Lactoferrin purification and whey protein isolate recovery from cheese whey using chitosan mini-spheres

Daniela B. Hirsch, Lucas M. Martínez Álvarez, Nicolás Urtasun, María F. Baieli, Juan M. Lázaro- Martínez, Romina J. Glisoni, María V. Miranda, Osvaldo Cascone, Federico J. Wolman

PII: S0958-6946(20)30134-5

DOI: https://doi.org/10.1016/j.idairyj.2020.104764

Reference: INDA 104764

To appear in: International Dairy Journal

Received Date: 21 February 2020

Revised Date: 14 May 2020

Accepted Date: 17 May 2020

Please cite this article as: Hirsch, D.B., Martínez Álvarez, L.M., Urtasun, N., Baieli, M.F., Lázaro-Martínez, J.M., Glisoni, R.J., Miranda, M.V., Cascone, O., Wolman, F.J., Lactoferrin purification and whey protein isolate recovery from cheese whey using chitosan mini-spheres, *International Dairy Journal*, https://doi.org/10.1016/j.idairyj.2020.104764.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Ltd. All rights reserved.

1	Lactoferrin purification and whey protein isolate recovery from cheese whey using chitosan mini-
2	spheres
3	
4	
5	
6	Daniela B. Hirsch ^{a,b} , Lucas M. Martínez Álvarez ^{a,b,c} , Nicolás Urtasun ^{b,d,e} , María F. Baieli ^{b,e} , Juan M. Lázaro-
7	Martínez ^{f,g} , Romina J. Glisoni ^{b,h} , María V. Miranda ^{a,b} , Osvaldo Cascone ^{a,b} , Federico J. Wolman ^{a,b} *
8	
9	
10	
11	^a Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Junín 956,
12	1113 Buenos Aires, Argentina
13	^b CONICET- Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, 1113
14	Buenos Aires, Argentina
15	^c Instituto Antártico Argentino, Balcarce 290 3er piso, 1064 Buenos Aires, Argentina
16	^d Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología,
17	Biología Molecular y Celular, Intendente Güiraldes 2160 - Ciudad Universitaria (C1428EGA), Buenos Aires,
18	Argentina
19	^e Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 956, 1113 Buenos Aires,
20	Argentina
21	^f Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica,
22	Junín 956 (C1113AAD), CABA, Argentina.
23	^g CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín
24	956 (C1113AAD), CABA, Argentina.

- 25 ^h Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica
- 26 II. Junín 956, 1113 Buenos Aires, Argentina.

27

28

- 29 * Corresponding author. Tel.: +54 11 5287 4679
- *E-mail address*: <u>fwolman@ffyb.uba.ar</u> (F. J. Wolman) 30

hand Jurnal

31	
32	ABSTRACT
33	
34	Direct protein purification from raw materials by chromatographic media represents an enormous
35	challenge, especially when particulate solids and high charge solute are present. In this sense, protein
36	purification from cheese whey is an excellent opportunity to test new chromatographic matrices that
37	can be applied to direct protein isolation. The present work shows the utility of novel multimodal
38	chitosan-based chromatographic matrices for obtaining lactoferrin (LF) and a whey protein isolate (WPI)
39	directly from cheese whey without any pretreatment. A central composite experimental design was
40	used to optimise an operative sequence. This sequence involved LF capture using sulfanilic acid-
41	modified chitosan mini-spheres followed by the capture of the massive remnant proteins using glycidyl
42	trimethylammonium-modified chitosan mini-spheres. Interestingly, a yield of 68% and 70% purity
43	degree was obtained for LF, and 2.71 mg of WPI mL ⁻¹ whey was obtained in the WPI recovery process,
44	revealing a potential industrial use of the developed matrices and processes.
45	
46	
47	

48 1. Introduction

49

50 Sweet whey is usually applied to food and feed products or commercialised as whey powders; 51 however, a growing interest in its valorisation is mainly due to the high nutritional, biological, and 52 technological value of its proteins and the large volumes produced (Doultani, Turhan, & Etzel, 2003; 53 Mollea, Marmo, & Bosco, 2013; Urtasun et al., 2018).

54 One of the minor proteins present in cheese whey is lactoferrin (LF), which has a concentration of 0.02–0.2 g L⁻¹ and an isoelectric point (pl) higher than 8 (Dizaji, 2016; Etzel, 2004). This protein is 55 56 commercially interesting because of its role in the innate defence system and its antimicrobial, 57 antioxidant, antiviral, immunomodulating, anti-inflammatory, and anticarcinogenic activities (Garcia-Montoya, Cendon, Arevalo-Gallegos, & Rascon-Cruz, 2012; González-Chávez, Arévalo-Gallegos, & 58 Rascón-Cruz, 2009; Legrand, 2016; Manzoni, 2016; Wakabayashi, Oda, Yamauchi, & Abe, 2014). Due to 59 60 its high pl compared with other proteins present in cheese whey (Urtasun et al., 2018), it can be 61 selectively adsorbed on cation-exchange materials, which is why ion exchange chromatography is the most common choice for LF purification (Doultani et al., 2003; Pochet et al., 2018; Wakabayashi, 62 Yamauchi, & Takase, 2006). The processing of the remaining whey not only brings economic benefits to 63 the producers but also has a beneficial impact on the environment since the dumping of huge volumes 64 65 of whey causes environmental pollution (Bacenetti, Bava, Schievano, & Zucali, 2018; Nicolás, Ferreira, & Lassalle, 2019; Price, 2019). 66

Nowadays, two protein products from cheese whey are marketed: whey protein concentrates
(WPC) and whey protein isolates (WPI). Protein content in WPC usually varies from 35 to 85%, whereas
WPI presents the advantage of having more than 90% protein and almost no carbohydrate content
(Kilara & Vaghela, 2018; Nicolás, Ferreira, & Lassalle, 2018). Because of this characteristic, the greatest
WPI market is currently intended for sports nutrition, since proteins play an important role in the

recovery after arduous exercise and consumers appreciate the absence of carbohydrates in these
 products (Price, 2019).

74 When processing complex starting materials, such as cheese whey, a pre-treatment is usually 75 necessary before membrane filtration or column chromatography to avoid the fouling of the 76 membranes or the column clogging (Ganju & Gogate, 2017). Some of the strategies used involve 77 chemical, thermal, and ultrasound pre-treatments (Ganju & Gogate, 2017). The use of pre-treatments 78 makes the processing more expensive, which is why using a separation method that avoids this step 79 represents a great advantage. In this regard, our group has already developed several chitosan-based 80 matrices that can be used in batch systems without any pre-treatment due to their size and density 81 (Baieli et al., 2017b; Baieli, Urtasun, Miranda, Cascone, & Wolman, 2014b; Urtasun et al., 2017). Not only do these matrices make the process cheaper but their recovery is facilitated after each step as well. 82 Chitosan is a linear copolymer of 2-acetamide-2-dioxy- β -D-glucose and 2-amino-2-dioxy- β -D-83 84 glucose residues randomly distributed. It is the total or partial N-deacetylated derivative form of chitin, 85 which is the second most abundant polysaccharide in nature after cellulose (Kumar, 2000; Kumari, 86 Kumar Annamareddy, Abanti, & Kumar Rath, 2017; Roh & Kwon, 2002). Chitosan presents the advantage of being biodegradable, biocompatible, non-toxic, and highly available (Baieli et al., 2017a; 87 Roh & Kwon, 2002; Shariatinia & Jalali, 2018). In addition, it has many interesting physicochemical 88 89 properties, like pH sensibility, since it is soluble in dilute acidic media and insoluble in neutral or basic 90 media (Baieli et al., 2017a; Kumar, 2000). This characteristic makes chitosan easy to handle for preparing 91 fibres, hydrogels, micro/nanoparticles, or membranes. Moreover, it presents free amino and hydroxyl 92 groups, which facilitate the immobilisation of various ligands, and is therefore often selected as a 93 support material for chromatographic purposes (Baieli et al., 2017a; Shariatinia & Jalali, 2018; Yang et 94 al., 2016). Regarding this chromatographic purpose, it is well known that chitosan beads or mini spheres 95 formed by the acid/base phase separation possess an open pore internal structure, consisting in macro

and meso pores which facilitates protein binding (Subramanian & Hommerding, 2005). Because of its
diffusive aspects, regarding protein binding dynamics, this type of chromatographic support has
interesting applications in batch operation processes, especially for raw material processing (Baieli,

