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Graphical abstract 

 

 

Highlights 

 Plant lipase catalyzes hydrolysis and transesterification of waste cooking oil  

 The hydrolysis of triglycerides goes to monoglycerides and FFAs 

 Reaction takes place with water added and room temperature in short period of time 

 Hydrolysis, esterification and transesterification  achieved in tandem process 

 Complete conversion of FFAs to esters is achieved with short chain alcohols 

 

Abstract 
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The present contribution investigates the biocatalytic performance of the lipase obtained 

from the latex of the native plant known as Araujia sericifera (ASL) in the hydrolysis followed 

by the esterification of released free fatty acids and transesterification of glycerides of 

sunflower waste cooking oil WCO. A specific enzymatic activity of 719.05 µmol mg-1 h-1 (60 % 

conversion of triglycerides towards free fatty acids) was obtained in the hydrolysis of WCO 

with 0.05 % of biocatalyst (typically, 10.0 g WCO and 5.0 mg of enzyme) and 50 % w/w of 

water added in 30 min of reaction at 25 oC in homogeneous type of reaction system. The lipase 

has the capacity to catalyze the hydrolysis of the triglycerides mainly towards monoglycerides 

and diglycerides in a lesser extent. The released FFAs and the remaining glycerides reacted in 

tandem by addition of short chain alcohols immediately after the hydrolysis (without addition 

of more enzyme to the reaction media). Above 90 % conversion of the FFAs was obtained with 

methanol, ethanol, n-propanol and n-butanol at contents as low as 1:0.2 oil: alcohol molar 

ratio at 25 oC. The transesterification of the remaining monoglycerides (about 20 %) was also 

observed although no further reaction of the triglycerides was detected even under a great 

excess of alcohol.  

Keywords: waste cooking oil; biocatalysis; lipase; esterification; transesterification 

 

1. Introduction 

 

The production of biodiesel has gained special attention in the last few years due to the 

decrease in the petroleum reserves. Nowadays, biodiesel is obtained through the 

transesterification of refined vegetable oil (the refinement involves 70-80 % of production 

costs) with methanol using potassium hydroxide as catalyst. However, this method has several 

drawbacks such as the formation of soap and the generation of aqueous wastes [1].  

Other method for the generation of biodiesel is the transesterification catalyzed with acids 

even though high temperatures are required and secondary reactions occurs [2]. In the last 

years, several investigations on the enzymatic transesterification of oils of various sources 

catalyzed with lipases, demonstrated that this is an emerging technology that provides high 

yields towards biodiesel [3, 4]. In this context, the production of biodiesel catalyzed with lipase 

based biocatalysts provides certain advantages, such as a facile separation of product and 

glycerol, wastewater treatment requirement diminishes and the absence of side reactions [5]. 
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In addition, raw materials with high content of free fatty acids such as waste cooking oils are 

suitable to be converted in biodiesel without deactivation of the biocatalyst. In contrast with 

the homogenous alkaline catalyzed transesterification that deactivates due to saponification 

reaction, the use of lipases allows both the esterification of the free fatty acids along with the 

transesterification of triglycerides towards fatty acids methyl and ethyl esters at mild reaction 

conditions. Nevertheless, the use of biocatalysts in the biodiesel production provides a slower 

reaction rate than the alkaline catalyst and the enzyme might inactivate in the presence of 

alcohols [5].  

It is known that lipases (triacylglycerol hydrolases E.C. 3.1.1.3) are enzymes that catalyze the 

hydrolysis of triacylglycerols and act at an oil-water interfase. X-ray studies have revealed that 

the active site of lipases is composed by a serine, an aspartate or glutamate, and a histidine. 

Lipases catalyze the hydrolysis of triacylglycerols, they are active at the oil-water interface. 

Several studies indicate that the lipase would present an interfacial activation. This is because 

lipases can be in two different conformations, open (active) and closed (inactive). The open 

form of lipases is described as more stable than the closed one. Interfacial activation would 

occur when the lipase meets a hydrophobic surface where its conformation would go from 

closed to open, increasing the enzyme activity [6, 7].  

Lipases are one of the most widely used enzymes in biotechnology. The benefits offered by 

enzymes are high specificity, mild conditions and reduced waste. The plant using enzymatic 

reactions can be built and operated at much lower capital and energy cost. Enzyme-based 

processes tend to have lower waste treatment costs, with the addition that enzymes are 

biodegradable [8, 9]. In other hand, lipases catalyze many reactions, namely hydrolysis, 

esterification, transesterification, acidolysis, aminolysis, among others [10, 11]. 

According to their origin, lipases can be obtained from microbial, animal or plant sources. For 

industrial applications, microbial lipases are the most used; however, their cost is very high. 

Within this context, plant lipases could be considered as a cheaper alternative, since their 

production would be easier [12-14]. Nevertheless, there are some drawbacks that have to be 

taken into account. In general terms, lipases should be present in those tissues/organs rich in 

lipids, being the seed the most important one. In this regard, lipases play the physiological role 

of hydrolyzing the stored lipids in the seed that account to the energy needed for plant 

germination. Besides some exceptional cases such as the Ricinus communis seed [15], in which 

lipases are constitutively present, these enzymes are only expressed during that brief period 
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of germination before the seedling is able to do the photosynthesis in a very low content [16]. 

