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Abstract

The development of regional services able to provide ionospheric vertical total

electron content (VTEC) maps and ionospheric indexes with a high spatial

resolution, and in near-real-time, are of great importance for both civilian

applications and the research community. We provide here the methodolo-

gies, and an assessment, of such a system. It relies on the public Global

Navigational Satellite Systems (GNSS) infrastructure in South America, in-

corporates data from multiple constellations (currently GPS, GLONASS,

Galileo and BeiDou), employs multiple frequencies, and produces continen-

tal wide VTEC maps with a latency of just a few minutes. To assess the

ability of our system to model the ionospheric behavior we performed a year-

round intercomparison between our near-real-time regional VTEC maps, and

VTEC maps of verified quality produced by several referent analysis centers,

resulting in mean biases lower than 1 TEC units (TECU). Also, the evalua-

tion of our products against direct and independent GNSS-based slant TEC

measurements shows RMS values better than 1 TECU. In turn, ionospheric
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weather W-index maps were generated, for calm and disturbed geomagnetic

scenarios, solely employing our quality verified VTEC maps. The spatial rep-

resentation of these W-index maps reflects the state of the ionosphere, with a

resolution of 0.5× 0.5 degrees. Finally, we conclude that our products, com-

puted every 15 minutes, do provide an excellent spatial representation of the

regional TEC, and are able to provide the bases for the possible computation

of ionospheric W-index maps, also in near-real-time.

Keywords: GNSS derived VTEC maps, ionospheric index, monitoring the

geomagnetic activity

1. Introduction

The requirement for near-real-time products based upon current iono-

spheric behavior has led to focus the interest of the scientific community on

the real-time ionospheric monitoring. These products are required both in

scientific applications and in practical services. Among others, for the mon-

itoring of space weather events such as solar flares, solar energetic particles

events and coronal mass ejections (Meza et al., 2009; VanZele and Meza,

2011; Monte-Moreno and Hernández-Pajares, 2014; Wang et al., 2018), also

for reliable high frequency (HF) communications along short-, medium- and

long-range paths, and for satellite communication, navigation, and position-

ing systems (Gao et al., 2006; Le et al., 2009). Therefore, continuous moni-

toring of the spatial and temporal variations of ionized plasma parameters,

such as the F2 layer peak electron density, NmF2, and TEC, are of particular

interest. For instance, operators of space telecommunications need to know

whether the ionospheric parameters indicate normal, quiet conditions in the
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ionosphere and plasmasphere or short-term perturbations of the ionospheric

plasma, related to disturbances on the Sun and to geomagnetic processes.

Among a variety of techniques applied to probe the ionosphere, the GNSS

is one of the most recognized sources of information. It provides instanta-

neous propagation delay, or equivalently, the Total Electron Content (TEC),

allowing the estimation of GNSS derived TEC values for ground based ref-

erence stations.
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The International GNSS Service (IGS, Johnston et al., 2017) and its asso-

ciated Analysis Centres (ACs) have been providing global ionospheric maps

(GIMs) without interruption since 1998. This GIMs exibit an unprecedented

combination of accuracy, temporal and spatial resolution, and availability

(Mannucci et al., 1998; Schaer, 1999; Hernández-Pajares et al., 2009). The

production of VTEC maps is employed in forecasting, nowcasting and char-

acterization of space weather events (Moulin et al., 2013). Several research

centers around the world are focused on the generation of near-real-time

GNSS-derived TEC maps. These maps, in combination with other param-

eters, are very useful for alerting of geomagnetic disturbances. In Latin

America, specially in Argentina, Brazil, Mexico and Peru, interest in space

weather studies has become more important in the last decade (Denardini

et al., 2016a,b,c; Hysell et al., 2018; Valladares and Chau, 2012). Currently,

in Brazil and Mexico, regional GNSS-based TEC maps are systematically

generated in order to assimilate them into space weather forecasting models

(Gonzalez-Esparza et al., 2017; Takahashi et al., 2016).

VTEC maps are usually combined in order to obtain ionospheric indexes,
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which in turn are designed to provide information about variations in the

ionosphere-plasmasphere. In particular, the W-index is defined as the loga-

rithm of the ratio of the current value of VTEC, at a particular location, to

the quiet background values VTECmed (Gulyaeva et al., 2014, 2013).

