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ABSTRACT 

Full-aromatic and partially hydrogenated β-carboline (βC) derivatives constitute a group of 

alkaloids widely distributed in a great variety of living systems. In plants and bacteria, tetrahydro-

βCs are the primary product of the Pictet-Spengler enzymatically catalyzed condensation. 

Tetrahydro-βC skeleton is further modified giving rise to the formation of a vast set of derivatives 

including dihydro- and full-aromatic βCs. However, in most of the cases, the later processes still 

remain unclear and other sources, such as photo-triggered reactions, deserve to be explored. In this 

context, the photophysic and photochemistry of 7-methoxy-1-methyl-3,4-dihydro-2H-pyrido[3,4-

b]indole or harmaline (Hlina) in aqueous solution is reported herein. UV-visible absorption and 

fluorescence emission spectroscopy coupled with multivariate data analysis (PARAFAC), HPLC and 

HRESI-MS techniques were used for both quantitative and qualitative analysis. The formation singlet 

oxygen and hydrogen peroxide reactive oxygen species (ROS) was quantified and their role together 

with the influence of pH and oxygen partial pressure on the photochemical degradation of HlinaH+ 

was assessed. We report herein the first study on photochemical full-aromatization of a dihydro-βC 

derivative. These results can shed some light on the βCs biosynthesis and role in living systems. 

- - -- - -- - -- - - - - - - - - - - - - - - - - - - - - - - 
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INTRODUCTION 

β-carbolines (βCs) constitute a large family of naturally occurring alkaloids structurally 

related to 9H-pyrido[3,4-b]indole or norharmane (Scheme 1a), showing diverse biological roles such 

as antitumor, antimicrobial and photodynamic activities [1-16]. The simultaneous presence of both 

partially hydrogenated (dihydro- and tetrahydro-) as well as full aromatic βCs has been confirmed in 

a wide range of living species [2]. In particular, 7-methoxy-1-methyl-3,4-dihydro-2H-pyrido[3,4-

b]indole also called 7-methoxy-1-methyl-3,4-dihydro-9H-pyrido[3,4-b]indole or harmaline alkaloid 

(Scheme 1b), and the full-aromatic derivative, 7-methoxy-1-methyl-9H-pyrido[3,4-b]indole or 

harmine (Scheme 1a) were extracted, for the first time, from Peganum harmala, a native species in 

Africa, the Mediterranean area, Middle East and South Asia. Abundance of these alkaloids showed 

great variances between biological species [17]. Banisteriopsis caapi, a plant originally from 

Amazons, contains quite high levels of dihydro-βCs (up to 0.05 – 1.95 % of dry-mass) [18]. 

Harmaline and other dihydro- and tetrahydro-derivatives together with several full aromatic-βCs were 

also found in the cuticle of two species of fluorescent scorpions (Centruroides vittatus and Pandinus 

imperator) [19]. Moreover, partially hydrogenated βCs are also normal constituents of human body 

tissues and corporal fluids such as plasma, pineal glands and other photosensitive tissues/organs 

including skin as well as the retina and the crystalline of eyes [20, 21]. 

To date, information regarding βCs’ biosynthesis is still incomplete and the chemical 

processes involved need to be studied. The formation of tetrahydro-βCs would involve a catalyzed 

Pictet-Spengler condensation from tryptophan and aldehydes. The type and number of enzymes 

involved in this process differ from one organism to another. In plants, strictosidine synthase (STR) 

catalyzes the condensation reaction between tryptamine and secologanin giving rise to the formation 

of the corresponding tetrahydro-βC derivative [22-25]. On the contrary, different multi-functional 

enzyme families would be responsible for the biosynthesis of these alkaloids in several 

microorganisms [26, 27]. In particular, microbial homodimeric enzyme McbB,[28] isolated from 

Marinactinospora thermotolerans, catalyze the Pictet-Spengler reaction between L-tryptophan and 

oxaloacetaldehyde [26]. 

