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1 Summary

1 Summary

Weather and climate models are useful tools for projecting the influence of global climate
change on the regional scale. These models are critically dependent on an accurate representation
of soil-plant-atmosphere interactions, which are simulated by Land Surface Models (LSMs). The
present PhD thesis was designed to improve the representation of land surface exchange
processes of croplands in the Noah-MP land surface model. My thesis aims: a) to elucidate the
nature of the energy imbalance over a winter wheat stand and to identify the appropriate post-
closure method for the study region Kraichgau, southwest Germany; b) to improve the
representation of the green vegetation fraction (GVF) dynamics of croplands in the Noah-MP for
a more accurate computation of surface energy and water fluxes; and c) to determine the effect of
aggregating different crop types with various shares into a single generic cropland class on the
simulation of water and energy exchange between land surface and atmosphere. In order to
achieve these goals, | performed several experimental and modeling studies.

The eddy covariance (EC) technique is a widely used method for assessing the turbulent
exchange of water and energy between the land surface and atmosphere. The energy balance of
fluxes measured with the EC method is typically not closed. The sum of the turbulent fluxes of
latent heat (LE) and sensible heat (H) measured with the EC technique is systematically lower
than the available energy estimated as the difference between net radiation and ground heat flux.
The nature of the missing energy is usually unknown, which hampers using EC data for
calibrating and validating LSMs. Several post-closure methods are used to achieve energy
balance closure. The measured turbulent fluxes are usually adjusted with either LE flux, H flux
or the Bowen ratio (BR) post-closure method. The first method adds the missing energy fully to
the latent heat flux. The second method, in contrast, assigns the energy residual fully to the
measured sensible heat flux, while the latent heat flux remains unchanged. The third method
assumes the energy residual has the same Bowen ratio (Bo=H/LE) as the measured turbulent
fluxes. In the present research, | compared evapotranspiration rates measured with the EC
technique against measurements conducted using the soil water balance method. I tested the
above-described post-closure methods and provided recommendations on the post-processing of
the EC data. Our results show that the EC method reliably measures the evapotranspiration rate

at our study site and, therefore, the H post-closure method is recommended for calibrating and
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parametrizing the Noah-MP at our site. Nevertheless, further investigation of the energy

imbalance problem of the EC data was recommended.

In Noah-MP, the earth's surface is presented as a set of different land use classes, one of them
being “cropland” or “generic cropland class”. At the regional scale, this class may cover a
considerable part of the simulation domain. The generic cropland class is a combination of
different crops varying in phenology, planting and harvesting dates, canopy and rooting
characteristics, senescence dynamics, etc. In the Noah-MP, the vegetation dynamics and its
seasonal development are described by GVF and the leaf area index (LAI). GVF and LAI are
key input plant variables for forcing evapotranspiration schemes of the LSM. In standard
applications of Noah-MP, the GVF is obtained from a global map with a coarse resolution (15
x15 km? grid cell size). In the present research | improved the representation of the GVF
dynamics of croplands by deriving the gridded GVF data of a study region at a high spatial
resolution (5 x5 m?) using RapidEye satellite data. The analyses of the new data showed that, at
the regional scale, GVF has a bimodal distribution during the growing seasons. This distribution
is formed by two different crop types varying in phenology and growth dynamics: early covering
crops (ECC, ex.: winter wheat, winter rapeseed, winter barley) and late covering crops (LCC,
ex.: corn, silage maize, sugar beet). The present PhD thesis implemented a new parametrization
for ECC and LCC and studied its effect on the simulation of the land surface exchange
processes. The results were compared against fluxes simulated using a generic cropland class of
Noah-MP. The present research shows that ECC and LCC vary significantly in the seasonal
dynamics of energy- and water exchange between land surface and atmosphere. Merging both
crop groups into one land use class, as introduced in Noah-MP, is an oversimplification. The
current thesis recommends splitting the generic cropland class of Noah-MP into ECC and LCC
because this approach has the potential to improve the simulation of land surface exchange

processes, particularly during transition periods and late in the vegetation period.
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2 Zusammenfassung

Wetter- und Klimamodelle sind nutzliche Werkzeuge, um den Einfluss des globalen
Klimawandels auf die regionale Ebene zu projizieren. Diese Modelle sind entscheidend von
einer genauen Darstellung der Wechselwirkungen zwischen Boden, Pflanzen und Atmosphare
abhingig, welche durch ,,Land Surface Models* (LSMs) simuliert werden. Die Dissertation
wurde erstellt, um die Darstellung von Landoberflachenaustauschprozessen von Ackerland im
Noah-MP-Landoberflachenmodell zu verbessern. In meiner Doktorarbeit geht es um: a) die Art
des Energieungleichgewichts iber einem Winterweizenbestand aufzuklaren und die geeignete
Post- Closure-Methode fur die Region Kraichgau (Sudwestdeutschland) zu identifizieren; b) die
Darstellung der Dynamik der Griinen Vegetationsfraktion (GVF) von Anbauflachen im Noah-
MP fur eine genauere Berechnung der Oberflachenenergie und der Wasserflusse zu verbessern;
und c) um die Auswirkungen der Aggregation verschiedener Kulturarten mit unterschiedlichen
Anteilen zu einer einzigen generischen Ackerflachenklasse auf die Simulation des Wasser- und
Energieaustauschs zwischen Landoberflache und Atmosphére zu bestimmen. Damit diese Ziele

erreicht werden, habe ich mehrere experimentelle und Modellierungsstudien durchgefihrt.

Die Eddy Covariance (EC)-Technik ist eine weit verbreitete Methode zur Beurteilung des
turbulenten Austauschs von Wasser und Energie zwischen Landoberflache und Atmosphére. Die
Energiebilanz der mit der EC-Methode gemessenen Flisse ist in der Regel nicht geschlossen.
Die Summe der turbulenten Strome von latenter Wé&rme (LE) und sensibler Wérme (H),
gemessen mit der EC-Technik, ist systematisch niedriger als die verfugbare Energie, die als
Differenz zwischen Netto-Strahlung und Erdwarmestrom geschétzt wird.

Die Art der fehlenden Energie ist in der Regel unbekannt, was die Verwendung von EC-Daten
zur Kalibrierung und Validierung von LSMs erschwert. Um den Abschluss der Energiebilanz zu
erreichen, werden mehrere Nachverschlussmethoden eingesetzt. Die gemessenen turbulenten
Stréme werden in der Regel entweder mit LE-Fluss, H-Fluss oder dem Bowen-Ratio (BR) Post-
Closure-Verfahren eingestellt. Die erste Methode addiert die fehlende Energie vollstandig zum
latenten Warmestrom. Das zweite Verfahren hingegen ordnet den Energiertickstand vollstédndig
dem gemessenen fuhlbaren Warmestrom zu, wéahrend der Latentwérmestrom unverandert bleibt.
Die dritte Methode geht davon aus, dass der Energieriickstand das gleiche Bowen-Verhaltnis

(Bo=H/LE) aufweist wie die gemessenen turbulenten Stromungen. In der vorliegenden Studie
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habe ich die mit der EC-Technik gemessenen Evapotranspirationsraten mit Messungen nach der
Bodenwasserbilanz-Methode verglichen. Ich habe die oben beschriebenen Post-Closure-
Methoden getestet und Empfehlungen zur Nachbearbeitung der EC-Daten gegeben. Unsere
Ergebnisse zeigen, dass die EC-Methode die Evapotranspirationsrate an unserem Studienort
zuverlassig misst und daher die H-Post-Verschlussmethode fir die Kalibrierung und
Parametrierung des Noah-MP an unserem Standort empfohlen wird. Dennoch wurde eine weitere

Untersuchung des Energieungleichgewichtsproblems der EC-Daten empfohlen.

In Noah-MP wird die Erdoberflache als eine Reihe von verschiedenen Landnutzungsklassen
dargestellt, von denen eine "Ackerland™" oder "allgemeine Ackerlandklasse" ist. Auf regionaler
Ebene kann diese Klasse einen erheblichen Teil der Simulationsdoméne abdecken. Die
generische Ackerlandklasse ist eine Kombination verschiedener Kulturen, die sich in der
Phénologie, dem Pflanz- und Erntezeitpunkt, den Eigenschaften von Kronen und Wurzeln, der
Seneszenzdynamik usw. unterscheiden. Im Noah-MP wird die Vegetationsdynamik und ihre
saisonale Entwicklung durch den GVF und den Blattflachenindex (LAI) beschrieben. GVF und
LAI sind wichtige Input-Pflanzenvariablen flr die Forcierung von Evapotranspirationsverfahren
der LSM. In Standardanwendungen von Noah-MP wird das GVF aus einer globalen Karte mit
einer groben Auflosung (15 x15 km? Rasterzellgréfie) gewonnen. In der vorliegenden Forschung
habe ich die Darstellung der GVF-Dynamik von Ackerland verbessert, indem ich die
gitterformigen GVVF-Daten einer Untersuchungsregion mit hoher rdumlicher Auflésung (5 x 5
m?2) unter Verwendung von RapidEye-Satellitendaten abgeleitet habe. Die Analysen der neuen
Daten zeigten, dass die GVF auf regionaler Ebene eine bimodale Verteilung wéhrend der
Vegetationsperiode aufweist. Diese Verteilung wird durch zwei verschiedene Kulturarten
gebildet, die sich in Phanologie und Wachstumsdynamik unterscheiden: friilhe Deckkulturen
(ECC, z.B.: Winterweizen, Winterraps, Wintergerste) und spate Deckkulturen (LCC, z.B.: Mais,
Silomais, Zuckerriiben). Die vorliegende Dissertation implementierte eine neue Parametrisierung
fir ECC und LCC, und studierte ihre Auswirkungen auf die Simulation der
Landoberflachenaustauschprozesse. Die Ergebnisse wurden mit Flussmitteln verglichen, die mit
einer generischen Ackerlandklasse von Noah-MP simuliert wurden. Die vorliegende Studie
zeigt, dass ECC und LCC in der saisonalen Dynamik des Energie- und Wasseraustauschs

zwischen Landoberflache und Atmosphére stark variieren. Die Zusammenfiihrung beider
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Kulturgruppen zu einer Landnutzungsklasse, wie sie in Noah-MP eingefuihrt wurde, ist eine
ubertriebene Vereinfachung. Die aktuelle Arbeit empfiehlt die Aufteilung der generischen
Anbauflachenklasse von Noah-MP in ECC und LCC, da dieser Ansatz das Potenzial hat, die
Simulation von Landoberflachenaustauschprozessen zu verbessern, insbesondere in

Ubergangszeiten und am Ende der Vegetationsperiode.
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3 General Introduction
3.1 Land Surface Models

The present PhD thesis was prepared in the frame of the project P2 “Soil-Plant-Atmosphere
Interactions at the Regional Scale” of the DFG Research Unit (RU) 1695 “Agricultural
Landscapes under Global Climate Change. Processes and feedbacks on a regional scale”. The
major goal of RU 1695 was to assess the impact of global climate change on agricultural
landscapes in southwest Germany. This work was designed to improve existing atmosphere-,
land surface-, crop growth- and land use decision models and to integrate them into one land
system model. The new model system would help to better predict and analyze future effects of
climate change on the structure and functions of agricultural land use as well as on human-

environmental interactions at a high spatial and temporal resolution.

Land surface models simulate the exchange of energy, water, and momentum between soil,
vegetation and atmosphere. LSMs are generally coupled to weather and climate models,
providing them with key information on the partitioning of net radiation into sensible (H), latent
(LE) and soil heat fluxes (G). The energy partitioning between turbulent fluxes H and LE
depends on the physical and physiological properties of the land surface. Physical properties
include variables such as albedo, roughness and soil texture. Physiological properties are plant-
specific variables such as leaf area index, green vegetation fraction and rooting depth. Energy
partitioning significantly influences the evolution of the atmospheric boundary layer (ABL),
which in turn strongly influences the initiation of convection, cloud formation, and ultimately the
location and strength of precipitation (Crawford et al. 2001, Koster et al. 2006, Santanello Jr. et
al. 2013, van Heerwaarden et al. 2009, Milovac et al. 2016).

A widely used LSM is Noah (Chen and Dudhia 2001). This model was developed several
decades ago and has been continuously improved and tested in recent years. Later, Noah was
extended to Noah-MP by introducing multi-physics options and a semi-tile approach (bare and
vegetated tile) to better represent land surface heterogeneities (Niu et al. 2011). Noah was
developed to be coupled with the Mesoscale Meteorology Model 5 (Dudhia 1993) and was later
coupled with the Weather Research and Forecasting (WRF) model (Skamarock et al. 2008).
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3.2  Eddy covariance method

The eddy covariance (EC) technique is a widely used method for developing and testing LSMs.
The EC technique is the only one that enables a direct and continuous measurement of the energy
and water vapor fluxes near the land surface, in real time, in situ, and without disturbing the crop
environment. These advantages make the EC method more attractive for the scientific
community than other common micrometeorological and ecological methods such as the
chamber method, Bowen ratio method, etc. Several networks of EC stations (ex. FLUXNET,
Ameriflux, NEON, etc.) have been installed worldwide to obtain a detailed image of the
exchange of energy, water and trace gases between land surface and atmosphere over different
land use types and crop groups at a high temporal resolution. Despite the great importance and
actuality of the EC technique, it is not perfect. One problem of the EC method is the lacking
energy balance closure (EBC). Accordingly, the law of conservation of energy often cannot be
fulfilled by EC measurements. The sum of the EC-determined turbulent fluxes LE and H is
systematically lower than the available energy computed as the difference between net radiation
(Rn) and ground heat flux (G). Various studies reported EBC ranges between 70 to 90% over
various land use types (Oncley et al. 2007, Wilson et al. 2002, Twine et al. 2000). Low EBCs
(60-80 %) were mainly observed at various agricultural sites and bare soil, whereas over forest
they were typically higher (80-90 %) (Charuchittipan et al. 2014, Stoy et al. 2013, Foken, 2008,
Panin and Bernhofer 2008, Wilson et al. 2002). The uncertainty arising from the energy
imbalance hampers the use of EC data for model parameterization and testing (Ingwersen et al.
2011, Ingwersen et al. 2015, EI Maayar et al. 2008, Falge et al. 2005). Numerous studies were
conducted to investigate the reasons for this imbalance, but the nature of the energy gap is still
not fully understood. Most researchers concluded that a calibration of field instruments and other
tool errors as well as data-processing errors cannot be a major reason for the imbalance (Oncley
et al. 2007, Foken 2008, Mauder et al. 2006). The nature of the gap is apparently site-specific,
and the missing energy could consist of either LE or H or both or other neglected storage terms.
Several authors reported that underestimated G and neglected minor storage terms such as the air
heat storage, biomass heat storage and energy consumption by photosynthesis can also contribute
to closing the energy balance (Eshonkulov et al. 2019, Guo et al. 2009; Jacobs et al. 2008;
Meyers and Hollinger 2004).
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Various methods are available for achieving energy balance closure for use in land surface
models. The measured turbulent fluxes are usually adjusted with either H flux, LE flux or, most
often, the Bowen ratio (BR) post-closure method. These methods fully add the missing energy to
the measured turbulent fluxes, assuming that the available energy is measured correctly. The H
post-closure method adds the lacking energy fully to the measured H flux (Ingwersen et al. 2011,
Ingwersen et al. 2015, Gayler et al. 2013). In contrast, the LE flux post-closure method assigns
the energy residual fully to LE, leaving the sensible heat flux unaltered (Falge et al. 2005). The
BR post-closure method assumes that the missing energy has the same Bowen ratio (Bo=H/LE)

as the measured turbulent fluxes (Twine et al. 2000, Barr et al. 1994).

3.3  Croplands

In LSMs, the earth's surface is presented as a combination of various land use classes such as
“urban”, “forest”, “grassland”, “cropland” and others. In the regional LSMs, cropland may cover
a considerable part of the simulation domain. In 2015, agricultural land accounted for 41.1% of
the total area in the European Union (Eurostat 2018). On the regional scale, the share of cropland
can be much higher. For example, in Denmark it was reported at 62% of the total area in 2016
according to the World Bank collection of development indicators, compiled from officially
recognized sources. In Germany, in 2016, agricultural land covered 47.7 % of the total area

(Worldbank 2019).

The cropland land use classes, as defined in LSMs, stand for a combination of different crops
varying in phenology, planting and harvesting dates, canopy structure, plant rooting, senescence
dynamics, etc. It can include different crop types such as summer and winter crops, legumes and
non-legumes, and/or C3 and C4 plants. Within the cropland class, the combination of crops and
their share can vary significantly from season to season and from region to region. Each entity of
this land use type shows distinct seasonal dynamics. Some crops develop early in spring, achieve
maturity and already become senescent in mid-summer; whereas other crops are planted in
spring and harvested in mid-autumn. During the germination stage, roots are normally a few
centimeters long, whereas at the end of the growing season the root system of some plants may
reach a depth of one or more meters. The leaf area index (LAI) is zero after sowing and may
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attain a value of ~6 during the season, returning to close to zero after harvest. Depending on the

crop rotation, the fields may be cropped or left bare over winter.

In Noah-MP, the agricultural area is represented by general land use classes such as “Dryland
Cropland and Pasture”, “Irrigated Cropland and Pasture” or “Mixed Dryland/Irrigated Cropland
and Pasture”. For simplification, in this manuscript these classes are referred to as “generic
cropland classes”. The plant variables, green vegetation fraction (GVVF) and LAI are used in the
Noah-MP to describe the vegetation dynamics over the season. GVF is a grid-cell fraction
covered by a green canopy and thus represents the horizontal density of the vegetation in each
grid cell (Rundquist 2002, Gutman and Ignatov 1998). LAI describes the vertical density of the
canopy in the LSM. GVF and LAl vary significantly during the vegetation period, altering the
physical parameters of the surface such as albedo, roughness and emissivity. These, in turn, have
a considerable effect on water and energy fluxes at the land-atmosphere interface. Accurately
representing LAI and GVF is therefore considered essential for better estimates of surface fluxes
(Chen and Xie 2011, Crawford et al. 2001, Refslund et al. 2014). In Noah-MP, GVF and LAl are
prescribed in lookup tables, i.e. they do not depend on the preceding weather conditions during a

simulation.

Noah-MP offers different options to parameterize the dynamics of GVF. Depending on data
availability the user can select between several options. One of the preferable options is to use
remotely sensed gridded GVF data. If gridded GVF data are absent, GVF is estimated from LA,

which are predefined for each land cover in Noah-MP or set up as maximum possible GVF.

In standard applications, Noah-MP uses GVF values derived from normalized difference
vegetation index (NDV1) obtained from the NESDIS/NOAA satellite data. These data have a
0.15° spatial resolution (15 x15 km? grid cell size). This means that different land use classes are
merged within one grid cell, for example, a combination of agricultural, forest and urban areas.
Such a coarse resolution cannot properly characterize the land cover elements, yielding major
uncertainties when computing physiological variables of the grid-cell elements. Seasonal GVF
and LAI dynamics derived from these maps are strongly smoothed compared to the actual

dynamics. Several authors have shown that LSMs are highly sensitive to physical, biological



3 General Introduction

parameters and state variables of the landscape. They emphasize the need for finer GVF grid data
for use in the Noah-MP LSM, given their importance for ABL evolution. (Milovac et al. 2016,
Nielsen et al. 2013).

3.3 Scope of the thesis

The scientific aim of my research was to improve our understanding and description of soil-
plant-atmosphere interactions of croplands in the Noah-MP land surface model. My thesis aims
a) to elucidate the nature of the energy balance gap over a winter wheat stand and to
identify the appropriate post-closure method for the study region Kraichgau, Southwest
Germany;

b) to improve the representation of the GVF dynamics of croplands in Noah-MP for a more
accurate simulation of water and energy exchange between the land surface and atmosphere;

C) to determine the effect of aggregating different crop types with various shares into a

single generic cropland class on the simulation of energy and water fluxes.