To circumvent this problem, the presence of lipases in other plant tissues should be 

investigated.  

It is well known that some plant belonging to certain families plant produce latex, this is a 

natural fluid, usually of milky aspect, that produce as defense against pathogens and herbivory 

[17]. Its composition may include terpenoids, polysaccharides, alkaloids and proteins such as 

enzymes. Among these enzymes proteases are frequently found [18]. Lipid hydrolases are less 

commonly present, or at least, less investigated [19]. In this sense, Carica papaya latex (CPL) 

represents the paradigmatic case. Lipase activity in this plant material is present in the 

insoluble fraction of the latex, consisting mainly of terpenoids (triterpenoids and 

polyisoprenoids), turning the isolation of the enzymes responsible of the hydrolytic activity 

extremely difficult. However, three lipolytic enzymes were identified by Carica papaya’s 

genome analysis and two of them were produced either as recombinant protein fully active 

(CpLip 1), or by transient expression (CpLip 2, the GDSL lipase previously identified and cloned) 

[20-23]. A phospholipase (CpPLD1), was partially purified and identified according to Abdelkafi 

et al. [20]. 

Since very few plant latex lipases were purified up to complete isolation (see the rationale for 

this below), their properties, application and mechanism of action were mainly determined 

by means of the biochemical properties of partial purified extracts. Plant latex lipases have in 

common optimal pH activities at neutral to alkaline pH values, preference for carboxylic acids 

of short and medium chain lengths, and sn-1,3 regioselectivity. These enzymes proved to be 

very interesting biocatalyst for diverse monoesters synthesis, hydrolysis of triglycerides, 

alcoholysis of sunflower oil, resolution of naproxen, lipids modification and asymmetric 

resolutions [21, 24-30]. Within this context, ASL has an optimal pH and temperature of 8.5 and 

60 °C respectively, and showed a marked preference towards the hydrolysis of butyrate esters 

[31]. When the esterification of oleic acid with primary alcohols of different chain length was 

tested, ASL demonstrated a remarkable preference for those having between five and eight 

carbons. Interestingly, ASL demonstrated not to be inhibited by alcohols of shorter chains as 

methanol or ethanol, but the ester yield obtained was much lower [32]. 

Plant latex lipases, as well as almost all hydrolytic enzymes, have the canonical esterase 

mechanism that uses the core Ser-His-Asp catalytic machinery, an oxyanion hole and a lid, 

conforming together the active site [33]. This active site can accommodate different 
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substrates according to their size and thus, contributing to the great variety of preferences of 

each enzyme. For this purpose, in addition to study the affinity of the enzymes towards 

different substrates, investigation about the effect of inhibitors is a very useful tool to map 

the active site. In contrast with other hydrolases, specific lipase inhibitors are scarce. 

Tetrahydrolipstatine is a specific inhibitor of pancreatic lipase and other lipases of the kind 

belonging to different organisms, and it has shown good inhibitory activity against plant latex 

lipases of Vasconcellea heilbornii and Carica papaya esterase, (more than 90% of inhibition in 

both cases), whereas for ASL the rate of inhibition was around 70% (unpublished data) [21, 

28, 34-37]. All these results would indicate that these lipases present in plant lattices could 

share some degree of structural resemblance. 

Within the context of exploitation of agroindustrial wastes, plant lipases have been explored 

for sustainable biodiesel production. Lipases obtained from plant seeds or seedlings are 

usually the first choice, due to an historical reason, and therefore many of them are 

commercially available [38]. Bioprospection of other plant sources of lipases is continuously 

ongoing [39-41]. In this emerging topic of investigation, lipases from plant latex are also being 

studied, consisting CPL the standard of this kind of enzymes [42-44]. Other latex producing 

plant species having lipase activity belong to the Vascocellea (a close relative of the Caricaeae 

family) [30], Moraceae [45], Euphorbiaceae [46], and Apocynaceae [31, 47], all showing very 

similar catalytic characteristics to CPL. Among the Apocynaceae family, the South American 

native climbing milkweed Araujia sericifera demonstrated lipase activity in its latex, 

whereupon which has been proved to be a promising biocatalyst for its use in the biorefinery 

industry [32, 48].  

The present contribution extends the use of the lipase of the Araujia sericifera in the 

biocatalytic hydrolysis and further conversion of waste cooking oil WCO into methyl, ethyl, n-

propyl and n-butyl fatty acid esters. The influence of the addition of water in the reaction 

media, the amount of lipase and the temperature in the hydrolytic performance of the lipase 

was investigated. Additionally, insights in the effect of the amount of methanol and ethanol 

in the esterification and transesterification of previously hydrolyzed WCO towards FAME and 

FAEE are provided.          

 

2. Experimental  
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2.1. Materials 

 

Waste sunflower oil (commercial brand Caracas) was collected from the restaurant of the 

National University of La Plata (Buenos Aires, Argentina). This oil was used continuously for a 

week in a commercial deep fryer with an aqueous layer at the bottom (for cleaning purposes). 