Tetrahydro-βC skeleton can be further modified yielding a vast set of derivatives, such as 

dihydro-, epoxy-, keto-, isomeric hydroxy-, and/or full aromatic βCs. The formation of these 

compounds may be enzymatically catalyzed. For instance, in microbial agents, McbB complex would 

also contribute to the formation of decarboxylated and full aromatic βCs, respectively [26]. Other 

enzymatic (i. e., cytochrome P-450cam mediated) and/or non-enzymatic processes can also play 

important roles [29, 30]. However, in most cases, oxidation and/or full-aromatization processes still 

remain unclear. Furthermore, taking into account the presence of these alkaloids in aerial organs 
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exposed to sun light (e. g. leaves and stems) photochemical pathways need to be further explored. 

[31] 

We report herein the first photochemical study of harmaline (Hlina), in aqueous solution. In 

the pH-range 2 - 12, Hlina shows one dominant acid-base equilibria with pKa = 10 (Scheme 1b) [32-

34]. It has been well stablished that, in general, each acid-base species of these alkaloids can show 

quite distinctive chemical and photochemical properties in solution [9, 10, 35-42]. Besides, in some 

cases, these properties depend on the level of dissolved oxygen [38-40, 43]. Thus, in the present study, 

the effects of pH and oxygen partial pressure on the photophysic and photochemistry of Hlina were 

investigated. 

 

Scheme 1. (a) Chemical structure of two representative full-aromatic βC alkaloids. (b) Acid-base equilibria and chemical 

structure of harmaline species observed in aqueous solution in the pH range 2 –13.5. 

EXPERIMENTAL 

General. norharmane, harmine and harmaline (> 98%, Sigma-Aldrich) H2O and D2O stock solutions 

were prepared according to the procedure described elsewhere [38, 39]. HPLC and HRESI-MS 

analyses of Harmalina solutions reveal a small percentage of harmine as impurity (< 2%). 

Irradiation set-up. Air-equilibrated or N2-saturated βC aqueous solutions were irradiated at 350 nm, 

in 1 cm quartz cells at room temperature with a Rayonet RPR lamp (bandwidth ~ 15 nm, Southern 

N.E. Ultraviolet Co.). Oxygen-free solutions were obtained by purging with N2 gas (purity 5.0) for 

30 min. 

UV-visible analysis. Electronic absorption spectra were recorded on a Perkin-Elmer lambda 25 

spectrophotometer, in 1 cm path length quartz cells, at room temperature. 

High-Performance Liquid Chromatography (HPLC). Photochemical reactions were monitored and 

quantified using (i) a Waters instrument with a 1525 binary Pump controller and a 2475 multi-λ 

fluorescence detector (HPLC set-up I) [40] and (ii) a Shimadzu equipment: solvent delivery module 

LC-20AT, on-line degasser DGU-20A5, communications bus module CBM-20, auto sampler SIL-

20A HT, column oven CTO-10AS VP and photodiode array detector SPD-M20A (HPLC set-up II) 
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[44]. Stationary phase: GracePrevail RP18 (250 x 4.6 mm, 5 μm). Mobile phase: a 50/50 (v/v) mixture 

of formic acid (Sigma-Aldrich) aqueous solution (0.08% (v/v), pH 3.2) and MeOH (J. T. Baker). 

Flow rate: 1 mL min-1. 

Quantum yields of βCs’ photodegradation, ΦR: Values were determined according the procedures 

and equations described elsewhere [38, 40]. 

Detection and quantification of H2O2. An enzymatic Glycemia Kit (Wiener Lab.) was used for 

H2O2 detection. The levels of H2O2 produced upon irradiation were quantified after reaction with 

4-aminophenazone and 4-hydroxybenzoate. Minor changes were introduced to the general 

procedure previously described [39, 40]. Briefly, 1.25 ml of irradiated solution (UVA, 350 nm) 

were mixed with 1.50 ml of the colorimetric reagent and absorbance at 505 nm (A505nm) was 

measured after 40 min of incubation at room temperature. Calibration curve was obtained from 

aqueous H2O2 solutions prepared from commercial standards. A εH2O2 value of 17.7 M-1cm-1 (at 

254 nm) was used to determine the [H2O2] in each of the standar solutions. 

Generaly, the photodegradation of βCs yields photoproducts exibiting non-negligible 

absorption coefficients around 450-550 nm. Thus, to avoid interferences, another set of irradiated 

solutions was incubated with catalase (final concentration 10 U/μl) prior the incubation with the 

colorimetric reagents for H2O2 determination. The comparison of the latter control experiments 

with data obtained from the non-enzymatically-treated samples allowed us to conclude whether 

the obtained signals at A505nm may be ascribed to the formation of H2O2 or not. 