99 Urtasun, Miranda, Cascone, & Wolman, 2014a).

100 Even though ion exchange chromatography is mostly used in the purification of LF from cheese 101 whey, an appealing alternative is multimodal chromatography (Kallberg, Johansson, & Bulow, 2012; 102 Yang & Geng, 2011; Zhang & Liu, 2016). This type of chromatography consists of ligands that interact 103 with the target proteins in different ways, such as hydrophobic and Van der Waals interactions, in 104 addition to the charge interactions (Johansson et al., 2003; Zhao, Dong, & Sun, 2009). In a previous 105 work, a new multimodal matrix by sulfanilic acid immobilisation on chitosan mini-spheres was 106 developed and characterised (Hirsch et al., 2018a,b). Sulfanilic acid is a precursor in the synthesis of 107 triazine dyes and it presents an aromatic ring in addition to the sulfonic group. Good results in affinity 108 purification processes with these dye-ligands have been studied and reported (Baieli et al., 2014b; 109 Urtasun et al., 2017). An important difference between triazine dyes and their precursor is that the 110 latter does not have regulatory restrictions as a ligand if the purified product or the matrix itself is applied to the food industry. The multimodal matrix developed was successfully tested for lysozyme 111 purification from egg white in a previous study (Hirsch et al., 2018a). Given that LF has a high pl and a 112 113 complex source, in this study the purification process parameters were optimised through statistical 114 analysis for its purification from cheese whey using the sulfanilic acid-modified chitosan mini-spheres. 115 Another matrix with the opposite charge was also developed to recover WPI. In this sense, guaternary amino groups were introduce in the chitosan mini-spheres by the immobilisation of glycidyl 116 117 trimethylammonium as the ligand (Prado & Matulewicz, 2014; Senra, Campana-Filho, & Desbrières, 118 2018).

119	The response surface methodology (RSM) has been implemented to optimise the process (Das $\&$
120	Mishra, 2017; Yoshida, 1989) [,] . RSM combines mathematical and statistical techniques to improve
121	processes by maximising or minimising (according to the objective set) the response of a variable to
122	several factors (Martínez Álvarez, Lo Balbo, Mac Cormack, & Ruberto, 2015; Ravikumar, Krishnan,
123	Ramalingam, & Balu, 2007). One of the main designs used in chromatography is faced-centred central
124	composite design (CCF) (Kumar Gupta, Agarwal, Asif, Fakhri, & Sadeghi, 2017; Shojaeimehr et al., 2018).
125	RSM is a particularly interesting approach for optimising the chromatographic parameters when using
126	multimodal matrices since many factors are affecting the protein-matrix interactions.
127	Although LF is usually co-purified with lactoperoxidase (LP), this work focuses on LF purification
128	since the market demand for this protein is bigger and it is found at a higher concentration in cheese
129	whey. Despite the number of papers and patents for LF purification, it is still a challenge to purify LF
130	from cheese whey at an industrial scale since not all the proposed technologies are cost-effective. The
131	focus of this work was to purify this protein and take advantage of the remaining whey to further
132	process it through the quantitative isolation of the other whey proteins and study their potential
133	differential elution.
134	
135	2. Materials and methods
136	
137	2.1. Materials
138	
139	Chitosan (low viscosity, Lot# BCBF7885V, acetylation degree 41%), sulfanilic acid (4-
140	aminobenzenesulfonic acid), and glycidyl trimethylammonium chloride (GTMA) were from Sigma-
141	Aldrich (St. Louis, MO, USA). LF standard (95% purity, 20% iron saturation) was from Friesland Campina
142	Domo [®] (Amersfoort, The Netherlands). Epichlorohydrin was from Fluka Analytical (Buchs SG,

143	Switzerland). The Bicinchoninic Acid (BCA) protein assay kit for total protein determination was from
144	Thermo Scientific (Rockford, IL, USA). The Bovine Lactoferrin ELISA Quantification kit was from Bethyl
145	Laboratories Inc. (Montgomery, TX, USA). All other reagents were analytical reagent grade.
146	
147	2.2. Sweet whey preparation
148	
149	Milk was kindly donated by Perassolo y Cia. S.A. (Rojas, Buenos Aires, Argentina). Sweet whey
150	was prepared as described in a previous work (Urtasun et al., 2017). Briefly, 0.075 g of chymosin (Sigma-
151	Aldrich) was added to 1 L of milk at 37 °C until coagulation (30 min). Chymosin was inactivated by raising
152	the temperature to 55 °C for 15 min. The resulting whey was centrifuged at 4 °C, 3000 x g, for 30 min to
153	remove the residual fat and the precipitated casein.
154	
155	2.3. Response surface methodology
156	
157	The adsorption and elution steps for the two processes studied were optimised by the CCF
158	design using the Design Expert software (version DX7). Every independent variable was studied in three
159	coded levels (+1, 0, and -1) as shown in Tables 1 and 2. Eq. (1) explains the relation between the coded
160	and the real values:
161	$x_i = (X_i - X_0)/X \tag{1}$
162	where X_i is the real value of the independent variable, x_i is the dimensionless coded value for X_i , $i = -1, 0$,
163	+1, X_0 is the mid-point of X_i , and X is the step change value.
164	The best-fitting model was selected. Analysis of variance was implemented to validate the
165	model accuracy. Mean squares, lack of fit, sum of squares, F-value, and <i>P</i> -value were the parameters
166	analysed to check the efficacy of the model. <i>P</i> -values confirmed the model from the statistical point of

167	view.	According to the variance analysis, <i>P</i> -values lower than 0.05 represented that either the n	nodel or
168	the va	ariables were significant from the statistical point of view (95% significance level).	
169		For the optimisation of multiple responses, the desirability function (D(x)) was maximise	ed
170	accord	ding to Eq. (2):	
171		$D(x) = (Y1^*Y2^*Y3 \dots Yn)^{1/n}$	(2)
172	where	e Yi (i = 1, 2 n) are the selected responses and n is the total number of responses evaluat	ted. The
173	value	of D is between zero (least desirable) and one (most desirable) at the goal set for each res	sponse.
174			
175	2.4.	Matrix synthesis and characterisation	
176			
177	2.4.1.	Matrix synthesis	
178		Chitosan mini-spheres (1.32 \pm 0.14 mm diameter) were obtained according to the proce	edure
179	descri	bed in previous studies (Baieli et al., 2014b; Hirsch et al., 2018a). Briefly, a chitosan solutio	on was
180	prepai	red by dissolving 2% of low viscosity chitosan powder (acetylation degree 41%) in 2% acet	ic acid
181	(Kasaa	ai, Arul, & Charlet, 2000). This solution was dripped through a 30 G needle on a 2 м NaOH	solution
182	under	continuous soft stirring (Baieli et al., 2014b). The resulting mini-spheres were crosslinked	with a
183	250 m	M epichlorohydrin solution at 60 °C for 4 h under continuous gentle stirring. The matrix de	esigned
184	for the	e purification of LF was then activated by a second treatment with epichlorohydrin, using	а 2.55 м
185	solutio	on (60 °C, 16 h, pH 10.0) followed by the immobilisation of sulfanilic acid by the reaction w	vith a
186	0.46 N	م sulfanilic acid solution, pH 10.0, stirred at 60 °C for 40 h. In addition, for the matrix desig	ned for
187	recove	ering WPI, the 250 mM epichlorohydrin crosslinked mini-spheres were directly incubated v	with a
188	250 m	им GTMA solution in the presence of 0.25% pyridine, pH 10.0, stirred at 60°C for 24 h.	
189			
100	212	Nuclear magnetic resonance	

190 2.4.2. Nuclear magnetic resonance

191	Solid-state nuclear magnetic resonance (ss-NMR) experiment data were acquired with a Bruker
192	Avance-III HD spectrometer equipped with a 14.1 T narrow bore magnet operating at Larmor
193	frequencies of 600.09 MHz and 150.91 MHz for ¹ H and ¹³ C, respectively. Powdered samples were packed
194	into a 3.2 mm ZrO_2 rotor and rotated at room temperature at the magic angle spinning (MAS) rate of 15
195	kHz. The contact time during crosspolarisation (CP) was 2000 μ s. The SPINAL64 sequence (small phase
196	incremental alternation with 64 steps) was used for heteronuclear decoupling during acquisition.
197	Spectral editing with the pulse sequence for cross-polarisation with polarisation inversion (CPPI) was
198	used according to previous reports (Algarra et al., 2019; Wu & Zilm, 1993). ¹³ C natural abundance direct
199	polarisation experiments with proton decoupling (SPINAL64) during acquisition were conducted for the
200	GTMA-chitosan sample. An excitation pulse of 4.0 μs and a recycling time of 100 s were used and 4000
201	scans were accumulated to obtain quantitative and good signal-to-noise ratio.

202

203 2.4.3. Zeta potential

204The ζ potential study was performed as previously reported (Hirsch et al., 2018a). Briefly, the205matrices were first disrupted mechanically (100 mg 10 mL⁻¹ distilled water) with a spatula and then kept206under magnetic stirring for 48 h to obtain a homogeneous microparticle suspension. The particle size207was homogenised by filtrating the suspensions (1.2 mm nitrocellulose membrane, Osmonics). Aliquots208(2 mL) were diluted 1:1 with distilled water, and NaCl was added until a 10 mM solution concentration209was obtained. An adequate volume of 50 mM HCl or NaOH solution was added to adjust the pH value in210a range between 2.0 and 9.0.

