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Abstract: The well-known Heisenberg–Robertson uncertainty relation for a pair of noncommuting
observables, is expressed in terms of the product of variances and the commutator among the
operators, computed for the quantum state of a system. Different modified commutation relations
have been considered in the last years with the purpose of taking into account the effect of quantum
gravity. Indeed it can be seen that letting [X, P] = ih̄(1 + βP2) implies the existence of a minimal
length proportional to

√
β. The Bialynicki-Birula–Mycielski entropic uncertainty relation in terms of

Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a
strictly positive deformation parameter β. Generalized entropies can be implemented. Indeed, results
for the sum of position and (auxiliary) momentum Rényi entropies with conjugated indices have been
provided recently for the ground and first excited state. We present numerical findings for conjugated
pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D,
taking into account the position distribution for the wavefunction and the actual momentum.
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1. Introduction

One of the pillars in the building of quantum physics is the uncertainty principle, which has
been formulated by Heisenberg [1] and originally given in terms of the product of variances of
position and momentum observables as quantifiers of the quantum particles’ spreading. Recently,
nontrivial relations have been obtained for the sum of variances [2]. Besides, it has been proven
that uncertainty relations can be formulated as well in terms of Shannon and Rényi information
entropies (see, for instance, [3–6] and references therein). The possible influence of gravity in
uncertainty relations has been recently proposed [7–10], and a modification to Heisenberg inequality
known as generalized uncertainty principle (GUP) has been analyzed. The modification of the
position–momentum uncertainty relation, which is carried out through a deformation of the typical
commutation relation between operators, is linked to the existence of a minimal observable length.
It is interesting to quote that an experimental procedure to detect these possible modifications has
been proposed [11], however it is not yet possible to achieve the required precision.

We consider here the harmonic oscillator and study the deformed uncertainty relations appealing
to Rényi entropies. In Refs. [12,13], the wavefunctions for some values of the principal quantum
number have been given in momentum space, and in position space. However, differently to the
standard quantum mechanics, the presence of gravity induces that position and momentum space
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wavefunctions are not related via a Fourier transform, but it is necessary to consider an auxiliary
transformation [14]. We present an entropic analysis in this case, and show a family of inequalities
satisfied by Rényi entropies.

2. Results

2.1. Quantum Oscillator Wavefunctions with a Minimal Length

The harmonic oscillator (HO) is one of the most relevant physical systems, and it is one of the
few quantum systems for which the spectrum and corresponding wavefunctions are exactly known.
In general, the Hamiltonian of the 1D HO is given by H = P2/(2m) + (mω2/2)X2, where X and P are
such that their commutator gives the c-number ih̄.

In the context of GUP, a deformation of the standard commutation relation is assumed. Here we
assume the form [x, k] = ih̄(1 + βk2), with β being a positive parameter, which imposes a minimal
value for the variance in position, ∆Xmin = h̄

√
β, of the order of Planck’s length. We mention that

more general deformations (in arbitrary dimensions) have been proposed [7], however this will be
focus of further study to be considered elsewhere.

Under these assumptions, the Schrödinger equation in the (auxiliary) momentum space has been

solved by Pedram [13]. Letting k =
tan(
√

β q)√
β

, the wavefunctions are given by

φn(q) = Nn C(λ)
n

(
sin
(√

β q
))

cosλ
(√

β q
)

, q ∈
(
− π

2
√

β
,

π

2
√

β

)
, (1)

where Nn is the normalization constant, given by Nn =

(√
β Γ(λ)2Γ(n+1)(n+λ)

π21−2λΓ(n+2λ)

) 1
2

for n = 0, 1, 2, . . .;

the symbol C(λ)
n (·) denotes the Gegenbauer polynomials, with λ = 1

2

(
1 +

√
1 + 4

η2

)
and η = mh̄ωβ;

and the energy levels are given by En = h̄ω
(

n + 1
2

)(√
1 + η2

4 + η
2

)
+ 1

2 h̄ωn2η. Note that in the

limit β → 0+, or equivalently λ → +∞, the standard case is recovered as it is shown in [13]. From
Equation (1) one can compute the position wavefunction through the Fourier transform as

ψn(x) =
1√
2π

∫ π
2
√

β

− π
2
√

β

eiqxφn(q) dq. (2)

In Ref. [13] this has been computed exactly for n = 0 and n = 1.
As claimed by Rastegin [14], the physically legitimate wavefunction in momentum space, which

must depend on k, is not given by Equation (1), but can be obtained through the following condition:

|φ̃n(k)|2 dk = |φn(q)|2 dq. (3)

