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Abstract

Circulant contraction minors play a key role for characterizing ideal circular matrices in terms of minimally
non ideal structures. In this article we prove necessary and sufficient conditions for a circular matrix A to
have circulant contraction minors in terms of circuits in a digraph associated with A. In the particular case
when A itself is a circulant matrix, our result provides an alternative characterization to the one previously
known from the literature.
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1 Introduction

Given a set E = {1, 2, . . . , n} and a family F of subsets of E, a packing or covering

of F is defined as a set S ⊂ E that intersects each member of F at most or at least

in one element, respectively. If a weight is associated with each element of E, then

the set packing problem (SPP) asks for finding a packing of maximum weight, while

the set covering problem (SCP) asks for a minimum-weight covering. A wide range

of problems in combinatorics and graph theory can be formulated as set packing or

set covering problems.
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Both problems are known to be NP-hard in general. A common approach for

their study consists in formulating them as integer linear programs. Let M(F) be

a 0, 1-matrix whose rows are the incidence vectors of the members of F , and let

w ∈ Z
n
+. Then the problems can be formulated as:

(SPP) max{wTx : M(F)x ≤ 1, x ∈ {0, 1}n}
(SCP) min{wTx : M(F)x ≥ 1, x ∈ {0, 1}n},

where 1 ∈ Z
m is the vector whose entries are all equal to one.

Despite their seeming similarity, it has been pointed out that these two problems

have strong structural differences. The set packing problem has been shown to be

equivalent to the maximum-weight stable set problem (see, e.g., Section 2.4.1 of

[4]) and this equivalence can be exploited for obtaining characterizations, strength-

ening formulations, and devising solution algorithms. In contrast, the set covering

problem does not seem to have an equivalent representation as a graph optimiza-

tion problem, even if coverings play an important role in the formulation of several

important graph problems such as connectivity, coloring, and dominating sets, to

cite some examples. As a consequence, the set covering problem has been far less

studied than the set packing problem.

One important question is to characterize such families F for which the integer

programing formulations SPP and SCP are perfect formulations, i.e., the linear sys-

tems M(F)x ≤ 1, 0 ≤ x ≤ 1 and M(F)x ≥ 1, 0 ≤ x ≤ 1 provide complete linear

descriptions of the convex hulls of all feasible solutions of the corresponding prob-

lems. This question was solved in [3] for the case of set packing, using results from

the (weak) perfect graph theorem: the formulation SPP is a perfect formulation

if and only if F is the family of maximal cliques of a perfect graph. Accordingly,

maximal clique-vertex incidence matrices of perfect graphs are termed as perfect

matrices. On the other hand, 0, 1-matrices M(F) for which SCP is a perfect for-

mulation for the set covering problem are known as ideal matrices, but they have

not yet been completely characterized.

Perfectness is a hereditary graph property, which means that any vertex induced

subgraph of a perfect graph is itself perfect, and the corresponding holds for their

clique-vertex incidence matrices. Similarly, idealness can be shown to be a hered-

itary matrix property, which is transferred to minors of the matrix. In the first

case, this observation has led to the characterization of perfect graphs in terms of

minimally non perfect subgraphs. The corresponding characterization of minimally

non ideal matrices turned out to be much more difficult and is still an open task.

However, several results have been obtained for particular classes of matrices.

Cornuéjols and Novick [5] have characterized all ideal and minimally non ideal

circulant matrices. Circulant minors of a given circulant matrix play a fundamental

role in this characterization. This fact motivated the authors to study conditions

for such a minor to exist. They provided a sufficient condition in terms of the

existence of a simple directed circuit in a particular digraph associated with the

matrix. Later, Aguilera [1] extended this result, obtaining necessary and sufficient
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conditions in terms of the existence of a family of disjoint directed circuits in the

same auxiliary digraph .

Circular matrices generalize circulant matrices. Eisenbrand et al. [6] obtained

a perfect formulation for SPP when M(F) is a circular matrix.

The inequalities involved in this formulation are related to directed circuits in

another auxiliary digraph associated with the matrix. More recently, we have ob-

tained a perfect formulation for SCP [2]. Once again, directed circuits in a certain

digraph are related to the inequalities that appear in the linear description. Fur-

thermore, these directed circuits induce circulant minors of the circular matrix. As

a consequence, non-ideal circulant minors are the minimal forbidden structures for

idealness of a circular matrix.