The hydrodynamic size (D_h), size distribution (polydispersity index, PDI), and ζ potential of the
different samples were assayed by dynamic light scattering using a Zeta sizer Nano-ZS (Malvern
Instruments, Malvern, UK) at a scattering angle of 173° and a fixed measurement position of 4.65 mm.

Journal Pre-proc	

214	The temperature was controlled at 25 \pm 0.1 °C (all samples). Viscosities ranged between 0.8875 and
215	0.8888 cP (25 °C), and the refractive index (RI) was 1.33.
216	
217	2.5. Lactoferrin purification
218	
219	2.5.1. Lactoferrin adsorption isotherms
220	LF solutions (1 mL) of different concentrations (0.063–10 mg mL ⁻¹) were incubated with 50 mg of
221	hydrated and buffer-equilibrated matrix with gentle agitation (16 h, 20 °C). The LF solutions were
222	prepared at different pH values using 20 mM phosphate buffer for pH 6.0, 7.0, and 8.0, and 20 mM
223	carbonate buffer for pH 9.0 with gentle agitation (16 h, 20 °C). The adsorbed equilibrium protein
224	concentration was calculated from the difference between the initial and final LF concentrations
225	measured at 280 nm using the extinction coefficient factor of 1.51. The results were analysed by the
226	Langmuir model (Langmuir, 1917).
227	Langmuir isotherm can be expressed by the following equation (3):
228	$q = q_m C / (K_d + C) \tag{3}$
229	where q is the adsorbed protein mass at equilibrium, q_m is the maximum adsorption capacity, C is the
230	protein concentration in the solution at equilibrium, and K_d is the dissociation constant.
231	All determinations were performed in triplicate, and the results were expressed as the average \pm
232	SD.
233	
234	2.5.2. Adsorption studies from whey
235	For the adsorption, three independent variables were taken into account: amount of hydrated
236	matrix (mg) (A), adsorption time (h) (B), and whey pH (C).

237	Six central points (0,0,0) were included in the analysis, resulting in 20 experiments to be	
238	performed (Supplementary material Table S1). Only one response was analysed: LF adsorption (R1LF.	A).
239	The response was defined by the following equation (4):	
240	R1LFA (%) = [LF adsorbed (mg) $*$ 100] / [LF in the initial whey (mg)] (4)	
241	The objective was to optimise this process by maximising R1LFA. The mini-spheres were first	
242	equilibrated with a buffer set at the same pH as that of the adsorption step, followed by the adsorpti	on
243	at the condition determined by the design. All experiments were performed at 11 °C to reduce the	
244	growth of microorganisms. The results were determined by the Bovine Lactoferrin ELISA Quantification	on
245	kit and the BCA protein assay kit for total protein determination.	
246		
247	2.5.3. Elution studies	
248	For the elution step, three independent variables were taken into account: elution buffer pH	(A),
249	NaCl molar concentration (B), and propylene glycol (PG) percentage (C). The pH and NaCl concentration	ion
250	would mainly affect the ionic interactions between the matrix and the protein; however, the PG and	the
251	pH would alter the hydrophobic interactions.	
252	As for adsorption, six central points (0,0,0) were included in the analysis, resulting in 20	
253	experiments (Table S1). Two responses were analysed: LF elution (R2LFE) and total proteins eluted	
254	(R3LFE). These responses were defined by the following equations (5 & 6):	
255	R2LFE (%) = [LF eluted (mg) * 100] / [LF adsorbed (mg)]	(5)
256	R3LFE (%) = [Total proteins eluted (mg) * 100] / [Total proteins in the initial whey (mg)]	(6)
257	The objective was to optimise this process by maximising R2LFE while R3LFE was set at a targ	et
258	of 1.59%, which is the amount of LF in the original whey, to achieve higher purity in the eluent.	
259	The mini-spheres were first equilibrated with 20 mM phosphate buffer, pH 7.0, followed by the term γ	he
260	adsorption at the optimal condition previously determined in the adsorption study. Four washing ste	ps

ourn		10.1	\mathbf{a}	

261	were included after the adsorption using 20 mM phosphate buffer, pH 7.0, and the elution buffer was
262	determined according to the experimental design. The results were measured as previously described.
263	
264	2.5.4. Purification of lactoferrin from cheese whey
265	To verify the results obtained from the RSM study, a purification process under the optimal
266	conditions found by RSM for adsorption and elution was performed in batch mode. The mini-spheres
267	(100 mg mL ⁻¹ of whey) were first equilibrated using 20 mM phosphate buffer, pH 6.7. The adsorption
268	step was performed at the original pH of the cheese whey (6.6), 11 °C for 4 h with gentle stirring. Four
269	washing steps were carried out with the equilibration buffer, and 20 mM phosphate buffer (pH 7.5)
270	solution with 1.45 $ m M$ NaCl and 31.33% of PG were used for the elution. LF and total protein
271	concentration were determined as previously described and analysed by SDS-PAGE.
272	
273	2.6. Whey protein isolate recovery
274	
275	2.6.1. Adsorption studies
276	For the adsorption, two independent variables were taken into account: amount of hydrated
277	matrix (mg) (A) and adsorption time (h) (B).
278	Five central points (0,0) were included in the analysis, resulting in 14 experiments to be
279	performed (Supplementary material Table S2). Only one response was analysed: Total protein
280	adsorption (R4WPIA), which was defined by the following equation (7):
281	R4WPIA (%) = [Total proteins adsorbed (mg) $*$ 100] / [Total proteins in the initial whey (mg)] (7)
282	The objective was to optimise this process by maximising R4WPIA. All experiments were
283	performed at 11 °C. The results were determined by the BCA protein assay kit.

285 2.6.2. Elution studies

For the elution, three independent variables were taken into account: elution buffer pH (A), NaCl molar concentration (B), and PG percentage (C). Six central points (0,0,0) were included in the analysis, resulting in 20 experiments to be performed (Supplementary material Table S1). Only one response was analysed: total proteins eluted (R5WPIE). This response was defined by the following equation (8):

*R5WPIE (%) = [Total proteins eluted (mg) * 100] / [Total proteins in the initial whey (mg)]* (8)
The objective was to optimise this process by maximising R5WPIE. The mini-spheres were first
equilibrated with 20 mM phosphate buffer, pH 7.0, followed by the adsorption at the optimal condition
found in the adsorption study at 11 °C. Four washing steps were included after the adsorption using the
equilibration buffer, and the elution buffer was selected according to the experimental design. Total
protein was measured using the BCA protein assay kit. In addition, the eluents were analysed by HPLC to
determine if any tested condition allowed the elution of a specific protein.

298

299 2.6.3. Recovery of whey protein isolate from cheese whey

The optimum conditions found in the adsorption and elution RSM studies were verified in a recovery process. The mini-spheres (1000 mg mL⁻¹ of whey) were first equilibrated using 20 mM sodium phosphate buffer, pH 7.0. The adsorption step was performed at 11 °C with gentle stirring for 0.5 h. Four washing steps were conducted using the equilibration buffer. A 20 mM sodium acetate buffer, pH 4.0, with 1.57 M NaCl and 50.0 % of PG was used for the elution. LF and the total protein concentration were determined as previously described and analysed by SDS-PAGE. The lactose concentration was measured in the eluents by an enzymatic methodology.