The objective of this work is to assert the quality of our regional iono-

spheric VTEC maps, generated in near-real-time, over Central and South

America. Consequently, intercomparisons are made with openly-accessible

reference VTEC maps of proven quality. Finally, a preliminary result on the

computation of ionospheric W-index, during quiet and disturbed geomag-

netic states, is made. The variations of this index, both in space and time,

show important information about the state of the ionosphere under different

scenarios.

The paper is organized as follows. Section 2 describes the methodology

used to compute the VTEC maps: the data cleaning stage (2.1), the pro-

cedure for the hardware delay calibration (2.2) and for TEC mapping in a

near-real-time (2.3). The results about the quality assessment of our VTEC

maps, and the subsequent computation of the ionospheric W-index maps,

are discussed in section 3. Final remarks are given in section 4.

2. Methodology

2.1. Data Preprocessing

Before any computation a per station preprocessing and data cleaning

is performed. This includes the application of an appropriate time window,

of an elevation cut off angle, of carrier phase wind-up corrections and the

determination of phase-continuous intervals (i.e., with constant ambiguity).
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The data cleaning is non-parametric and consists in three steps. Firstly,

pairs of satellite-receiver phase and code links, in two bands, are optimally

selected according to the amount of available observations and the tracking

modes, or channel attribute, employing the same default priorities as the ones

defined by Nischan (2016). The corresponding, undifferenced, Melbourne-

Wübbena (MW) linear combinations are screened for outliers and cycle slips

(Table 1). Any possible receiver’s clock inconsistency between phase and code

observations is handled as a cycle slip. Secondly, a per band, time-differenced,

phase screening is performed, for unnoticed outliers and cycle slips. These

screenings, performed both for- and backward in time, are repeated until

no additional cycle slips, or outliers, are found. Furthermore, no attempt

is made to correct any cycle slip. Finally, MW and (cuasi) ionosphere-free

(IF) linear combinations, within each phase-continuous interval, are formed

and modeled with low degree polynomials. Intervals resulting in residuals

with root mean squared (RMS) greater than given thresholds are rejected.

In total, less than 7 % of the original observations are generally left out,

including those observations bellow the elevation cut off angle.

Thereafter, a clean and single set of undifferenced carrier phase φij,k (in

cycles), code pseudorange Cij,k (in meters) and signal-to-noise ratio SNij,k

observables, between each pair of satellite i and receiver j, and for each

tracked band k, is obtained. This data preprocessing is performed with the

Fortran 2008 + OpenMP, in-house developed, software AGEO (library for

Geodetic and Orbital Analysis or biblioteca de Análisis GEodésico y Orbital,

in Spanish). In addition, it is externally parallelized, on a per station basis,

by means of the GNU parallel software tool (Tange, 2011).
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Table 1: Pairs of bands employed in the Melbourne-Wübbena (MW) data screening, with
their corresponding wide-lane wavelengths λWL (in meters). Those pairs of bands em-
ployed in the computation of geometry-free (GF) linear combinations and inter-frequency
biases (IFBs) are also indicated. Observation codes according to RINEX version 3.03
(Gurtner and Estey, 2017).

GNSS Bands λWL GF & IFB
GPS L2 L5 5.86 no

L1 L2 0.86 yes
L1 L5 0.75 yes

GLONASS L2 L3 6.82 no
L1 L2 0.84 yes
L1 L3 0.75 yes

Galileo L7 L5 9.77 no
L7 L6 4.19 no
L6 L8 3.54 no
L6 L5 2.93 no
L1 L6 1.01 yes
L1 L7 0.81 yes
L1 L8 0.78 yes
L1 L5 0.75 yes

BeiDou L6 L7 4.88 no
L2 L6 1.04 yes
L2 L7 0.84 yes

2.2. Hardware Delays Calibration

Once per hour inter-frequency biases (IFBs) are estimated from carrier-to-

code leveled geometry-free (GF) linear combinations (see, e.g., Spits, 2012).