The lipase (called ASL from now on) is the insoluble fraction of the latex of fruits of Araujia 

sericifera (Apocynaceae) obtained according to the method described previously in the 

literature [31]. Unripe fruits of Araujia sericifera (synonym: Araujia hortorum) were harvested 

from wild plants grown in the surroundings of La Plata, Buenos Aires Province, Argentina, in 

mid-summer. Fruits were washed with tap water, drained and dried with absorbent paper. 

Latex was collected by removing the petiole of each fruit and by gathering the latex drops in 

a solution of EDTA and Na2SO3 5 mM to avoid the activity of peroxidases and to maintain a 

reducing medium, respectively. The whole process was performed in an ice bath. The resulting 

homogenate was centrifuged 30 min at 4 °C and 9600 × g in order to separate a water soluble 

fraction and an insoluble pellet. This last fraction, which contained the lipase activity, 

fractioned and liophylized. The resulting dry powder was grounded and finally stored at -20 

°C for further use.  

Potassium hydroxide (Carlo Erba, 85%), methanol (Cicarelli 99.5%), ethanol (Cicarelli 99.5%), 

n-propanol (Sigma Aldrich, 99.5%), n-butanol (Sigma Aldrich, 99%) and toluene (Dorwil, 

99.5%) were also used. 

 

2.2. Hydrolysis and transesterification of waste cooking oil biocatalyzed with ASL 

 

The influence of the addition of water (0 mL to 7.5 mL), the amount of ASL lipase (from 2.5 mg 

up to 7.5 mg), temperature (25 oC – 60 oC) and type of stirring (shaker shaking and magnetic 

stirring) in the hydrolysis of waste cooking oil (WCO) was investigated. Typically, the reactions 

were carried out with 10.0 g of WCO and a certain amount of water in closed flasks placed in 

a shaker bath at 200 rpm. When the mixture reached the desired temperature, a certain 

amount of ASL was added (time zero of reaction) and left reacting for up to 72 hours.  

Once the optimal conditions of the hydrolysis were ascertained, the esterification using 

different alcohols at several reaction times was carried out. Typically, the alcohols were added 

after 30 min of hydrolysis at R.T. Additionally an excess of alcohols at 1:3 and 1:6 WCO: alcohol 

Jo
ur

na
l P

re
-p

ro
of



7 
 

molar ratio were investigated. Methanol, ethanol, n-propanol and n-butanol have been 

assayed for 1, 3, 6, 8 and 10 hours of reaction. The hydrolysis and the reaction with the 

alcohols have been performed at 25 °C in a shaker at 200 rpm. 

 

2.3. Quantification of mono-, di- and triglycerides, glycerol and acidity index  

 

The collected samples were analyzed employing a GC-2010 Plus Tracera, equipped with a BID 

detector and a capillary column MEGA-Biodiesel 105 (15 m × 0.32 mm × 0.10 μm), with helium 

as carrier gas. The temperature program started at 50 °C, then going to 180°C with a ramp 

rate of 15 °C min−1, then to 230 °C at 7 °C min−1, and, in a last step, to 350 °C, at 30°C min−1. 

The injector and detector temperatures were maintained at 350 °C. The injection volume was 

1 μL [49]. The results allowed the determination of the conversion of glycerides, yield towards 

the esters and the moles percentage of monoglycerides, diglycerides and triglycerides. For 

each analysis, 100 mg of sample were taken, adding (S)-(-)-1,2,4-butanetriol and tricaprin as 

stock solution (80 µl and 100 µL, respectively), and 100 µL of N-methyl-N-(trimethylsilyl)tri 

fluoroacetamide (MSTFA). This mixture was shaken and finally diluted with 8 mL of n-heptane. 

The analysis through this technique possesses 5-10 % error.  

The acidity index of the oil phase after hydrolysis and esterification was determined using the 

European normative EN 14104 [50]. At a first step, the reaction mixture was centrifuged to 

separate the aqueous from the oil phase that contains the free fatty acids. Then, 1.00 g of the 

oil phase was diluted in 10.00 mL in a mixture of toluene and ethanol (1:1) previously 

neutralized. This was titrated with an ethanolic solution of KOH 0.100 N using phenolphthalein 

as indicator. This titration possesses 5% error as maximum. 

The acidity index AI was calculated using the equation (1):  

 

AI =
MKOH VKOH CKOH

msample
                 (1) 

 

Where, MKOH is the molecular weight of potassium hydroxide KOH; VKOH is the volume of the 

hydroxide used in the titration in L; CKOH is the molar concentration of KOH in mol L-1 and 

msample is the mass of sample used in the analysis in g. 
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The quantification of glycerol was performed according to the volumetric method reported by 

Pisarello et al. for the assessment of total and free glycerol after of the synthesis of biodiesel 

[51]. In brief, the glycerin was extracted first with HCl 5 w/v %, and then with water. Later, 

glycerin was oxidized to formic acid with sodium periodate (0.28 M) and the acid formed was 

titrated with sodium hydroxide (0.100 N). This technique is suitable for samples free from 

sugars and other organic compounds with more than two adjacent hydroxyl groups. The 

percentage of free glycerol was calculated with the equation (2): 

 

glycerol wt % =
 0.0921 VNaOH  NNaOH 

msample
 100                 (2) 

 

where, glycerol wt % is the mass of glycerol (in g) per 100 g of sample; VNaOH is the volume of 

sodium hydroxide in mL; NNaOH is the normality of NaOH solution and msample is the mass of 

sample used in the analysis in g . 