307

308 2.7. Lactose determination

309

310	The lactose determination was performed according to the enzymatic methodology (Ansari,	
311	Satar, Kashif Zaidi, & Ahmad, 2014; Mariotti, Yamanaka, Araujo, & Trevisan, 2008). These samples were	
312	incubated at 45 °C for 30 min, an aliquot of 10 μL was taken from each sample, and the glucose	
313	concentration was determined using an enzymatic glycaemic kit. The glucose concentration was also	
314	determined for the samples evaluated without β -galactosidase; all sample absorbances were read at	
315	505nm in UV-Visible spectrophotometer (Shimadzu Inc., Kyoto, Japan). Glucose concentration was	
316	calculated by comparison with standard glucose concentrations. The lactose moles on each sample were	ž
317	determined according to the following equation (9):	
318	Lactose moles of the sample = Glucose moles from the sample with 8 galactosidase – Glucose	
319	moles of the sample without treatment (9)	
320	All determinations were performed in triplicate, and the results were expressed as the average	E
321	SD.	
322		
323	3. Results and discussion	
324		
325	3.1. Matrix synthesis and characterisation	
326		
327	It is worth mentioning that, from the same original material, two similar syntheses resulted in	
328	different chitosan-based chromatographic materials (Fig. 1), providing evidence of the expanding uses o	f
329	this natural polymer in chromatographic applications.	
330	To obtain chemical information about the modification of chitosan with GTMA, ¹³ C ss-NMR	
331	experiments were done and the results are shown in Fig. 2. The ¹³ C CP-MAS spectrum for the GTMA-	
332	modified chitosan mini-spheres shows the carbon resonance signals for the chitosan structure (C_{1-8}) and	

333	those for the crosslinking with epichlorohydrin (C_{9-10}) (Hirsch et al., 2018a) and with the reaction with
334	GTMA (C ₁₁₋₁₄). Particularly, the ¹³ C CPPI experiment allowed us to unequivocally assign the methyl
335	carbons of the trimethylammonium group of the GTMA at a carbon chemical shift of 54.9 ppm
336	(Supplementary material Fig. S1). Considering that this signal is representative of the GTMA moieties in
337	the chitosan mini-spheres, a ¹³ C direct polarisation experiment was conducted using a sufficiently long
338	recycle delay for all the 13 C to relax. In this sense, the quantitative amount of GTMA related to the
339	chitosan structure can be estimated from the deconvolution of the ¹³ C-NMR line (Supplementary
340	material Fig. S1). The quantitative information for the GTMA mini-spheres estimated that every three
341	monomeric units of chitosan one was modified. The difference observed between the ¹³ C CP-MAS and
342	¹³ C DP spectra stemmed from the intensity of the NMR lines from the ordered or crystalline regions
343	enhanced in the cross-polarisation experiment (Lázaro-Martínez, Rodríguez-Castellón, Vega, Monti, &
344	Chattah, 2015). However, the direct-polarisation experiment with an adequate long recycle delay can
345	bring quantitative information from the NMR lines of the entire system (ordered or disordered regions).
346	In the latter region, the only disadvantage is the time consumed by the spectrometer to obtain a good
347	signal-to-noise ratio (5 days for the GTMA-chitosan sample).
348	The ζ potential curves versus pH (Fig. 3) reveal that the incorporation of the different ligands
349	was successful. The immobilisation of the sulfonic groups onto the chitosan mini-spheres showed a
350	charge inversion at a pH-value between 5 and 6. However, the immobilisation of the GTMA showed an
351	increase in the charge in almost all the pH spectrum.
352	
353	3.2. Lactoferrin purification
25/	

3.2.1. Equilibrium adsorption isotherms

356	Maximum adsorption capacity (q_m) was determined following the Langmuir model from the
357	equilibrium adsorption isotherms. To characterise the interaction between LF and the matrix, q_m was
358	determined at different pH values at which the matrix has a net negative charge (6.0–9.0). Fig. 4 shows
359	that the highest q_m was reached at pH 8.0 (112.4 ± 6.347 mg g ⁻¹). However, there was no linear relation
360	between the pH value and the measured q_m , which may be attributed to the interaction between the
361	matrix and the protein not being entirely mediated by ion exchange, thus revealing other types of
362	interactions that are not negligible.
363	Compared with other ion exchange matrices, the maximum adsorption capacity obtained was
364	high. In a previous work, LF isolation from bovine colostrum was studied using a cation exchange resin
365	SPEC 70 SLS from Pall Corporation (Port Washington, New York, USA). In this case, the maximum
366	adsorption capacity resulted in 21.73 mg g ⁻¹ resin at pH 7.0 (Liang, Wang, Wu, & Zhu, 2011).
367	
368	3.2.2. Adsorption studies
369	The response, R1LFA, was analysed as shown in Fig. 5 and it followed Eq. 10, in terms of codified
370	factors (A = amount of hydrated matrix (mg); B = adsorption time (h); C = whey pH).
371	R1LFA = +52.68 + 24.79 * A + 16.86 * B + 9.51 * C – 3.14 * A * B – 5.82 * A * C – 7.78 * B * C –
372	$6.33 * A^2 - 9.12 * B^2 - 0.72 * C^2 \tag{10}$
373	Supplementary material Table S3 presents the ANOVA results for R1LFA. The optimum
374	adsorption conditions were obtained using numerical optimisation of RSM, to attain the maximum LF
375	adsorption (R1LFA). The optimum amount of hydrated matrix was 100 mg, adsorption time 4 h, and pH
376	6.57. The predicted value for R1LFA was 78.00%. As the pH of the cheese whey is 6.60, this factor was
377	left unmodified. At pH 6.57, the matrix and most of the proteins were charged negatively, while the
378	target protein had the opposite charge (Urtasun et al., 2018). This factor is also seen as important in Fig.

379 4 since it influenced the maximum capacity of the matrix.

380	When analysing the other two variables (adsorption time and amount of matrix), it is important
381	to take into account that adsorption time is usually limited to increase the process productivity and to
382	reduce the growth of microorganisms in the remaining whey. For this reason, the maximum adsorption
383	time studied was 4 h. Noteworthy, when working with batch systems, diffusion is the main time
384	limitation since the target molecule has to diffuse from the solution to the hydrated film around the
385	adsorbent, then inside the pore, and afterward interact according to its binding kinetics (Urtasun et al.,
386	2018). Given that LF is at a low concentration compared with other proteins in the cheese whey, the
387	limitation of 4 h for the adsorption may influence the amount of matrix needed to accomplish the
388	adsorptive step, which could explain not only the significance of this variable but also the fact that the
389	optimum for both variables was near the higher level.
390	
391	3.2.3. Elution studies
392	The first response analysed was R2LFE, as shown in Fig. 6A, and it followed Eq. 11, in terms of
393	coded factors (A = elution buffer pH; B = NaCl molar concentration; C = propylene glycol percentage).
394	R2LFE = +68.95 + 12.54 * A + 24.64 * B + 13.85 * C + 13.57 * A * B – 0.26 * A * C + 11.82 * B * C –
395	$7.94 * A^2 - 25.56 * B^2 - 13.75 * C^2 \tag{11}$
396	Supplementary material Table S4 presents the ANOVA results for R2LFE. The second response
397	was R3LFE and it followed Eq. 12 in terms of the same codified factors described for Eq. 11 (Fig. 6B).
398	R3LFE = +1.99 + 0.42 * A + 1.27 * B + 0.30 * C + 0.48 * A * B + 0.70 * A * C + 0.46 * B * C + 0.52 *
399	A * B * C (12)
400	Supplementary material Table S5 shows the ANOVA results.
401	The optimum pH was 7.53, NaCl concentration was 1.33 M, and PG was 32.42%. The predicted
402	values for R2LFE and R3LFE were 84.98% and 2.97%, respectively, with desirability of 0.840 as shown in
403	Fig. 6C. Fig. 6A, B indicates that, for the same pH value, both responses were maximised using the

maximum PG and NaCl concentrations; however, since the curvatures of the plots differ from one
another, it was possible to obtain a result with good desirability. Even though the composition of the
starting material is very important in the optimisation of these variables and a study is required in each
individual case, the information from this study, in particular, allows a proper definition of the limits of
each variable to obtain more certain information and reduce the time and number of experiments
required for process development.

410 The fact that the terms NaCl and PG were significant for R2LFE suggests that the interaction 411 between the mini-spheres and the target protein is mediated both by ion exchange and hydrophobic 412 interactions. However, in Eq. 11, the coefficient for the NaCl factor is larger than that for the PG factor, 413 which means that ion exchange forces are predominant over the hydrophobic ones. The variable NaCl is the most significant for both responses, as shown by Eqs. 11 and 12, the NaCl (B) terms have the larger 414 415 number and are positive for both responses. This makes it more difficult to set the optimum for this 416 variable to accomplish the objective, which is to maximise one response while the other one is targeted 417 at 1.59%. For this reason, for the optimisation step, the two responses were given different levels of 418 importance: R2LFE maximisation was highly important (+++++) while R3 minimisation was left at a 419 medium setting of importance (+++) (Fan, Duquette, Dumont, & Simpson, 2018). Given that R2LFE 420 presents B² as a significant term (Supplementary material Table S4) with a negative effect on the 421 response, the optimum for this term was not the highest but 0.33 in coded factors.

Regarding the role of pH in the elution, although this variable is not significant for R2LFE, the interaction between the pH and the PG was significant for R3LFE. As the term in Eq. 12 is positive, if this were the only response considered and the objective was to minimise it (because the target was low), one of the two factors (A or C) would need to have a negative coded number. Nonetheless, because of the greater importance established for R2LFE, this information is not seen in the optimum reached.