Fluorescence emission. (i) Steady-state fluorescence measurements were performed using a 

Fluoromax4 (HORIBA Jobin Yvon) instrument. Corrected fluorescence spectra were recorded in 

a 1 cm x 1 cm path lengths quartz cell at room temperature. Fluorescence quantum yields (ΦF) 

were determined from the corrected fluorescence spectra, integrated over the entire emission 

profile and were calculated as the average of ΦF values obtained using different excitation 

wavelengths over the entire range of the lowest-energy absorption band. Standards used were 

quinine sulfate (in 1N H2SO4 aqueous solution, ФF = 0.52 ± 0.02) [45] and norharmane (in air-

equilibrated pH 4.8 aqueous solution, ФF = 0.70 ± 0.05) [38, 39]. Inner filter effects were avoided 

by keeping the absorbance of the solutions (at the excitation wavelengths) below 0.10. (ii) 

Fluorescence lifetimes, τF, were obtained from time-resolved fluorescence experiments 

performed on a single-photon-counting FL3 TCSPC-SP (HORIBA Jobin Yvon) 

spectrofluorometer. Two different NanoLED sources centered at 341 nm and 388 nm were used 

for excitation whereas emission decays were monitored at the corresponding emission maxima of 

each emitting species (vide infra). Under our experimental conditions, all τF were obtained from 

mono-exponential decays observed after deconvolution from the instrument response function 

signal [7]. 
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Quantum yields of photosensitized singlet oxygen (1O2) production. Equipments and procedures 

were previously described in detail [38, 39]. Briefly, in these experiments a pulsed Nd-YAG laser 

was used as excitation source (λexc = 355 nm) and the signal at the 1270 nm 1O2 phosphorescence 

was sensed by a cooled Germanium detector. ΦΔ values were determined by comparing the 

magnitude 1O2 phosphorescence signals (extrapolated at zero time) produced upon one-photon 

excitation of deuterated aqueous solutions of βCs to that produced by perinaphthenone-2-sulfonic 

acid (ΦΔ = 0.97 ± 0.05) [46] used as standard. 

Parallel factor analysis (PARAFAC). PARAFAC analysis was conducted using MATLAB 

R2015b (Mathworks, Natick, MA) with the N-way toolbox (http:models.klv.dk/source). Three 

way data sets were constructed from the excitation emission matrices (EEM) recorded during 

each irradiation experiment. The required preprocessing steps were adopted to account for both 

primary and secondary inner filter effects (IFE) and also to minimize the influence of scattering 

effects [47, 48]. Briefly, the absorption espectra of the samples were used for correct ing the 

attenuation of fluorescence signals due to IFE, subsequently the EEM of a control (Milli-Q water) 

was subtracted from each sample EEM, and finally Rayleigh and Raman scattering signals were 

removed according to the protocol described by Bahram et. al. [49]. PARAFAC models with two 

to five components were computed for each set of EEMs. Non-negativity constraints were applied 

to all factors in the three modes, thus allowing only chemically relevant results. The determination 

of the correct number of factors, required to properly decompose each data set, was assessed by 

the inspection of the physical sense of spectral loadings, the evaluation of the distribution of 

residuals and the application of the core consistency diagnostic test. [48] 

HRESI–MS analysis. High resolution electrospray ionization (HRESI) mass spectrometry (MS) 

analyses were performed in positive and negative ion modes using the mass spectrometer Q Exactive 

from Thermo Scientific (USA). Acquisition parameters were: flow rate: 5000 µL/min, scan range: 55 

to 800 m/z, resolution: 140,000, sheath gas flow rate: 30 CFH, aux. gas flow rate: 0 CFH, spray 

voltage: 3.50 kV, S lens voltage 50 V, capillary temp: 320 ºC, aux. gas heater temp: 30 ºC and 

acquisition time: 0.5 min. Fresh water solutions of the commercial analytes (harmaline; harmine) 

were used as references for the direct infusion and analysis; the pH of these solutions was the same 

as that of the monitored irradiated solution. Molecular formula and monoisotopic molecular weight 

were obtained. Neutral compounds were detected in the positive and negative ion modes, as 

protonated [M + H]+ and deprotonated species [M - H]-, respectively. Then calculated monoisotopic 

photoproducts m.w. and the probable molecular structure are discussed below. 