In the same work, we also stated a necessary condition for a circular matrix

to have a circulant minor. In this paper we further develop this result. The main

result of this contribution is stated in Theorem 4.7, where we completely characterize

circulant minors of circular matrices in terms of directed circuits in its associated

digraph. When restricted to the subclass of circulant matrices, our result yields an

alternative characterization of circulant minors to the one provided in [1].

2 Notations and preliminary results

For n ∈ N, [n] will denote the additive group defined on the set {1, . . . , n}, with
integer addition modulo n. Given a, b ∈ [n], let b− a be the minimum non-negative

integer t such that a + t = b mod n. We denote by [a, b]n the circular interval

defined by the set {a + s : 0 ≤ s ≤ b − a}. Similarly, (a, b]n, [a, b)n, and (a, b)n
correspond to [a, b]n \ {a}, [a, b]n \ {b}, and [a, b]n \ {a, b}, respectively.

Unless otherwise stated, throughout this paper A denotes a {0, 1}-matrix of

order m × n. Moreover, we consider the columns (resp. rows) of A to be indexed

by [n] (resp. by [m]). Two matrices A and A′ are isomorphic, written as A ≈ A′, if
A′ can be obtained from A by a permutation of rows and columns.

In the context of this paper, a matrix A is called circular if, for every row i ∈ [m],

there are two distinct integer numbers �i, ui ∈ [n] such that the i-th row of A is the

incidence vector of the set [�i, ui]n. If, additionally, 1 ≤ �i < ui ≤ n holds for all

i ∈ [m], A is an interval matrix. Thus, interval matrices are a particular case of

circular matrices; it has been shown that they are ideal.

A row i of a circular matrix A is said to dominate a row j �= i of A if the set

[�j , uj ]n ⊆ [�i, ui]n. Moreover, a row is dominating if it dominates some other row.

In the following, we restrict our attention to matrices without dominating rows and

without zero rows or columns.
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The following is an example of a 6× 12-circular matrix.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 1

1 1 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

A square circular matrix of order n is called a circulant matrix. Observe that in

this case the sets [�i, ui]n must have the same cardinality, say k, for all i ∈ [n], with

k ≥ 2. Such a matrix will be denoted by Ck
n and w.l.o.g. we can assume that, for

every i ∈ [n], the i-th row of Ck
n is the incidence vector of the set [i, i+ k)n.

Given N ⊂ [n], the minor of A obtained by contraction of N , denoted by A/N ,

is the submatrix of A that results after removing all columns with indices in N and

all dominating rows. Moreover, the minor of A obtained by deletion of N , is the

submatrix of A that results after removing all columns with indices in N and all

rows having an entry equal to 1 in some column indexed by N . It is not hard to

see that every proper minor of a circular matrix obtained by deletion is an interval

matrix and then, it is ideal. As we are interested in non-ideal minors of circular

matrices, in this work we focus only on minors obtained by contraction, and refer

to them simply as minors. Moreover, a minor of a matrix A is called a circulant

minor if it is isomorphic to a circulant matrix.

Circulant minors of circulant matrices have an interesting combinatorial char-

acterization in terms of circuits in a particular digraph. Indeed, given a circulant

matrix Ck
n, the authors in [5] define a directed auxiliary graph G(Ck

n) with [n] as its

set of vertices and arcs of the form (i, i+ k) and (i, i+ k + 1) for every i ∈ [n], i.e.,

all arcs of length k and k + 1, respectively. They prove that if N ⊂ [n] induces a

simple circuit in G(Ck
n), then the matrix Ck

n/N is isomorphic to a circulant minor.

In a subsequent work, Aguilera [1] shows that Ck
n/N is isomorphic to a circulant

minor of Ck
n if and only if N induces a family of disjoint simple circuits in G(Ck

n),

each one having the same number of arcs of length k and the same number of arcs

of length k + 1.

Working on the set covering problem on circular matrices [2], we have found a

sufficient condition for a circular matrix to have a circulant minor, also expressed

in terms of circuits in the following digraph associated with the matrix:

Definition 2.1 [2] Given a circular matrix A, let F (A) be the directed graph whose

set of vertices is [n] and whose arcs are of the form (�i − 1, ui), for every i ∈ [m]

(called row arcs) and (j, j − 1), (j− 1, j) with j ∈ [n] (termed as reverse short arcs

and forward short arcs, respectively).