427

428 3.2.4. Purification of lactoferrin from cheese whey

429 The predicted optimums obtained from the RSM for the adsorption and the elution were used in a process to verify the correspondence between the predicted and the actual values. The differences 430 431 between the predicted value and the actual responses were as follows: 1.49% for Adsorption R1LFA 432 (78.00% and 76.51%, respectively), 4.49% for Elution R2LFE (84.98% and 89.47%, respectively), and 433 0.46% for Elution R3LFE (2.97% and 2.51%, respectively). These results show that there was no 434 significant difference between the actual and the predicted values (p > 0.05). The complete purification 435 process showed a purification factor of 27.52 ± 0.21 and a yield of 67.99 ± 1.12 %. Fig. 7 shows the SDS-436 PAGE of the process. A 70 % purity degree was estimated for LF by gel densitometry, which was similar 437 to the commercial food-grade product (lane 1). In comparison with other ion-exchange matrices developed, the results obtained for the mini-438 spheres were similar to previous results obtained from different methods, but in this case no pre-439 440 treatment was necessary and the recovery of the matrix after each purification step was easily done 441 with a sieve. For instance, other authors used carboxymethyl ion-exchange chromatography for LF 442 purification from acid cheese whey and obtained a yield of 88 mg of LF from 1 L of acid whey (Yoshida & 443 Ye, 1991). However, in their work, hydrophobic chromatography was performed before the ionexchange chromatography as whey pre-treatment. In the present case, the obtained amount of LF was 444 445 120 mg from 1 L of cheese whey and no pre-treatment was required. Fractionation of LF was also 446 studied using a microporous membrane containing immobilised sulfonic acid moieties (Chiu & Etzel, 447 1997). A 50 \pm 5% yield was obtained, which is also lower than that obtained with the mini-spheres here 448 presented. In addition, the purification using microporous membranes required a vacuum filtration 449 through a 0.7 μ m glass filter before the adsorption step.

450

451 3.3. Whey protein isolate recovery

452

453 *3.3.1. Adsorption studies*

The response, R4WPIA, was analysed and optimised according to the obtained model. The response followed Eq. 13, in terms of coded factors (A = amount of hydrated matrix (mg); B = adsorption time (h)).

457 R4WPIA = +46.53 + 20.83 * A + 2.54 * B (13)

458 Supplementary material Table S6 presents the ANOVA results for R4WPIA.

459 The optimum conditions for the adsorption were obtained by RSM numerical optimisation, to attain the maximum total protein adsorption (R4WPIA). The optimum amount of hydrated matrix was 460 1000 mg and the adsorption time was 0.5 h. The predicted value for R4WPIA was 64.82%. This optimum 461 can be analysed from Fig. 8, which clearly shows that, for total proteins to be maximised, the most 462 463 important factor to be taken into account is the utilisation of the maximum amount of matrix. If the amount of matrix used for the WPI recovery process is compared with the optimum amount for the LF 464 465 purification, the amount of matrix is only 10 times greater while the total number of whey proteins is by far more than 10 times the total amount of LF (cheese whey has 0.02–0.2 g L⁻¹ of LF and 6 g L⁻¹ of total 466 467 proteins). Even though a higher amount of matrix is needed to obtain higher adsorption rates, the 468 proper agitation of the system is not possible with a greater amount of matrix. Other authors working in 469 WPI recovery used similar amounts of resin to process an equivalent amount of whey (Gerberding & 470 Byers, 1998).

471

472 3.3.2. Elution studies

The response analysed followed Eq. 14, in terms of codified factors (A = elution buffer pH; B =
NaCl molar concentration; C = propylene glycol percentage) (Fig. 9).

475	R5WPIE = +60.19 – 3.25 * A + 27.76 * B + 1.44 * C – 0.047 * A * B – 1.71 * A * C + 0.99 * B * C –
476	$2.18 * A^2 - 25.46 * B^2 - 1.29 * C^2 \tag{14}$
477	Supplementary material Table S7 presents the ANOVA results for R5WPIE. The optimum
478	adsorption conditions were obtained by numerical optimisation of RSM, to attain the maximum total
479	protein elution. The optimum pH was 4.00, the NaCl concentration was 1.57 M , and the PG was 50.0%.
480	The predicted value for R5WPIE was 71.27%.
481	The fact that the term NaCl was significant for R5WPIE suggests that the interaction between
482	the mini-spheres and the target proteins is mainly by ion exchange. As expected, this model also
483	suggests that using higher pH for the eluent minimises the total proteins eluted. When analysing the PG
484	effect on the elution, we noted that this factor had a low effect on the response. However, if a
485	constraint were to be set to minimise this factor, the response would decrease its predicted value to
486	63.81%. If this process were scaled-up, an economic evaluation would have to be made to analyse which
487	option would result in a higher profit.
488	Further studies were made on the eluted fractions to determine if any tested condition resulted
489	in the purification or enrichment of a single whey protein. This analysis was done by HPLC, but none of
490	the conditions tested resulted in a single peak chromatogram (data not shown). All the fractions kept
491	the same peak profiles, where only differences in the total number of proteins were evident.
492	
493	3.3.3. Recovery of whey protein isolate from cheese whey
494	The predicted optimums obtained from the RSM for the adsorption and elution were used in a
495	process to verify the correlation between the prediction and the experimental values. The differences
496	between the predicted value and the actual responses were 2.11% for Adsorption R4WPIA (64.82% and

497 62.71%, respectively) and 5.44% for Elution R5WPIE (71.27% and 65.83%, respectively). These results

498 show that there was no significant difference between the actual and the predicted values (p > 0.05).

499	The con	nplete purification process showed a yield of 65.82 \pm 2.20%. Fig. 10 shows the SDS-PAGE of the
500	process	. The lactose concentration in the eluent was zero.
501		To establish the whole process sequence, the LF content and the total number of whey proteins
502	were ev	valuated. Interestingly, during the adsorption, 43.81% of the total LF was adsorbed to the matrix.
503	This info	ormation was vital in determining the correct sequence of processes for these matrices; thus, the
504	adsorpt	tion of LF was defined as the first step of the whole process.
505 506 507	3.4.	Sequence purification of lactoferrin and whey protein isolate
508		Due to the high loss of LF in the WPI adsorption step and the higher market value of this product
509	in comp	parison with WPI, the purification of LF was considered the first step in whey processing. The
510	optimu	m conditions obtained from each purification process were used in the sequence purification,
511	using th	ne pass-through of the LF adsorptive step as a starting material for WPI recovery. Table 3 shows
512	the resu	ults of the entire process, where the addition of the LF purification process prior to the WPI
513	purifica	tion did not significantly affect the yield of this second process. As can be estimated from this
514	table, a	yield of 62.31% was obtained for LF. Regarding WPI, 2.71 mg of whey protein was obtained per
515	ml proc	essed. It is worth mentioning that during LF adsorption, about 0.69 mg of the total protein
516	content	t was bound to the sulfanilic matrix, and this could explain the slight reduction in the yield
517	obtaine	ed for WPI, a reduced content in the initial total protein amount in the LF depleted cheese whey.
518	Lactose	concentration was determined for the eluents of the processes, with the absence of this
519	carbohy	ydrate found for both LF and WPI.
520		
521	4.	Conclusions

522

523	The present work provides a useful tool to infer the optimum conditions for the purification
524	process of LF from cheese whey. For this purpose, the matrix developed was applied to use this protein
525	as an ingredient in other formulations and allow the rest of the whey to continue with its usual
526	processing, such as WPI production. The depletion of LF from the cheese whey did not significantly
527	affect the yields of the WPI process, resulting in a higher profit of the total cheese whey processing. This
528	work also focuses on the addition of commercial value of natural polymers, such as chitosan, and its
529	potential use in industrial whey processing. In addition, the fact that the LF purification process has little
530	effect on the composition of the remaining whey, its usual industrial processing and other purification
531	strategies to produce WPI or other products can be considered. Furthermore, the experimental
532	procedure using RSM could be applied to other proteins from other sources using other types of
533	chromatographic supports, being especially interesting for multimodal matrices. The developed mini-
534	spheres allow the cheese whey to be processed without any previous conditioning, to have good
535	mechanic resistance, and to be easily recovered after adsorption/washing and elution steps.
536	
537	Acknowledgements
538	
539	This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica
540	de la República Argentina (PICT 2014-2340, PICT 2017-0845) and Universidad de Buenos Aires (UBACYT
541	20020170100023BA). DBH is a CONICET fellow. LMMA is a fellow of Instituto Antártico Argentino. NU,
542	MFB, JMLM, RJG, MVM, OC, and FJW are CONICET career researchers.
543	