 

Additionally, the specific enzymatic activity of the biocatalyst was calculated as the ratio 

between the amount of free fatty acids FFA formed in the hydrolysis or the conversion of 

glycerides in the transesterification in µmol per weight (mg) of biocatalyst and reaction time 

(h).  

 

2.4. Infrared analysis  

 

WCO and the products of the reaction of hydrolysis and transesterification were followed 

through infrared spectroscopy with a liquid transmission cell with CaF2 windows and a fixed 

path length that allows a quantitative comparison of the spectra. Solutions containing 1% v/v 

in carbon tetrachloride (Dorwil, 99.9%) were prepared for IR analysis. Additionally, the 

aqueous phase was analyzed by placing a drop of the liquid between two CaF2 windows into 

a sealed cell. Spectra were collected in the 4000 to 400 cm-1 range (+/-2 cm-1 resolution) with 

a Bruker Vertex 70 equipment. The infrared analysis was recorded with 60 scans in the 

absorption mode. Deconvolution of the spectra obtained was performed by peak fitting of the 

signal by Lorentzian-shaped components on the non-deconvoluted spectra. The software used 
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with this purpose was a special peak fitting module of Origin 5.0. The positions and number 

of peaks were determined from the second derivative analysis of the spectra. 

 

2.5. Analysis of the results using nonlinear fitting 

 

The experimental data obtained in the hydrolysis of the WCO in terms of specific enzymatic 

activity as a function of the amount of ASL and water added to the reaction media was fitted 

using second order models according to the equation (3). 

 

𝑍 = 𝑧0 +  𝐴(𝐸 − 5)2 +  𝐵(𝑊 − 5)2                 (3) 

 

The equation represents the quadratic model where E is the amount of enzyme ASL in mg, W 

the amount of water added in mL and Z is the enzymatic activity given in µmol.mg-1.h-1.  The 

coefficients z0, A and B correspond to: 𝑧0 = 7.38,   𝐴 =  −1.0672, B = −1.0224  with and 

adjustment coefficient  𝑅2 = 𝑎𝑑𝑗𝑅2 =  0.99. 

On the other hand, for the case of specific enzymatic activity as a function of the amount of 

ASL and temperature, a second order model was also applied to approach the response 

surface of the experimental data according to the equation (4). 

 

𝑍 = 𝑧0 +  𝐴(𝐸 − 5)2 +  𝐵(𝑇 − 50)2       (4) 

 

Where, E is the amount of enzyme ASL in mg, T is the temperature in degrees Celsius and Z 

represents the enzymatic activity measured in µmol.mg-1.h-1. The coefficients z0, A and B 

correspond to: 𝑧0 = −49.89577,   𝐴 =  7.60808, B = 1.11801 with an adjustment 

coefficient 𝑎𝑑𝑗𝑅2 =  0.91. 

 

3. Results and Discussion 

 

3.1. Screening of the esterification of WCO catalyzed with ASL lipase: a proof of concept 

 

Currently, lipases are widely used in industry, such as ingredients in detergents and medicine 

formulations, in the biodiesel production by transesterification from edible and non-edible 
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oils, among others as discussed before. In fact, previous studies demonstrated that ASL lipase 

is active in the hydrolysis and esterification of cottonseed and soybean oils and the 

esterification of oleic acid [31, 32, 48]. Based on those studies, the catalytic activity of the ASL 

lipase on the direct transesterification of fresh and used sunflower oil was initially screened. 

In this context, the Table 1 shows the nature of the alcohol, WCO: alcohol molar ratio, 

temperature and time of reaction, specific enzymatic activity, yield towards the esters and 

conversion of free fatty acids (FFA) in the direct transesterification (see the data without pre-

treatment in Table 1) of fresh and WCO at 45 oC for 24 h of reaction. Additionally, the results 

obtained in the transesterification after hydrolysis of the WCO are also presented for 

comparison. These results will be further discussed in this investigation. 

The preliminary results of the esterification of sunflower oil before (fresh) and after being used 

in a cooking process without previous treatment demonstrated the capacity of the ASL to 

catalyze the transesterification of triglycerides towards the esters with an excess of methanol 

and ethanol at 45 oC [48]. Moreover, a certain amount of FFA was also present at 24 h of 

reaction evidencing that the lipase also catalyzes the hydrolysis of the sunflower oil (data not 

shown). It comes clear from the comparison of the specific activity, yield towards the fatty 

acid alkyl esters and the conversion of free fatty acids of the transesterification of the WCO 

with and without hydrolysis that, the enzyme ASL provides an improved catalytic performance 

if the oil is hydrolyzed in a first step. Previous investigations reported Vescovi et al. show the 

production of biodiesel from enzymatic catalyzed hydrolysis of waste cooking oil with 

Thermomyces lanuginosus lipase in a first step at 30 oC for 24 h [1]. Then, the hydrolyzed oil 

was esterified with ethanol using immobilized Candida antarctica lipase B at 40 oC .  The 

combination of the hydrolytic and esterase activity of both lipases allowed 92% of fatty acid 

ethyl esters with low acid value. According to the preliminary results obtained in the present 

investigation, the ASL lipase combine both activities most probably due to the complex 

composition of the non-purified enzymatic extract of such vegetable lipase. These capabilities 

were further exploited in order to optimize the conversion of the WCO through a sequential 

two-step process of hydrolysis and esterification/trans-esterification.  