The thesis contains three published papers:

The first study compares the evapotranspiration measured using the EC method (ETec) with the
evapotranspiration determined using the soil water balance method (ETwg); the latter does not
depend on an a priori assumption on the composition of the energy residual. During two growing
seasons, we continuously measured (in a half-hourly resolution) the latent heat and sensible heat
fluxes at winter wheat stands using the EC technique. Measured fluxes were adjusted with either
the Bowen ratio, H or LE post-closure method and compared with ETwg. ETwe was computed
based on rainfall, seepage and soil water storage measurements. The soil water storage term was
measured over a soil depth of 1.5 m. The soil water content was measured at sixteen locations
within the footprint of an EC station. In the second growing season, the volumetric soil water
content was additionally continuously measured with sixteen capacitance soil moisture sensors.
The measurements were conducted in 15 min resolution in 10 cm intervals down to 90 cm depth.

Details are given in the Chapter 4.

The second study derives gridded GVF data of Kraichgau region in a high spatial resolution (5 m
x 5 m) from RapidEye satellite images. The GVF dynamics were determined based on the
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Normalized Difference Vegetation Index (NDV1) calculated from the red and near-infrared
bands of the satellite images. The satellite GVF data were calibrated and validated against
ground truth measurements. Based on the obtained calibration scheme, we derived GVF maps in
a monthly resolution for the study region and studied the GVF dynamics of different crops over

the growing season. For details see Chapter 5.

The third study quantifies the effect of splitting the generic cropland class “Cropland and
Pasture” of Noah-MP into early covering crops (ECC, e.g.: winter wheat, winter rapeseed, winter
barley) and late covering crops (LCC, ex.: corn, silage maize, sugar beet) on surface energy
fluxes and temperature. We further studied the influence of increasing the share of late covering
crops (driven by the growth of biomass production in the study region) on energy partitioning at
the land surface. For the simulations we used the GVF data derived in the previous study and

measured LAI data. For more information see Chapter 6.
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Abstract. The energy balance of eddy covariance (EC) flux
data is typically not closed. The nature of the gap is usu-
ally not known, which hampers using EC data to param-
eterize and test models. In the present study we cross-
checked the evapotranspiration data obtained with the EC
method (ETgc) against ET rates measured with the soil
water balance method (ETwg) at winter wheat stands in
southwest Germany. During the growing seasons 2012 and
2013, we continuously measured, in a half-hourly resolu-
tion, latent heat (LE) and sensible (H) heat fluxes using
the EC technique. Measured fluxes were adjusted with ei-
ther the Bowen-ratio (BR), H or LE post-closure method.
ETws was estimated based on rainfall, seepage and soil
water storage measurements. The soil water storage term
was determined at sixteen locations within the footprint of
an EC station, by measuring the soil water content down
to a soil depth of 1.5m. In the second year, the vol-
umetric soil water content was additionally continuously
measured in 15min resolution in 10cm intervals down to
90 cm depth with sixteen capacitance soil moisture sensors.
During the 2012 growing season, the H post-closed LE
flux data (ETgc =3.440.6mmday 1) corresponded clos-
est with the result of the WB method (3.3 + 0.3 mmday1).
ETec adjusted by the BR (4.1+0.6mmday~1) or LE
(4.9 +0.9mmday 1) post-closure method were higher than
the ETws by 24 and 48 %, respectively. In 2013, ETwg
was in best agreement with ETgc adjusted with the H post-
closure method during the periods with low amount of rain
and seepage. During these periods the BR and LE post-
closure methods overestimated ET by about 46 and 70 %,
respectively. During a period with high and frequent rain-
falls, ETwg was in-between ETgc adjusted by H and BR
post-closure methods. We conclude that, at most observation

periods on our site, LE is not a major component of the en-
ergy balance gap. Our results indicate that the energy balance
gap is made up by other energy fluxes and unconsidered or
biased energy storage terms.

1 Introduction

The eddy covariance (EC) method is a widely used, long-
standing method to directly measure turbulent energy and
matter fluxes near the land surface. As a quality check, the
energy balance closure (EBC) of eddy covariance flux mea-
surements may be computed. According to the first law of
thermodynamics, energy must be conserved. At the land sur-
face, the surface energy budget equation, written here for its
major components, must be fulfilled:

Rn=LE+H+G. 1)

Here, Ry (Wm~2) is net radiation, and LE (W m~2) and H
(Wm~2) denote the latent heat and sensible heat flux, re-
spectively. The symbol G (Wm~2) stands for the ground
heat flux. Minor flux terms such as energy storage in the
canopy or energy conversion by photosynthesis are gener-
ally neglected (see e.g., Leuning et al., 2012). However, sev-
eral studies, where minor energy fluxes were carefully inves-
tigated as potential sources for the imbalance, show that con-
sidering these minor terms is relevant (Lamaud et al., 2001;
Meyers and Hollinger, 2004; Oncley et al., 2007) and could
even in some cases help to achieve a nearly perfect EBC (Ja-
cobs et al., 2008).

Usually the sum of the two turbulent fluxes measured with
the EC method is systematically lower than the so-called
available energy: the difference between net radiation (Rp)
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and ground heat flux (G). As a consequence, the energy bal-

ance at the Earth’s surface usually cannot be closed with the

EC technique. The quotient of turbulent fluxes and available

energy expresses the energy balance closure:

epc= LD @
(Rn— G)

In general, EBC ranges between 70 and 90 % as observed
over different types of surface ranging from bare soil to a
forest (Oncley et al., 2007; Wilson et al., 2002; Twine et
al., 2000). Low EBCs (60-80%) were mainly observed at
various agricultural sites and bare soil, whereas over forest
they were typically higher (80-90 %) (Charuchittipan et al.,
2014; Wilson et al., 2002; Foken, 2008a; Panin and Bern-
hofer, 2008; Stoy et al., 2013). The imbalance usually occurs
during day time, particularly around noon, whereas during
the night when fluxes are low EBC is often close to unity
(Oncley et al., 2007).

It was long thought that the energy balance gap originates
from the instrumental errors of the EC-measurements. How-
ever, the accuracy of the energy flux measurements and data
quality has significantly increased during the last years. Ac-
cording to Foken (2008a), measuring errors cannot explain
the problem of the imbalance provided that measurements
and data processing were performed carefully. In a more re-
cent paper, Foken et al. (2010) investigated the EBC of the
LITFASS-2003 experimental data. He concluded that the ob-
served lack of EBC on the local scale in heterogeneous land-
scape can be explained only by deficits in measurement con-
cepts and methodologies. This conclusion is supported by
Heusinkveld et al. (2004); they found a perfect EBC over a
homogeneous surface: a desert in Israel. Tsvang et al. (1991)
and Stoy et al. (2013) also concluded that the heterogeneities
of the surrounding area are an important factor contributing
to the lack of EBC. Several authors (Klaassen and Sogachev,
2006; Friedrich et al., 2000) reported an increase of the tur-
bulent fluxes at forest edges. Kanda et al. (2004) and Ina-
gaki et al. (2006) used large eddy simulations (LES) to study
the contribution of large eddies to energy exchange. They
found out that the energy balance can be significantly im-
proved by considering contributions from secondary circu-
lations or turbulent organized structures. The secondary cir-
culations are large-scale eddies, they are relatively stationary
and are induced, for example, by surface heterogeneities (Fo-
ken, 2008a). Due to their large size and slow maotion, their
transport of heat, water or gas is not detectable by a single
EC station. Energy transfer by such large eddies has to be
modeled or measured with an area-averaging method (Fo-
ken, 2008a; Stoy et al., 2013). Mauder et al. (2007) ana-
lyzed airborne flux measurements over a boreal ecosystem
in Canada in order to quantify secondary circulation fluxes.
They found that these fluxes were in the same order of mag-
nitude as energy balance residuals observed at EC stations
close to the flight track. However, this large eddy theory has
not been fully embraced by the scientific community. Leun-
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ing etal. (2012), for instance, evaluated EBC of the La Thuile
data set. He concluded that unrealistically large and positive
horizontal gradients in temperature and humidity would be
needed for advective flux divergences in order to explain the
EBC problem at half-hourly timescale. Other potential rea-
sons for the imbalance discussed in the literature relate to
the possible loss of low- and/or high-frequency components
(Wolf et al., 2007; Sakai et al., 2001; Barr et al., 1994). A
small fraction of the energy balance gap may also be ex-
plained by energy storage in the canopy and photosynthetic
energy flux. Both components are normally neglected due to
their alleged small contribution (Foken, 2008a; Guo et al.,
2009; Jacobs et al., 2008).

The uncertainty arising from the energy balance gap ham-
pers the use of EC data for model parameterization and test-
ing (Ingwersen et al., 2011; ElI Maayar et al., 2008; Falge
et al., 2005). In these types of studies, in order to achieve
an energy balance closure, the measured turbulent fluxes are
usually adjusted with either H flux, LE flux or the Bowen
ratio (BR) post-closure method. These methods fully add the
residual to the measured turbulent fluxes, assuming that the
available energy is measured correctly. The H post-closure
method, letting the latent heat flux unaltered, adds the gap
fully to the measured H flux (Ingwersen et al., 2011; Gayler
etal., 2013). Oppositely, the LE flux post-closure method as-
signs the lacking energy fully to LE (Falge et al., 2005). The
BR post-closure method assumes that the energy residual has
the same Bowen ratio (Bo= H / LE) as the measured turbu-
lent fluxes (Twine et al., 2000; Barr et al., 1994). In this case,
the adjusted LE flux (LE*, Wm—2) is computed as follows:

Rhn—G
"~ Bo+1° @)

The present study elucidates the nature of the energy bal-
ance gap over winter wheat in southwest Germany. For this
purpose we (a) evaluated the energy balance of EC flux mea-
surements over two vegetation seasons, additionally measur-
ing evapotranspiration with the soil water balance method
(ETws), which does not depend on an a priori assumption on
the composition of the energy residual, and (b) tested ETgc
adjusted by the BR, H or LE post-closure method against the
ETws.

LE*

2 Materials and methods
2.1 Study site

The present study was performed in the region Kraichgau
(Fig. 1), one of the warmest regions in Germany. Mean an-
nual temperature ranges between 9-10°C, and precipitation
between 730 and 830 mm per year. The rivers Neckar and
Enz form the borders in the east. In the north and in the
south, Kraichgau is bounded by the low mountain ranges of
Odenwald and the Black Forest. In the west, Kraichgau bor-
ders on the Upper Rhine plain. The Kraichgau area is about
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Figure 1. The study region “Kraichgau” (green) on the map of the federal state Baden-W(irttemberg. Location of the central study site is
indicated by a yellow star. The right panel shows a close-up of the central study site. That site consists of three fields (EC1-3). An eddy
covariance station (black full point) is installed in the center of each field.

1600 km? and has a gently sloping landscape. Elevations
vary between 200 and 320 mabove sealevel (a.s.l.). Soils,
predominantly classified as Luvisols (IUSS Working Group
WRB, 2007), were mostly formed here from periglacial
loess, which accumulated during the last ice age. Today, the
region is intensively used for agriculture. Around 53 % of the
total area is used for crop production. Winter wheat, winter
rape, summer barley, maize and sugar beet are the predomi-
nant crops.

The measurements were performed at the agricultural
fields EC1 and EC3 belonging to the farm “Katharinentaler-
hof” (Fig. 1). The fields are located north of the city of
Pforzheim (48.92° N, 8.70° E). The fields EC1 and EC3 are
14 and 15 ha in size, respectively. The terrain is flat (elevation
a.s.l.: 319 m). The predominant wind direction is south-west.
Both fields are surrounded by other agricultural fields, which
are separated partly by tree-hedges. Two permanent pump-
ing wells (installation depth 3 m) were used to monitor the
groundwater table (see Fig. 1). The soil type at both fields is
Stagnic Luvisol (IUSS Working Group WRB, 2007). Basic
soil properties are given in Table 1. In both 2012 and 2013,
fields were cropped with winter wheat (Triticum aestivum L.
cv. Akteur). In both years, winter wheat was drilled on 17 Oc-
tober.

2.2 Measurement of evapotranspiration
2.2.1 Eddy covariance technique

Using the EC technique, we measured the land surface ex-
change fluxes in a 30 min resolution at two study fields (EC1
and EC3). Both sites were cropped with winter wheat. The
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EC method enables measuring the heat, energy and momen-
tum exchange between land surface and atmosphere with-
out disturbing the crop environment. Provided that the land
surface is sufficiently flat and homogeneous, the exchange
fluxes are one-dimensional and can be calculated from the
covariance between vertical wind speed and the scalar of in-
terest. In the case of the LE flux (W m~2) this leads to

LE = Apq'w/, 4)

where 2 (Jkg~1) and p (kg m~3) are the heat of vaporization
and the density of air, respectively. The symbol ¢ (kgkg™1)
stands for the specific humidity of the air, and w (ms~1) de-
notes the vertical wind speed. The term ¢’w’is the covariance
between the fluctuations of the two quantities.

The EC stations were installed in the center of each study
field in April 2009. The stations were equipped with an open
path infrared CO2/H,0O gas analyzer (Licor 7500, LI-COR
Biosciences, USA) and a 3-D sonic anemometer (CSATS3,
Campbell Scientific, UK). At EC3 (2012) the turbulent com-
plex was installed at a height of 2.63m. The Licor-CSAT3
separation distance was 0.22 m. The direction of Licor 7500
was 25° against north, CSAT3 orientation was 170°. At
EC1 (2013), the turbulent complex was installed at a height
of 3.10 m with a sensor separation of 0.12m. Orientations
of Licor 7500 and CSAT3 were 0 and 170°, respectively.
Vertical wind speed and specific humidity were measured
with 10Hz frequency. All other sensors recorded data in
30 min intervals. Net radiation was measured with a NRO1 4-
component sensor (NRO1, Hukseflux Thermal Sensors, The
Netherlands). Air temperature and humidity were measured
in 2m height (HMP45C, Vaisala Inc., USA). Rainfall was
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Table 1. Basic soil properties of the fields EC1 and EC3. At both sites the soil type is Stagnic Luvisol (IUSS Working Group WRB, 2007).

Depth Bulk density ~ Texture §/U/C*  Organic matter content ~ Carbonate content pH
(cm) (9 cm=3) (% by weight) (% by weight) (% by weight) (0.01 M CacCly)
EC1

0-30 1.49 3.4/81.2/15.4 1.54 0.21 6.9
30-60 1.50 3.4/81.6/15.0 0.31 0.29 6.7
60-90 1.47 2.8/81.6/15.6 0.27 031 6.6
90-120 1.47 2.8/81.1/16.1 0.53 0.27 6.6
120-150 1.48 2.4/80.0/17.6 0.33 0.37 6.6
EC3

0-30 1.43 3.4/81.2/15.4 1.60 0.13 6.4
30-60 1.49 3.7/80.6/15.7 0.31 0.10 6.5
60-90 1.47 2.3/80.9/16.7 0.62 0.12 6.6
90-120 1.51 1.8/80.5/17.7 0.40 0.13 6.6
120-150 1.55 1.5/80.3/18.2 0.34 0.05 6.6

* Fraction of sand (), silt (U), clay (C).

measured using a tipping bucket (resolution: 0.2 mm per tip).
The rain gauge (ARG100, Campbell Scientific Ltd., UK) was
located close to the EC station. The rain gauge readings (R,
inmm h~1) were corrected for catching, wetting and evapo-
ration losses according to WMO (2009, p. 57):

Rcor - 121R092 (5)

Soil sensors were also installed close to the EC station.
Temperature probes (107 Thermistor probe, Campbell Sci-
entific Inc., UK) were installed in 2, 6, 15, 30 and 45cm
depth. The volumetric water content was measured with TDR
probes (CS616, Campbell Scientific Inc., UK) at 5, 15, 30,
45 and 75cm depth. Three soil heat flux plates (HFPOL,
Huskeflux Thermal Sensors, the Netherlands) were installed
in 8cm depth. For measuring the hydraulic gradient at the
lower boundary of the water balance domain, two matric po-
tential sensors (257-L, Campbell Scientific Ink., UK) were
installed in 130 cm and three sensors in 150 cm depth. The
horizontal distance between sensors was about 50 cm.

The EC flux data were processed with the TK3.1 soft-
ware (Mauder and Foken, 2011). Surface energy fluxes were
computed from 30 min covariances. Data points exceeding
4.5 standard deviations in a window of 15 values were la-
beled as spikes and were excluded from the time series.
The planar fit coordinate rotation was applied to time peri-
ods of 10-14 days. Spectral losses were corrected according
to Moore (1986). The fluctuation of sonic temperature was
converted into actual temperature according to Schotanus
et al. (1983). Density fluctuations were corrected by WPL
(Webb et al., 1980). For data quality analysis we used the flag
system after Foken (Mauder and Foken, 2011). Half-hourly
values with flags from 1 to 6 (high and moderate quality data)
were used to calculate the energy balance closure and evapo-
transpiration. Gap filling of EC flux data was performed with
the mean diurnal variation method using an averaging win-
dow of 14 days (Falge et al., 2001). Additionally we com-
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puted the random error of the fluxes, which consist of the
instrumental noise error of the EC station and the stochastic
(sampling) error (Mauder et al., 2013).

The EC ET (Lm~2 ormm) per half hour was estimated
with the following equation:

LE
ETec = — x 1800s, (6)

where the heat of vaporization A (J L~1) as a function of tem-
perature T (°C) (Foken, 2008b) was taken as

A = 2501000 — 2370 x T. @

Subsequently, ETgc values were adjusted by the H, LE or
Bowen ratio post-closure method.

Ground heat flux was calculated as the sum of measured
soil heat flux using the mean of the three heat flux plates and
the heat storage change (ASg) (Eq. 8) between the surface
and the plates (Foken, 2008b)

Cyx AT x L

ASGg = A7 , (8)
where €y (Jm~3°C1) is the volumetric heat capacity of the
soil, AT (°C) denotes the soil temperature change during the
period of time, A¢, considered, and L (m) is the thickness of
the soil layer above the soil heat flux plates. The heat capacity
of the soil was computed according to de Vries (1963) using
the volumetric water content measured in 5cm depth.

2.2.2 Soil water balance method

The water balance equation of a soil volume of a unit area
and given depth reads as follows:

ETws =R —SP—-SR— AS. 9)
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e ST E— Sampling points

Wheat field Path Rape Grain Trees

Figure 2. (a) Footprint of the eddy covariance station EC 3 in 2012. Black isolines indicate the fraction of the source area of 50, 80 and 95 %
of measured EC fluxes. (b) Positions of sampling points within the footprint of EC3 used to measure soil water storage.

Here, R stands for rainfall, and SP is seepage (negative:
capillary rise, positive: vertical drainage). The symbol SR
denotes surface runoff and A S stands for the change in soil
water storage over the balancing period. Based on our field
observations, SR was negligible at the study sites during the
periods considered.

AS was measured at sixteen positions. Sampling positions
were distributed across the footprint of the EC station us-
ing a stratified random sampling design (Figs. 2b and 3b).
To check whether the measured A S values are uncorrelated
(independent) we computed semi-variograms and spatially
interpolated A S over the footprint. The geostatistical analy-
sis was performed with ArcGIS (Version 10.3, ESRI Inc.).
The point data were interpolated with the Ordinary Kriging
method. No trend removal was applied and isotropy was as-
sumed.