- 544 References
- 545

546	Algarra, M., Bartolić, D., Radotić, K., Mutavdžić, D., Pino-González, M. S., Rodríguez-Castellón, E., et al.
547	(2019). P-doped carbon nano-powders for fingerprint imaging. <i>Talanta, 194,</i> 150–157.
548	Ansari, S. A., Satar, R., Kashif Zaidi, S., & Ahmad, A. (2014). Immobilization of Aspergillus oryzae β -
549	galactosidase on cellulose acetate-polymethylmethacrylate membrane and its application in
550	hydrolysis of lactose from milk and whey. International Scholarly Research Notices, 2014, Article
551	163987.
552	Bacenetti, J., Bava, L., Schievano, A., & Zucali, M. (2018). Whey protein concentrate (WPC) production:
553	Environmental impact assessment. Journal of Food Engineering, 224, 139–147.
554	Baieli, M., Urtasun, N., Miranda, M., Cascone, O, & Wolman, F.J. (2014a). Isolation of lactoferrin from
555	whey by dye-affinity chromatography with Yellow HE-4R attached to chitosan mini-spheres.
556	International Dairy Journal, 39, 53–59.
557	Baieli, M. F., Urtasun, N., Hirsch, D. B., Bracco, L. F., Miranda, M. V., Cascone, O., et al. (2017a). The use
558	of chitosan mini-spheres for high value protein purification from raw materials. In J. Phillips
559	(Ed.), Chitin: Properties, applications and research. New York, NY, USA: Nova Science Publishers
560	Inc.
561	Baieli, M. F., Urtasun, N., Martinez, M. J., Hirsch, D. B., Pilosof, A. M. R., Miranda, M. V., et al. (2017b).
562	Affinity chromatography matrices for depletion and purification of casein glycomacropeptide
563	from bovine whey. <i>Biotechnology Progress, 33</i> , 171–180.
564	Baieli, M. F., Urtasun, N., Miranda, M. V., Cascone, O., & Wolman, F. J. (2014b). Bovine lactoferrin
565	purification from whey using Yellow HE-4R as the chromatographic affinity ligand. Journal of
566	Separation Science, 37, 484–487.
567	Chiu, C. K., & Etzel, M. R. (1997). Fractionation of lactoperoxidase and lactoferrin from bovine whey
568	using a cation exchange membrane. Journal of Food Science, 62, 996–1000.

Journal Pre-proof	

569	Das, A., & Mishra, S. (2017). Removal of textile dye reactive green-19 using bacterial consortium:
570	Process optimization using response surface methodology and kinetics study. Journal of
571	Environmental Chemical Engineering, 5, 612–627.
572	Dizaji, N. F. (2016). Minor whey protein purification using ion-exchange column chromatography. Ph.D.
573	Thesis. Ontario, Canada: The University of Western Ontario.
574	Doultani, S., Turhan, K. N., & Etzel, M. R. (2003). Whey protein isolate and glycomacropeptide recovery
575	from whey using ion exchange chromatography. Journal of Food Science, 68, 1389–1395.
576	Etzel, M. R. (2004). Manufacture and use of dairy protein fractions. Journal of Nutrition, 134, 996S-
577	1002S.
578	Fan, H. Y., Duquette, D., Dumont, M. J., & Simpson, B. K. (2018). Salmon skin gelatin-corn zein composite
579	films produced via crosslinking with glutaraldehyde: Optimization using response surface
580	methodology and characterization. International Journal of Biological Macromolecules, 120,
581	263–273.
582	Ganju, S., & Gogate, P. R. (2017). A review on approaches for efficient recovery of whey proteins from
583	dairy industry effluents. Journal of Food Engineering, 215, 84–96.
584	Garcia-Montoya, I. A., Cendon, T. S., Arevalo-Gallegos, S., & Rascon-Cruz, Q. (2012). Lactoferrin a
585	multiple bioactive protein: an overview. <i>Biochimica et Biophysica Acta, 1820,</i> 226-236.
586	Gerberding, S. J., & Byers, C. H. (1998). Preparative ion-exchange chromatography of proteins from dairy
587	whey. Journal of Chromatography A, 808, 141–151.
588	González-Chávez, S. A., Arévalo-Gallegos, S., & Rascón-Cruz, Q. (2009). Lactoferrin: structure, function
589	and applications. International Journal of Antimicrobial Agents, 33, 301.e1–301e8.
	and applications. <i>International Journal of Antimicrobial Agents, 55</i> , 501.01–50108.
590	Hirsch, D. B., Baieli, M. F., Urtasun, N., Lazaro-Martinez, J. M., Glisoni, R. J., Miranda, M. V., et al.

593	Hirsch, D. B., Urtasun, N., Baieli, M. F., Miranda, M. V., Cascone, O., & Wolman, F. J. (2018b). Dye affinity
594	chromatography: a low-cost tool for protein purification. Advances in Chemistry Research. Nova
595	Science Publishers Inc.
596	Johansson, BL., Belew, M., Eriksson, S., Glad, G., Lind, O., Maloisel, JL., et al. (2003). Preparation and
597	characterization of prototypes for multi-modal separation aimed for capture of positively
598	charged biomolecules at high-salt conditions. Journal of Chromatography A, 1016, 35–49.
599	Kallberg, K., Johansson, H. O., & Bulow, L. (2012). Multimodal chromatography: an efficient tool in
600	downstream processing of proteins. <i>Biotechnology Journal, 7</i> , 1485–1495.
601	Kasaai, M. R., Arul, J., & Charlet, G. (2000). Intrinsic viscosity–molecular weight relationship for chitosan.
602	Journal of Polymer Science Part B: Polymer Physics, 38, 2591–2598.
603	Kilara, A., & Vaghela, M. N. (2018). Whey proteins. In Y. Yada (Ed.), Proteins in food processing (pp. 93-
604	126). Chichester, UK: Woodhead Publishing.
605	Kumar Gupta, V., Agarwal, S., Asif, M., Fakhri, A., & Sadeghi, N. (2017). Application of response surface
606	methodology to optimize the adsorption performance of a magnetic graphene oxide
607	nanocomposite adsorbent for removal of methadone from the environment. Journal of Colloid
608	and Interface Science, 497, 193–200.
609	Kumar, M. N. V. R. (2000). A review of chitin and chitosan applications. <i>Reactive & Functional Polymers,</i>
610	46, 1–27.
611	Kumari, S., Kumar Annamareddy, S. H., Abanti, S., & Kumar Rath, P. (2017). Physicochemical properties
612	and characterization of chitosan synthesized from fish scales, crab and shrimp shells.
613	International Journal of Biological Macromolecules, 104, 1697–1705.
614	Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. Journal of the

615 *Franklin Institute, 183,* 102–105.

616	Lázaro-Martínez, J. M., Rodríguez-Castellón, E., Vega, D., Monti, G. A., & Chattah, A. K. (2015). Solid-
617	state studies of the crystalline/amorphous character in linear poly(ethylenimine hydrochloride)
618	(PEI·HCI) polymers and their copper complexes. <i>Macromolecules, 48,</i> 1115–1125.
619	Legrand, D. (2016). Overview of lactoferrin as a natural immune modulator. Journal of Pediatrics, 173,
620	S10–S15.
621	Liang, Y., Wang, X., Wu, M., & Zhu, W. (2011). Simultaneous isolation of lactoferrin and lactoperoxidase
622	from bovine colostrum by SPEC 70 SLS cation exchange resin. International Journal of
623	Environmental Research and Public Health, 8, 3764–3776.
624	Manzoni, P. (2016). Clinical benefits of lactoferrin for infants and children. Journal of Pediatrics, 173,
625	S43–S52.
626	Mariotti, M. P., Yamanaka, H., Araujo, A. R., & Trevisan, H. C. (2008). Hydrolysis of whey lactose by
627	immobilized β -galactosidase. Brazilian Archives of Biology and Technology, 51, 1233–1240.
628	Martínez Álvarez, L. M., Lo Balbo, A., Mac Cormack, W. P., & Ruberto, L. A. M. (2015). Bioremediation of
629	a petroleum hydrocarbon-contaminated Antarctic soil: Optimization of a biostimulation strategy
630	using response-surface methodology (RSM). Cold Regions Science and Technology, 119, 61–67.
631	Mollea, C., Marmo, L., & Bosco, F. (2013). Valorisation of cheese whey, a by-product from the dairy
632	industry. In I. Muzzalupo (Ed.), Food industry. London, UK: IntechOpen.
633	Nicolás, P., Ferreira, M., & Lassalle, V. (2018). A review of magnetic separation of whey proteins and
634	potential application to whey proteins recovery, isolation and utilization. Journal of Food
635	Engineering, 246, 7–15.
636	Nicolás, P., Ferreira, M. L., & Lassalle, V. (2019). Magnetic solid-phase extraction: A nanotechnological
637	strategy for cheese whey protein recovery. Journal of Food Engineering, 263, 380–387.