RESULTS 

UV–visible absorption and fluorescence emission spectroscopy. 
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UV-visible absorption and fluorescence excitation and emission spectra of harmaline have 

been well described and characterized [32, 34, 50]. Briefly, in aqueous media, both acid-base species 

of harmaline show a high molar absorption coefficient in the UVA region of the electromagnetic 

spectrum (ε ~ 1.5 x 104 M-1 cm-1). In particular, the protonated species, HlinaH+, shows a clear 

bathochromic shift with molar absorption coefficient, ε, values up to 2.0 x 104 M-1 cm-1 in the visible 

region (Figure 1, filled circles). The latter is the dominant species (> 99%) under physiological pH 

conditions. 

Emission fluorescence spectra of both protonated (HlinaH+) and neutral (HlinaN) species of 

harmaline were recorded (Figure 1). Under both pH conditions only one emitting band, centered at ~ 

484 nm, was observed. The latter band has been univocally ascribed to the emission of photoexcited 

HlinaH+ ([HlinaH+]*). Note that, despite the almost negligible emission recorded, [HlinaH+]* is still 

the only emitting species even under alkaline conditions (pH 13.1). This fact can be accounted by 

considering the small fraction (< 0.1%) of HlinaH+ present in the solution at this pH capable to absorb 

the incident light, in combination with a null ΦF value of the photoexcited neutral species [HlinaN]* 

(see below). 

The corresponding quantum yields of fluorescence (ΦF) are listed in Table 1. For comparative 

purpose, data reported for the full-aromatic related βC, Ha, have also been included. 37 Briefly, 

harmaline showed lower ΦF values than Ha (this fact is more evident under alkaline conditions), and 

no oxygen dependence was observed in any case. In particular, HlinaH+ showed a larger ΦF value 

than HlinaN (i.e., 0.40 ± 0.03 and 0.01 ± 0.01, respectively). These results match with those 

previously reported for harmaline under similar experimental conditions [34, 50]. Furthermore, ΦF 

reported herein for HlinaN is the same, within the experimental error, than that previously reported 

for harmaline in acetonitrile (< 0.03 ± 0.03). [33] 

These findings suggest that, on the contrary to what have been reported for almost all full-

aromatic βCs, the basic character of N(2) in the HlinaN ring shows no accountable differences, neither 

in the electronic ground nor in the excited states. Thus, the fast protonation typically observed for 

full-aromatic βCs would not take place in the case of this dihydro-derivative (HlinaN). 
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Figure 1. UV–visible absorption (filled symbols) and emission (empty symbols) spectra of HlinaH+ (circles) and HlinaN 
(squares) species of harmaline in aqueous solution (pH 4 and 13.1, respectively). Inset: normalized emission spectra 

recorded under both pH conditions. 

Photosensitized singlet oxygen 1O2 production (ΦΔ). 

The capability to photosensitize 1O2 formation by full aromatic βCs and its dependence on the 

nature of the environment have been well established. In particular, in aprotic organic solvents full 

aromatic βCs show ΦΔ values ranging from 0.31 to 0.40 [51]; whereas values recorded in aqueous 

media have shown to be considerably lower (i.e., ΦΔ values of ∼ 0.08, with the exception of Ha 

showing a ΦΔ value of 0.22) [11, 36, 38-40, 43]. In most cases, oxygen partial pressure enhances the 

efficiency of 1O2 production [39, 43]. However, dihydro-βCs have not been carefully investigated 

yet. 

In this context, ΦΔ values were determined herein for the two acid-base species of harmaline 

in aqueous solution as a function of ambient oxygen partial pressure in: air-equilibrated- and O2-

saturated solutions (Tables 1). These results indicate that both species are rather poor or null 1O2 

photosensitizers (ΦΔ values fall within the experimental error). The same trend was observed in 

acetonitrile (ΦΔ < 0.05 ± 0.05) suggesting the absence of typical solvent-effect shown by other βC 

alkaloids. [33] The lack of 1O2 production is in connection with the fact that triplet formation for 

harmaline, even under N2-saturated conditions, was undetectable. Thus, other deactivation pathways 

such as fluorescence emission (see above) and non-radiative processes [33] would be more efficient 

than the intersystem crossing (ISC) to populate the triplet state. 