We say that a row arc (u, v) in F (A) jumps over a vertex j ∈ [n] if j ∈ (u, v]n.
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Moreover, the only forward (resp. reverse) short arc jumping over j is the arc

(j − 1, j) (resp. (j, j − 1)).

Given a row arc a = (u, v) of F (A) the length of a, denoted by l(a), equals to

v − u. If a is a short arc, then l(a) = 1, if it is a forward arc, and l(a) = −1, if it is

a reverse arc. The winding number p(Γ) of a directed circuit Γ in F (A) is defined

by

p(Γ) =

∑
a∈E(Γ)

l(a)

n
,

where E(Γ) denotes the set of arcs of Γ.

Any circuit Γ in F (A) induces a partition of the vertices of F (A) into the fol-

lowing three classes:

(i) circles ◦(Γ) := {j ∈ [n] : (j − 1, j) ∈ E(Γ)},
(ii) crosses ⊗(Γ) := {j ∈ [n] : (j, j − 1) ∈ E(Γ)}, and
(iii) bullets •(Γ) := [n] \ (◦(Γ) ∪ ⊗(Γ)).

Figure 1 shows the digraph F (A) for matrix A in (1). For illustration, a circuit

Γ := {2, 3, 4, 9, 12, 1, 8, 7, 6, 10, 11, 2}

is depicted in bold lines. It has five row arcs and winding number two. Moreover, it

induces the following partition of the vertices of F (A): ◦(Γ) = {1, 3, 4, 11}, ⊗(Γ) =

{7, 8} and •(Γ) = {2, 5, 6, 9, 10, 12}.
1

⊗
7

410

2

3

6

5

12

11

⊗
8

9

Fig. 1. Auxiliary digraph F (A) and a circuit Γ.

Observe that circle (resp. cross) vertices are the heads (resp. tails) of forward

(resp. reverse) short arcs of Γ. A bullet vertex is either a vertex outside Γ, or it

is the tail or the head of a row arc. We say that a bullet is an essential bullet if

it is reached by Γ. In Figure 1 all vertices in •(Γ) except for vertex 5 are essential

bullets.

In the following we denote by p the winding number of Γ and assume that the

circuit has s essential bullets {bj : j ∈ [s]}, with 1 ≤ b1 < b2 < · · · < bs ≤ n.

For j ∈ [s], let tj := min{t ≥ 1 : bj + t ∈ •(Γ)}. It can be verified that, if tj ≥ 2,

then [bj +1, bj + tj)n ⊂ ◦(Γ) or [bj +1, bj + tj)n ⊂ ⊗(Γ) (see [2] for further details).

Then, denoting by vj the vertex bj + tj −1, we define the block Bj := [bj , vj ]n which

can be a circle block, a cross block or a bullet block, depending on the vertex class

that bj + 1 belongs to.
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It is straightforward to see that the blocks {Bj : j ∈ [s]} define a partition of

the vertex set of Γ. Moreover, for each j ∈ [s], there exists one row arc leaving Bj

and another row arc entering Bj . Let B−
j ∈ Bj be the tail of the arc leaving Bj ,

while B+
j ∈ Bj denotes the head of the arc entering Bj . In particular, if Bj is a

cross block, B−
j = bj and B+

j = vj ; if Bj is a circle block, B−
j = vj and B+

j = bj ;

finally, if Bj is a bullet block, B−
j = B+

j = bj = vj .

In the circuit from the example in Figure 1, the essential bullets are b1 = 2, b2 =

6, b3 = 9, b4 = 10, and b5 = 12. The block B2 = [6, 8] is a cross block, B3 = [9, 9]

is a bullet block and B1 = [2, 4], B4 = [10, 11] and B5 = [12, 1] are circle blocks.

Observe that B+
1 = b1 = 2 while B+

2 = v2 = 8.

We gather some of the results in [2] in the following theorem:

Theorem 2.2 [2] Let A be a circular matrix and Γ be a circuit of F (A) with winding

number p and s essential bullets {bj : j ∈ [s]}, with 1 ≤ b1 < b2 < · · · < bs ≤ n.

Then, gcd(s, p) = 1 and the row arcs of Γ are (B−
i , B

+
i+p) with i ∈ [s], i.e., each row

arc of Γ jumps over p essential bullets.