638	Pochet, S., Arnould, C., Debournoux, P., Flament, J., Rolet-Repecaud, O., & Beuvier, E. (2018). A simple
639	micro-batch ion-exchange resin extraction method coupled with reverse-phase HPLC (MBRE-
640	HPLC) to quantify lactoferrin in raw and heat-treated bovine milk. Food Chemistry, 259, 36–45.
641	Prado, H. J., & Matulewicz, M. C. (2014). Cationization of polysaccharides: A path to greener derivatives
642	with many industrial applications. European Polymer Journal, 52, 53–75.
643	Price, J. (2019). History of the development and application of whey protein products. In H. C. Deeth &
644	N. Bansal (Eds.), Whey proteins: From milk to medicines (pp. 51–95). Oxford, UK: Academic
645	Press.
646	Ravikumar, K., Krishnan, S., Ramalingam, S., & Balu, K. (2007). Optimization of process variables by the
647	application of response surface methodology for dye removal using a novel adsorbent. Dyes and
648	Pigments, 72, 66–74.
649	Roh, I. J., & Kwon, IC. (2002). Fabrication of a pure porous chitosan bead matrix. Journal of Biomaterials
650	Science, Polymer Edition, 13, 769–782.
651	Senra, T. D. A., Campana-Filho, S. P., & Desbrières, J. (2018). Surfactant-polysaccharide complexes based
652	on quaternized chitosan. Characterization and application to emulsion stability. European
653	Polymer Journal, 104, 128–135.
654	Shariatinia, Z., & Jalali, A. M. (2018). Chitosan-based hydrogels: Preparation, properties and applications.
655	International Journal of Biological Macromolecules, 115, 194–220.
656	Shojaeimehr, T., Rahimpour, F., Schwarze, M., Repke, J. U., Godini, H. R., & Wozny, G. (2018). Use of
657	RSM for the multivariate, simultaneous multiobjective optimization of the operating conditions
658	of aliphatic carboxylic acids ion-exclusion chromatography column: Quantitative study of
659	hydrodynamic, isotherm, and thermodynamic behavior. Journal of Chromatography B, 1083,
660	146–159.

661	Subramanian, A., & Hommerding, J. (2005). The use of confocal laser scanning microscopy to study the
662	transport of biomacromolecules in a macroporous support. Journal of Chromatography B, 818,
663	89–97.

- 664 Urtasun, N., Baieli, M. F., Hirsch, D. B., Martínez-Ceron, M. C., Cascone, O., & Wolman, F. J. (2017).
- 665 Lactoperoxidase purification from whey by using dye affinity chromatography. *Food and*666 *Bioproducts Processing*, *103*, 58–65.
- Urtasun, N., Baieli, M. F., Hirsch, D. B., Miranda, M. V., Cascone, O., & Wolman, F. J. (2018). Challenges in
- dairy whey protein purification. In N. E. Labrou, E. G. Chronopoulou & F. Atava (Eds.), *Handbook*
- 669 on protein purification: Industry challenges and technological developments. Hauppauge, NY,
- 670 USA: Nova Science Publishers Inc.
- Wakabayashi, H., Oda, H., Yamauchi, K., & Abe, F. (2014). Lactoferrin for prevention of common viral
 infections. *Journal of Infection and Chemotherapy*, *20*, 666–671.
- Wakabayashi, H., Yamauchi, K., & Takase, M. (2006). Lactoferrin research, technology and applications. *International Dairy Journal, 16*, 1241–1251.
- 675 Wu, X. L., & Zilm, K. W. (1993). Complete spectral editing in CPMAS NMR. Journal of Magnetic
- 676 *Resonance, Series A, 102, 205–213.*
- Yang, Y., & Geng, X. (2011). Mixed-mode chromatography and its applications to biopolymers. *Journal of Chromatography A, 1218*, 8813–8825.
- 479 Yang, Y., Wang, Y., Niu, R., Lu, J., Zhu, X., & Wang, Y. (2016). Preparation and characterization of chitosan
- 680 microparticles for immunoaffinity extraction and determination of enrofloxacin. *International*
- 681 *Journal of Biological Macromolecules, 93, 783–788.*
- 682 Yoshida, S. (1989). Preparation of lactoferrin by hydrophobic interaction chromatography from milk acid
- 683 whey. *Journal of Dairy Science*, *72*, 1446–1450.

- 684 Yoshida, S., & Ye, X. (1991). Isolation of lactoperoxidase and lactoferrins from bovine milk acid whey by
- 685 carboxymethyl cation exchange chromatography. Journal of Dairy Science, 74, 1439–1444.
- 686 Zhang, K., & Liu, X. (2016). Mixed-mode chromatography in pharmaceutical and biopharmaceutical
- 687 applications. Journal of Pharmaceutical and Biomedical Analysis, 128, 73-88.
- Zhao, G., Dong, X. Y., & Sun, Y. (2009). Ligands for mixed-mode protein chromatography: Principles, 688
- 689 characteristics and design. Journal of Biotechnology, 144, 3–11.
- 690

-11.

Figure legends

Fig. 1. Scheme of synthesis reactions for mini-spheres.

Fig. 2. ¹³C CP-MAS spectra for chitosan-minispheres (A), crosslinked chitosanminispheres (B) and GTMA-modified chitosan-minispheres (C). The numbers above spectra C correspond to the numbers assigned for the different carbon atoms shown to the right.

Fig. 3. ζ potential at different pH values of disrupted (\blacksquare) chitosan mini-spheres, (\bigcirc) chitosan mini-spheres with GTMA and (\blacktriangle) chitosan mini-spheres with sulfanilic acid

Fig. 4. Maximum adsorption capacity of sulfanilic modified mini-spheres for pure LF at different pH values.

Fig. 5. LF adsorption (%) as function of the matrix amount (mg) and whey pH, keeping the time of adsorption constant at 4 h.

Fig. 6. Elution (%) of (A) LF and (B) total proteins as function of the NaCl concentration (M) and PG concentration (%), keeping the elution buffer pH constant at the determined optimum, pH 7.53 and (C) desirability of the optimisation by maximising LF elution while the total proteins eluted were settled at a target of 1.59%.

Fig. 7. SDS-PAGE (12%) of the LF purification process: lane 1, commercial LF 0.5 mg mL⁻¹; lane 2, molecular mass marker; lane 3, whey 4×; lane 4, pass-through 4×; lane 5, desalted eluate 4×.

Fig. 8. Total whey protein adsorption (%) as function of the matrix amount (mg) and time of adsorption (h).

Fig. 9. Total whey proteins eluted (%) as function of the NaCl concentration (M) and elution buffer pH, keeping the PG concentration constant at the determined optimum of 50%.

Fig. 10. SDS-PAGE (12%) of the WPI recovery: lane 1, molecular mass marker; lane 2, desalted eluate; lane 3, pass-through; lane 4, whey.

Table 1

Factor codification for the optimisation of the LF purification process.

Factor	Low level (-1)	Medium level (0)	High level (+1)		
Adsorption					
Hydrated matrix amount (A)	25 mg	62.5 mg	100 mg		
Adsorption time (B)	0.5 h	2.25 h	4 h		
рН (С)	6.0	7.5	9.0		
Elution					
рН (А)	3.0	6.0	9.0		
NaCl (B)	0.0 м	1.0 м	2.0 м		
Propylene glycol (C)	0.0%	25.0%	50.0%		

Table 2

Factor codification for the optimisation of the WPI recovery process.

Factor	Low level (-1)	Medium level (0)	High level (+1)			
Adsorption						
Hydrated matrix amount (A)	100 mg	550 mg	1000 mg			
Adsorption time (B)	0.5 h	2.25 h	4 h			
Elution						
рН (А)	4.0	5.5	7.0			
NaCl (B)	0.0 M	1.0 м	2.0 м			
Propylene glycol (C)	0.0%	25.0%	50.0%			