Table 1. Photochemical and photophysical parameters determined upon one-photon excitation of harmaline (Hlina) and 

harmine (Ha) in aqueous solution, under acidic and alkaline conditions. 

 Ha Hlina 

pKa (S0) pKa
N-2: 7.5 pKa

N-2: 9.7, c 9.54 (± 0.03) 

pH 4.0 10.0 4.0 13.1 

Species at S0 HaH+ HaN HlinaH+ HlinaN 

λabs / nm 355 335 372 330 

ε(λ) / 103 M-1 cm-1 7.85 4.55 20.65 15.95 

Species at S1 [HaH+]* [HaN]* [HaH+]* f [HaZ]* [HlinaH+]* g [HlinaH+]* 

λfluo / nm 417 ~356 417 ~500 484 484 
d, e ΦF (N2-sat) a 0.47 ± 0.05 a 0.39 ± 0.05 0.37 ± 0.04 0.01 ± 0.01 

d, e ΦF (air) a 0.49 ± 0.05 a 0.38 ± 0.05 
0.40 (± 0.03); c 0.46 

and d 0.32 (± 0.02) 
0.01 ± 0.01 

d ΦF (O2-sat) a 0.47 ± 0.05 a 0.36 ± 0.05 0.37 ± 0.04 0.01 ± 0.01 

τ / ns a, b 7.05 ± 0.05 b 0.44 ± 0.02 b 6.95 ± 0.05 --- 5.87 ± 0.04 --- 

ΦΔ (air) 
a 0.22 ± 0.02 a 0.13 ± 0.01 0.02 ± 0.01 0.003 ± 0.002 

ΦΔ (O2-sat) 
a 0.24 ± 0.02 a 0.13 ± 0.01 0.03 ± 0.01 0.003 ± 0.002 

ΦR (air) a 3.73 x 10-3 --- 1.12 x 10-3 --- 

ΦR (N2-sat) a 0 --- 3.16 x 10-3 --- 

ΦH2O2 (air) 0.84 x 103 --- nd --- 

ΦH2O2 (N2-sat) nd --- nd --- 
a, b, c and d From Ref [[39]], [[36]], [[34]] and [[50]], respectively. nd = not detected. e ΦF are the means of values obtained 
using excitation wavelengths over the entire range of the lowest-energy absorption band. Independent data sets determined 

in separate experiments against different standards were indistinguishable from each other. f HaZ represents the 

zwitterionic species of Ha. g Photoexcited HlinaH+ ([HlinaH+]*) is the emitting species most probably due to a minor 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

9 

contribution of the small fraction of HlinaH+ (< ~0.1%) capable to absorb the incident light, present in the solution under 

this pH condition. 

Steady-State Irradiation and photochemical degradation of HlinaH+. 

The photostability of HlinaH+, main acid-base species under physiological pH, was studied in 

aqueous solutions (pH 4.0 - 7.4) subject to steady-state UVA-irradiation. Briefly, experiments 

performed with air-equilibrated solutions showed significant changes in the absorption spectra during 

the elapsed irradiation time (Figure 2a). In contrast to the general behavior of full aromatic βCs, a 

photochemical reaction was also observed under N2-saturated atmosphere (Figure 2b). The pattern 

and extent of the changes observed were significantly different. Such differences are better 

represented in Figures 2c where normalized experimental difference (NED) spectra are compared. 

The largest differences are observed in the spectral region ranged between 200 nm and 325 nm. 

Briefly, photoproduct/s obtained under air showed absorption maxima at c.a. 225 nm and 290 nm 

(black lines); whereas photoproduct/s formed in N2-saturated solution showed two absorption 

maxima at c.a. 240 nm and 320 nm (red lines). The latter photoproduct/s exhibit a pattern consistent 

with that corresponding to the full aromatic βCs HaH+ (see below). 