The footprint area of the EC station was determined with
the forward Lagrangian stochastic footprint model described
by Gockede et al. (2006) based on EC flux data in 2010 (EC3)
and 2011 (EC1). In these years, the fields were also cropped
with winter wheat (Triticum aestivum cv. Cubus (EC3) and
cv. Akteur (EC1)). The model estimates the footprint for dif-
ferent atmospheric stratifications (stable, neutral and unsta-
ble). In the present study, we used the weighted average foot-
print of these atmospheric stratifications. Footprint analyses
were processed for periods from mid-May to late July, when
the average plant height was about constant, on average 0.77
and 0.83m at EC3 and EC1, respectively. The installation
height of CSAT was 2.5m at EC3 and 3.10 m at EC1 over the
entire periods. The footprint model requires a land use and a
roughness matrix as input files. Based on the satellite remote-
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sensing data, we produced land use matrices of the surround-
ings of the EC stations. The special spatial resolution of ma-
trices was 5m and their areal coverage 500 x 500 m?. The
subsequent land use types were counted: winter wheat, path,
rape, grain, trees and suburban. Roughness values of the land
use classes were taken from Foken (2008b) (Figs. 2a and 3a).

In 2012, we performed three soil sampling campaigns
over the growing season: late April (25-27), mid-June (14—
15) and late July (24-27). In 2013, four sampling cam-
paigns were performed: mid-April (15-16), early June (3-4),
mid-June (18-19) and late July (30-31). Soil samples were
taken in 10 cm intervals down to 150 cm. For this purpose,
three augers with a length of 60 cm (2 =2.885cm), 100 cm
(o =2.386 cm) and 150 cm (@ = 1.763 cm) were used. The
60 cm auger was used for taking soil samples down to 60 cm.
The 100cm auger was used for sampling the 60-100cm
depth, and the 150 cm auger was taken for sampling between
100 to 150 cm. Soil samples were filled in plastic bags and
transported to the lab within less than 10h. Field wet soil
samples were weighed, put into a ventilated oven and dried
at 105°C. Final weights were usually reached within 12h.
Based on mass balance, the gravimetric water content was
calculated. It was converted to volumetric water content by
multiplication with the bulk density. Bulk density of the top-
soil layers (0—30 cm) was determined at each sampling posi-
tion using a cylindrical steel core cutter (diameter: 7.92 cm,
volume for a 10 cm sampling depth: 492.7 cm?®) on 4 May in
2012 and on 30 April in 2013. In three 10cm intervals the
core cutter was inserted into the soil by careful turning. The
soil sample was stored in a plastic bag and in the lab the soil
dry weight was determined by drying the sample at 105°C.
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Figure 3. (a) Footprint of the eddy covariance station EC 1 in 2013. Black isolines indicate the fraction of the source area of 50, 80 and 95 %
of measured EC fluxes. (b) Positions of sampling points within the footprint of EC3 used to measure soil water storage.

Close to the EC station a pit was dug down to 150cm. In
the center of every 10 cm layer, 100 cm? of soil was sampled
in triplicates using cylindrical cores (@ =5.50cm, height
4.21 cm). Bulk density was determined by drying the soil at
105 °C and determining its mass by weighing.

At the 140 cm depth we took soil samples to measure the
water retention curve and the hydraulic conductivity func-
tion. Samples (V =250cm®, @ =8cm, 5¢cm height) were
taken in triplicates using sampling rings (UMS GmbH, Ger-
many).

Additionally, soil texture was determined at each sam-
pling position. Three layers (0-30, 30-60, 60-90, 90-120,
and 120-150 cm) were pooled to one composite sample and
soil texture was determined with the standard pipette method
(Dane and Topp, 2002).

The seepage flux was computed from the Darcy-
Buckingham law:

AH
Gw =—K (h)——. (10)

Here, gw (cmd~1) is the water flux density, K (k) (cmd—1)
denotes the hydraulic conductivity as a function of the ma-
tric potential i (cm), and H (cm) is the hydraulic potential,
the sum of matric and gravitational potentials. The hydraulic
gradient AH/Az was computed from the matric potential
measurements performed at 130 and 150 cm depth and the
vertical separation distance Az (cm) of the matric potential
sensors.

The hydraulic conductivity function K (k) was determined
with the evaporation method according to Wind/Schindler
using the HYPROP lab system (UMS GmbH, Germany).
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First, soil samples taken from the 140 cm depth were slowly
saturated for 5-6 days. Afterwards soil samples were placed
on a balance and exposed to evaporation. The matric po-
tential was measured with micro-tensiometers in 1.25 and
3.75cm depth. The soil sample weight and the matric po-
tential were recorded automatically every minute at the first
hour and every 10 min in the next hours. After 4 to 5 days,
the tensiometers fell dry and the measurement was stopped.
The initial water content of soil samples was computed from
their dry weight. Based on the acquired data, a water reten-
tion curve and hydraulic conductivity function were fitted to
the data. Parameters of the functions were fitted with the ro-
bust, non-linear optimizing procedure developed by Durner
and Peters (2006) (User Manual HYPROP, 2012). Among
the available hydraulic models, the bimodal van Genuchten
parameterization (Durner, 1994) yielded the lowest Akaike
information criterion and was used in the following to model
K (h):

2 T
K(h) =Ks- [Zw,‘[l—l— (aj |h|)nj]1/nj—1]

j=1
2 2
> wja; {1 (aj 1) 2+ (ay 101) ]
j=1
2
2 wja;
j=1
j=@14,2) (11)

In Eq. (10), Ks (cmd~1) is saturated hydraulic conductivity,
w; is the weighting factors of the two van Genuchten func-
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tions and a, n; are the shape parameters of the two retention
curves. The tortuosity factor T was set to 0.5. Ks was mea-
sured on soil samples taken at EC1 from 140 cm depth by the
falling head technique using a KSAT system (UMS GmbH,
Germany). The methodology of the device follows the Ger-
man standard DIN 18130-1 and is based on the inversion of
the Darcy law (Operation Manual KSAT, 2013). Measure-
ment of K was repeated five times with each of three sam-
ples. The average value of K5 was 39.3cmday 1.

In 2013, we additionally measured the volumetric soil wa-
ter content with capacitance soil moisture probes (SM1, Ad-
con Telemetry, Austria). The probes were installed on 17 and
18 December 2012. The soil moisture network consisted of
sixteen stations located at the same positions where soil sam-
ples were taken (Fig. 3b). Every station was situated in the
middle between two machine tracks, so the farmer could eas-
ily pass the station during fertilization and pesticide applica-
tion. Each station consisted of a nine-level SM1 capacitance
probe, remote transfer unit (RTU) (addIT A723 Series 4, Ad-
con Telemetry, Austria) and a solar panel for power supply.

Adcon SM1 sensors measure the capacitance and are char-
acterized by low power consumption. Their radius of influ-
ence is about 10 cm. In order to install the SM1 probes, we re-
moved the soil with a screw auger and then carefully installed
the moisture sensors. To avoid air voids between sensor and
soil, the bore hole was carefully filled up with soil slurry. The
RTU and solar panel were mounted to an aluminum mast and
installed about 2 m away from the SM1 sensor.

The volumetric water content was measured for 15min in-
tervals at 10 cm resolution down to 90 cm depth. Soil mois-
ture content was measured from 1 April to 4 August 2013.
Each RTU stored and transmitted the data to the so-called
master station (RA440, Adcon Telemetry, Austria) mounted
on the EC mast. The master station transferred the data via
GSM modem to the central data server (A850 Telemetry
Gateway, Adcon Telemetry GmbH, Austria) located at the
University of Hohenheim.

The SM1 sensors were calibrated separately using the data
of the four sampling campaigns in 2013 described above.
Soil samples were taken about 30-50 cm away from the sen-
sor. The calibration line was derived by regressing volumetric
water content measured by the sensor to that of measured in
the lab.

Mean diurnal ETwg and ETgc, adjusted by the BR, H
or LE post-closure methods, were estimated and compared
in 6 OPs (OP) (Tables 2 and 3). In OP-1, OP-2, OP-3 and
OP-6, ET\p was estimated based on data obtained during
the soil sample campaigns, whereas in OP-4 and OP-5 it was
estimated based on the data of SM1 sensors. The latter two
periods are characterized by low precipitation and seepage,
which helps minimize uncertainties in drainage calculations

(Fig. 4).
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Figure 4. Diurnal rainfall and mean temperature during the 2013
growing season. Hatched zones (OP-4, OP-5) indicate periods with
low amount of rain and seepage.

2.3 Error estimation

The error of measured ETwg was estimated based on
the Gaussian error propagation law (Currell and Dowman,
2009):

SETws = ,/s% + sép + sis. (12)

Here, s is the standard error of the corresponding variables
R, SP or AS. The standard error of rainfall was calculated
based on the observations of the three rain gauges (EC1-3)
(n = 3). The standard error of AS was computed from the
soil water content measurements that were performed every
campaign at 16 positions (n = 16). In order to evaluate an
error of SP estimates, we used the three sets of the bimodal
van Genuchten parameterization, which were determined in
the lab (see chapter 2.2.2). For each parameterization the
drainage and capillary rise were estimated (n = 3).

3 Results
3.1 Energy balance closure of eddy covariance data

The EBC of high-quality data (1-3 flags after Foken) and ex-
cluding low LE fluxes (—25Wm ~2<LE <25Wm~2) was
73 % during the growing season 2012 and 67 % from mid-
June to late July in 2013. The average random error was
16 % for both LE and H in 2012. In 2013, the random er-
ror of LE was 12 % and that of H was 14 %. In total, 43%
of the data fulfilled the above quality criteria. Allowing in
addition for moderate quality data (4-6 flags after Foken),
EBC decreased on average by about 2 and 4% in 2012 and
2013, respectively. Table 3 summarizes the EBC in different
OPs estimated based on high and moderate quality data. In
2012, from late April to late July the average EBC was about
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Figure 5. Averaged diurnal cycles of net radiation Ry, latent LE,
sensible H and ground heat fluxes G in the observation periods
(OPs) of 2012 (OP 1-3) and 2013 (OP 4-6).

71%. This EBC was uniform during different OPs. The av-
erage residual was 68.5W m~—2. The random error of LE was
18 %, that of H 19 %. In 2013, we observed a lower EBC of
about 60 %. The average residual was 86.1 Wm~2. The av-
erage random error of flux measurements was 16.5 % for LE
and 18% for H. The lowest EBC of about 57 % was mea-
sured from mid-April to early June. During this period, 55 %
of days were rainy days (Fig. 4) resulting in a large amount of
rainfall (250 mm) —about 50 % higher than in 2012 (Table 2).
In this period we also measured the lowest net radiation and
vapor pressure deficit (data not shown). At the end of the
growing season, EBC increased. Figure 5 shows the diurnal
cycles of the energy fluxes as well as energy residual during
the different OPs. Figure 6 shows graphically EBC in both
years. The slope of the regression line, forced through the
origin, of the available energy on the turbulent energy was
0.71in 2012. In 2013 it was 0.64.

3.2 Evapotranspiration measurements
3.2.1 Growing season 2012

The results of the geostatistical analysis, performed for the
OPs in which soil was sampled down to 1.5m, showed that
the 16 AS sampling points were not or only weakly spatially
correlated. Computing the footprint-averaged AS with Or-
dinary Kriging instead of using simply the arithmetic mean
of the 16 sampling points resulted in differences between
0.4 and 1.7 mm, what corresponds to a relative error below
0.5%. Therefore, the arithmetic mean was used in the fol-
lowing.

Applying the rain gauge correction proposed by the
WMO (1999) (see Eqg. 5) increased total rainfall on aver-
age by 12 % in both years. In 2012, the two pumping wells
stayed dry during the whole growing season (OP-1), i.e., the
groundwater level was always deeper than 3 meters. Total
rainfall was 305 mm and seepage amounted to 38 mm (Ta-
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Figure 7. Vertical soil water profiles and change in water storage
over three observation periods (OPs) at winter wheat stands at EC3
in 2012.

ble 3). During the first soil sample campaign, 486.3 mm of
water was stored in the upper 150 cm of soil (Fig. 7). The
soil water stock decreased by 44.6 to 441.7 mm. During OP-
2, soil water storage was depleted to 426.3 mm. During OP-3,
rainfall refilled the soil water stock by 15.4 mm. The vertical
soil water profiles showed the largest differences within the
upper 100 cm of the soil profile. Below 100 cm the soil water
content changed only very little (Fig. 7). The components of
the soil water balance and the resulting ET are compiled and
compared with ETgc in Table 3. In all OPs, the best agree-
ment of the EC technique with WB method was achieved
without adjusting the LE flux data (H post-closure method).
The ETgc computed with the Bowen ratio method was on
average about 28 % higher than ETwg. The ETgc computed
with the LE flux post-closure method was on average about
54 % higher than ETwsg.

In 2012, standard error of rainfall measurements ranged
from 2 to 4 mm depending on the observation period. Stan-
dard error of AS ranged from 6 (1.3 %) to 9 (2 %) mm. Stan-
dard error of SP ranged from 2 to 5 mm.

3.2.2 Growing season 2013

Between mid-April and early June 2013, rainfall was more
than twice as high as in 2012 (data not shown). The water
level in the pumping wells rose to the surface for several days
during this period (8 May and 3-5 June), and surface runoff
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Table 2. Weather conditions during the vegetation periods 2012 and 2013. The numbers in brackets give the anomaly over an observation

period with regard to the 5-year average from 2009 to 2013.

Growing season, year 2012 2013
Observation period 25/04-27/07  25/04-15/06  14/06-27/07 13/04-26/04  05/07-27/07  18/06-31/07  15/04-04/06
OP-1 OP-2 OP-3 OP-4 OP-5 OP-6 OP-0
BBCH stage 30-89 30-65 65-89 20-30 75-89 65-89 20-60
Mean Net Radiation, Wm=2  148.9 (+0.7)  146.9 (+85) 152.6(—8.8) 119.1(-5.1) 192.7(+33.8) 173.3(+125)  108.5(—23.7)
Mean temperature, °C 16.1(+0.6)  146(+1.0)  17.9(+0.1) 12.8(+26)  199(+15)  18.6(+0.6) 11.1(~1.3)
Average wind speed, ms—? 1.6 (=0.1) 1.7 (=0.1) 15(=01)  2.3(+0.2) 1.4 (~0.3) 1.6 (~0.0) 2.3(+0.3)
VPD, hPa 6.4 (+0.5) 5.9 (+1.1) 69(—0.1)  61(+11)  10.2(+2.3) 8.2 (+1.1) 36(-1.2)
Bowen Ratio (H/LE)* 0.44(+0.07)  0.19(—0.01) 0.44(—0.16) 017(-0.09) 056(—053)  05(-0.34)  0.15(—0.05)
Rainfall, mm 305.0 (—8.6) 140.0(—50.7) 166.0(+38.9) 6.7(-10.3)  16(—713) 750(-59.1) 282.7 (+117.8)

* The Bowen ratio was computed for the period 09:00 a.m. to 03:00 p.m.

Table 3. Evapotranspiration measured with the water balance (WB) method and the eddy covariance (EC) technique at winter wheat stands

in 2012 and 2013.

Growing season, year 2012 2013

Observation period (OP) 25/04-27/07  25.04-15/06  14/06-27/07  13/04-26/04  05/07-27/07  18/06-31/07
OP-1 OP-2 OP-3 OP-4 OP-5 OP-6

Length of the period, days 94 52 44 14 23 44

Rainfall, mm 305 140 166 6.7 1.6 75

Water storage, mm —44.6 —60 15.4 —245 —67.9 —105.2

Drainage/capillary rise, mm 40.2/2.0 12.7/2.0 28.5/0 0.3/0.2 1.4/0 4.8/0.2

Average evapotranspiration, mm day—1

WB method 3.3+0.3 3.6+0.3 28+05 23+05 3.1+0.3 39+04

EC method with sensible heat flux post-closure method 34+06 35106 33106 23+04 3.1+05 32+05

EC method with Bowen ratio post-closure method 4.14+0.6 4.3+0.7 39+06 3.3+05 46+0.7 45+0.7

EC method with latent heat flux post-closure method 49+0.9 51+1.0 48+0.8 3.8+0.7 54+0.9 53+09

Energy balance closure (EBC)

Average EBC, % 71 70 72 55 62 63

Average residual, Wm—2 68.5 724 65.1 70.6 98.8 89.1

Number of data 2542 (57.0%) 1426 (57.7%) 1170 (56.1%) 391 (58.2%) 695 (63.0%) 1269 (60.7 %)

was observed at the field. In this period, temperatures and va-
por pressure deficits were low (data not shown). During this
period, marked on Fig. 8 as OP-0, the soil water stock was
filled up by 57.9 mm. Due to exceptionally high rainfall and
surface runoff, which was not measured, the calculation of
ETws is unreliable for this period, which hampered compar-
ing the EC and WB methods.

In OP-6, soil water storage decreased by 105.2 to
398.7 mm (Fig. 8). The total rainfall for this period was about
50% less than that in 2012 (Table 2). Seepage was low,
about 4.6 mm, over this period. Table 3 compares ETyg with
ETec. In OP-6, better agreement of the EC technique with
WB method was achieved by adjusting the LE flux data with
the BR and H post-closure method. The ETgc post-closed
with the BR method was about 15 % higher than the ETwsg.
The ETgc computed with the H post-closure method was
about 18 % lower than the ET derived from the WB method.
The ETgc adjusted with the LE post-closure method was
36 % higher than the ET\g.

www.biogeosciences.net/13/63/2016/

Soil water profiles of OP-4 and OP-5 are shown in Fig. 8.
ETws agreed best with non-adjusted raw ETgc (H post-
closure method), while BR and LE post-closure methods sig-
nificantly overestimated ET by about 46 and 70 %, respec-
tively (Table 3).

In 2013, standard error of rainfall measurements ranged
from 0.1 to 3.5mm depending on the observation period.
Standard error of AS was 8mm (1.7 %). The standard er-
ror of the water storage measured with SM1 sensors was on
average 3mm (1.0 %), and the standard error of SP was up to
1mm.

4 Discussion

The EBCs of the present study agree with those of other
studies performed over agricultural land, where EBCs are
typically characterized by high energy residuals (20-40%)
(Charuchittipan et al., 2014; Foken, 2008a; Panin and Bern-
hofer, 2008; Stoy et al., 2013). The random errors of our EC
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Figure 8. Vertical soil water profiles and change in water storage

over four observation periods (OPs) at winter wheat stands at EC1 in

2013. The upper row shows the results of the soil sample campaigns.

The soil water contents measured with capacitance soil moisture

probes (SM1, Adcon Telemetry, Austria) are shown in the lower
row.
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Figure 9. Scatter plots between evapotranspiration assessed from
the soil water balance, ETyg, and evapotranspiration measured by
the eddy covariance technique, ETgc, adjusted by the sensible heat
flux (H), the Bowen ratio (BR) and the latent heat flux (LE) post-
closure method.

fluxes are also in a good agreement with random errors re-
ported by Mauder et al. (2013) and Foken (2008a). They are
typically between 5 and 20 % for high-quality data.

Our experiment showed the limits of the WB method im-
posed by the prevailing weather conditions. It was not pos-
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sible to reliably estimate ETwg in periods with heavy rain
due to the uncertainties in drainage calculation and surface
runoff. Ideal conditions for performing the WB method are
periods with low precipitation and low or absent seepage, and
with soil water contents below field capacity (Schume et al.,
2005; Wilson et al., 2001). These conditions were well ful-
filled during OP 4 and 5. During OP4 and OP5 we found a
nearly perfect match between the WB method and the non-
adjusted ET data. The results that we obtained during OPs
with higher seepage fluxes (OP1-3) are in line with the find-
ings of OP4 and 5. Therefore, we are confident that the esti-
mated seepage fluxes are in the right order of magnitude and
that the total error, which is relatively low due to the small
absolute flux, is in an acceptable range.