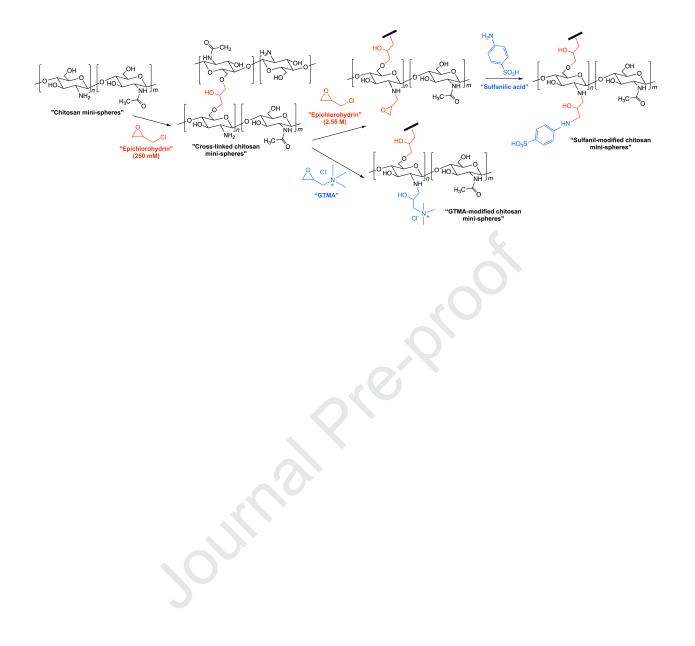
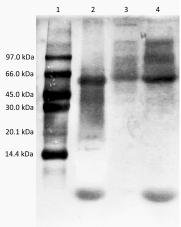
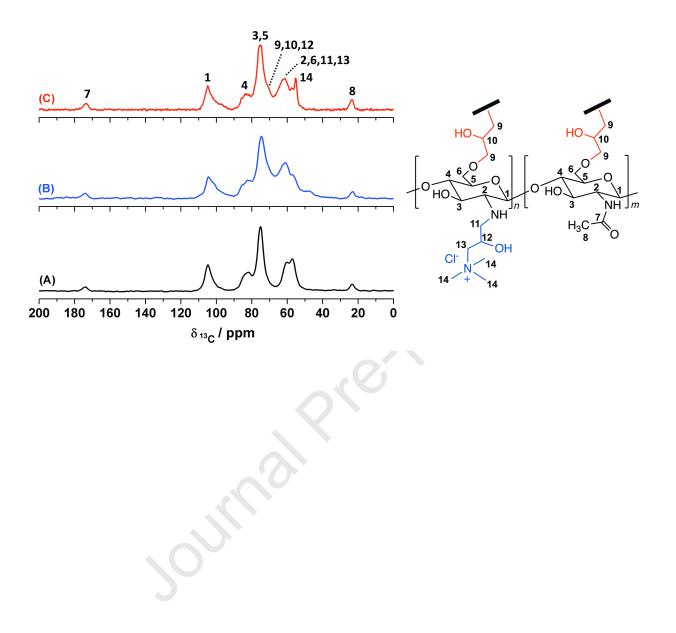
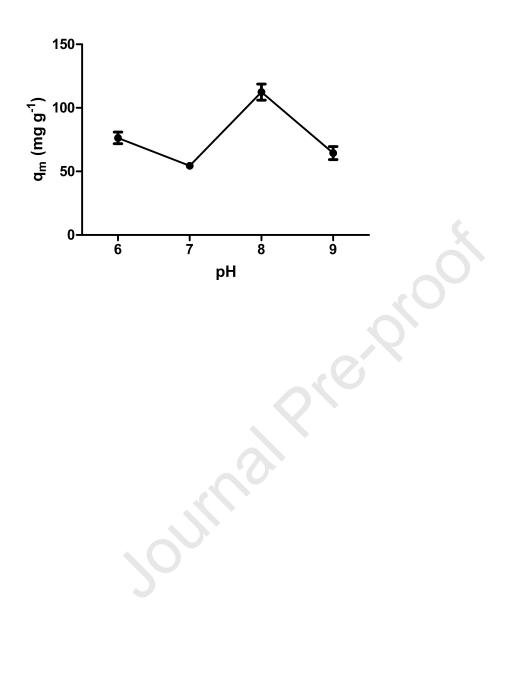

5.5 0.0% 25.0%

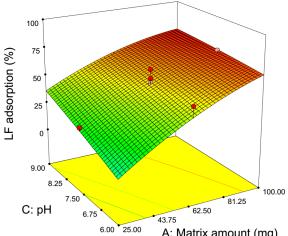
Table 3


Sequence purification process results.

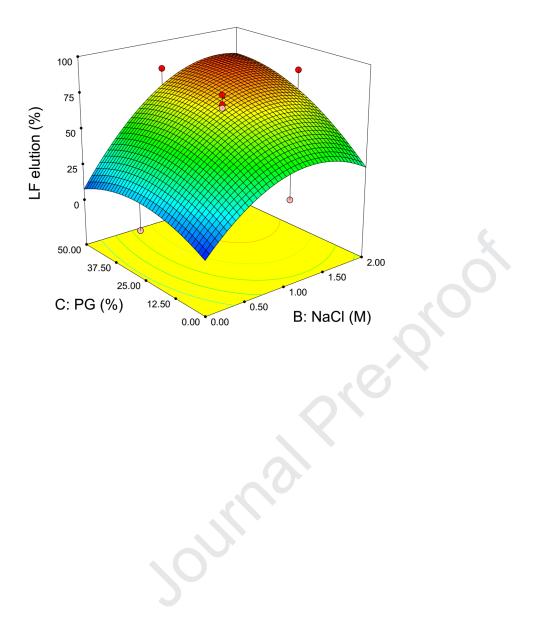
Step	Initial total protein (mg mL ⁻¹)	Initial LF (mg mL ⁻¹)	Adsorption (%)	Elution (%)
LF purification step	7.29 ± 0.52	0.14 ± 0.01	75.35 ± 5.79	82.73 ± 1.05
WPI recovery step	5.97 ± 0.09	-	52.09 ± 1.34	87.30 ± 6.13

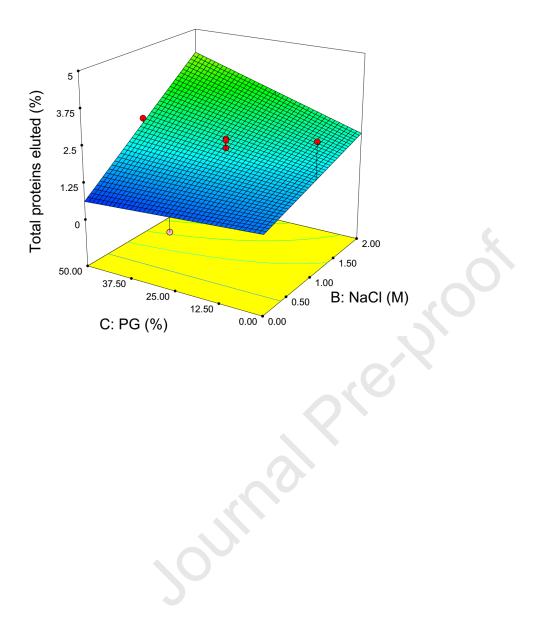

Journal Pre-proof

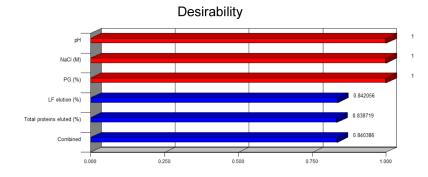

Journal Pre-proof



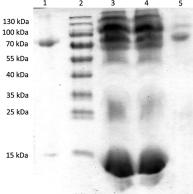
Journal Pre-proof



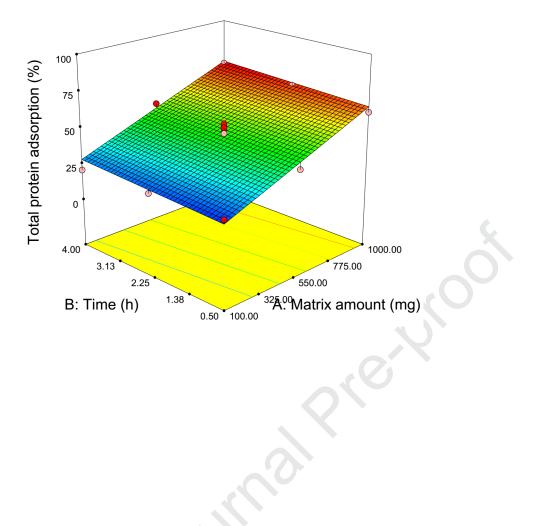


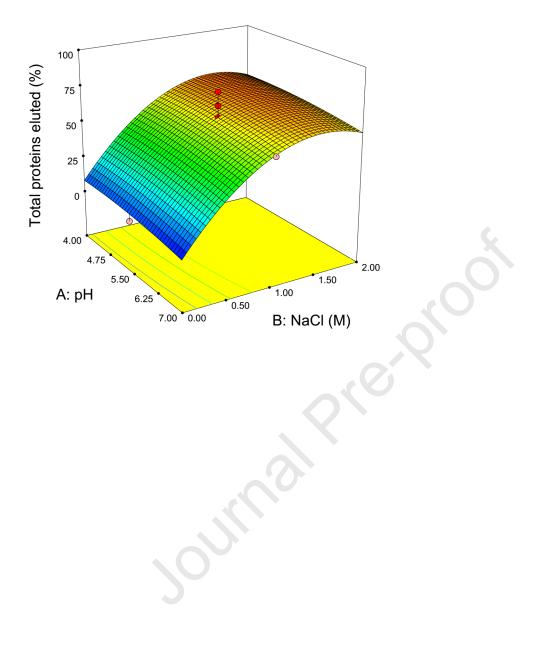


a.s. A: Matrix amount (mg)



Journal Pre-proof




Journal Prevention

Journal Pre-proof

Journal Pre-proof

Author contributions

DBH, conceptualisation, design, experimentation, writing; FJW, conceptualisation, design, manuscript review; LMMA, statistical analysis; MFB, NU, data analysis and validation. JMLM, RJG, experimentation; MVM, OC, manuscript review.

Journal Pre-proof