 

 3.2. Hydrolysis of the WCO: optimization of the biocatalytic performance of the plant lipase 
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Figure 1 shows the fitting surface graph that compares the influence of the amount of water 

added and biocatalyst in the specific enzymatic activity of ASL in the hydrolysis of WCO at 45 

oC for 48 hs. The specific enzymatic activity was calculated as the amount of FFA formed in the 

hydrolysis (in micromoles) per amount of lipase (in milligrams) per time of reaction (in hours). 

The results clearly show that the highest enzymatic activity (7.4 µmol mg-1 h-1) is reached with 

5 mg of lipase and 5.0 mL of water added. An acidity index of 11 is obtained under this reaction 

conditions.    

The decrease of the enzymatic activity upon increasing the amount of lipase was previously 

observed by some of us in the esterification of oleic acid with the ASL lipase [31, 48].  This 

observation is attributed to the agglomeration of the enzyme that occurs at high 

concentration of lipase, diminishing the exposure of the active sites to the substrate.  

The observation that the catalytic performance of the lipase improves in an oil-water interface 

(due to the water added to the reaction system) is related with the interfacial activation 

observed in lipases with a lid covering the active site. In fact, the organic-aqueous media might 

provide the appropriate activation (by modifying the hydrogen bridged bonds and Van der 

Walls interactions) to modify the enzymatic conformation and “open” the lid for accessing of 

the substrates. The present findings are in accordance with Di Santo Meztler et al. that 

demonstrated the increase in the hydrolytic activity of the ASL upon addition of a surfactant 

(a nonionic detergent such as Triton X) to the reaction media [31]. 

 Further studies combining the effect of various amounts of ASL lipase and the temperature, 

on the specific enzymatic activity are presented in Figure 2. Also in this case, the results 

indicate that the higher the amount of biocatalyst, the lower the activity of the lipase. 

Moreover, the biocatalyst possesses an optimum performance at 25 oC that is similar to the 

optimum reaction temperature in the hydrolysis of soybean oil reported by Sánchez et al. [32].  

In this context, a specific enzymatic activity of 719.05 µmol mg-1 h-1 was reached when the 

hydrolysis was performed with 5 mg of ASL (0.05 % of biocatalyst considering the amount of 

oil and enzyme in the reaction media) and 5.0 mL of water added in 30 min of reaction. 

Additional experiments demonstrated that longer time of reaction (above 30 min) and 

magnetic stirring did not enhance the hydrolysis (data not shown for brevity). Furthermore, 

the addition of a co-solvent did not favor the catalytic performance. Table 2 compares the 

specific enzymatic activity in the hydrolysis of WCO with and without the addition of n-

heptane under the optimized conditions of the present investigation, and also under those 
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previously published in the literature for the hydrolysis of soybean oil [32]. The addition of an 

organic co-solvent, extended periods of reaction (see the results for 5 h of reaction) and high 

amount of ASL lipase (5.0 mg vs. 91.7 mg) diminish two orders of magnitude the specific 

enzymatic activity.  

 

Additionally, the reusability of the vegetable lipase ASL in the hydrolysis of the WCO was 

investigated. As a first attempt to establish the solubility of the enzyme in the aqueous and 

the oily phase, a system of 10,0 g of WCO with 5 mL of water and 5 mg of ASL was prepared. 

Then the aqueous phase was removed and replaced with a fresh aliquot, and the system was 

allowed to react for 30 min at 25 oC (the optimized reaction conditions). An acidity index 

equals to 1.49 was obtained resulting appreciably lower than the one obtained previously 

(10.96 activity index of the first use).   

 In a second assessment of reusability, the hydrolysis of the WCO was performed under 

optimized conditions with 0.05 % of biocatalyst (5 mg) and 50 % w/w of water added in 30 

min of reaction at 25 oC as described before. Then, the aqueous phase was centrifuged and 

separated of the oil phase and reused to hydrolyze a fresh aliquot of 10.0 g of WCO under 

similar optimized conditions. Under this circumstances an acidity index equals to 0.94 was 

obtained that again is significantly lower than in the first use. This process was repeated for a 

third time and the hydrolysis was even lower (acidity index equals to 0.45) demonstrating that 

ASL is not suitable for reuse under the conditions of this investigation. 

   

3.3. Insights on the mechanism of the biocatalyzed hydrolysis of WCO 

 

A deeper analysis of the nature of the hydrolysis products through infrared spectroscopy and 

further quantification allowed obtaining insights in the mechanism of action of the ASL lipase. 