The comparison of the two methods shows that the EC
method reliably measures evapotranspiration when no ad-
justment is applied (Fig. 9). Similar results were obtained
in other experimental studies. Schume et al. (2005) cross-
checked ET measured with the EC technique against the soil
water balance method over a mixed European beech — Nor-
way spruce forest. The observed EBC ranged between 73 and
92 % at their study site. They demonstrated that ET was ad-
equately measured with the EC technique. They concluded
that the proportional distribution of the residual between
the energy balance components would lead to an overesti-
mation of LE. Wilson et al. (2001) compared non-adjusted
ETgc with ET measured by various other measurement tech-
niques. EBC was 80 %. They reported a good agreement be-
tween ETgc and ET assessed by the catchment water bal-
ance method. Both methods estimated nearly equal annual
ET over a 5-year period. They also observed a high corre-
lation (R? = 0.8) between ETgc and ET assessed by the soil
water budget method. Nonetheless, the data were highly vari-
able during periods with rainfall and rapid water movement
within the soil profile.

Contrasting results were obtained in other similar studies,
i.e., where independently measured ET was compared with
ETgc. For instance, Barr et al. (2012) compared measured
streamflow from the watershed with streamflow, estimated
from seven flux towers in this watershed, over a 10-year pe-
riod. The annual EBC was about 85 % across sites and years.
His results showed that measured streamflow better agreed
with outflow estimated based on the ETgc adjusted with the
BR method, whereas outflow based on the raw ETgc flux
was about 40 % higher. In several other experimental stud-
ies, independently measured ET agreed better with ETgc
adjusted by one of the post-closure methods. Wohlfahrt et
al. (2010) cross-checked ETgc against ET determined us-
ing micro-lysimeters and an approach scaling up leaf-level
stomatal conductance to canopy-level transpiration. The ob-
served EBC was about 85%. The best correspondence be-
tween EC and the independent methods was achieved with
the LE post-closure method. Gebler et al. (2015) found that
ETgc adjusted with BR post closure method yielded the
best fit with ET measured by lysimeters, while raw ETgc
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was 16 % smaller and ETgc adjusted with LE post-closure
method was 15.7 % higher. Cuenca et al. (1997) conducted
intensive field campaigns (IFC) in spring and summer us-
ing a neutron probe and time domain reflectometry to eval-
uate the soil water content at a boreal forest. During IFC-
1 he reported a good agreement between unadjusted ETgc

(2.9mmday~1) and ET estimated based on the soil water
profile analysis (2.6 mm day—1). During IFC-2, however, the
difference between the two methods was extremely high:
3.6mmday ! against 2.1 mmday !, respectively. They re-
lated this difference to the spatial differences and sampling
volume of the measurement techniques. They also suggested
that the ET\wg versus ETgc difference could be due to the
underestimation by the turbulent complex of the downward
(negative) LE flux at night, which would overestimate the LE
flux.

Our results synthesized with the findings from literature
suggest that there is no universal approach to post-close the
energy balance gap, and that the composition of the energy
residual is site-specific. Therefore, it is advisable in case of
long-term experiments to perform for each site at the very
beginning an independent measurement of LE to identify the
most suitable post-closure method. Moreover, if EC flux data
are intended to be used to calibrate and parameterize, for ex-
ample, a land surface model, as in our case, biased measured
turbulent fluxes would directly affect the outcome of these
calibration efforts and lead to systematically biased simu-
lated turbulent fluxes. Therefore, an elaborated study on the
energy residual and its major components measured by the
EC system should be mandatory in such research studies.

The energy residual was higher at EC1 (40%) in com-
parison with EC3 (29 %). This might be partly assigned to
the heterogeneity of the EC station surrounding (Stoy et al.,
2013). A hilly forested area is situated about 500 m south
from the EC1 station (Figs. 1 and 3) which might have led
to formation of stationary large eddies over the field. Their
transport of energy and matter cannot be detected by the EC
station leading to lower EBC at this study field. However,
as already stressed in the Introduction, the large eddy theory
has not been fully embraced by the scientific community (see
e.g., Leuning et al., 2012). The worst closure during OP-4
could be assigned to additional spatial heterogeneity caused
by differences in phenological development of crops in the
landscape. OP-4 was performed early in the growing season.
In Kraichgau region during this time some fields are already
well covered with vegetation (e.g., winter cereals and winter
rape) while others are still bare, prepared for late-covering
crops, i.e., corn, potato, sugar beet (Imukova et al. 2015).
Later in the growing season fields are more evenly covered
with vegetation.

One of the possible components, which may be partly
responsible for the energy imbalance at our study site, is
the loss of fluxes in the low- and/or high-frequency range.
Mauder and Foken (2006) estimated the low-frequency loss
of EC flux data. They reported that the commonly used
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30 min averaged interval of the covariances does not cover
the entire spectrum of the turbulent fluxes. Extending the
average time substantially reduced the residual, consider-
ably increasing H flux leaving LE practically unaltered. H
changed from 40.1 W m~2 with a 5min averaging interval
to 66.9Wm~2 with 24h. LE, in contrast, decreased from
73.9Wm~—2 with 5min averaging interval to 66.9Wm~2
with 24 h, although with an averaging time of multiple days,
LE was about 75W m~—2. Wolf and Laca (2007) performed
a cospectra analysis of the ETgc measured over short-grass
steppes. They found that H flux was underestimated by
14 % due to the lack of measurement resolution in the high-
frequency range. The LE loss was only half of the H loss.
They concluded that this must lead to a bias in the measured
Bowen ratio.

Other possible candidates of the energy imbalance at our
study site are underestimated ground heat flux and neglected
terms such as energy storage in the canopy and energy con-
sumption by photosynthesis. Accounting for these fluxes
would probably help to improve the EBC at our study site.
Jacobs et al. (2008), for example, showed that EBC could be
improved at a grassland site by 15 % by elaborate estimation
of ground heat flux (9 %) and considering energy consump-
tion by photosynthesis and other minor storage terms such
as enthalpy storage in the air layer between turbulent com-
plex and the land surface (6 %). Meyers and Hollinger (2004)
demonstrated that combining soil heat storage with canopy
heat and photosynthetic energy flux improved the EBC by
15 and 7 % for a fully developed maize and soybean site, re-
spectively. They found that photosynthetic energy flux can
reach, on a half-hourly basis, up to 30 W m~2 at midday. A
maximum of the canopy heat storage was observed in the
early morning hours (up to 20 W m~2). Oncley et al. (2007)
report that the average heat storage by the canopy was about
10 W m~2 on a flood-irrigated cotton field, whereas the pho-
tosynthetic energy flux peaked at 48 W m~2 with a diurnal
average of 8Wm~2. Guo et al. (2009) observed a decrease
of EBC with the physiological development of maize. EBC
was about 89 % on bare soil and 67 % during the senescence
phase of the maize at the same field. Accordingly, the study
concluded that heat storage and photosynthesis energy of the
vegetation canopy play a non-negligible role in energy bal-
ance closure. In summary, our results imply that at our study
site during most observation periods of the growing season
(OP 1-5), the energy balance residual was not made up by la-
tent heat. At our study site, the energy balance residual most
probably consists of a combination of underestimated heat
fluxes and neglected storage terms.

5 Conclusions
We cross-checked the evapotranspiration (ET) data obtained

with the eddy covariance (EC) method against ET data mea-
sured with the soil water balance (WB) method. Both mea-
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surements were performed at winter wheat stands in south-
west Germany in 2 years, 2012 and 2013. At the study site,
both the Bowen-ratio and the LE post-closure method led
to substantially higher ET than the WB method. In general,
ET measured with the WB method agreed best with the raw
non-adjusted ET fluxes (sensible heat flux (H) post-closure
method). Only at the end of the vegetation season 2013,
during a period with high and frequent rainfall, ETwg was
in-between the ETgc adjusted by the H and Bowen ratio
method, respectively. The LE post-closure method strongly
overestimated LE during all OPs is not suitable for this site.
Our study also illustrates the limits of the WB method. The
lower the rainfall and seepage, the more reliable the method.
At our study site, during most observation periods (OP 1-5),
the energy balance gap was not made up by latent heat. This
calls for considering other fluxes and storage terms to even
out the energy balance.
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ARTICLE INFO ABSTRACT

Articl_e history: The green vegetation fraction (GVF) is a key input variable of the evapotranspiration scheme applied in
Received 15 July 2014 the widely used NOAH-MP land surface model (LSM). In standard applications of the NOAH-MP, the GVF
Received in revised form 3 March 2015 is taken from a global map with a 15 km x 15 km resolution. The central objective of the present study was

Accepted 7 March 2015

Available online 26 March 2015 (a) to derive gridded GVF data of a region in Southwest Germany in a high spatial resolution (5 m x 5m)

from RapidEye satellite images, and (b) to improve the representation of the GVF dynamics of croplands
in the NOAH-MP for a more accurate simulation of water and energy exchange between land surface and

Ié?e/ Zvr?;isg:etation fraction atmosphere. The GVF dynamics were determined based on the normalized difference vegetation index
RapidEye (NDVI) calculated from the red and near-infrared bands of the satellite images. The satellite GVF data
NOAH-MP were calibrated and validated against ground truth measurements. Based on the obtained calibration
Land surface model scheme, GVF maps were derived in a monthly resolution for the region. Our results confirm a linear rela-
Crop phenology tionship between GVF and NDVI and demonstrate that it is possible to determine the GVF of croplands
Digital camera from RapidEye images based on a simple two end-member mixing model. Our data highlight the high
Winter Wheat variability of the GVF in time and space. At the field scale, variability was mainly caused by soil het-
Silage maize erogeneities and management differences. At the regional scale, the GVF showed a bimodal distribution

Winter rape formed by the different phenology of crops. We suggest to divide croplands according to their distinctly

different temporal dynamics of the GVF into “early-covering” (winter rape, winter wheat, spring barley)
and “late-covering” crops (sugar beet, silage maize). Based on our results, we recommend that simula-
tions with LSM should take into account this differentiation of croplands, since it is to be expected that
these two crop groups produce pronounced differences in energy partitioning at the land surface.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction extended to NOAH-MP by implementing multi-physics options and
a semi-tile approach (bare and vegetated tile) for an improved

Weather and climate simulations are essential to assess the description of land surface heterogeneities (Niu et al., 2011). NOAH
impact of global climate change on agriculture. The quality of was designed to be coupled with the Mesoscale Meteorology Model

weather and climate simulations critically depends on the accu- 5 (Dudhia, 1993) and was later coupled with the Weather Research
rate representation of land surface exchange processes, which are and Forecasting (WRF) model (see, e.g., Skamarock et al., 2008). The
simulated by so-called land surface models (LSMs). The central pur- WRF model is intended for use from the large eddy simulation scale
pose of a LSM s to partition the net radiation at the land surface into up to the global scale.

sensible and latent heat flux. This partitioning controls the extent In local to regional weather forecast simulations, NOAH-MP is

of the boundary layer, the formation of clouds and the distribution typically applied with grid cell sizes from 3 x 3 km? to 20 x 20 km?2.
of rainfall. A widely used LSM is NOAH (Chen and Dudhia, 2001). At such resolutions, the model design must be a compromise
Its development has been started about 25 years ago. Since then, it between the detailedness of process description and data avail-
has undergone continuous improvement. Recently, NOAH has been ability. As a consequence, NOAH-MP, like other LSMs, relies on
simplified modelling parameterizations. Rather than explicitly sim-

ulating plant growth and the seasonal dynamics of the physiological

properties of the crop canopy, NOAH-MP uses external data of veg-
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green vegetation fraction (GVF). GVF is defined as the grid-cell frac-
tion that is covered with green canopy (Gutman and Ignatov, 1998).
GVFis atwo-dimensional property of the upper canopy (Rundquist,
2002) and represents the horizontal density of vegetation in each
grid cell (Gutman and Ignatov, 1998). NOAH-MP computes net
longwave, latent, sensible and ground heat flux separately for a
bare soil (1- green fraction cover (FVEG)) and vegetated tile (FVEG)
within each grid cell, while short-wave radiation fluxes are com-
puted over the entire grid cell (semi-tile approach; Niu et al., 2011).
In NOAH-MP, one option to parameterize FVEG is to use gridded
GVF data. In standard applications, gridded GVF data are taken
from a global map with a 0.15° resolution (15 x 15km? grid cell
size). This global map was derived from normalized difference veg-
etation index (NDVI) data derived from NOAA advanced very high
resolution radiometer (AVHRR) (Gutman and Ignatov, 1998).

At the plot scale, the GVF is usually estimated visually (Liu et al.,
2009) or derived from digital color photographs (Zergeretal., 2012;
Lukina et al., 1999; Crimmins and Crimmins, 2008; Rundquist, 2002
Rundquist, 2002; Hirano et al., 2004). An advantage of evaluating
digital photographs is that this eliminates the subjectivity in visual
estimations. The GVF based on digital photographs is usually deter-
mined by subtracting the red and the green band of the images and
counting pixels below a certain threshold as green pixel or by apply-
ing a supervised pixel-based classification method (e.g., Rundquist,
2002). At the field and regional scale, the GVF is usually derived
from multispectral satellite images. The approach used most widely
is to estimate the GVF from the normalized difference vegetation
index (NDVI) (Gutman and Ignatov, 1998; Qi et al., 2000; Xiao and
Moody, 2005; Yue et al., 2013; Carlson and Ripley, 1997). The NDVI
is computed from the reflectance at the NIR (pnr) and red (0req)
bands:

NDVI (ONIR — Pred) 1)

(ONIR + Pred)’

The GVF can then be computed from the NDVI with the help of
commonly used spectral mixture analysis (SMA) (Xiao and Moody,
2005). The assumption is that each pixel signal of the satellite data
results from a mixture of two endmembers: bare soil and vegeta-
tion. The computed NDVIvalue is then taken as a linear combination
of the NDVIs of the two components according to their propor-
tion. In the present study, we will call this method, the two-point
approach. The NDVI of bare soil depends on soil organic matter
content, soil water content etc. The NDVI of vegetation is a func-
tion of chlorophyll content. The relation between NDVI and GVF is

therefore usually region- and season-specific (Qi et al., 2000; Price,
1992; Gutman and Ignatov, 1998).

The accuracy of GVF data derived from satellite data highly
depends on the resolution of the latter (Jiang et al., 2006). Low-
resolution data such as those routinely used with the NOAH model
represent mixtures of different land uses within one pixel leading
to mixed GVF pixel values, which may seriously compromise the
quality of regional and climate simulations. In our study, for the first
time we derived GVF data with high spatial resolution using Rapid-
Eye satellite images with a cell grid size of 5 x 5m2. The RapidEye
system consists from five satellites and is operated by BlackBridge
(Berlin, Germany, http://web-dev.rapideye.de). The system pro-
duces multispectral images with five bands: blue (440-510 nm),
green (520-590 nm), red (630-685nm), red-edge (690-730 nm)
and near infrared (NIR) (760-850 nm) (RapidEye AG, 2012). A fur-
ther advantage of high-resolution data is that they can easily be
compared to ground measurements.

In the present study, we will derive and test high-resolution
GVF data for a 1500 km? region in Southwest Germany over two
vegetation periods (April-October 2012 and 2013). Based on these
data, we quantify and analyze the temporal and spatial variability
of the GVF at the field and regional scale. Finally, we discuss possible
implications of our findings for the parameterization of LSMs.

2. Material and methods
2.1. Study site

The present study was performed in Southwest Germany within
the Kraichgau region (Fig. 1). The Kraichgau covers about 1523 km?
and has a mild climate with a mean annual temperature of 9-10°C
and annual precipitation between 730 and 830 mm. The rivers
Neckar and Enz form the borders in the East. In the North and in the
South, the region is bounded by the low mountain ranges Odenwald
and Black Forest. In the West, Kraichgau is adjacent to the Upper
Rhine Plain (Oberrheinischen Tiefland). Kraichgau region is a gen-
tly sloping hilly territory with elevations between 100 and 400 m
above sea level (a.s.l.). Soils have mostly been formed from loess
material. The region is intensively used for agriculture. Around 46%
of the total area is used for crop production. Winter wheat, win-
ter rape, spring barley, corn, silage maize and sugar beet are the
predominant crops.

0 25 50 100

O Sample plot

]

0 126 250 500

Fig. 1. The study region “Kraichgau” (green) on the map of Baden-Wiirttemberg state. The location of the central study site is marked by a yellow star. On the right, the
scene of Google map shows the scaled-up central study site with sample plots (ground truth). (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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Ground truth measurements were performed at three agricul-
tural fields (EC1-EC3) belonging to the farm “Katharinentalerhof™.
The fields are situated in north of the city of Pforzheim (48°55'44"N,
8°42'36"E, 318 m a.s.l.) and managed by a local farmer. The fields
EC1-EC3 are 14, 23 and 15 ha large, respectively. Soil type is stag-
nic cambisol (WRB) at all three sites. In 2012, at EC1 winter rape
(Brassica napus L. ssp. napus; cv. Artoga), at EC2 silage maize (Zea
mays L., cv. Cannavaro), and at EC3 winter wheat (Triticum aestivum
L. cv. Akteur) were grown. In 2013, at EC1 and EC2 winter wheat
(Triticum aestivum L. cv. Akteur) and at EC3 winter rape (Brassica
napus L. ssp. napus cv. Alabaster and Fregat) were cropped.

In the center of each field, an eddy covariance station was oper-
ated. Global radiation was determined with a NRO1 4-component
sensor (NRO1, Hukseflux Thermal Sensors, The Netherlands). Air
temperature and humidity (HMP45C, Vaisala Inc., USA) were mea-
sured in 2 m height. Rainfall was measured with a tipping bucket
(resolution: 0.2 mm per tip). Meteorological data were recorded at
half-hour intervals. The weather conditions in 2012 and 2013 are
summarized in Table 1.

2.2. Ground measurement of GVF

Ground truth measurements of GVF were conducted at five per-
manently marked plots (1 m x 1 m) within each field (Fig. 1). Their
exact position (+0.02 m) was determined with a Differential Global
Positioning System (APS-3, Altus Positioning Systems, USA). From
these plots canopy, photos were taken with a Nikon COOLPIX P7000
digital camera (Nikon Corporation, Tokyo, Japan). The camera was
mounted to a portable custom-made mast. Photos were taken from
one meter above the canopy (nadir sampling). During the vegeta-
tion period (April-October), photos were taken in almost weekly
resolution. Using the automatic mode of the camera, we took color
images with and without flash. The resolution of the photos was
3648 x 2736 pixels. In parallel to the ground truth measurements,
at each acquisition day, the principal growth stages of crops were
determined using the BBCH scale (Meier et al., 2009).

The green area (GV, see Eq. (2)) of the photographs was deter-
mined by calculating the difference between red and green pixel
values (Rundquist, 2002) as follows:

GV = Red — Green, (2)

Resulting pixels below the certain threshold (GVy,) were
counted as green pixels. The ratio between green pixels and the
total amount of pixels gives the GVF. All photographs were pro-
cessed with ArcGIS 10 (ArcGIS 10, Esri, USA). The threshold GV,
was derived from a comparison between Rundquist’s approach
and a supervised classification scheme implemented in ArcGIS 10
(ArcGIS 10, Esri, USA). In ArcGIS, for selected photos, we defined
training areas of green pixels and non-green pixels including bare
soil and senescent parts. Based on the spectral signature of each
class, a maximum-likelihood estimation classified the remaining

Table 1
Mean temperature, mean global radiation and rainfall during the vegetation periods
2012 and 2013.