Under both atmosphere conditions, HPLC analysis showed a decrease in HlinaH+ 

concentration. Profiles followed a pseudo zero-order kinetics in the time-window investigated (Figure 

2d). Rates of reactant disappearance of 0.022 ± 0.005 μM min-1 and 0.063 ± 0.002 μM min-1 were 

observed under air-equilibrated and N2-saturated conditions, respectively. The corresponding 

quantum yields of HlinaH+ disappearance (ΦR) were calculated taking into account the incident 

photon flux and the absorbance of HlinaH+ at 350 nm (Table 1). Moreover, under anaerobic condition 

the formation of Ha was confirmed by the chromatographic peak at Rt = 11 min (Figure SI.1). It is 

noteworthy that the rate of Ha formation was ~ 6 times lower than that of HlinaH+ consumption. This 

fact suggests that the formation of additional photoproducts would take place (see below). 

Complementary chromatograms recorded with HPLC set-up II, monitored at four different 

absorption wavelengths (220, 280, 320 and 372 nm) clearly show a distinctive pattern of photoproduct 

distribution when comparing the progress of the photochemical reaction conducted under both 

atmospheres (Figures SI.2 - SI.5). Briefly, in air-equilibrated conditions beside the decrease of the 

reactant (HlinaH+) the appearance of a complex photoproducts mixture with, at least, four 

components (detected at Rt of 3.1, 3.8, 5.2 and 6.8 min) was observed. On the other hand, 

photodegradation of HlinaH+ performed in N2-saturated aqueous solution gives rise to the appearance 

of the full-aromatic derivative Ha together with, at least, three components detected at Rt of 3.5, 4.5 

and 6.0 min. According to the UV-visible spectra recorded with the photo-array detector (Figure 

SI.6), photoproducts obtained in air-equilibrated solutions mainly absorb at c.a. 280 nm. This feature 

is compatible with indole/indolenine-like structures (see below), with minor contribution at c.a. 330 
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and 350 nm. On the contrary, under N2-saturated conditions the mixture of photoproducts showed an 

important absorption around 320 nm, with contributions at c.a. 250 and 280 nm. This pattern is 

compatible with full-aromatic βC-like structures (see below). 

The trend and extent of the photochemical degradation of HlinaH+ observed in irradiated 

neutral (pH 7.4) solutions were the same, within the experimental error, to that observed under acidic 

conditions (Figures 2c, 2d and SI.11). These results were expected due to the fact that HlinaH+ is the 

dominant species (> 99%) in solution of pH values ranging from 2 to 8. 

The production of H2O2 upon UVA irradiation of several βCs has been reported [38-40]. Thus, 

the presence of H2O2 upon irradiation of air-equilibrated solutions of HlinaH+ ([HlinaH+]0 = 25 μM, 

pH 4.0) was investigated under the same experimental conditions as those used for ΦR determination. 

The results showed undetectable H2O2 photosensitized production (Table 1 and Figure SI.7). This 

fact represents a major difference with respect to the full aromatic βCs. 

 
Figure 2. Evolution of the UV-visible absorption spectra of (a) air-equilibrated and (b) N2-saturated aqueous solution of 

HlinaH+ (25 μM), as a function of the irradiation time (0, 15, 30, 45, 60, 75, 90 and 120 min). (c) Comparison of 

Normalized Experimental Difference (NED) spectra recorded under different atmosphere and pH conditions. (d) 

Evolution of HlinaH+ (circles), HaH+ (squares) concentrations in air-equilibrated (black) and N2-sat. acidic (red) and N2-

sat. neutral (blue) conditions as a function of the elapsed 350 nm irradiation time. βC concentrations were assessed by 

HPLC analysis using a fluorescence detector (excitation/emission channels 320/420 nm and 370/450 nm were particularly 

used to detect Ha and Hlina, respectively). 
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PARAFAC analysis: fluorescence excitation-emission matrices of irradiated HlinaH+ aqueous 

solution. 

