of the current

breeding population.
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8 Zusammenfassung

Um das Ziel 3 fiir nachhaltige Entwicklung, das Ende des Hungers bis 2030 (United Nations,
2015) zu erreichen, muss durch den Anstieg der Weltbevolkerung die
Nahrungsmittelproduktion  deutlich  erhoht werden. Gleichzeitig aber bedrohen
Pflanzenkrankheiten wie Fusariosen die Getreideproduktion. Die Zlchtung von Sorten mit
Resistenzen gegen die (fir Mensch und Tier) giftigen Pilze der Gattung Fusarium ist ein
nachhaltiger Weg, um grof3ere Mengen und weniger toxin-belastetes Getreide zu produzieren.
Viele Versuche wurden unternommen, um die Resistenz gegen Kolbenféule in Mais und gegen
Ahrenfusariosen (Fusarium head blight, FHB) in kleinkornigem Getreide mit konventionellen

und genomischen Zichtungsmethoden zu verbessern.

In unseren Untersuchungen waren Roggen und Triticale am widerstandsféhigsten gegen
Fusarium-Infektionen und hatten die geringste Deoxynivalenol-Kontamination, was sie zu
weniger toxischen Nahrungs- und Futtermitteln macht. Aber auch fir Hart- und Weichweizen
gibt es durch langjahrige konventionelle Zlchtung einzelne resistente Sorten. Eine hohe
genetische Variation konnte bei allen Getreidearten beobachtet werden und kann damit fir
zukiinftige Resistenzziichtung verwendet werden. In dieser Arbeit wurde zum ersten Mal mit
Hilfe einer genomweiten Assoziationsstudie (genome-wide association study, GWAS) und
genomischer Vorhersage (genomic prediction, GP) die genetische Architektur der Fusarium-
Resistenz in Roggen untersucht. GWAS konnten 15 Loci (quantitative trait loci, QTL) fur die
Resistenz gegen Fusarium culmorum gefunden werden, zwei davon mit Haupt-Effekten (major
effects). Sowohl die gewichtete als auch die ungewichtete genomische Vorhersage erzielten
fir Fusariumbefall, Ahrenschieben und Wuchshohe hohere Genauigkeiten als die
markergestitzte Selektion (marker-assisted selection, MAS). Genomische Daten kdnnen damit

die Ziichtung von Fusarium-resistentem Roggen beschleunigen.
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In den letzten zehn Jahren wurden genetische Kartierungen und Omics verwendet, um eine
Vielzahl von QTLs und Kandidatengenen fir Kolbenfaule-Resistenzen und Mykotoxin-
Akkumulation in Mais zu identifizieren. Die komplexe Vererbung der Resistenzen, die hohen
Genotyp x Umwelt-Wechselwirkungen und der Bedarf groRer Versuche zur Phénotypisierung
den genetischen Zuchtfortschritt fir die Resistenz gegen Kolbenfdaule bei Mais. Die
phanotypische und genotypische Analyse von doppelt-haploiden Maislinien, die aus zwei
europdischen Flint-Landrassen (“Kemater Landmais Gelb”, KE, and “Petkuser Ferdinand
Rot”, PE) erstellt wurden, zeigte eine hohe genetische Variation fir Kolbenfaule (Giberella ear
rot, GER) und die drei weiteren agronomischen Merkmale Tage bis zur weiblichen Bllite,
Wuchshéhe und Kornansatz. Durch Verwendung einer GWAS-Methode, die mehrere
Markerloci gleichzeitig bertcksichtigt (multi-SNP), konnten vier QTL mit mittleren Effekten
und 10 QTL mit kleinen Effekten fir die GER-Befallsstarke in kombinierten DH-Bibliotheken
gefunden werden; keine davon war co-lokalisiert mit QTL fir die drei analysierten
agronomischen Merkmale. Innerhalb der KE DH-Bibliothek wurde jedoch ein Haupt-QTL flr
die GER-Befallsstarke festgestellt. Zwei ausgewahlte SNP-Marker fur die GER-Befallstirke
waren mit 25 proteincodierenden Sequenzen assoziiert, die unterschiedlichen Funktionen
zugeordnet werden konnten und damit das Wissen uber die molekularen Mechanismen zur
GER-Resistenz  erweiterten.  Eine  genom-basierte ~ Zuchtungsmethode  erscheint
vielversprechend, um die GER-Resistenz in europdischen Mais-Landrassen fur die angewandte
Zuchtung zu erschlieBen. Nach mehreren Zyklen von Ruckkreuzung und Selektion auf
agronomische Merkmale, konnen die resistenten Linien in einem bestehenden Mais-
Zuchtprogramm verwendet werden, um die Resistenz gegen Kolbenfusariosen zu erhdhen. Der

Zuchtfortschritt durfte bei Verwendung der Landrasse KE hoher sein als bei PE.

Eine erfolgreiche Validierung der QTL, die in dieser Arbeit gefunden wurden, kann den Weg
flr eine markergestutzte Selektion bei Roggen und Mais zur Erh6hung der Fusarium-Resistenz
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ebnen. Die effiziente Anwendung genomischer Selektionsmethoden bedarf der laufenden
Erstellung von aktuellen Trainings- und Validierungssets, die jeweils einen Teil der aktuellen

Zuchtpopulationen umfassen sollten.
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