Month Mean global Mean Rainfall, mm

radiation, temperature,

Wm2 (&

2012 2013 2012 2013 2012 2013
March 144.5 113.5 7.2 1.9 13.0 27.2
April 174.3 160.5 9.6 9.7 48.0 56.6
May 262.4 168.5 15.3 109 51.5 169.1
June 236.1 254.2 16.5 15.8 1111 103.7
July 213.7 272.2 17.7 19.7 105.7 46.4
August 2254 2114 19.3 18.1 335 73.6
September 166.6 136.9 139 143 65.9 115.8

pixelsinto these two classes. We found the best agreement between
both methods for a GVy;, of —10. A visual inspection of 30 randomly
selected images confirmed the robustness of this threshold.

2.3. RapidEye data and processing

RapidEye satellite images with radiometric and geometric cor-
rections were obtained from the German Aerospace Center (DLR).
Due to the sensitivity of NDVI to atmospheric conditions (Song
et al., 2001; McDonald et al., 1998; Myneni and Asrar, 1994; Qi
et al., 2000) and to allow for a proper comparison of the scenes
of different months, atmospheric effects were removed from the
images using the ATCOR2 atmospheric correction model (Richter,
1996a,b,b). Corrected images were merged into one scene accord-
ing to their acquisition day.

In 2012, RapidEye images for the whole study region were avail-
able for the months May-July, September, and October. In 2013,
images were acquired from the DLR in April, May, July and August.
Scenes containing all ground truth sites for comparison with the
ground measurements of GVF, were available for five days in 2012
(24.05.12, 30.06.12, 23.07.12, 05.09.12, and 21.10.12) and for two
days in 2013 (13.04.13 and 18.05.13).

2.3.1. Computing the GVF from RapidEye satellite images
As mentioned above, the SMA approach assumes a linear rela-
tionship between GVF and NDVI:

(NDVI — NDVI)

GVEF = (NDVI, — NDVIy)

(3)
where NDVIg and NDVI,, are the NDVI of bare soil and of dense
vegetation, respectively. This equation can be rewritten as:

GVF =aNDVI-b (4)

where a and b are slope and intercept of the linear function given
by:

1

4= NDVI. — NDVI,

(5)
NDVI,

b= NDVI, — NDVI,

(6)

According to the literature (Montandon and Small, 2008; Yue
et al., 2013; Jiménez-muiioz et al., 2009; Gutman and Ignatov,
1998), NDVI,, and NDVI, can be calculated as maximum and min-
imum observed NDVI, respectively, provided that it is possible to
find pure pixels with full vegetation cover and pure pixels with
bare soil. As discussed in several studies (Qi et al., 2000; Price,
1992; Gutman and Ignatov, 1998), the NDVI value of bare soil
and dense vegetation is site- and season-specific, because NDVI
depends on, among others, soil and vegetation type as well as soil
water and chlorophyll content. The high resolution of the Rapid-
Eye satellite images together with the field observations allowed
to precisely determine NDVI,, and NDVIy at the field scale. For the
three study crops, NDVI,, was determined when the maximum GVF
was reached.

In an alternative approach, the parameters a and b were deter-
mined by linearly regressing GVF derived from ground truth against
the NDVI data derived from the RapidEye images. Because the num-
ber of available scenes was unevenly distributed between the two
years (5 acquisition dates in 2012 and 2 acquisition dates in 2013),
the two-year dataset (N=105) was randomly split into a calibra-
tion and validation subset before performing the regression. This
procedure was repeated 10 times, and the means of the slopes and
intercepts were computed.
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2.3.2. Generation of regional GVF maps

For each acquisition date, regional maps were derived by join-
ing 4-12 scenes into one mosaic. Twelve scenes covered the whole
Kraichgau region, but for some months, not all scenes could be
collected by the satellite system at one gangway. To restrict the
evaluation to croplands, each mosaic was overlaid with a land used
map processed and provided by the Federal State Office (LUBW,
2010). This map is based on the image of Landsat 7 of the year
2000. Areas obscured by clouds were excluded from the analy-
sis. These areas were identified with the interactive supervised
classification tool of ArcGIS (ArcGIS 10, Esri, USA), which uses a
maximume-likelihood algorithm. Pixels with negative values (less
than 1% per map) were excluded. Negative NDVIs are usually
related to water surface, snow or artificial materials like concrete or
asphalt. Table 2 summarizes the different acquisition dates, number
of available scenes and size and fraction of cropland area included in
the analysis.

2.4. Statistical analysis

The quality of regressions for deriving GVF from satellite was
evaluated based on the criteria model efficiency (EF), root mean
square error (RMSE) and bias. EF is defined as the proportion of the
total variance explained by a model:

N 2
FF=1-— Zi:l(Pi - Oi)
N A2
Zi:] (0;-0)
where P; denotes predicted values, 0; and O - observed values and

their mean, respectively, while N is the number of observations.
RMSE and bias were calculated as:

(7)

1 =N )
RMSE = NZE](H -0y (8)
and
. 1 =N
bias = ﬁzi:1 (P; — 0;). 9)

Student’s t-test was used to test if slopes and intercepts of
the linear regression were significantly different from zero at
«=0.05. The GVF distributions were checked for normality with
the Shapiro-Wilk test. All statistical tests were performed using
RStudio (Version 0.98.490, RStudio Inc.).

For each regional map, we computed a histogram of GVF. To the
received bi-modal data, we fitted a combination of two Gaussian
peak functions (Fig. 9), assuming a normal distribution for each
peak. This was performed with a help of the fitting tool of the Ori-
gin 7.5 (Origin 7.5, OriginLab Corporation, USA). This tool considers
for each distribution an own width (wq, wy), center (xcq, xc) and

Table 2

amplitude (A1, A), but uses a shared y offset (yq) (Eq. (10)), which
we set to zero in the present case.

A2 ) (x—xcp )2

2 wy? 10
+W21/7'[/26 (10)

(x—xcq )2
A2

wi iz

3. Results

y=Yo+

3.1. GVF dynamic of crops

The majority of photos was taken on sunny days without clouds
at Middle European Time between 11 am and 1 pm, when the
effect of shadow is minor (Duggin and Philipson, 1982). For com-
parison, the photos were taken with and without flash. In photos
taken without flash, leaves in the understory of the canopy were
often shadowed by leaves above, so that the corresponding pix-
els were identified as non-green pixels. Therefore, photos taken
without flash tended to underestimate the actual GVF. The flash
reduced this effect by resulting in a better illumination of the dif-
ferent canopy stories, thus, yielding higher GVF values. All results
presented in the following are based on photos taken with flash.

Figs. 2 and 3 show time-sequences of selected photographs of
the canopies taken in 2012 and 2013, respectively. Due to wide row
spacing (~0.7 m), the leaf coverage of maize never exceeded 90%.
Due to late drilling, the maize field achieved maximum GVF much
later in the year than the other crops. Maize was green on the field,
while winter wheat and rape were fully senescent and later already
harvested. The most homogeneous leaf coverage was achieved by
winter wheat. During spring and early summer, leaf coverage of
rape was patchy, so that some spots of bare soil can be seen. During
May, yellow rape flowers made up for a significant fraction of the
photographs hampering to some degree, the computation of the
GVF during that period (see below). GVF of winter wheat and winter
rape reached their maxima nearly at the same period. Afterwards,
the greenness of winter wheat decreased drastically, while winter
rape stayed green for about three weeks longer.

Fig. 4 shows the seasonal dynamics of GVF for winter rape, maize
and winter wheat over the vegetation periods 2012 and 2013. In
2012, the GVF of winter wheat increased during the tillering and
stem elongation stages [day of the year (DOY): 76-139]. Maximum
GVF of winter wheat was observed at the end of the stem elongation
stage and during booting stage [DOY: 139].In June, during heading,
flowering and grain filling [DOY: 153-188] GVF sharply declined
to 50-55%. In the ripening and senescence periods, green vegeta-
tion cover was close to zero [DOY: 195-202]. In 2013, we observed
similar dynamics but due to the colder weather conditions in the
beginning of the season, phenological development, and with that
the GVF dynamics were delayed by around 10 days compared with

Overview of the RapidEye satellite images that were used in the present to determine the green vegetation fraction in Kraichgau (southwest Germany) in 2012 and 2013.
The Kraichgau region covers in total 12 scenes, and the total area of croplands is 706.6 km?.

Acquiring date

Number of RapidEye scenes in Mosaic

Cropland area included in the analysis

km? %
24 May 2012¢ 12 692.2 98.0
30 June 2012° 10 659.6 93.3
23 July 20122 12 703.2 99.5
05 September 2012° 12 498.1 70.5
21 October 2012 11 620.4 87.8
14 April 2013 6 352.0 49.8
24 April 2013° 11 596.6 84.4
18 May 2013¢ 12 547.9 77.5
19 July 2013 7 377.9 53.5
29 August 2013 4 223.90 31.7
03 September 2013 10 577.3 81.7

2 Mosaic that contains a RapidEye scene used for comparison between satellite data and ground-truth measurements of the green vegetation fraction.
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Date

(DOY) Wheat

Maize Rape

Date
(DoY)

20.07
(202)

03.08
(216)

10.08
(223)

17.08
(230)

22.08
(235)

05.09
(249)

14.09
(258)

Fig. 2. Time sequence of digital color images from the canopy-top of maize, winter wheat and winter rape. The photographs were taken at the central study site of the
Kraichgau region in 2012. Numbers in the photographs give the green vegetation fraction (GVF) in percentage. The number in brackets below the data is, the day of the year

(DOY).

2012.1n 2013, on DOY: 156, the crop was still in the booting stage,
and heading and flowering were shifted to DOY:163-171 (Fig. 5). At
harvest time, about 5% of the pixels were still classified as “green”.
Moreover, in 2013, the transition of the GVF from booting to ripen-
ing period was smoother than in 2012 (Figs. 4 and 5).

During inflorescence emergence of winter rape in March and
April 2012 [DOY: 76-118], we observed a continuous increase of
the GVF. During flowering [DOY: 118-139], estimated GVF declined
due to the large number of yellow flowers, while based on a visual
estimation, the green vegetation cover was close to 100%. Yellow
flowers made the underlying green leaves invisible for the cam-
era. The maximum GVF close to 100% was reached in June during
fruit development [DOY: 153-181]. Similar as for cereals, the GVF
dropped sharply during ripening and senescence in July [DOY:
188-195]. As with wheat, the general pattern of the GVF dynamic

was similar in both years, but due to the colder weather in 2013,
flowering [DOY: 120-148] was prolonged by around one week in
comparison with the year 2012. During ripening, the GVF value was
higher than in the preceding year was observed [DOY: 190-204]. At
a harvest time, the green cover was still about 23% (Fig. 5). In con-
trast to winter wheat, winter rape stayed longer green. While the
GVF of winter wheat declined during heading, flowering and grain
filling (DOY: 153-188 in 2012, DOY: 163-190 in 2013), the GVF of
winter rape remained constant during these phenological stages.
Consequently, the ripening/senescence phase of winter rape was
much shorter than that of winter wheat.

GVF of silage maize was very different from that of winter wheat
and winter rape. The GVF of the two winter crops reached their
maxima already in the end of May. At this time, the GVF of silage
maize was still close to zero. In the end of June, all three crops
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Dat, Dat
(Dao;e) Wheat Rape (Dao:{e) Wheat Rape
21.03 12.06
(80) (163)
10.04 20.06
(100) (171)
17.04 26.06
(107) (177
23.04 09.07
(113) (190)
30.04 17.07
(120) (198)
08.05 23.07
(128) (204)
14.05
(134)

28.05
(148)
05.06
(156)

Fig. 3. Time sequence of digital color images from the canopy-top of winter wheat and winter rape. The photographs were taken at the central study site of the Kraichgau
region in 2013. Numbers in the photographs give the green vegetation fraction (GVF) in percentage. The number in brackets below the data is the day of the year (DOY).

approach the same GVF of about 50%, and the three GVF lines cross
around DOY: 181. Afterwards, the GVF of the winter crops diverge
again from that of the summer crop. While the winter crops enter
their ripening phase accomplished with a strong decline of GVF,
silage maize moves toward its GVF maximum. The GVF of the silage
maize continuously increased from germination over stem elonga-
tion to the heading stage [DOY: 202] toward a maximum value of
about 90%. During flowering and fruit development, GVF slightly
went down [DOY: 216-249]. At harvest, silage maize had still a
high GVF of about 70%.

3.2. GVF-NDVI relationship

NDVIs of bare soil and dense vegetation are needed to estimate
GVF with the two-point approach (see Eq. (3)). The NDVI of bare soil
was determined based on the scenes of 24 May 2012, 5 September
2012, and 3 September 2013. On 24 May 2012, the maize at EC2
was shortly before emergence. On 5 September 2012, at EC3, win-
terrape was harvested and the soil was ploughed. At these two days,

NDVI of bare soil ranged between 0.05 and 0.20. On 3 September
2013, the NDVI of bare soil was between 0.1 and 0.2 on the fields
EC1 and EC2, where winter wheat had been harvested and the
soil ploughed. Based on the above ground truth observations, we
selected images from the days at which the highest GVFs has been
observed in the ground observations during the entire vegetation
period for deriving maximum NDVI values from RapidEye images.
Maximum NDVIs of winter rape, winter wheat and silage maize
were 0.95 [24.05.12], 0.94 [18.05.13], and 0.88 [23.07.12], respec-
tively. Based on these measurements, we derived (see Eq. (4)) the
following equation (NDVIpax = 0.95; NDVI,; =0.05):

GVF = 1.11 x NDVI-0.06 (11)

Based on the ground truth data, the modeling efficiency (EF)
of the two-point approach was 0.86, while RMSE was 0.15 and
the bias 0.084. Additionally, we performed a linear regression of
GVF derived from ground truth data and on NDVI determined from
RapidEye images. The results are given in Table 3. The modeling
efficiency of the general regression was slightly higher than that
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Fig.4. Dynamics of the green vegetation fraction (GVF) based on photographs taken
from 1 m above the canopy at the central study sites of Kraichgau in 2012 and 2013.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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—2013
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Fig. 5. Comparison of green vegetation fraction (GVF) dynamics of winter wheat

and the winter rape in 2012 and 2013 based on photographs taken from 1 m above
the canopy at the central study sites of Kraichgau.

1.04 Gutman & Ignatov approach
1 GVF=1.11NDVI-0.06
0.8 EF=0.86

0.6 -

GVF - ground measurement

GVF=1.15NDVI-0.16]
- EF=0.91 .

00 02 04 06 08 10
NDVI RapidEye

Fig. 6. Relationship between measured GVF and NDVI calculated from RapidEye
images. The black line shows the relationship between both variables following the
Gutman and Ignatov (1998) approach. The red line shows the linear regression of
GVF from ground truth measurements on NDVI calculated from RapidEye images.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

of the two-point approach (EF=0.91). Regression results were, of
course, non-biased, RMSE was 0.12. Fig. 6 compares the result of the
regression analysis and the two-point approach. The linear regres-
sion was validated against the second subset that had not been used
in the regression (see Section 2.3.1.). The statistical criteria for the
regression equation (EF=0.91, RMSE=0.11, bias =0.008) were sim-
ilar to those of the calibration data. The regression equation was
used to generate the gridded GVF data of the Kraichgau region. We
repeated the linear regression crop-wise. Mean slopes and inter-
cepts are summarized in Table 3. Based on Student’s t-test, the
regression parameters of maize were significantly different from
those of the winter crops, while the differences between those of
the latter were not (a =0.05).

The high intercepts in case of winter wheat and winter rape is
a result of senescence. NDVI of senescent plants was higher than
NDVI of bare soil, while GVF for both of them equals to zero. Shortly
before harvest, both crops lost their chlorophyll, thus, the greenness
cover was about zero and the soil was covered with dry vegetation
like it is shown on the photographs of Figs. 2 and 3 on DOY: 195 and
202 in 2012 and DOY: 204 in 2013. In this case, the average NDVI of
the winter wheat was 0.25 £ 0.01 and that of the winter rape was
0.23 £0.01. The mean NDVI of bare soil of sample plots remained
the same in all three fields in both years. It was about 0.13 with a
standard deviation around 0.01.

Table 3
Results of regressing GVF on NDVI (GVF =a NDVI +b). Numbers in bracket give stan-
dard errors.

Crop Mean slope (a) Mean intercep (b) EF

Winter rape 1.38 (0.09)? —-0.30(0.07)2 0.89
Winter wheat 1.35(0.07)? —0.34(0.06)? 091
Silage maize 0.92 (0.05)P —0.005 (0.03)° 0.95
All 1.15 (0.05)° —-0.16 (0.03)° 0.91
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© Sample plot

Fig. 7. (a) RapidEye image (RGB) of the central study site Katharinentalerhof taken on June 30, 2012 [DOY: 182]. (b) Green vegetation fraction (GVF) map derived from the
same RapidEye image. The more green the pixel, the higher the GVF. Bluish pixels indicate areas almost void of vegetation.
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Fig. 8. Map of the green vegetation fraction (GVF) of Kraichgau region calculated from RapidEye data on 24 May 2012. The inlet shows the histogram of the GVF. The red line
indicates the GVF used by the NOAH-MP land surface model in large-scale simulations.

3.3. High-resolution 2D GVF fields

3.3.1. Field scale

Fig. 7 shows, by way of example, a RapidEye scene of the cen-
tral study site acquired on 30 June 2012 and the derived GVF map.
The bright green color indicates areas with a high green vegetation
cover. The dense blue color is related to bare soil or sparsely veg-
etated areas. Buildings and asphalt roads were not excluded from
the scene and show up in the graph as bluish pixels. During both
vegetation periods, we observed in most cases that the distribu-
tion of GVF in each field was bell-shaped (data are not shown).
The most homogeneous spatial distribution of GVF was observed
at EC3. In June 2012, the distribution of the green cover was nor-
mal at EC3 («¢=0.05). In 2012, we observed at EC1 (winter rape),
larger contiguous zones of lower and higher GVF. In the north of
the field, there was a strip with GVF lower than in the southern
part of the field, which resulted in a bi-modal distribution. In June

2012, we observed in the eastern part of the EC2 field (silage maize)
anorth-south strip of lower GVF, while in July and September 2012,
the GVF distribution had a bell shape at this field. These differences
were mostly related to differences in management (see Section 4).

3.3.2. Regional scale

At the regional scale, the GVF data showed bi-modal distribu-
tions (Figs. 8 and 9). In the scene of 24 May 2012, for example, the
histogram shows two clearly distinct peaks in the low (blue color)
and the high (green color) range. The dense dark blue color covers
around 17% of the total area. Highest GVF values (80-100%; dark
green) contribute 38% of the total area. At 28% of the total area, GVF
was between 0.6 and 0.8. To each histogram, we fitted a bi-modal
Gaussian distribution (red and green lines in Fig. 9). In nearly all
months, both distributions were clearly separated from each other.
Only in June, both distributions distinctly overlapped.
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Fig. 9. Histograms of the green vegetation fractions over croplands at the Kraichgau region in 2012 and 2013. GVF data were derived from RapidEye satellite images
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to the web version of this article.)

4. Discussion

In the present study, we successfully used color images from a
digital camera to measure the dynamics of GVF for different crops
over two seasons. Rundquist’s method is simple and allows for
automating the evaluation process thereby reducing human sub-
jectivity. In our study, we found a linear relationship between NDVI
derived from RapidEye data and GVF ground truth data. A linear
relationship was observed across different development stages and
for three crops. The relationship of maize was closer (EF=0.95) than
that of winter wheat (EF=0.91) and winter rape (EF=0.89). The
linear relationships support, at least in principle, the approach of
estimating GVF from NDVI data using a two-endmember mixing
model. Rundquist (2002), Lukina (1999) and Hurcom and Harrison
(1998) also found a linear relationship between NDVI and GVF, with
NDVI computed from spectral measurements and GVF based on
digital color images. Linearity is confirmed by further studies in
which an NDVI-SMA approach was used (Qi et al., 2000; Xiao and
Moody, 2005; Wittich and Hansing, 1995).