In addition, if (u, v) is a row arc of F (A) that jumps over k essential bullets of

Γ, then k ∈ {p− 1, p, p+ 1}. Moreover, if k = p− 1 (resp. k = p+ 1) then u (resp.

v) is a vertex of Γ.

We say that a row arc in F (A) is a bad arc (with respect to Γ) if it jumps over

p−1 essential bullets of Γ. In Figure 1, the row arc (12, 5) is a bad arc with respect

to Γ since it jumps only over one essential bullet, namely vertex b1 = 2, while the

winding number of Γ is two. In [2] it is proved that if (u, v) is a bad arc of Γ then

u belongs to a circle block and v is either a circle or it is not reached by Γ.

The following theorem gives a sufficient condition for a circular matrix to have

a circulant minor:

Theorem 2.3 [2] Let A be a circular matrix. A circuit Γ in F (A) with s row

arcs, winding number p, and without bad arcs induces a circulant minor Cp
s . More

precisely, if B is the set of essential bullets of Γ and N = [n] \B then A/N ≈ Cp
s .

As an illustration of the previous theorem, we present the following example.

Example 2.4 Consider the circular matrix A given in (1). The sequence of vertices

(2, 3, 4, 9, 12, 5, 6, 10, 11, 2)

induces a circuit in F (A) without bad arcs, having five row arcs, and winding

number two. The set of its essential bullets is B = {2, 5, 9, 10, 12} and N = [12]\B.

It is easy to check that A/N ≈ C2
5 .

Clearly, from the theorem above and Theorem 2.2, simple directed circuits with-

out bad arcs in F (A) induce circulant minors Cp
s of A, with gcd(s, p) = 1. We will

see that, in order to obtain circulant minors Cp
s with gcd(s, p) ≥ 2, families of cir-

cuits in F (A) are needed. Let us introduce for this purpose some more notations

and definitions.
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Let Γ = {Γi : i ∈ [a]} be a family of a (vertex) disjoint circuits in F (A) and let

•(Γ) := ⋃
i∈[a] •(Γi). The set of essential bullets of Γ, ◦(Γ) and ⊗(Γ) are defined in

the same way. We say that a row arc in F (A) is a bad arc with respect to Γ, if it is

a bad arc with respect to Γi, for some i ∈ [a].

For i ∈ [a], let pi and si be the winding number and the number of row arcs of Γi,

respectively. In addition, let {bi� : � ∈ [si]} and {Bi
� = [bi�, v

i
�] : � ∈ [si]} denote the

set of essential bullets and the partition of vertices of Γi into blocks, respectively.

In the next section we show that every family of disjoint circuits in F (A) with

no bad arcs induces a circulant minor of A.

3 From circuits to circulant minors

Recall the following well-known result on digraphs that will be useful in the following

sections.

Remark 3.1 Let D be a digraph with vertex set [s] and arcs of the form (i, i+ p)

for all i ∈ [s], with 1 ≤ p ≤ n − 1. Let a = gcd(s, p). Then D is a collection of a

disjoint circuits, each one with s
a arcs and winding number p

a .

The next theorem proves that all circuits in a family of disjoint circuits of F (A)

have the same number of row arcs and the same winding number.

Theorem 3.2 Let Γ = {Γi : i ∈ [a]} be a family of a vertex disjoint circuits in

F (A), each one with si row arcs and winding number pi. If s =
a∑

i=1
si and p =

a∑
i=1

pi

then si =
s
a and pi =

p
a holds for all i ∈ [a]. Moreover, a = gcd(s, p), each row arc

of Γ jumps over p essential bullets, and no pair of row arcs in Γ jumps over the

same set of essential bullets.

Proof. Observe that Γ has s =
a∑

i=1
si disjoint row arcs.

Given i ∈ [a], by Theorem 2.2, a row arc of Γi jumps over pi essential bullets of

Γi and pj bullets of Γj , for all j ∈ [s], j �= i, since Γi and Γj are disjoint.

Then any arc of Γ jumps over p =
a∑

h=1

ph essential bullets of Γ.

Let {bi� : � ∈ [si]} be the set of essential bullets of Γi. From Theorem 2.2 we

have that every arc of Γ joins a vertex in the block Bi
� = [bi�, v

i
�]n with a vertex in

the block Bi
�+pi

= [bi�+pi
, vi�+pi

]n, for some � ∈ [si] and i ∈ [a].