Figure 3 shows the infrared spectra of the starting WCO and the hydrolyzed oil phase obtained 

after centrifugation and removal of the aqueous phase. The inset graphs show the 

deconvolution of the signals at about 1700 cm-1 and 3600 cm-1. Additionally, Figure 4 

compares the evolution of the acidity index and the deconvoluted areas of the infrared signals 

at 1709 and 3533 cm-1 of the fatty acids; 1746 cm-1 due to the carbonyl C=O stretching of 

COOR of glycerides; 3619 and 3676 cm-1 attributed to O-H stretching vibration of 

monoglycerides [52-54]. 
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Figure 4 shows that the release of FFA during the hydrolysis (indicated with the acidity index) 

is accompanied by the decrease of the area of the infrared signal at 1746 cm-1 corresponding 

to triglycerides (major component of the WCO), along with the increase of those belonging to 

monoglycerides (see the signals at 3619 and 3676 cm-1) and free fatty acids (see the signal at 

1709 cm-1). Further quantification through GC provided additional evidences that the 

monoglycerides are the main product of the enzymatic hydrolysis of the WCO as can be 

observed in the Figure 5. In this context, 5 mg of ASL catalyzes the conversion of 60% of the 

triglycerides of 10.00 g of WCO (with 5.0 mL of water added) towards monoglycerides in 30 

min of reaction at 25 oC.  

This observation resembles the typical 1,3-regioespecific behavior of the microbial lipases that 

hydrolyze the ester bonds in positions R1 and R3. In fact, the 1,3-selective lipases have been 

successfully used to catalyze the transesterification of vegetable oil with ethanol in order to 

obtain fatty acid ethyl esters with monoglyceride, avoiding the production of glycerol [55-57]. 

Glycerol has necessarily to be removed but the monoglycerides are soluble in diesel, and can 

be integrated in the biofuel. In fact, this is the case of the ASL lipase as will be presented in 

the following sections. 

3.4. Tandem esterification with short chain alcohols of the hydrolyzed WCO 

 

The esterification of free fatty acids after hydrolysis of the WCO under optimized conditions 

(5 mg of ASL, 30 min at 25 oC) was performed by direct addition of short chain alcohols to the 

reaction media. In this experiment, an excess of 15% in the amount of alcohol required to 

convert the WCO (1:0.2 WCO: alcohol molar ratio) considering 100 % yield towards the esters 

was used.  

Figures 6A to 6D show the conversion of glycerides and the free fatty acids generated during 

the hydrolysis, the moles percentage of triglycerides, monoglycerides, diglycerides and 

glycerol, and the yields towards the esters of methanol, ethanol, n-propanol and n-butanol at 

25 oC upon time of reaction. Additionally, Figure 7 compares the specific enzymatic activity of 

ASL in the transesterification with the four alcohols.  

The esterification of the FFA towards the esters raises 90 to 98 % conversion with the four 

alcohols assayed (in 10 h of reaction) indicating that enzyme remains active after the 

hydrolysis of the WCO. Additionally, the ASL catalyzes the transesterification of the 

monoglycerides and diglycerides leaving the triglycerides unaltered. The specific enzymatic 
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activity evidences that even though the activity of the lipase towards the transesterification is 

somehow lower for methanol at the first hour of reaction, it is not influenced by the nature of 

the alcohol afterwards (see Figure 7). 

In this context, further experiments with the addition of a great excess of methanol and 

ethanol (1:3 and 1:6 WCO: alcohol molar ratio), were performed in order to establish if an 

excess of alcohol would improve the transesterification of the remaining glycerides after the 

hydrolysis. Experiments extracting the aqueous layer before the addition of the alcohols and 

further addition of ASL were also assayed.  

Figures 8A and 8B compare the conversion of the glycerides and FFA, the yield towards the 

esters and the specific enzymatic activity of ASL upon addition of methanol and ethanol, 

respectively. It comes clear that the best bio-catalytic performance of ASL occurs under the 

presence of water and low alcohol contents [compares the data for 1:0.2w (with water) and 

1:0.2 (after extraction of the aqueous layer) in Figures 8A and 8B]. Moreover, ASL catalyzes 

the esterification of FFA only in the presence of water (see grey columns in the Figure 8 that 

correspond to FFA conversion). Neither an excess of alcohol nor a high concentration of 

enzyme favors the catalytic activity. This observation is ascribed to the inhibition of the lipase 

due to the alcohol and the agglomeration of the protein at high lipase loadings [31, 48]. 

Back to the results obtained in the direct transesterification of the WCO (without hydrolysis) 

showed in Table 1, it comes clear that the specific enzymatic activity under such conditions 

are two orders of magnitude lower than the ones obtained when the WCO is previously 

hydrolyzed. 

 

4. Conclusions 

 

The present investigation demonstrates that the insoluble fraction of the latex recovered from 

the fruits of Araujia sericifera (an inexpensive native plant) has the capability to catalyze the 

hydrolysis, esterification and transesterification of sunflower waste cooking oil. The non-

purified enzyme catalyzes the hydrolysis of the waste cooking oil in a proportion of 0.05% with 

respect to the amount of oil with the addition of water at 25 oC and homogeneous conditions. 

In fact, in just 30 min of reaction a 60% conversion towards monoglycerides and free fatty 

acids was achieved without the addition of co-solvents to the reaction media. The remaining 

FFA and monoglycerides further reacted towards fatty acids alkyl esters with the addition of 
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methanol, ethanol, n-propanol and n-butanol (1:0.2 WCO: alcohol molar ratio) at 25 oC 

without the need of adding more enzyme to the reaction media.  The FFA were esterified up 

to 90 to 98% in 10 h of reaction and the glycerides (mono- and diglycerides) were 

transesterified in a 25%.  Nevertheless, no transesterification of the triglycerides is observed 

indicating that ASL is able to catalyze exclusively the hydrolysis of these glycerides. This 

observation is in accordance with the low specific enzymatic activity observed in the direct 

transesterification of both fresh and used sunflower oil.  