Both methods used to estimate GVF, i.e., regression of GVF on
NDVI and the two-endmember mixing model, performed similarly
well. Model efficiencies were EF=0.91 and EF=0.86, respectively.
The regression model showed a slightly lower RMSE (0.12) than
the NDVI-SMA approach (RMSE=0.15). The validation of linear
regression against the independent dataset resulted in a compa-
rable model efficiency (EF=0.91) revealing that the regression is
robust. When performing the regression crop-wise, we found sig-
nificant differences, in particular, between winter wheat and maize.
This suggests that the estimation of GVF may be further improved
by performing the regression crop by crop, but this would require
a detailed mapping of the crop species in the region. Both meth-
ods yielded better estimates of GVF when green cover was above
40%. Observed variation at high GVFs relates to the crop differences.
Estimation of GVF was problematic during flowering of winter rape,
when model efficiency was low.

Particularly at low GVF, the GVF-NDVI data showed a large scat-
ter (Fig. 6). The reason for this scatter is that at low GVF, the NDVI is
strongly affected by the reflectance of soil or senescent non-green

vegetation. GVF measurements are considerably affected by soil
reflectance, particularly when vegetation is sparse (Smith et al.,
1990; Huete et al., 1985; Garcia-haro et al., 1996; Elmore et al.,
2000). Soil reflectance depends on soil texture, soil organic matter
content and moisture conditions (Huete et al., 1985; Liu and Huete,
1995; Myneni et al., 1992; Qi et al., 2000). At our study site; the
observed NDVI of bare soil was between 0.05 and 0.20. The varia-
tion was probably mainly caused by different moisture conditions
and led to a systematical overestimation of GVF (Carlson and Ripley,
1997; Huete and Jackson, 1988). Furthermore, we found that the
regression method tends to overestimate the GVF at fields covered
with senescent crops (GVF=0) because the NDVI of the senescent
plants was on average by 0.11 higher than that of bare soil. This
issue has also been addressed by other authors (Purevdorj et al.,
1998; Xiao and Moody, 2005).

At the field scale, the distribution of GVF was in most cases bell-
shaped with a coefficient of variation (CV) between 2% and 50%.
High CVs were observed at fields with low GVF. In the fields with
GVF>0.15,the CVwasonaverage 5.1%.In 2012, at EC1, we observed
a bi-modal distribution, which was mainly caused by management
differences. For instance, in the northern part of the EC1 field, the
winter rape had been drilled some days later than in the southern
part. The two different drilling dates resulted in a bi-modal dis-
tribution. Both parts are clearly distinguishable on the GVF maps.
The development of winter rape in the northern part of the field
was delayed leading to a lower green vegetation cover. A similar
situation was observed at the EC2 field in June 2012 (Fig. 7). In the
western part, silage maize was drilled on 1 May, while in the east-
ern part it was drilled two days later. This small time difference in
drilling date caused a distinct variation of GVF at a field scale. Soil
heterogeneity may have led to additional variability in the GVF.

Our ground observations show that each crop has a distinct
crop-specific seasonal dynamics of GVF. Moreover, we clearly
observed intra-annual differences. Due to the cold and wet sum-
mer in 2013, development of wheat and rapeseed was delayed
by about two weeks. This makes clear that running a LSM with
an averaged prescribed constant, seasonal, GVF dynamics will
fall short of accounting for the feedback between weather and
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vegetation development. Among others, this must lead to inaccura-
cies in assessing evapotranspiration and convective precipitation.

At the regional scale, the GVF showed a bi-modal
distribution during the vegetation period (Fig. 9). The bi-
modal shape was mainly caused by differences in crop
phenology. According to the land use data from the Sta-
tistical Office of the Federal State of Baden-Wiirttemberg
(http://www.statistik.baden-wuerttemberg.de), in 2010, the
shares of the major crops in the municipality Sinsheim, which is
located in the center of Kraichgau, were as follows: 34.9% winter
wheat, 20.8% spring and winter barley, 16.1% corn and silage maize,
9.5% winter rape, and 8.7% sugar beat. These crops can be basically
divided into two groups: early- and late-covering crops. The first
group includes crops such as winter wheat, winter rape, winter
barley and spring barley. These crops develop early in spring,
achieve maximum GVF usually between end of May and mid of
June and become senescent in July. The second group includes
corn, silage maize, and sugar beet. They are drilled in spring, and
will have a developed ground-covering canopy only as late as in
June or July. Leaves of these crops are still green in August and
September, while the early covering crops are already harvested.
Both phenological types show very pronounced differences with
regard to the Bowen ratio or rather energy partitioning in the
course of the season (Wizemann et al.,, 2014). Fig. 10 shows the
GVF dynamics of the early- and late-covering crops based on the
Gaussian fits shown in Fig. 9. The early-covering crops have quite
high GVFs in April and May and reach their maxima in June. In July,
the GVF declines strongly until it is in the range of 0.1 in August
and September. In contrast, the late-covering crops have low GVF
in April and May, while the maximum is reached in July, and it
stays relatively constant until September.

Based on the modal values of the Gaussian fits, we derived the
GVF dynamics of early- and later covering crops for the Kraich-
gau region (Fig. 10). These satellite-derived GVF dynamics were
close to the ground measurements. In the NOAH-MP LSM, crop-
lands of our study region would be classified as one land cover type
(“Dryland cropland and pasture”). Our results imply that merg-
ing early- and late-covering crops in regional climate simulations
into one land-use type as recommended in the NOAH, LSM is an
oversimplification, because they will show distinct differences with
regard to energy and water fluxes over the vegetation period.

For the municipality of Sinsheim, we calculated based on the
ground measurements the area-weighted average GVF dynamics
on the basis of varying land use and compared with that of used in
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Fig. 10. Seasonal dynamics of the green vegetation fraction (GVF) of early covering
crops (red line) and the later covering crops (green line) in Kraichgau region. Early
covering crops are, e.g., winter wheat, winter rape, and summer barley. Late covering
crops are mainly maize and sugar beet. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Comparison of ground truth data with satellite data for the municipality
Sinsheim. The black line belongs to the GVF dynamics which is used in the NOAH
model by default. In this case, GVF was derived from satellite images with low res-
olution (15 x 15 m?) what leads to mixed GVF pixel values because the pixel cover
different land-use types. The red line is the areal weighted average GVF which was
calculated with account of spatial distribution of croplands for the municipality Sin-
sheim. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

the default settings of NOAH-MP LSM (Fig. 11). The land use data
were taken from the Statistical Office of the Federal State of Baden-
Wiirttemberg (http://www.statistik.baden-wuerttemberg.de) as
described above. In the default settings of NOAH-MP LSM, GVF val-
ues are taken from the NESDIS/NOAA satellite. The NESDI/NOAH
data have a resolution of 15 x 15 km2. Due to the mixing of crop-
lands, forest and urban areas in practically all pixels, the overall GVF
is too high. Moreover, the seasonal dynamics are strongly smoothed
(Fig. 11) in comparison with the actual GVF dynamic.

5. Conclusions

For the first time, we presented high-resolution data (5 x 5 m?)
on the GVF dynamics of croplands derived from RapidEye satellite
data at the field and regional scale. GVF is highly variable in time
and space. As to be expected, its seasonal dynamics are affected
by the prevailing weather conditions. At the field scale, the vari-
ability of GVF depends, among others, on management (drilling,
soil tillage etc.). At the regional scale, the variability was impacted
by the distinct differences in the phenological development of
crops. The observed bi-modal distribution of GVF suggests to distin-
guish at least between early- and late-covering crops (e.g., winter
wheat vs. silage maize), because seasonal dynamics of energy- and
water exchange between land surface and atmosphere are very
different between these. Concomitantly, we conjecture that split-
ting the land uses class “croplands” as used by NOAH-MP and
other land surface models into two classes (early-covering vs. late-
covering crops) have the potential to improve simulations of land
surface processes in heterogeneous agricultural landscapes.
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Abstract. Land surface models are essential parts of climate
and weather models. The widely used Noah-MP land surface
model requires information on the leaf area index (LAI) and
green vegetation fraction (GVF) as key inputs of its evap-
otranspiration scheme. The model aggregates all agricultural
areas into a land use class termed “cropland and pasture”. In a
previous study we showed that, on a regional scale, the GVF
has a bimodal distribution formed by two crop groups differ-
ing in phenology and growth dynamics: early-covering crops
(ECC; e.g., winter wheat, winter rapeseed, winter barley)
and late-covering crops (LCC; e.g., corn, silage maize, sugar
beet). That result can be generalized for central Europe. The
present study quantifies the effect of splitting the land use
class cropland and pasture of Noah-MP into ECC and LCC
on surface energy fluxes and temperature. We further studied
the influence of increasing the LCC share, which in the study
area (the Kraichgau region, southwest Germany) is mainly
the result of heavily subsidized biomass production, on en-
ergy partitioning at the land surface. We used the GVF dy-
namics derived from high-resolution (5 m x 5 m) RapidEye
satellite data and measured LAI data for the simulations. Our
results confirm that the GVF and LAI strongly influence the
partitioning of surface energy fluxes, resulting in pronounced
differences between simulations of ECC and LCC. Splitting
up the generic crop into ECC and LCC had the strongest ef-
fect on land surface exchange processes in July—August. Dur-
ing this period, ECC are at the senescence growth stage or al-
ready harvested, while LCC have a well-developed ground-

covering canopy. The generic crop resulted in humid bias,
i.e., an increase in evapotranspiration by +0.5mmd~! (la-
tent heat flux is 1.3 MJm~2d~!), decrease in sensible heat
flux (H) by 1.2MJIm~2 d~! and decrease in surface temper-
ature by —1 °C. The bias increased as the shares of ECC and
LCC became similar. The observed differences will impact
the simulations of processes in the planetary boundary layer.
Increasing the LCC share from 28 % to 38 % in the Kraich-
gau region led to a decrease in latent heat flux (LE) and a
heating up of the land surface in the early growing season.
Over the second part of the season, LE increased and the land
surface cooled down by up to 1 °C.

1 Introduction

Within weather and climate models, land surface exchange
processes are simulated by so-called land surface models
(LSMs). The main role of an LSM is to partition net radiation
at the land surface into sensible heat flux (H), latent heat flux
(LE) and ground heat flux (G) and determine the land surface
temperature. Surface energy partitioning has a significant in-
fluence on the evolution of the atmospheric boundary layer
(ABL). ABL evolution strongly influences the initiation of
convection, cloud formation, and ultimately the location and
strength of precipitation (Crawford et al., 2001; Koster et al.,
2006; Santanello et al., 2013; van Heerwaarden et al., 2009;
Milovac et al., 2016).

Published by Copernicus Publications on behalf of the European Geosciences Union.
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The surface energy partitioning depends on the physical
and physiological properties of the land surface (Raddatz,
2007). In LSMs, Earth’s surface is subdivided into differ-
ent land use classes, among them cropland. Physiological
state variables of crops such as the green vegetation fraction
(GVF) and leaf area index (LAI) vary significantly through-
out the growing season. This alters the biophysical parame-
ters of surface albedo, bulk canopy conductance and rough-
ness length, leading to significant changes in surface energy
fluxes (Crawford et al., 2001; Ghilain et al., 2012; Tsvetsin-
skaya et al., 2001a; Wizemann et al., 2014). In many parts
of the world, cropland covers a considerable part of the sim-
ulation area. Therefore, accurately simulating the seasonal
variability in surface energy fluxes highly depends on an ad-
equate representation of plant growth dynamics.

One of the widely used LSMs is Noah-MP. It is usually
coupled with the Weather Research and Forecasting (WRF)
model, which is intended for use from the large-eddy simu-
lation (LES) scale up to the global scale. Within each grid
cell, Noah-MP computes net longwave radiation as well as
LE, H and G separately for the bare soil and the vegetated
tile, whereas shortwave radiation is computed over the entire
grid cell (semitile approach; Lhomme and Chehbouni, 1999;
Niu et al., 2011).

Noah-MP collects agricultural areas into only general land
use classes such as “dryland cropland and pasture”, “irrigated
cropland and pasture”, or “mixed dryland/irrigated cropland
and pasture”. Vegetation dynamics and their seasonal devel-
opment are described in the Noah-MP model by the plant
variables of GVF and LAI. The surface energy fluxes crit-
ically depend on accurately representing GVF and LAI dy-
namics (Chen and Xie, 2011; Crawford et al., 2001; Refslund
et al., 2014). In Noah-MP, the GVF and LAI are fixed quan-
tities; they do not depend on the weather conditions during a
simulation. The GVF is defined as the grid-cell fraction cov-
ered by a green canopy (Gutman and Ignatov, 1998). It is a
function of the upper canopy (Rundquist, 2002) and repre-
sents the horizontal density of vegetation in each grid cell
(Gutman and Ignatov, 1998). The LAI represents the verti-
cal density of the canopy. Certain biophysical parameters in
Noah-MP such as surface albedo, roughness and emissivity
are considered linear functions of the LAL

By default, Noah-MP derives GVF values from the nor-
malized difference vegetation index (NDVI) obtained from
the NOAA NESDIS satellite. These data have a resolution
of 15km x 15km. Due to the mixing of croplands, forest
and urban areas, the overall GVF is often positively biased.
Moreover, as shown by Imukova et al. (2015), seasonal GVF
data are strongly smoothed compared to the actual GVF dy-
namics. Milovac et al. (2016) and Nielsen et al. (2013) found
that the GVF grid data used in the Noah-MP LSM are out-
dated and stated that these should be updated given their im-
portance for ABL evolution.

In a previous study, we derived GVF data with a resolution
of 5m x 5 m (Imukova et al., 2015) for a region in southwest
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Germany (Kraichgau) using RapidEye satellite data. On the
regional scale, the GVF shows a bimodal distribution mirror-
ing the different phenology of crops. Crops could be grouped
into two classes. Early-covering crops (ECC), such as winter
wheat, winter rape, winter barley and spring barley, develop
early in spring, achieve a maximum GVF usually between
late May and mid-June, and become senescent in July. Late-
covering crops (LCC), such as corn, silage maize, and sugar
beet, are drilled in spring and develop a maximum ground-
covering canopy from July to August. They are still green
in September, when the ECC are already harvested. The dy-
namics of ECC and LCC vary to some degree from season to
season and from region to region.

The shares of ECC and LCC may change over time, of-
ten reflecting economic decisions that may depend on pol-
icy interventions. In Germany, a substantial change in these
shares was introduced by subsidizing biogas production. In
2003, 1.7 x 10° ha of maize was cultivated in Germany. Only
70 000 ha of this area was cropped with silage maize for bio-
gas production (SRU Special Report, 2007). In 2009, the area
cropped with maize for biogas production had increased to
about 500 000 ha, while the total maize area remained almost
constant (Huyghe et al., 2014). In 2012, the total acreage of
maize had increased to 2.57 x 10® ha with 0.9 x 10®ha in-
tended for biogas plants. The increase occurred mainly at the
expense of grassland. Since then, the total maize crop area
has remained almost constant: 2.6 x 10° ha in 2018 (Facha-
gentur Nachwachsende Rohstoffe e.V., 2019). From 2005 to
2018, the maize area in Germany increased by about 53 %.

The objectives of the present study were (1) to eluci-
date the extent to which surface energy fluxes simulated
with Noah-MP are affected by aggregating early- and late-
covering crops into one generic cropland class and (2) to
quantify the effect of a land use change, driven by the ex-
pansion of maize cropping as a response to the increasing
demand for biogas plants, on energy partitioning and surface
temperature in the Kraichgau region (southwest Germany).
Additionally, we tested the performance of Noah-MP on LE
data measured with the eddy covariance technique.

2 Materials and methods
2.1 Study site and weather data measurements

The site under study is the agricultural field belonging to the
farm Katharinentalerhof. The field is located north of the city
of Pforzheim (48.92° N, 8.70° E). The central research site is
a part of the Kraichgau region. The Kraichgau region covers
about 1500 km”. Mean annual temperature ranges between 9
and 10°C, and annual precipitation ranges between 730 and
830 mm. The Neckar and Enz rivers form the borders to the
east. To the north and south, the region is bounded by the
low mountain ranges of the Odenwald and Black Forest. In
the west, it adjoins the Upper Rhine Plain (Oberrheinisches

https://doi.org/10.5194/bg-17-2791-2020
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Tiefland). Kraichgau has a gently sloping landscape with ele-
vations between 100 and 400 m above sea level (a.s.l.). Soils
are predominantly formed from loess material. The region is
intensively used for agriculture: around 46 % of the total area
is used for crop production. Winter wheat, winter rapeseed,
spring barley, corn, silage maize and sugar beet are the pre-
dominant crops.

Weather data used to force the Noah-MP model were
acquired at an agricultural field (EC1, 14 ha) belonging to
the farm Katharinentalerhof. The terrain is flat (elevation
319ma.s.l.). The predominant wind direction is southwest.
The study site has been described in detail in several studies
(Imukova et al., 2015; Ingwersen et al., 2011; Wizemann et
al., 2014).

An eddy covariance (EC) station was operated in the cen-
ter of the EC1 field. Wind s peed and w ind d irection were
measured with a 3D sonic anemometer (CSAT3, Campbell
Scientific, UK) installed at a height of 3.10 m. Downwelling
longwave and downwelling shortwave radiation were mea-
sured with an NRO1 four-component sensor (NRO1, Hukse-
flux Thermal Sensors, the Netherlands). Air temperature and
humidity were measured at a 2 m height (HMP45C, Vaisala
Inc., USA). All sensors recorded data at 30 min intervals.
Rainfall was measured using a tipping bucket (resolution at
0.2mm per tip) rain gauge (ARG100, Campbell Scientific,
UK). For further details about instrumentation and data pro-
cessing see Wizemann et al. (2014).

2.2 Eddy covariance measurements

In order to test the Noah-MP performance, we used the
EC measurements of latent heat flux o ver maize and win-
ter wheat fields (EC2 and E C3, r espectively) o f t he 2012
growing season. The EC2 and EC3 agricultural fields also be-
long to the farm Katharinentalerhof introduced above. They
are 23 and 15 ha large. The winter wheat was planted in au-
tumn 2011 and harvested on 29 July. The maize was drilled
on 2 May and harvested on 20 September. The EC station
was operated in the center of each field. The latent heat flux
was measured at a 30 min resolution. For the maize, the LE
data were only available till 20 September, whereas for the
winter wheat field there were no missing data. Detailed in-
formation on the EC measurements is given in Imukova et
al. (2016). The EC flux d ata w ere p rocessed w ith TK3.1

software (Mauder et al., 2011). Surface energy fluxes were
computed from 30 min covariances. For data quality anal-
ysis we used the flag s ystem a fter F oken ( Mauder e t al.,

2011). LE half-hourly values with flags from 1 to 6 (high- and
moderate-quality data) were used to test the performance of
the Noah-MP LSM. LE data were gap-filled using the mean
diurnal variation method with an averaging window of 14d
(Falge et al., 2001). The random error of LE, which consists
of the instrumental noise error of the EC station and the sam-
pling error, was computed by the TK3.1 software (Mauder

https://doi.org/10.5194/bg-17-2791-2020

et al., 2013). For more details on EC data processing, please
refer to Imukova et al. (2016).

The model performance is usually tested against field mea-
surements of sensible and latent heat flux performed with the
eddy covariance (EC) technique (Ingwersen et al., 2011; El
Maayar et al., 2008; Falge et al., 2005). The EC method is
a widely used method for this purpose although it has one
well-known problem. The energy balance of EC flux data is
typically not closed, which means LE and/or H measured
with the EC technique are most probably underestimated. A
previous study showed the EC technique provides reliable LE
measurements at our study site and these data can be used for
model testing (Imukova et al., 2016).