Now assume the s essential bullets of Γ are relabeled in such a way that 1 ≤
b1 < b2 < · · · < bs ≤ n and let Bj be the block containing bj . Since every row arc

of Γ jumps over p essential bullets, we have that every row arc of Γ goes from block

Bj to block Bj+p, for some j ∈ [s] and thus, it jumps over the p essential bullets

{bj+1, . . . , bj+p}. Hence, no pair of row arcs jumps over the same set of essential

bullets.

Let D be the directed digraph obtained by shrinking every block in Γ into its

corresponding essential bullet, i.e, D has {bj : j ∈ [s]} as vertex set and arcs of the
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form (bi, bi+p) for every i ∈ [s].

From Remark 3.1 D consists of gcd(s, p) disjoint circuits, each one having s
a row

arcs and winding number p
a .

From the one-to-one correspondence between the row arcs of Γ and the arcs of

D, it follows that Γ is a collection of gcd(s, p) disjoint circuits, each one having s
a

row arcs and winding number equal to s
a . �

As a consequence, we obtain the following sufficient condition for a circular

matrix to have a circulant minor.

Theorem 3.3 Let A be a circular matrix and Γ = {Γi : i ∈ [a]} be a family of a

disjoint circuits in F (A) without bad arcs, each one having s̃ row arcs and winding

number p̃ . In addition, let B ⊂ [n] be the set of essential bullets of Γ, N := [n]\B,

s = as̃, and p = ap̃. Then A/N ≈ Cp
s .

Proof. As in the proof of Theorem 3.2, assume the vertices in B are relabeled in a

such a way that 1 ≤ b1 < b2 < · · · < bs ≤ n. Let A′ be the submatrix of A whose

rows are in correspondence with the row arcs in Γ and whose columns are indexed

by the vertices in B. It follows that A′ is a s × s-matrix. Moreover, since every

row arc of Γ jumps over p consecutive vertices in B and no pair of row arcs jumps

over the same set of vertices, each row of A′ is the incidence vector of a circular

interval of the form [i, i + p)s, with i ∈ [s], and no two rows of A′ are identical to

each other. Then, A′ is isomorphic to Cp
s . Finally, since Γ has no bad arcs, each

row of A not in correspondence with an arc of Γ has at least p entries equal to one,

i.e., it dominates some row from A′. Then, A′ = A/N . �

In the digraph F (A) depicted in Figure 1, consider the family Γ := {Γ1,Γ2}
containing the two circuits induced by the sequences of vertices (1, 8, 7, 6, 10, 11, 2, 1)

and (4, 9, 12, 5, 4), respectively. Each circuit has three row arcs and winding number

equal to one. Moreover, Γ has no bad arcs. It is easy check that the set of essential

bullets of Γ is B = {1, 4, 6, 9, 10, 12} and that A/N ≈ C2
6 .

4 From circulant minors to circuits

It is natural to ask whether the converse of Theorem 3.3 holds. In other words,

whether, given N ⊂ [n] such that A/N ≈ Cp
s , there is a collection Γ of disjoint

circuits in F (A) such that the set B = [n]−N corresponds to the essential bullets

of Γ. The following examples show that this is not the case in general.

Consider the matrix A given in (1) and let B = {2, 5, 7, 10, 12}. We have A/N ≈
C2
5 , where N = [12] \ B. However, F (A) contains no circuit for which vertex 7 is

an essential bullet, since no row arc in F (A) has vertex 7 as its head or tail.

As a second example, consider the set B = {2, 5, 8, 10, 12}. Again, we have

A/N ≈ C2
5 , with N = [12] \B. In this case, each vertex in B is reached by at least

one row arc in F (A). Now assume there is a family Γ of circuits for which B is

the set of essential bullets. Then the row arc (1, 8) must belong to E(Γ), as it is

the only row arc in F (A) reaching vertex 8. However, (1, 8) jumps over the three
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essential bullets {2, 5, 8}, contradicting Theorem 3.3.

In the following, let A be a circular matrix and N ⊂ [n] such that A/N ≈ Cp
s .

Moreover, let B = [n] \N = {b1, . . . , bs}, with 1 ≤ b1 < . . . < bs ≤ n.