Even though the remarkable activity of the vegetable lipase, it is not suitable for reuse at least 

under the conditions of this investigation. This observation somehow indicates the need of 

immobilization of the enzyme in order to maintain its biocatalytic stability. 
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[41] P.A. Nanssou Kouteu, J. Blin, B. Baréa, N. Barouh, P. Villeneuve, J. Agric. Food Chem. 65 

(2017) 8683−8690. 

[42] M. Mazou, A.J. Djossou, F.P. chobo, P. Villeneuve, M.M. Soumanou, Afr. J. Biotechnol. 15 

(2016) 1487-1502. 

[43] P. Pinyaphong, P. Sriburi, S. Phutrakul, WASET 76 (2011) 466-472. 

[44] E. Su, D. Wei, J. Agric. Food Chem. 62 (2014) 6375−6381. 

[45] M. Mazou, A.J. Djossou, F.P. Tchobo, P. Villeneuve, M.M. Soumanou, J. Appl. Biosci. 110 

(2017) 10790-10801 

[46] Y. Caro, P. Villeneuve, M. Pina, M. Reynes, J. Graille, JAOCS 77 (2000) 349–354. 

[47] E. Cambon, F. Gouzou, M. Pina, B. Baréa, N. Barouh, R. Lago, J. Ruales, S-W. Tsai, P. 

Villeneuve, J. Agric. Food Chem. 54 (2006) 2726-2731. 

Jo
ur

na
l P

re
-p

ro
of

https://doi.org/10.3390/fermentation5010018


19 
 

[48] S.R. Matkovic, J.F. Nilsson, M.E. Fait, S.R. Morcelle, L.E. Briand, Catal. Lett. 146 (2016) 

2341-2347. 

 [49] M.B. Navas, I.D. Lick, P.A. Bolla, M.L. Casella, J.F. Ruggera, Chem. Eng. Sci. 187 (2018) 444-

454. 

[50] UNE-EN 14104, Spanish normative AENOR 2003. Products of fats and oils. Methyl esters 

of fatty acids (FAME). Determination of acidity index. 

[51] M.L. Pisarello, B.O. Dalla Costa, N.S. Veizaga, C.A. Querini, Ind. Eng. Res. 49 (2010) 8935– 

8941. 

[52] R.T. O’Connor, E.F. DuPre, R.O. Feuge, JAOCS 32 (1955) 88-93. 

[53] Q. Zhang, C. Liu, Z. Sun, X. Hu, Q. Shen, J. Wu, Food Chem. 132 (2012) 1607-1613. 

[54] X. Jiang, S. Li, G. Xiang, Q. Li, L. Fan, L. He, K. Gu, Food Chem. 212 (2016) 585-589. 

[55] J.S. Alves, N.S. Vieira, A.S. Cunha, A.M. Silva, M.A. Záchia Ayub, R. Fernández-Lafuente, 

R.C. Rodriguez, RSC Adv. 4 (2014) 6863-6868.   

[56] C. Luna, D. Luna, F.P. Bautista, R. Estevez, J. Calero, A. Posadillo, A.A. Romero, E.D. Sancho, 

Molecules 22 (2017) 2025-2041. 

[57] D. Luna, F.M. Bautista, V. Caballero, J.M. Campelo, J.M. Marinas, A.A. Romero, Method 

for Producing Biodiesel Using Porcine Pancreatic Lipase as an Enzymatic Catalyst. European 

Patent Application No. EP20070803637, 22 April 2009.   

 

Jo
ur

na
l P

re
-p

ro
of



20 
 

FIGURE 1 

 

 

 
 

Figure 1 Surface graph of the specific enzymatic activity as a function of the amount of ASL 

lipase and water added in the hydrolysis of WCO at 45 oC for 48 h. The surface plot is the graph 

of the function:  z = zo + A(E - 5)2 + B(W - 5)2 where zo = 7.38; A = -1.0672 and B = -1.0224 
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FIGURE 2 

 

 

 

Figure 2 Graph of the surface response methodology of the specific enzymatic activity as a 

function of the amount of ASL lipase and temperature in the hydrolysis of WCO with 5.0 mL 

of water added, 30 min of reaction and 200 rpm. The SRM responds to the equation: z = zo + 

A(E - 5)2 + B(T - 50)2 where zo = -49.89577; A = 7,60808 and B = 1.11801.  
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FIGURE 3 

 

 

 

 

Figure 3 Infrared spectra of the starting WCO and after hydrolysis with 5.0 mg of ASL, 5.0 mL 

of water added, 25 oC and 30 min of reaction. Inset graphs showing the deconvolution of the 

fingerprint signals of FFA and glycerides. 
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FIGURE 4 

 

 

 

Figure 4 Evolution of the acidity index and the areas of the infrared signals of FFA, and 

glycerides of the starting WCO and along the hydrolysis with 5.0 mg of ASL, 5.0 mL of 

water added, 25 oC up to 180 min of reaction.    