2.3 The Noah-MP v1.1 land surface model
2.3.1 Model parametrization

The multiphysics options of Noah-MP were set as shown in
Table 1. For the simulation we used the US Geological Sur-
vey land use dataset. The vegetation type index was set to 2
(dryland cropland and pasture) and soil type index to 4 (silt
loam). The model was forced with half-hourly weather data
(wind speed, wind direction, temperature, humidity, pres-
sure, precipitation, downwelling longwave and shortwave ra-
diation) measured at EC1 from 2011 to 2012. Simulations
were initialized with a spinup period of 1 year (2011) and
run with a time step of 1800 s.
2.3.2 GVF dynamics
The GVF data required by the Noah-MP model were derived
from high-resolution (5m x 5m) RapidEye satellite data.
Detailed information on the deriving of the GVF data used
in the current research can be found in Imukova et al. (2015).
The GVF data were calculated from the normalized differ-
ence vegetation index (NDVI) computed from the red and
near-infrared bands of the satellite images. The relationship
between the GVF and NDVI was established by linear re-
gression using ground truth measurements. GVF maps for
the Kraichgau region were derived at a monthly resolution.
Table 2 shows the observed and mean GVF dynamics of
ECC and LCC over the growing seasons 2012 and 2013
as well as the GVF dynamics of the generic crop in the
Kraichgau region. The GVF values on the 15th day of each
month, as required by the Noah-MP model, were calculated
by linearly interpolating the monthly values derived from the
GVF maps. A generic GVF dynamic was calculated as the
weighted mean of ECC and LCC from 2012 and 2013. The
areal distribution of ECC and LCC was determined from the
GVF maps of May 2012. All pixels with a GVF value be-
low 0.5 were counted as LCC, whereas pixels with values
above that threshold were assigned to ECC. Figure 1 shows
the spatial distribution of early- and late-covering crops in
Kraichgau. The estimated areal distribution of ECC and

Biogeosciences, 17, 2791-2805, 2020
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Table 1. Settings of the multiphysics options used in the Noah-MP simulation.

Multiphysics option

Setting

Vegetation model

Canopy stomatal resistance

Soil moisture factor for stomatal resistance
Runoff and groundwater model

Surface layer drag coefficient (CH and CM)
Supercooled liquid water

Frozen soil permeability

Radiation transfer

Snow surface albedo

Rainfall and snowfall

Lower boundary of soil temperature
Snow/soil temperature time scheme

opt_dveg = 1: prescribed (Table LAI, shdfac =FVEG)
opt_crs =2: Jarvis

opt_btr = 1: Noah

opt_run = 1: SIMGM

opt_sfc = 1: based on Monin—Obukhov similarity theory
opt_frz=1: NY06

opt_inf=1: NY06

opt_rad=3: gap=1—-FVEG

opt_alb=2: CLASS

opt_snf=1: Jordan91

opt_tbot =2: Noah

opt_stc = 1: Semi-implicit

Table 2. GVF dynamics of early-covering crops (ECC) and late-covering crops (LCC) in 2012 and 2013 in the Kraichgau region, southwest
Germany, as well as the GVF dynamics of the generic crop.

GVF I5Apr 15May 15Jun  15Jul 15 Aug 15 Sep
GVF 2012 ECC -b 0.74 0.83 0.37 0.01¢ 0.01
LCC _b 0.01 0.35 0.74 0.69¢ 0.56

GVF 2013 ECC 0.54
LCC 0.01

0.80  0.57° 0.29 0.01 0.01
0.06  0.37° 0.69 0.74 0.75

Mean GVF  ECC 0.54
LCC 0.01

0.77 0.70 0.33 0.01 0.01
0.04 0.36 0.72 0.72 0.66

Generic crop GVF? 0.39

0.57 0.60 0.44 0.21 0.19

2 Weighted mean GVF calculated based on fractions of ECC (72 %) and LCC (28 %) in Kraichgau. b No
RapidEye scenes were available for April. © No RapidEye scenes were available for these months; GVF

values were derived by linear interpolation between adjacent months.

LCC was 72 % and 28 %, respectively. These results corre-
spond well with data of the Statistisches Landesamt Baden-
Wiirttemberg (http://www.statistik.baden-wuerttemberg.de/,
last access: November 2019).

2.3.3 LAI dynamics

Noah-MP requires prescribed LAI data for each month. Data
were derived from field measurements. The LAI was mea-
sured biweekly using an LAI-2000 plant canopy analyzer
(LI-COR Biosciences Inc., USA). In 2012 and 2013, the LAI
of the crops was measured on five permanently marked plots
of 1 m? on three different fields. Detailed information about
the study plots can be found in Imukova et al. (2015). In
2009-2011, the LAI and the phenological development of
the crops were measured on five permanently marked plots
of 4m? in the same three fields. The growth stages of crops
were determined using the BBCH scale (Meier et al., 2009).
More details on the measurements can be found in Ingwersen
et al. (2011, 2015). Table 3 shows measured and mean LAI
dynamics as well as generic LAI dynamics estimated by con-
sidering shares of ECC (72 %) and LCC (28 %) in the study
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region. LAI dynamics of winter wheat and winter rape were
assigned to ECC; those of maize were assigned to LCC. The
mean LAI dynamics of ECC were estimated based on the
measurements conducted in winter wheat and winter rape
stands during the 2012 and 2013 growing seasons. Since LAI
data were not available for maize in 2013, the mean LAI dy-
namics of LCC were assessed using field data from the same
fields collected in 2009-2012.

2.4 Simulation runs

We firstly quantified the extent to which ECC and LCC differ
with regard to their energy and water fluxes, surface temper-
ature (TS) and soil temperature (TG). For this, we performed
one local simulation for each crop group using the mean LAI
and the mean GVF dynamics observed during the two grow-
ing seasons (see Tables 2 and 3).

Secondly, to determine the effect of splitting up the vege-
tation dynamics of a generic crop into that of ECC and LCC,
we compared the following two local simulation runs:
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Table 3. LAI dynamics of early-covering crops (ECC) and late-covering crops (LCC) in 2012 and 2013 in the Kraichgau region, southwest
Germany, as well as the LAI dynamics of the generic crop.

Green LAI 15Apr 15May 15Jun  15Jul 15 Aug 15 Sep
LAI2012 ECC 24 44 4.6 0.0 0.0 0.0
LCC 0.0 0.1 0.9 32 5.0 3.7

LAI2013  ECC 1.7 4.2 4.3 0.0 0.0 0.0
Lccb - - - - - -

Mean LAI  ECC 2.1 4.3 4.5 0.0 0.0 0.0
LCC* 0.0 0.1 0.9 3.1 4.5 3.8

Generic crop LAT? 1.5 3.1 3.5 0.9 1.3 1.1

@ Weighted mean LAI calculated based on fractions of ECC (72 %) and LCC (28 %) in Kraichgau. b 1 Al data
for maize in 2013 were not measured. ¢ Since LAI data for maize in 2013 were not available, LAI dynamics
were derived from the field data of 2009—2012 for maize in the Kraichgau region.

Thirdly, we studied the effect of increasing the LCC share
on the surface energy fluxes and surface and soil tempera-
tures. As mentioned in the introduction, the maize cropping
area in Germany increased by 53 % over the last decade. In
Kraichgau currently 46 % of the total area is covered by crop-
lands. Taking the above fractions of ECC and LCC results in
areal fractions of ECC and LCC of 33 % and 13 %, respec-
tively, of the total area. An increase in LCC at the expense
of grassland increases LCC share from 13 % to 20 % and in-
creases the areal fraction of croplands to 53 %, which leads
to a rise in the share of LCC on croplands from 28 % to 38 %.
To study the effect of this land use change on the Noah-MP
simulations, we performed one additional generic crop sim-
ulation, but this time the generic crop dynamics were com-
puted with an LCC share of 38 %.

op groups

B Lec 2.5 Statistical analysis
I Ecc
km The model performance was evaluated based on the model
5 10 20 efficiency (EF), root-mean-square error (RMSE) and bias. EF
_ it is defined as the proportion of the total variance explained by
Figure 1. Map of early-covering (ECC) and late-covering crops a model:
(LCC) in Kraichgau region, southwestern Germany. Z N (P — 0.)2
EF=1- ==, (1)
Dim1 (Oi - @
— In Run 1, Noah-MP was forced with the GVF and LAI
dynamics of the generic crop (Tables 2 and 3). Accord- where P; denotes predicted values and O; and O are ob-
ingly, in this simulation, we first computed the weighted served values and their mean, respectively, while N is the

mean of the vegetation properties (GVF and LAI) and number of observations. RMSE and bias were calculated as
subsequently simulated the surface energy fluxes, TS

and TG. RMSE = \/ % vaz (P —0))? )
— In Run 2, we first simulated the energy and water

fluxes separately for ECC and LCC with their crop- and

specific vegetation dynamics. Afterward, we calculated 1 N

the weighted averages of the simulated fluxes and tem- bias = —Z,_ (P, —0y). 3)

peratures based on the share of early-covering (72 %) N ==

and late-covering crops (28 %) in Kraichgau.
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Figure 2. Simulation results of Noah-MP LSM for latent heat flux
(LE), sensible heat flux (H) and ground heat flux (G). Simulations
were performed for two types of crops: early covering (solid line)
and late covering (dashed line). Time is local time.

3 Results
3.1 ECCvs.LCC

Over the growing season, ECC and LCC show distinct dif-
ferences with regard to energy partitioning at the land sur-
face (Fig. 2). The observed shifts were strongest for LE and
H . Early-covering crops had already reached their maximum
LE value in May, after which LE declined during the grow-
ing season. In contrast, LCC showed a continued increase
in LE over the season, peaking 3 months later in August.
The smallest difference in evapotranspiration between both
crop types was on average 0.4mmd~' (LE0.9MIm~2d™1)
in June, while the largest mean deviation of —2.3 mmd ™!
(LE =5.7MJIm~2d~1) occurred in August (Table 4). With
regard to H, the situation was opposite (Fig. 2). In the case
of ECC, H increased continuously over the course of the
growing season, peaking in August. In contrast, LCC had
already reached the H maximum in May. Afterward, H de-
creased continuously until late August. As for LE, the small-
est (—1.2MIm~2d~!) and largest (5.3MJ m—2d~!) mean
differences in H between ECC and LCC were observed
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in June and August, respectively (Table 4). Compared with
LCC, the higher latent heat fluxes of ECC in May and June
resulted in a cooler land surface, on average by —2.6 and
—1.0°C, respectively (Table 4). From July to August the sit-
uation was reversed: because latent heat fluxes of ECC are
distinctly lower than that of LCC, the surface temperature at
ECC sites was up to 4 °C warmer than at LCC sites (Fig. 3).

The mean difference in daily ground heat flux between
ECC and LCC during the growing season ranged between
—0.2 and 0.2MJm—2 (Table 4). Also for the ground heat
flux, the smallest difference between both crops types was
observed in June (0.05MJ m~2).

3.2 Noah-MP vs. eddy covariance measurements

The average random error of the latent heat flux measured
with the EC technique for the entire growing season was
about 25 % over the winter wheat field and about 21 % over
the maize field.

The simulated latent heat flux based on ECC and LCC
parametrization agreed fairly well with the eddy covariance
data (Tables 5-6, Figs. 4-5). The model efficiency over the
entire simulation period was 0.87 for ECC and 0.90 for LCC.
The best agreement between the observations and the Noah-
MP LSM using crop-type-specific sets was achieved for win-
ter wheat in June and for maize in August and Septem-
ber. The generic crop parametrization showed less satisfying
modeling results, particularly for the maize field (Tables 5—
6). For the entire growing season, EF was 0.78 for winter
wheat and only 0.57 for maize. Over the winter wheat field,
LE was overestimated. Overestimation of LE was highest
in July and August. Over the maize field, LE was overesti-
mated in May and June and underestimated in July, August
and September. Particularly in May and August, the bias in-
creased to 68.8 and —56 Wm ™2, respectively. The best model
performance using the generic crop set was achieved for the
winter wheat in June and for the maize in July.

3.3 Run 1 vs. Run 2 (generic crop vs. weighted mean of
ECC and LCC)

The generic crop simulation run (Run 1) generally yielded
higher LE than Run 2 (i.e., splitting up the generic crop
into ECC and LCC; Fig. 6). During the growing season
the mean difference in evapotranspiration between two runs
was 0.l mmd~! (LE 3.7MJm~2d~!; Table 7). The small-
est mean monthly differences occurred in June and Septem-
ber: 0.02mmd~! (LE 04MIm~2d~!) and 0.03mmd~!
(LE 1MIm~2d~"), respectively. The most pronounced dif-
ferences in LE were recorded in late July (DOY 197-208;
Fig. 7). The average difference in half-hourly fluxes over
this period, between 09:00 and 18:00LT, was 36Wm_2,
and the highest half-hourly deviation between both runs
was 83 Wm~2 (Fig. 7). The highest daily deviation was
0.8 mmd~! (Fig. 6). Over the whole season, the cumula-
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Figure 3. Differences (ECC minus LCC) in latent heat flux (LE), sensible heat flux (H), ground heat flux (G) , mean surface temperature
(TS) and mean ground temperature (TG) between simulations for ECC and LCC.

Table 4. Mean differences (ECC minus LCC) in latent heat flux (LE), sensible heat flux (H ), ground heat flux (G), mean surface temperature
(TS) and mean ground temperature (TG) between ECC and LCC simulations.

Month DOY LE H G S TG

(mmd~H) MIm~2dH) MImZ2dH) MIm 247y C) (0O
May 121-151 1.3 3.3 3.1 —02 -26 -22
Jun 152-181 0.4 0.9 -12 005 -10 -09
Jul 182-212 -15 3.8 33 02 2.1 1.8
Aug 213-243 -23 -57 53 01 32 24
Sep 244-273 -0.7 -1.8 2.1 —0.1 1.9 12

DOY is day of year.

Table 5. Root-mean-square error (RMSE), bias and modeling effi-
ciency (EF) of the latent heat flux for the simulation runs of winter
wheat stand (EC3 field).

Table 6. Root-mean-square error (RMSE), bias and modeling effi-
ciency (EF) of the latent heat flux for the simulation runs of maize
stand (EC2 field).

Variant May  Jun Jul Aug Sep Overall
RMSE (Wm™?)

ECC 454 354 330 263 135 325
Genericcrop 363 33.0 59.6 63.6 209 45.7
Bias (Wm™2)

ECC 273 179 142 17.1 0.8 15.5
Generic crop  20.5 152 339 41.7 7.7 23.8
EF (1)

ECC 0.88 091 0.80 0.74 0.89 0.87
Genericcrop 091 092 062 041 0.85 0.78

tive difference in evapotranspiration between two runs was
20mm, leading to a 16% lower seasonal water balance
(SWB) in Run 1 (SWB —133 mm) than in Run 2 (SWB
—113 mm).

In contrast, H values of Run 1 were mostly lower over
all months than those simulated in Run 2 (Fig. 6). From
May to September, the mean difference in H was about
—0.4MJm™2 (—13 %; Table 7). The smallest difference oc-
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Variant May  Jun Jul Aug Sep  Overall
RMSE (Wm™—2)

LCC 531 373 31.8 28.1 18.9 35.7
Generic crop  102.0  50.9 29.8 85.8 43.7 68.0
Bias (Wm™2)

LCC 374 215 13.7 —149 -2.5 11.0
Generic crop 68.6 299 —-106 —56.0 —229 1.8
EF (1)

LCC 0.59 0.87 0.94 0.96 0.96 0.90
Generic crop 0.30 0.80 0.91 0.12 0.77 0.57

curred again in June; the largest difference occurred again in
late July (Fig. 7). During DOY 197-208 the mean differences
in half-hourly H values were about —29 W m~2, the peak de-
viation being —72Wm™2 (09:00-18:00 LT; Fig. 7). Cumu-
lating these differences over the day reduced the production
of sensible heat on average on the order of 1.2MJm~2, cor-
responding to a 46 % reduction compared to Run 2 (Table 7).
Ground heat fluxes as well as soil temperature were affected
only moderately by the different vegetation parametrization

Biogeosciences, 17, 2791-2805, 2020
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Figure 4. Monthly averaged measured and simulated diurnal latent heat flux (LE) for May—September. The Noah-MP LSM was run with
two different vegetation parametrizations: early-covering crops (ECC) and generic crop.

* EC2 (maize)

LcC

Generic crop

400{ May

June

July

August

September

400

300

200

100

00 06 12 18 24 00 06 12 18 24 00 06

12 18 24 00 06 12 18 24 00 06 12 18 24

Hour of day

Figure 5. Monthly averaged measured and simulated diurnal latent heat flux (LE) for May—September. The Noah-MP LSM was run with
two different vegetation parametrizations: late-covering crops (LCC) and generic crop.

of Run 1 and 2 (Figs. 7, 6). As for LE and H, the largest mean
differences in G values were observed during DOY 197-208
(—0.034MJ m~2 = 10 %; Table 7).

Due to the humid bias of Run 1, the canopy surface was
cooler than in Run 2 in all months. On average, the TS of
Run 1 was 0.2 °C (~ 1.4 %) lower during the growing season
than in Run 2. In late July (DOY 197-208) the mean daily
difference was —1 °C (Table 7, Fig. 6) and reached a daytime
(09:00-18:00 LT) peak difference of up to —2.6 °C (Fig. 7).

3.4 Land use change towards LCC

Increasing the LCC fraction from 28 % to 38 % mainly led
to changes in LE and H (Table 8). That LCC increase low-
ered the LE value (—=0.3MJm—2d~! or ET 0.1 mmd~})
early in the season. This was accompanied by a higher
H value (+0.3MJm~2d~1), which in turn led to a 0.3°C
warmer surface temperature than for the runs with the ac-
tual ECC/LCC ratio. From July to September, increas-
ing the LCC fraction boosted evapotranspiration by about
0.2mmd~! (LE0.4MJm~2d~") and decreased the H value
by about 0.3MJm~2d~! (Table 8). The largest half-hourly
differences occurred in August (DOY 213-243, Fig. 8),
amounting to +40 and —30Wm™2 for LE and H, respec-
tively. The smallest deviations for both fluxes were recorded
in June. Over the July—September period, the higher LE value
of the simulation run with the increased LCC fraction cooled
the land surface by up to —1°C (Fig. 8). In general over
the growing season, increasing the LCC share by 10 % led

Biogeosciences, 17, 2791-2805, 2020

to an increase in cumulative evapotranspiration, which in
turn resulted in a 10 mm lower seasonal water balance (SWB
—143 mm).

With regard to the ground heat flux, increasing the LCC
fraction led to an up to 10 W m~2 higher flux over the noon-
time during the second part of the growing season (Fig. 8),
whereas early in the season the differences did not exceed
0.2°C (Table 8).

4 Discussion

The comparison of the ECC and LCC simulations confirmed
that the GVF and LAI significantly affect the partitioning
of surface energy fluxes. The LE value increases with crop
growth and peaks when the canopy is fully developed, i.e.,
has a maximum LAI and GVF. By contrast, the highest H
and G values were observed at sparsely covered fields or on
the fields with a senescent canopy. During the main growth
period of crops, H and G values were quite low. ECC and
LCC vary significantly in sowing and harvest date, leaf area
and senescence dynamics, water use efficiency, and phenol-
ogy. Their surface energy fluxes therefore differ distinctly.
Our simulation results are in agreement with experimental
data of Wizeman et al. (2014) as well as with modeling stud-
ies of Sulis et al. (2015), Tsvetsinskaya et al. (2001b), Xue et
al. (1996) and Ingwersen et al. (2018).