As A/N ≈ Cp
s is a minor of A, for every j ∈ B there is at least one i ∈ [m]

for which [�i, ui]n ∩ B = {bj−p+1, . . . , bj}. Observe that this row is not necessarily

unique. Indeed, for A as given in (1) and B = {2, 5, 8, 10, 12}, both rows 1 and 2

intersect B in the same set {2, 5}.
For each j ∈ B, let R(j) := {i ∈ [m] : [�i, ui]n ∩ B = {bj−p+1, . . . , bj}}. Clearly,

any submatrix of A obtained by selecting one row in R(j) for every j ∈ B and the

columns in B is a minor isomorphic to Cp
s . We are interested in identifying, for

every j ∈ B, a particular index r(j) ∈ R(j).

Definition 4.1 For every j ∈ [s], let hj = min{ui − bj : i ∈ R(j)} and let r(j) be

the element of R(j) for which ur(j) = bj + hj .

We have the following property:

Lemma 4.2 If there is i ∈ [m] such that �i = bj−p + 1 for some j ∈ [s] then

r(j) = i.

Proof. Let i ∈ [m] be such that �i = bj−p+1 for some j ∈ [s]. Since |B∩[�i, ui]| ≥ p,

bj ∈ [�i, ui]n and for every k ∈ R(j) with k �= i, �k ∈ [�i + 1, bj−p+1]n. Since A has

no dominating rows, it follows that ui ∈ [bj , uk − 1]n for all k ∈ R(j). But then,

i ∈ R(j) and i = r(j). �

Observe that �r(j+p) ∈ [bj +1, bj+1]n. Since ur(j) ∈ [bj , bj+1 − 1]n, then �r(j+p) ∈
[bj + 1, ur(j)]n or �r(j+p) ∈ [ur(j) + 1, bj+1]n. Then, we define the following:

Definition 4.3 For every j ∈ [s], let b′j := �r(j+p) − 1, if �r(j+p) ∈ [bj + 1, ur(j)]n,

and b′j := ur(j), otherwise. Moreover, let B′ := {b′j : j ∈ [s]}.
It is clear that if bj = ur(j) holds for some j ∈ [s], then b′j = bj = ur(j). In

addition, if bj = �r(j+p) − 1 holds for some j ∈ [s], then b′j = bj = �r(j+p) − 1. The

next example shows that we may have b′j �= bj for some j ∈ [s].

Example 4.4 Consider again the circular matrix A defined in (1). Let B =

{2, 5, 8, 10, 12}, and N = [12] \ B. It can be verified that A/N ≈ C2
5 . Follow-

ing our notation above, b3 = 8 and the row r(3) is the third row of A, i.e., the row

corresponding to [5, 9]12. Moreover, observe that b3+p = b3+2 = 12 and the row

r(5) is the fifth row of A, i.e., the row that corresponds to [10, 12]12. Thus, we have

�r(3+2) − 1 = 10− 1 = 9 and ur(3) = 9. Then it holds that b′3 = 9. Finally, it can be

verified that b′j = bj holds for all j ∈ [5] \ {3}, i.e., B′ = {2, 5, 9, 10, 12}.
Observe that in the previous example, b′1 = ur(1) �= �r(1+p) − 1 = 4. However, in

the particular case when A is a circulant matrix, we have bj = b′j = �r(j+p) − 1 for

all j ∈ [s], as shown in the next remark.

Remark 4.5 If A = Ck
n, then for every j ∈ [s] there is a row i such that �i =

bj−p+1. But then, from Lemma 4.2, it follows that r(j) = i. Then, �r(j+p) = bj+1,

and thus b′j = bj .
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In Example 4.4, if we let N ′ := [12] \B′, then we have A/N ≈ A/N ′ ≈ C2
5 . We

show in the following that this is always the case.

Lemma 4.6 Let A be a circular matrix, N ⊂ [n] such that A/N ≈ Cp
s , and B =

[n]\N . If B′ is constructed as in Definition 4.3 and N ′ = [n]\B′, then A/N ′ ≈ Cp
s .

Proof. It is enough to prove that, for all i ∈ [m], [�i, ui]n∩B′ = {b′j : bj ∈ [�i, ui]n}.
Observe that, from Definition 4.3, it follows that b′j ∈ [bj , ur(j)]n and b′j /∈

[�r(j+p), ur(j+p)]n hold for each j ∈ [s].