 
 

Figure 4 Evolution of the acidity index and the areas of the infrared signals of FFA, and 

glycerides of the starting WCO and along the hydrolysis with 5.0 mg of ASL, 5.0 mL of water 

added, 25 oC up to 180 min of reaction.    
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FIGURE 5 

 

 

 

 

Figure 5 Conversion of triglycerides () and concentration of monoglycerides () and 

diglycerides () during the hydrolysis of WCO with 5.0 mg of ASL, 5.0 mL of water added, 

25 oC up to 72 h of reaction. The values of mono- and diglycerides at time zero 

corresponds to the starting WCO.    

 

 
 

Figure 5 Conversion of triglycerides () and concentration of monoglycerides () and 

diglycerides () during the hydrolysis of WCO with 5.0 mg of ASL, 5.0 mL of water added, 25 

oC up to 72 h of reaction. The values of mono- and diglycerides at time zero corresponds to 

the starting WCO.    
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FIGURE 6A 

 

FIGURE 6B 
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Figure 6 Conversion of glycerides (■) and FFA (), mol percentage of monoglycerides (), 

diglycerides (), triglycerides ()  and glycerol (), and the yield towards the esters () 

using: (A) methanol, (B) ethanol, (C) n-propanol and (D) n-butanol in a 1: 0.2 molar ratio of 

hydrolyzed WCO: alcohol at 25 oC.  

FIGURE 7 

 

 

 

 

Figure 7 Specific enzymatic activity of ASL in the conversion of glycerides of WCO towards the esters of 

methanol, ethanol, n-propanol and n-butanol as a function of time reaction for 1: 0.2 molar ratio of hydrolyzed 

WCO: alcohol at 25 oC. 
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Figure 7 Specific enzymatic activity of ASL in the conversion of glycerides of WCO towards the 

esters of methanol, ethanol, n-propanol and n-butanol as a function of time reaction for 1: 0.2 

molar ratio of hydrolyzed WCO: alcohol at 25 oC. 
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FIGURE 8A 

 

FIGURE 8B 

 

 

Figure 8 Specific enzymatic activity of ASL (, right y axis), conversion of glycerides (black column, left y axis), 

yield towards the esters (red column, left y axis) and conversion of FFA (grey column, left y axis) for 1: 0.2, 

1:3 and 1:6 WCO: alcohol molar ratios for (A) methanol and (B) ethanol. The reactions were carried at 25 oC, 

without water added and under the presence of water (indicated by “w” following the molar ratio) for three 

hours. 
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Figure 8 Specific enzymatic activity of ASL (, right y axis), conversion of glycerides (black 

column, left y axis), yield towards the esters (red column, left y axis) and conversion of FFA 

(grey column, left y axis) for 1: 0.2, 1:3 and 1:6 WCO: alcohol molar ratios for (A) methanol 

and (B) ethanol. The reactions were carried at 25 oC, without water added and under the 

presence of water (indicated by “w” following the molar ratio) for three hours. 

 

TABLE 1 Specific enzymatic activity, yield towards the esters and FFA conversion in the trans-

esterification of fresh sunflower oil and WCO with short 

chain alcohols catalyzed with the ASL lipase with and without previous hydrolysis. 

 

Oil Previous 
treatmen

t 

Alcohol WCO: 
alcohol 

molar ratio, 
temperature

, time 

Specifi
c 

activit
y 

(mol 
mg-1 h-

1) 

Yiel
d % 

FFA  
Conversio

n % 

Fres
h 

none Methano
l 

1:4.5, 45 ºC, 
24 h 

0.04 1.7 ---- 

none Ethanol 1:3, 45 ºC, 
24 h 

0.03 ---- ---- 

       

WCO none Methano
l 

1:4.5, 45 ºC, 
24 h 

0.07 2.2 10.3 

hydrolysis Methano
l 

1:0.2, 25 ºC, 
3 h 

1.84 17.1 75.4 

      

none Ethanol 1:3, 45 ºC, 
24 h 

0.11 1.6 ---- 
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hydrolysis Ethanol 1:0.2, 25 ºC, 
3 h 

2.07 22.7 79.7 

      

hydrolysis 1-
propanol 

1:0.2, 25 ºC, 
3 h 

2.28 19.8 87.9 

      

hydrolysis 1-
butanol 

1:0.2, 25 ºC, 
3 h 

1.69 19.0 88.8 

 

TABLE 2 Specific enzymatic activity EA of ASL lipase in the hydrolysis of WCO with and 

without heptane (co-solvent added) as a function of the mass of biocatalyst and WCO, oil: 

water molar ratio and time of reaction at 25 oC in a batch reactor under stirring at 200 rpm. 

Mass ASL 
[mg] 

WCO 
[g] 

Molar 
ratio 

Oil: water 

Heptane 
[mL] 

Time 
[h] 

EA 

[mol mg
-1

 h
-1

] 

5.0 10.0 1:25 --- 0.5 718.8 

5.0 10.0 1:25 1.0 0.5 5.6 

91.7 0.9 1:9 1.0 5.0 2.4 

87.2 a 0.9 b 1:9 1.0 5.0 4.7 

 

a Data from reference [32]. 

b fresh soybean oil 
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