Simulation results based on ECC and LCC parametriza-
tion are in complete harmony with the field observations at
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Figure 6. Differences in latent heat flux (LE), sensible heat flux (H), ground heat flux (G), mean surface temperature (TS) and mean ground
temperature (TG) between Run 1 and Run 2 simulations (Run 1-Run 2). Given percentages are relative differences between Run 1 and Run 2
simulations.
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Figure 7. Differences in latent heat flux (LE), sensible heat flux (H), ground heat flux (G), mean surface temperature (TS) and mean ground
temperature (TG) between Run 1 (generic crop) and Run 2 (weighted mean of early- and late-covering crops) simulations (Run 1-Run 2).
Time is local time.
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2800

Table 7. Mean differences in latent heat flux (LE), sensible heat flux (H), ground heat flux (G), surface temperature (TS) and ground tem-
perature (TG) between Run 1 and Run 2 simulations. Numbers in parentheses: the relative difference between Run 1 and Run 2 simulations

as a percentage.

Month DOY LE H G TS TG

(mmd~H) MIm2d) MIm2da-H) ™MIm24d7) (°0) (°0)
May 121-151 0.1(3) 0.3 —0.3(19) —0.003(1) —03(2 —0.02(0.1)
Jun 152-181  0.02 (0.4) 0.04 —0.1(4) 0.001 (1)  —0.1(1) 0.01(0.05)
Jul 182-212 0.3 (7) 0.6 —0.6 (21) —0016(4) —04(22) —0.1(0.6)
Jul* 197-208  0.5(14) 1.3 —1.2 (46) —0.034(10)  —1.0(4) —0.2 (1)
Aug 213-243 0.2 (7) 0.5 —0.6 (18) 0.004(2)  —03(1) 0.01(0.03)
Sep 244-273  0.03(1) 0.1 —0.2(5) 0.005(3)  —0.1(1) 0.1 (0.4)
Mean 0.1(3.7) 0.3 —0.4 (13.2) —0.002(1) —02(1.4) —0.01(0.1)

DOY is day of year. * 15-27 July.

Table 8. Mean differences in latent heat flux (LE), sensible heat flux (H), ground heat flux (G), surface temperature (TS) and ground
temperature (TG) between simulations with the LCC fraction increased by 10 % and the baseline simulation (increased LCC share minus
baseline simulation). Numbers in parentheses: the relative difference between increased LCC share and baseline simulation as a percentage.

Month DOY LE H G TS TG

mmd~! MIm2d! MIm2%2d"l) MIm 2471 (°0) (°0)
May 121-151  —0.1(3.3) -03 0.3 (14) 0.02(1) 032  02()
Jun 152-181  —0.04 (1.0) —0.1 0.1(6) —0.005(0.5  0.1(1)  0.1(1)
Jul 182212 0.2 (4.3) 0.4 —0.3(12) —0.02(6) —02(1) —02()
Aug 213-243 0.2 (7.6) 0.6 —0.5(17) —001() -03(2) =02
Sep 244-273 0.1(3.8) 0.2 —0.2(4) 001 (4) —02(1) —0.1(1)

DOY is day of year.

our study site. The performance test of Noah-MP on the EC
data showed the crop-type-specific sets significantly improve
the simulation of latent heat flux at the field scale. In contrast,
generic crop parametrization showed less satisfying model-
ing results. In general, it performed better for winter wheat
stand than for maize. Based on the generic crop set, simula-
tion results tend to greatly overestimate the latent heat flux
for maize in the beginning of the growing season when the
plants are small. In August and September, the latent heat
flux was in contrast distinctly underestimated; during this
period the maize canopy is fully developed. For wheat, the
model overestimates the latent heat flux, particularly dur-
ing the July—September period, when the winter wheat stand
ripened and reached senescence or was harvested.

Besides the vegetation dynamics, the simulated energy and
water fluxes depend on additional model settings. Ingwersen
et al. (2011) performed a sensitivity study with the Noah
model for our study site. They found that among the vege-
tation parameters the minimum stomatal resistance (RS) and
a parameter used in the radiation stress function of the Jarvis
scheme (RGL) are the most sensitive parameters. Using con-
stant RS, as it is implemented in Noah, results in the under-
estimation of sensible heat flux and overestimation of latent

Biogeosciences, 17, 2791-2805, 2020

heat flux during the ripening stage of the cereals. Consider-
ing a monthly varying RS helped to distinctly improve the
simulation of the energy and water fluxes at the land sur-
face. Ingwersen et al. (2010) concluded that integrating the
crop growth model which delivers daily RS, LAI and GVF
values into Noah would greatly enhance the overall perfor-
mance of the land surface model. Among the soil parameters,
the most sensitive parameters are the soil moisture thresh-
old where transpiration begins to stress (REFSMC), maxi-
mum soil moisture content (MAXSMC) and soil moisture
threshold where direct evaporation from the top layer ends
(DRYSMC). Considering these parameters also has the po-
tential to further improve simulation results.

The potential increase in the LCC fraction (driven by the
high demand for biogas and forage production) leads to sig-
nificant changes in the partitioning of the energy fluxes in
croplands. In recent years the total area under maize in Ger-
many has more than doubled. This corresponds to an approx-
imately 10 % increase in the LCC fraction for the study re-
gion. In the early vegetation period, the altered ECC/LCC
ratio leads to a decrease in evapotranspiration, an increase
in H and a warmer cropland surface because, during that
period, a higher fraction of fields is bare or sparsely cov-
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Figure 8. Impact of increasing the LCC fraction from 28 % to 38 % on latent heat flux (LE), sensible heat flux (H), ground heat flux (G),
surface temperature (TS) and ground temperature (TG) (increased LCC share minus baseline simulation). Time is local time.

ered with vegetation. In mid-June, the situation reverses. The
higher share of LCC boosts LE, decreases H and lowers sur-
face temperatures. The increased evapotranspiration over the
growing season, in turn, leads to a lower seasonal water bal-
ance.

Comparing the generic crop simulation (Run 1) with the
weighted mean of two separate simulations for ECC and
LCC (Run 2) showed the largest difference over the second
half of the growing season, particularly during late July and
early August. In July, ECC become senescent: GVF drops
sharply and the green LAI equals zero. In early August,
ECC are usually harvested. In contrast, LCC have a devel-
oped ground-covering canopy during July—August. Leaves
of these crops are still green in September. This transition
period is very smooth in the case of the generic crop, result-
ing on average in about 14 % higher LE and in about 46 %,
10% and 4 % lower H, G and surface temperature values,
respectively, compared with Run 2.

The results presented above apply to the ECC/LCC ra-
tio within our study area. What can we expect in agricultural
landscapes with different ECC/LCC ratios? The ECC/LCC
ratio has nearly no effect on energy partitioning in June,
whereas in May, July and August its influence on the tur-
bulent fluxes is pronounced (Fig. 9). The weak effect in
June is because, during this period, the LAI and GVF of

https://doi.org/10.5194/bg-17-2791-2020

ECC and LCC are similar (Fig. 11). In the other months,
however, the ECC/LCC ratio heavily affects the energy par-
titioning. For example, increasing the LCC share from 10 %
to 90 % boosts daily evapotranspiration in August from 2.5 to
43mmd~"!, decreases the H value by about 4.1 MJm—2d~!
and cools down the cropland surface by 2 °C. Over the grow-
ing season, the increase in the LCC share leads to a gen-
eral increase in evapotranspiration, which in turn lowers
the seasonal water balance (Table 9). Moreover, different
ECC/LCC ratios will also affect the above-mentioned humid
bias of the generic crop parametrization (Fig. 10). The bias
is largest if ECC and LCC shares are balanced (ECC 50 %
and LCC 50 %), whereas combinations with one predomi-
nant crop distinctly lower the bias. In August, for instance,
the differences in LE between the two runs with ECC 50 %-
LCC 50 % equal 0.27 mmd~', while ECC 10 %-LCC 90 %
yields differences of 0.09 mmd~!.

Our results show that performing simulations based on sin-
gle dynamics for each type of crop (ECC and LCC) improve
simulations of surface fluxes during transition periods and at
the end of the growing season. Lumping ECC and LCC into
one land-use class (croplands and pasture), as done in Noah-
MP, is an oversimplification. Several authors have demon-
strated the necessity to distinguish biophysical plant param-
eters in substantially different crops to obtain representative

Biogeosciences, 17, 2791-2805, 2020
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Figure 9. Simulation results of Noah-MP LSM for latent heat flux (LE) and sensible heat flux (H). Simulations were performed considering
different shares of ECC and LCC.
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Figure 10. Differences in latent heat flux (LE) and sensible heat flux (H) between Run 1 and Run 2 simulations (Run 1-Run 2). Simulations

were performed considering different shares of ECC and LCC.

Table 9. Weather data and simulation results of Noah-MP LSM
for cumulative evapotranspiration for the Kraichgau region. Simula-
tions were performed considering different shares of early-covering
crops (ECC) and late-covering crops (LCC).

ECC and LCC shares Total Cumulative ~ Seasonal water
rainfall ~ evapotranspiration balance

(R) (ET) (R—ET)

(mm) (mm) (mm)

ECC 90 % LCC 10 % 388 496 —108
ECC 70 % LCC 30 % 388 522 —134
ECC 50 % LCC 50 % 388 544 —156
ECC 30 % LCC 70 % 388 557 —169
ECC 10 % LCC 90 % 388 563 —175

simulation results in the lower atmosphere (Sulis et al., 2015;
Tsvetsinskaya et al., 2001b; Xue et al., 1996). They have
showed that high-resolution spatial information on various
croplands and associated physiological characterizations can
significantly improve the simulations of land surface energy
fluxes, leading to better weather and climate predictions.

Biogeosciences, 17, 2791-2805, 2020

Changes in the LAI and GVF with plant growth lead to
changes in surface albedo, bulk canopy conductance and
roughness length, which in turn alter the partitioning of sur-
face energy fluxes (Chen and Xie, 2011, 2012; Crawford
et al., 2001; Tsvetsinskaya et al., 2001a; Xue et al., 1996).
Such altered energy partitioning at the land surface then
changes the thermodynamic state of the atmospheric bound-
ary layer with regard to air temperature, surface vapor pres-
sure, relative humidity and finally rainfall (Chen and Xie,
2012; McPherson and Stensrud, 2005; Sulis et al., 2015;
Tsvetsinskaya et al., 2001b). The observed differences be-
tween Run 1 and crop-type-based runs will most probably
influence the simulated processes in the ABL. For instance,
Sulis et al. (2015) significantly improved the simulations of
land surface energy fluxes by using the crop-specific phys-
iological characteristics of the plant. They observed a dif-
ference of about 40 % between simulated fluxes using the
generic and crop-specific parameter sets. The differences in
the land surface energy partitioning led to different heat and
moisture budgets of the atmospheric boundary layer for the
generic and specific (sugar beet and winter wheat) croplands.

https://doi.org/10.5194/bg-17-2791-2020
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Figure 11. GVF and LAI dynamics of early-covering crops (ECC), late-covering crops (LCC) and cropland.

In the case of specific c roplands, p articularly s ugar beet,
those authors observed a larger contribution of the entrain-
ment zone to the heat budget of the ABL as well as a shal-
lower ABL.

McPherson and Stensrud (2005) examined the impact of
directly substituting the tallgrass prairie land use class with
winter wheat on the formation of the ABL. These crops
have different growing seasons. In the US Great Plains, na-
tive prairie tallgrass mainly grows in summer, while winter
wheat grows throughout winter and reaches maturity in late
spring. Simulations showed a larger LE value and lower H
value over the area with the winter wheat stand in compar-
ison with tallgrass. By 21:00 UTC, LE ranged from 300 to

400 W m ~2 for the wheat run and from 200 to 275 W m —2
for the tallgrass run. H ranged from 25 to 125Wm ~2 for

the former and from 100 to 200 W m~2 for the latter. Substi-
tuting tallgrass prairie with winter wheat boosted the atmo-

spheric moisture near the surface upstream and downstream
of the study area, and resulted in a shallower ABL upstream
and downstream of this area. The shallower ABL reduced
the entrainment of higher-momentum air into the ABL and
therefore led to weaker winds within the ABL.

Milovac et al. (2016) performed six simulations at a 2km
resolution with two local and two nonlocal ABL schemes
combined with two LSMs (Noah and Noah-MP) to study the
influence o f e nergy p artitioning at the 1 and s urface o n the
ABL evolution on a diurnal scale. They observed that LE
values simulated by Noah-MP were more than 50 % lower
than that simulated by Noah. As expected, a lower LE value
resulted in a drier ABL. The ABL evolution and its features
strongly influence the initiation of convection and cloud for-
mation as well as the location and strength of precipitation.
For instance, a drier and higher ABL would yield a higher
lifting condensation level, leading to higher clouds and a
higher probability of convective precipitation.

https://doi.org/10.5194/bg-17-2791-2020

5 Conclusions

The GVF and LALI significantly affect the simulation of en-
ergy partitioning, yielding pronounced differences between
simulated surface energy and water fluxes and temperatures
of ECC and LCC. In our study area, the use of a generic
crop parametrization (croplands and pasture in Noah-MP) re-
sulted in a humid bias along with lower surface temperatures.
This humid bias will be largest in landscapes with a balanced
share of ECC and LCC, whereas in landscapes in which one
of the two crop types predominate, the bias will be weaker.
We observed the strongest effects on turbulent fluxes over the
second part of the season, particularly in July—August. Dur-
ing this period, ECC are at the senescence growth stage or
already harvested, while LCC have a fully developed ground-
covering canopy. We therefore expect that the observed dif-
ferences will impact the simulation of processes in the ABL.
Our results show that splitting up croplands into ECC and
LCC can improve LSMs, particularly during transition peri-
ods and late in the growing season.

Increasing the LCC fraction by 10 % reduces evapotran-
spiration and increases surface temperatures over the first
part of the growing season. Later in the season, this land use
change leads to the opposite situation: increased evapotran-
spiration accompanied by a slight cooling of the land surface.
Over the growing season, an increase in the LCC share by
10 % leads to higher cumulative evapotranspiration, which
in turn lowers the seasonal water balance.
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7 General Discussion and Conclusions

The present PhD study was part of the DFG RU 1695 “Regional Climate Change”. The RU
framework included plans to develop a land system model in order to study the effects of global
climate change on the structure and functions of agricultural landscape at the regional scale. The
present PhD study was designed to improve certain aspects of the land surface modeling part of
this land system model. The following major problems were investigated: a) the nature of the
energy imbalance of EC data over a winter wheat stand and identifying the appropriate post-
closure method for the study region; b) improving the GVF parametrization of cropland in the
Noah-MP LSMs and c) studying the effect of merging different crop types with various shares

into a single generic cropland class on the simulation of land surface exchange processes.

As already discussed in numerous studies, the widely used EC method fails to close the energy
balance, which hampers using EC data to parameterize and test LSMs (Charuchittipan et al.
2014, Stoy et al. 2013, Panin and Bernhofer 2008, Foken, 2008, Oncley et al. 2007, Wilson et al.
2002, Twine et al. 2000). Our study region is no exception. From year to year, high energy
residuals (>20%) were recorded at the study site. We therefore performed additional independent
experiments and tested various post-closure methods to verify and correct the EC turbulent
fluxes for use in the Noah-MP LSMs. The results demonstrate that, in our study region, the EC
method provides reliable data on latent heat flux and that the measured LE flux can therefore be
used without adjustments to calibrate and parametrize Noah-MP LSM. Our findings echo the
results of several experimental studies in which good agreement was shown between
evapotranspiration measured by the EC technique and other independent methods (Schume et al.
2005, Wilson et al. 2001). Based on the current state of knowledge, we suggest adding the
missing energy to the sensible heat flux (the H post-closure method) at our study site.
Discussions are ongoing on the problem of EBC, and numerous experiments have been
performed to find the most suitable post-closure method. Nonetheless, the components of the
energy residual remain unknown and the recommendation is to investigate this at each study site
separately (Gebler et al. 2015, Barr et al. 2012, Wohlfahrt et al. 2010, Cuenca et al. 1997).
Closing the energy balance gap can significantly improve the accuracy of Noah-MP, and my
thesis therefore recommends a thorough investigation of the nature of the energy balance gap.

Several studies have already demonstrated the importance of photosynthetic energy flux, air heat
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storage and biomass heat storage in energy balance closure. Considering these minor energy
fluxes can improve the EBC by up to 15% (Eshonkulov et al. 2019, Guo et al. 2009, Jacobs et al.
2008, Meyers and Hollinger 2004). The results of my study prompted follow-up research on the
energy balance gap at our study site. In the next phase of the RU 1695, more attention was paid
to measuring previously neglected energy storage terms such as air heat storage, energy storage
in the canopy and energy consumption by photosynthesis. Furthermore, G was determined at
various locations within the EC footprint and a harmonic analysis was applied to the measured G
data. Results are summarized in Eshonkulov et al. (2019). The authors showed that considering
minor storage terms help to increase EBC on average by up to 6.8% in the Kraichgau region.
Nonetheless, at least 11% of the available energy was still missing. Eshonkulov also concluded
that minor storage terms can contribute substantially to closing the energy balance gap and
recommended performing year-round measurements of these terms because some loss of the

stored energy is possible during the nongrowing season.

The disadvantages of the coarse resolution of the default GVVF grid data of Noah-MP are well-
known and are discussed in detail in the literature (Milovac et al. 2016, Nielsen et al. 2013). My
thesis presents, for the first time, high-resolution GVF maps derived from RapidEye satellite data
for use with Noah-MP. Based on these maps and ground measurements, we studied the GVF
dynamics of various crops. At the regional scale, the GVF has a bimodal distribution during the
growing seasons due to differences in crop phenology. Crops can be divided into two classes.
Early covering crops (ECC), e.g. winter wheat, winter rape, winter barley and spring barley,
develop early in spring, achieve maximum green canopy cover by mid-June and are harvested in
late summer. Late covering crops (LCC), e.g. corn, silage maize, and sugar beet, are planted in
spring, exhibit maximum GVF in July-August and are harvested in autumn. The GVF dynamics
as well as LAI dynamics of ECC and LCC vary seasonally and regionally. Moreover, the shares
of these crop groups differ from region to region and may change over time, for instance as a

result of different economic strategies and decisions.

The present thesis shows that integrating ECC and LCC into a generic cropland class as
implemented in Noah-MP is an oversimplification. Generic crop parameterization results in a

humid bias along with lower surface temperatures for our study site. The strongest effects on the
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turbulent fluxes is observed over the second part of the growing season, particularly in July-
August. The results show that the computation of surface energy and water fluxes is improved by
considering each group of crops. The performance test of Noah-MP on the EC data showed the
generic crop parametrization gives poor modeling results whereas simulated fluxes based on
ECC and LCC parametrization were in a complete harmony with the EC measurements at study
site. The results echo the finding of other experimental and modeling studies showing that
different crop types result in a different partitioning of surface energy fluxes (Wizeman et al.
2014, Ingwersen et al. 2018, Sulis et al. 2015, Tsvetsinskaya et al. 2001, Xue et al. 1996). The
use of crop-specific physiological characteristics in the LSMs can significantly improve the
computation of the surface energy and water fluxes and therefore ultimately improve the

precision of weather and climate models (Sulis et al. 2015, McPherson and Stensrud 2005).

This thesis emphasizes the importance of thoroughly investigating soil-plant-atmosphere
interactions. These interactions are the basis for all land surface models. Accordingly, the quality
of weather and climate simulations depends on their adequate representation. My thesis
underlines that much work has been done to improve our understanding of land surface process,
but that many challenges remain to be overcome. | believe this thesis can inspire more people to
further investigate soil-plant-atmosphere interactions. Those who accept this challenge should
think very critically because there are no ideal models. Moreover, there are no ideal experimental
data to validate and parameterize these models. The take-home message: keep paying attention to
the results of the models and experiments and continue the important mission of improving our
LSMs!
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