Fluorescence excitation-emission matrices and parallel factor analysis (PARAFAC) were 

used to further characterize the behavior of HlinaH+ solutions upon irradiation. Brielfy, the results 

obtained under N2-saturated atmosphere confirm the photochemical generation of Ha during the 

irradiation of HlinaH+ solutions. This is accounted by the appearance of an important emission signal 

centered at Ex/Em  315 nm/415 nm (Figures 3a and SI.8) not observed in the presence of dissolved 

oxygen (Figures 3b and SI.9). Moreover, PARAFAC algorithm, used to decompose the three way 

arrays obtained by stacking the EEMs recorded under both atmosphere conditions, was able to 

identify and resolve the concentration profiles corresponding to the two major contributions. Figure 

4 shows that the resolved excitation and emission spectra fully match with those corresponding to 

HlinaH+ and the full-aromatic derivative, Ha. Scores with the relative contribution of each species 

are shown in Figure SI.10. The trend and extent obseved on irradiated air-equilibrated neutral (pH 

7.4) solutions were the same, within the experimental error, to that observed under acidic conditions 

(Figure SI.10). 

In contrast, a carefull inspection of the EEM obtained under air-equilibrated atmosphere 

suggests the appearance of a rather small but non negligible emission signal centered at Ex/Em  290 

nm/330 nm (Figure 3d). This behavior was not observed in the absence of dissolved oxygen (Figure 

3c). It is important to note that, despite the relatively small intensity of these signals in comparison 

with those recorded for HlinaH+, the latter increase in the emission was recorded whithin a range of 

excitation wavelengths for which the absorbance of HlinaH+ is practically null. Therefore, any 

variation in the total counts recorded by the spectrofluorometer when the excitation monochromator 

scanned from 270 to 310 nm should be ascribed to chemical species different from HlinaH+ reactant. 

Moreover, PARAFAC algorithm suggests that, in the presence of dissolved oxygen, the contribution 

of a third factor, centered at Ex/Em 290 nm/330 nm (see inset to Figure 4), increases with irradiation 

time. Hence, despite the profiles obtained for the third factor are noisy and may be subject to some 

degree of correlation (specially for the spectral ranges where HlinaH+ exhibits much higher emission 

intensities) their spectral location in both excitation and emission modes strongly suggests the 

formation of indole-like structures and points to the loss of the extra double bond conjugation present 

in HlinaH+ upon irradiation under air-equilibrated atmosphere. 
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Figure 3. Fluorescence excitation-emission matrices obtained for HlinaH+ under air-equilibrated and N2-saturated 

atmosphere: (a) and (b) [HlinaH+]0 = 50 μM; (c) and (d) [HlinaH+]0 = 145 μM. 

 

 

Figure 4. Normalized excitation and emission spectra of HlinaH+ and the photoproducts generated upon irradiation 

obtained by PARAFAC performed with the two tensors obtained from fluorescence excitation – emission matrix (EMM) 

recorded under both atmosphere conditions (air-equilibrated and N2-saturated solutions). Inset: data obtained from EEM 

recorded at low excitation-emission wavelengths (Figures 3c and d). 
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HRESI-MS analysis. 

Composition changes of HlinaH+ solutions of pH 4.0, irradiated (0, 120, 180 and 240 min) 

under both air-equilibrated and N2-saturated atmospheres, were monitored by HRESI-MS. In the 

presence of oxygen, Hlina as [Hlina+H]+ species behaved as a quite stable compound. After 180 min 

the irradiated solution showed the formation of a photoproduct at m/z = 231 that includes oxygen in 

its structure (Figure 5c; Hlina peak at m/z = 215, as [M+H]+ and the photoproduct peak at m/z = 231, 

as [M+H]+, then m.w. = 230). The strong electrophilic character of the pyrido[3,4b] doble bound 

constituent of the indolic moiety, enhanced because of the protonation of the pyridinic N(2) and the 

resulting positive charge on it, can explain the O2 attact to this position yielding, as stable derivative 

to detect by ESI MS method, the 4a,9a-epoxy-harmaline derivative (Scheme 2a) and/or the 4a-

hydroxyindolenine derivative (Scheme 2b) (both with m.w. = 230). In negative ion mode the 

corresponding peak at m/z = 229 was observed (Figure 5d; Hlina peak at m/z = 213, as [M - H]- and 

the photoproduct peak at m/z = 229, as [M-H]-, then m.w. = 230). Schemes 2c and d show the possible 

structures for the deprotonated species detected. On the contrary, when irradiation was conducted 

under N2-saturated atmosphere, the formation of a photoproduct with m/z 213 was detected, in 

positive ion mode. After 240 min, the irradiated solution showed a ratio aprox 70:100 among the 

photoproduct (m/z 213) and Hlina (m/z 215) (Figure 5a). Clearly under this experimental conditions 

the full aromatization of Hlina takes place and harmine is produced (positive ion mode, sepcies 

detected as [M+H]+, photoproduct with m/z 213, then m.w. 212). Results obtained in negative ion 

mode are similar (Figure 5b; negative ion mode, species detected as [M-H]-, photoproduct with m/z 