Therefore

|φ̃n(k)|2 =
|φn(q)|2
1 + β k2 , (4)

with q(k) =
arctan(

√
β k)√

β
. Finally

φ̃n(k) = Nn C(λ)
n

( √
β k√

1 + β k2

)
(1 + βk2)−

λ+1
2 . (5)



Proceedings 2019, 12, 57 3 of 4

2.2. Behavior of the Sum of Rényi Entropies

Shannon entropy in momentum space was analytically calculated by Pedram [13] for the ground
state and for the first excited state. Here the Rényi entropy Rα using both representations in momentum
space, is numerically studied for the ground state and the first five excited ones. Rényi entropies are
given by

Rα[φn] =
1

1− α
ln
∫ π

2
√

β

− π
2
√

β

|φn(q)|2α dq, and Rα[φ̃n] =
1

1− α
ln
∫ ∞

−∞
|φ̃n(k)|2α dk, (6)

for the representations of auxiliary and actual momenta respectively, where α > 0 and α 6= 1.
Note that, as the wavefunctions ψ(x) and φ(q) are connected through Fourier transformation,

they necessarily satisfy the Maassen–Uffink uncertainty relation [4]

Rα[ψ] + Rα∗ [φ] ≥ ln
(

πα
1

2(α−1) α∗
1

2(α∗−1)

)
(7)

for conjugated indices, with 1/α + 1/α∗ = 2. Although this relation has been improved by considering
the probability density governing the measurement process [14], to the best of our knowledge the
correction to this inequality taking into account the transformation (4) has not been developed until
now, except for the Shannon case [14] that corresponds to the limit α = α∗ = 1. Notice that, from
Equations (4) and (6), it follows trivially that Rα[φ̃n] > Rα[φn] whenever φ is not the Dirac’s delta.

As an example we show in Table 1 the behavior of the Rényi entropies corresponding to the
ground state and first five excited ones in both representations of momentum space, for α = 2, and for
different values of the deformation parameter β.

Table 1. Numerical computation of Rényi entropy R2, in auxiliary (left) and actual (right) momentum
space, for the ground and first 5 excited states of the 1D harmonic system with minimal length.

R2[φn] β = 0.1 β = 0.5 β = 1 R2[φ̃n] β = 0.1 β = 0.5 β = 1

n = 0 0.876 0.723 0.565 n = 0 0.899 0.808 0.690
n = 1 1.119 0.859 0.640 n = 1 1.229 1.227 1.153
n = 2 1.242 0.916 0.669 n = 2 1.432 1.424 1.285
n = 3 1.322 0.949 0.685 n = 3 1.582 1.533 1.341
n = 4 1.380 0.971 0.695 n = 4 1.700 1.599 1.370
n = 5 1.424 0.987 0.701 n = 5 1.798 1.642 1.388

In Table 2 we show some particular values of the position-momentum Rényi entropies’ sum for
different values of the parameter β, various quantum states of the harmonic system with minimal
length, and fixed α = 2

3 , then α∗ = 2. Note that, as expected, all values are bigger than the lower bound

in (7), given by ln
(

3
√

3 π
2

)
' 2.100 for these particular values of the entropic parameters α and α∗.

Table 2. Numerical computation of Rényi entropy in position space (left) and sum of
position–momentum entropies (right), for the ground and first 5 excited states of the 1D harmonic
system with minimal length.

R2[ψn] β = 0.1 β = 0.5 β = 1 R 2
3
[ψn] + R2[φ̃n] β = 0.1 β = 0.5 β = 1

n = 0 0.974 1.167 1.356 n = 0 2.123 2.205 2.290
n = 1 1.276 1.506 1.717 n = 1 2.723 2.939 3.106
n = 2 1.426 1.623 1.819 n = 2 3.084 3.307 3.417
n = 3 1.517 1.668 1.855 n = 3 3.346 3.526 3.585
n = 4 1.576 1.684 1.868 n = 4 3.552 3.673 3.693
n = 5 1.615 1.688 1.872 n = 5 3.719 3.776 3.770
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3. Discussion

In these proceedings we show a numerical analysis of informational measures such as Rényi
entropies and their sum, in the case of the 1-dimensional quantum harmonic oscillator wavefunctions
assuming for the position and momentum operators a deformed commutation relation, characterized
by a parameter β. A nonvanishing deformation parameter implies the existence of a minimal length,
which is proposed to be a characteristic of quantum gravity theory. Further findings for arbitrary pairs
of entropic indices below the conjugacy curve, could also be obtained, and will be presented elsewhere
together with a comparison with known lower bounds for the entropies’ sum. Future work includes
consideration of other physical systems and/or a more general deformed commutator between position
and momentum observables (in D dimensions), focusing on those states that minimize the generalized
uncertainty relations.
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