Let j ∈ [s]. Assume there exists i ∈ [m] such that b′j ∈ [�i, ui]n, but bj /∈ [�i, ui]n.

Then we must have {bj+1, . . . , bj+p} ⊂ [�i, ui]n, but in this case �i ∈ (bj , b
′
j ]n and

from the definition of r(j + p) we have that b′j ∈ [�r(j+p), ur(j+p)]n, a contradiction.

Conversely, assume there exists i ∈ [m] such that bj ∈ [�i, ui]n, but b
′
j /∈ [�i, ui]n.

Since b′j ∈ [bj , ur(j)]n it holds that bj /∈ [ui + 1, ur(j)]n contradicting the definition

of r(j).

�

Finally, we present the main contribution of this paper.

Theorem 4.7 Let A be a circular matrix. Then, A has Cp
s as a circulant minor if

and only if there exists a family Γ = {Γi : i ∈ [a]} of a = gcd(s, p) disjoint circuits

in F (A) without bad arcs, each of them having s
a row arcs and winding number p

a .

Moreover, if B is the set of essential bullets of Γ and N = [n] \B then A/N ≈ Cp
s .

Proof. From Theorem 3.3, if Γ is a collection of a disjoint circuits in F (A), without

bad arcs, all of them having s
a row arcs and winding number p

a , B is the set of

essential bullets of Γ, and N = [n] \B, then A/N = Cp
s .

Now assume that A has a circulant minor Cp
s , i.e., there is a set N ⊂ [n] such

that A/N = Cp
s . Let B = [n] \N = {bj : j ∈ [s]}, with 1 ≤ b1 < . . . < bs ≤ n. By

Lemma 4.6 we may assume that bj = �r(j+p) − 1 or bj = ur(j) for all j ∈ [s].

Consider the set T of row arcs in F (A) defined by T = {(�r(j)−1, ur(j)) : j ∈ [s]}.
Let P = {j ∈ [s] : bj �= �r(j+p) − 1}. If j ∈ P , by construction bj = ur(j)

and there is a path of short forward arcs in F (A) that joins bj with �r(j+p) − 1.

Denote by Fj the set of short arcs of such a path. In addition, since bj = ur(j)
and bj+1 ∈ [�r(j+p), ur(j+p)]n, there is no arc in T that begins or ends in a vertex of

[bj + 1, �r(j+p) − 2]n.

Similarly, define Q = {j ∈ [s] : bj �= ur(j)}. For every j ∈ Q, it holds that

bj = �r(j+p) − 1 and there is a path of reverse short arcs in F (A) that goes from

ur(j) to �r(j+p) − 1 = bj . Let Rj be the set of short arcs of such a path. It is clear

that no arc in T begins or ends in a vertex of [�r(j+p), ur(j) − 1]n.

Finally, consider the subgraph Γ induced by T ∪ (∪j∈PFj) ∪ (∪j∈QRj) in F (A).

By construction, every vertex in Γ has in-degree and out-degree equal to one.

Then, Γ is a family of a′ disjoint circuits in F (A), each one of them having s′ row
arcs and winding number p′, with gcd(s′, p′) = 1. Moreover, the set of essential

bullets of Γ coincides with B. Since A/N ≈ Cp
s , each row arc in F (A) jumps over

at least p essential bullets, and Γ has no bad arcs. Furthermore, Γ has |B| = s row
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arcs and each row arc in Γ jumps over p essential bullets. Thus, s = a′s′, p = a′p′,
and a′ = gcd(s, p). �

Consider the matrix A given in (1) and let B = {2, 5, 9, 10, 12}. We have

T = {(11, 2), (12, 5), (4, 9), (6, 10), (9, 12)}, P = {2, 5, 10}, and Q = ∅.
Thus, we have to add only forward short arcs. They correspond to F1 =

{(2, 3), (3, 4)}, F2 = {(5, 6)}, and F4 = {(10, 11)}. It can be checked that

T ∪ F1 ∪ F2 ∪ F4 induces a circuit in F (A) whose essential bullets are the vertices

in B.

As a corollary of the previous theorem and Remark 4.5 we have an alternative

characterization of circulant minors of circulant matrices to the one given in [1].