211, then m.w. 212). The production of harmine as stable photoproduct suggests that, simultaneously 

to this oxidative-dehydrogenation process, a reductive hydrogenation may be opperating specially if 

the dehydrogenation would involve a 2 steps homolytic C-H breaking bond (radical species 

formation). In that conditions additional products (e. g., 1,2-dihydrogenated harmaline, harmaline 

dimers, trimers, etc.) should be formed and detected at least by HPLC analysis. In connection with 

this topic, the results obtained have been included in Figures SI.2-SI.5 and previously discussed. As 

Ha shown to be the photoproduct formed in higher yield, may be dehydrogenation should be taking 

place as a concerted hydrogen elimation process as well. 
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Figure 5. HRESI mass spectra of irradiated HlinaH+ aqueous solution (pH, 4.0; irradiation time = 240 min; atmosphere, 
(a) and (b) N2, (c) and (d) air; ion mode, (a) and (c) positive; (b) and (d) negative. Base peak absolute intensity: (a) 6.56 

x 107, (b) 5.56 x 106, (c) 2.87 x 108 (Insert: 1.46 x 107), (d) 2.35 x 107 (Insert: 1.78 x 106) a. u.; (c) and (d) show the 

presence of Ha as impurity (< 2%) of Hlina. 

 

Scheme 2. HRESI-MS analysis. Proposed structures for the ions formed by the photoproducts present in the irradiated 

Hlina acidic air-equilibrated aqueous solution; (a) and (b) positive ion mode, (c) and (d) negative ion mode. 

CONCLUSIONS 

The present work provides qualitative and quantitative data concerning the photophysical and 

photochemical behavior of harmaline alkaloid in aqueous solution under both acidic and alkaline 

conditions. It is worth to mention that, although there are several articles reported in the field, we 

focused our attention on unresolved key aspects that needed clarification. Thus, values of quantum 

yield of singlet oxygen (ΦΔ) and hydrogen peroxide (ΦH2O2) production here reported indicate that, 

under the whole pH-range investigated (3.0 < pH < 13.1), this alkaloid has a quite small or null 

capability of photoinduced ROS production. The pH-dependence of Hlina fluorescence quantum 

yields (ΦF) was also investigated. Data show that the protonated species HlinaH+ is a rather efficient 

fluorophore. 

In addition, the photochemical degradation of HlinaH+ was, to the best of our knowledge, 

studied for the first time. In this context, we demonstrate herein that, upon photoexcitation, HlinaH+ 

leads to the formation of different photoproducts and that oxygen partial pressure strongly modulates 

the extent of the reaction as well as the type of photoproduct generated (Scheme 3). This study 
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provides relevant information that may contribute to further understand or consider additional 

pathways for the in vivo synthesis and/or photochemical modification of βCs. 

 

Scheme 3. Photochemical reactions proposed for the photodegradation of HlinaH+ alkaloid in aqueous solution (pH 

4.0), under different atmospheres. 
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GRAPHICAL ABSTRACT 

 

Upon photoexcitation harmaline alkaloid shows a distinctive photochemical behavior 

modulated by pH and oxygen partial pressure. 
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1) Harmaline, a partially hydrogenated βC alkaloid, shows a quite distinctive photophysic and 

photochemical behaviour. 

2) Photosensitized formation of reactive oxygen species by photoexcited harmaline is rather 

small or null. 

3) Oxygen partial pressure and pH strongly modulate the photochemical properties of harmaline. 

4) Under anaerobic conditions, photoexcited harmaline gives rise to the formation of the full-

aromatic βC, harmine. 

5) Light might promote additional pathways for the in vivo synthesis and/or photochemical 

modification of endogenous βCs. 
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