Corollary 4.8 Let A = Ck
n and D(n, k) be the digraph with vertex set [n] and arcs

of the form (i, i+ k) and (i, i− 1) for all i ∈ [n]. Then, A has a circulant minor Cp
s

with gcd(s, p) = a if and only if there is a family Γ = {Γi : i ∈ [a]} of disjoint circuits

in D(n, k), each of them having s
a row arcs and winding number p

a . Moreover, if B

is the set of essential bullets of Γ and N = [n] \B, then Ck
n/N ≈ Cp

s .

Proof. Let Γ = {Γi : i ∈ [a]} be a family of disjoint circuits in D(n, k). Then, Γ is

a family of disjoint circuits in F (Ck
n) such that ◦(Γ) = ∅. Thus, Γ has no bad arcs

and from the previous theorem, Ck
n/N ≈ Cp

s .

Conversely, let N ⊂ [n] be such that Ck
n/N ≈ Cp

s . By Remark 4.5 we have P = ∅
in the proof of the previous theorem. Thus, the family Γ of disjoint circuits has no

forward short arcs and it is also a family of disjoint circuits in D(n, k). �

Recall that, given 1 ≤ k ≤ n− 1, the digraph G(Ck
n) defined in [5] has [n] as set

of vertices and, for each i ∈ [n], two arcs leaving i: one arc (i, i+k) having length k,

and one arc (i, i+ k+ 1) having length k+ 1. From the results in [1] we know that

there exist d disjoint circuits in G(Ck
n) if and only if there exist positive integers

n1, n2, n3 such that gcd(n1, n2, n3) = 1, n1n = n2k + n3(k + 1), d(n2 + n3) ≤ n− 2

and dn1 ≤ k − 1. Similarly, it can be proven that there exist a disjoint circuits in

D(n, k) if and only if there exist positive integers p, s and w, with gcd(s, p) = 1

such that pn = sk − w, a(s+ w) ≤ n− 2, and ap ≤ k − 1. Then, as a consequence

of the previous corollary and the results in [1], we prove the following relationship

between families of circuits in D(n, k) and in G(Ck
n).

Theorem 4.9 Let n, k such that 1 ≤ k ≤ n− 1.

(i) Let C = {Ci : i ∈ [d]} be a family of disjoint circuits in G(Ck
n), each one with

n2 arcs of length k, n3 arcs of length k+ 1, and winding number n1, such that

gcd(n1, n2, n3) = 1. Then there exists a family Γ = {Γi : i ∈ [a]} of disjoint

circuits in D(n, k), with a = gcd(k− dn1, n− d(n2 +n3)), each one with s row

arcs and winding number p, where s = n−d(n2+n3)
a and p = k−dn1

a .

(ii) Let Γ = {Γi : i ∈ [a]} be a family of disjoint circuits in D(n, k), each one with s

row arcs and winding number p, with gcd(s, p) = 1. Then, there exists a family

C = {Ci : i ∈ [d]} of disjoint circuits in G(Ck
n), with d = gcd(k − ap, n(ap +
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1)− as(k+1), a(sk−np)), each one with n2 arcs of length k, n3 arcs of length

k+1, and winding number n1, where n2 =
n(ap+1)−as(k+1)

d , n3 =
a(sk−np)

d , and

n1 =
k−ap
d .

Moreover, in both cases, the set of essential bullets of Γ coincides with the set

[n] \ V (C).
Proof. The existence of d disjoint circuits in G(Ck

n), with n1 arcs of length k, n2

arcs of length k + 1, and winding number n1 with gcd(n1, n2, n3) = 1 implies that

n1n = n2k+n3(k+1). It can be verified that (k−dn1)n = (n−d(n2+n3))k−dn3,

proving the first statement.

The existence of a disjoint circuits in D(n, k), with s row arcs, winding number

p, and with gcd(s, p) = 1 implies that pn = sk − w for some w ≥ 0. It can be

verified that

(k − ap)n = (n(ap+ 1)− as(k + 1))k + a(sk − np)(k + 1),

and the second statement follows.

The relationship between the essential bullets of Γ and the vertices of C follows

from the relationship between these families of circuits in G(Ck
n) and the corre-

sponding circulant minors, proved in [1], and from the relationship between these

minors and the families of circuits in D(n, k), proved in the previous corollary.

�

The computational complexity of the procedure derived from the characteriza-

tion described in Theorem 4.7 in order to decide if a circular matrix has a circulant

minor, as well as the decision problem associated with the idealness of circular

matrices are lines of future research.
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