These hardware delays are solved simultaneously with spherical harmonic

(SH) coefficients of a single-layer VTEC representation (Schaer, 1999), as-

suming that all free electrons are constrained to an infinitesimally thin layer

at a height of 450 km. Here only independent linear combinations are em-

ployed, between selected pairs of bands (Table 1). Hence, only independent

IFBs are computed. Also, no closing restriction is imposed, resulting in
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satellite-receiver-, pair-of-bands-specific IFBs. Moreover, different tracking

modes or channel attributes, between each pair of satellite-receiver links, are

taken into account. The estimation is made by means of a weighted least

squares adjustment, performed also with the AGEO software, and executed

in one single step, involving the most recent observations available, from all

ground stations and all satellites, within the previews 24 hours (i.e., a 24

hours rolling- or moving-window).

In practice, after preprocessing the raw observations corresponding to

each pair satellite i and receiver j, and for each pair of bands k and l, all

possible carrier-to-code leveled GF linear combinations L̃GF,ij,kl (in meters)

are computed by

L̃GF,ij,kl = LGF,ij,kl − 〈LGF,ij,kl − CGF,ij,kl〉 (1)

where LGF,ij,kl = λkφij,k − λlφij,l are the non-leveled GF linear combina-

tions in phase (in meters) and CGF,ij,kl = Cij,l − Cij,k are the corresponding

linear combinations in code pseudorange (in meters), being λk and λl the

wavelengths of each band (in meters). Here the average is computed within

each phase-continuous interval, under the assumption of stable hardware

delays. This commonly used methodology reduces the observations noise,

from code to phase levels, and avoids the estimation of phase ambiguities,

but it could also introduce some systematic errors (see, e.g., Ciraolo et al.,

2007; Spits, 2012). In addition, each GF observation is weighted according

to three factors: the instantaneous satellite elevation, the amount of obser-

vations employed during the carrier-to-code leveling (i.e., the length of each

phase-continuous interval) and the corresponding navigational system (GPS,
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GLONASS, Galileo or BeiDou, see Ren et al., 2016). Then, the full set of

GF observations is represented as

L̃GF,ij,kl = αkl MF(z) VTEC(μ, t) + IFBij,kl (2)

where MF(z) is the Modified Single Layer Model (MSLM) mapping function

(Schaer, 1999), being z the zenith distance of satellite i as seen by receiver j

(in radians), IFBij,kl are the corresponding specific IFBs (in meters), αkl is a

proportionality constant (in meters per TECU, where 1 TECU is equivalent

to 1016 free e− per squared meter)

αkl = 40.3 × 1016

(
1

f 2
k

− 1

f 2
l

)
(3)

being fk and fl the frequencies of each band (in Hertz), whereas the VTEC

is expressed as a SH expansion in a sun-fixed frame

VTEC(μ, t) =
nmax∑
n=0

n∑
m=0

P nm(sin μ)
(
anm cos(m t) + bnm sin(m t)

)
. (4)

Here anm and bnm are the coefficients of the SH expansion (in TECU), with

maximum degree nmax, whereas P nm are the corresponding Real Associ-

ated Legendre Functions (4π normalized, see for example Wieczorek and

Meschede, 2018), t is the Local Time (LT, in radians) and μ is the modified

dip latitude (also in radians). In this case the algorithms issued by the Euro-

pean GNSS (Galileo) Open Service (2016), together with the corresponding

global grid, are employed for the computation of μ.

As only regional observations are employed, the 24 hours time window
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helps into decoupling the hardware delays, from the ionospheric parameters,

by always including in the adjustment observations spanning 24 hours of LT.

Furthermore, a single set of constant coefficients anm and bnm, loosely con-

strained to a zero ionosphere, is estimated for the entire time span, resulting

in a mean (daily) VTEC representation. For the same reason a SH expansion

of low degree is employed, in order to avoid ill conditioned normal equations

(Haines, 1985), which in turn could produce mapping artifacts, particularly

at the boundaries of the region. On the other hand, the IFBij,kl are also

parametrized as constants, and estimates with mean observational epoch at

the middle of each moving-window are obtained. These hardware delays are

also loosely constrained to their most recently estimated values. In fact, the

main result of this hourly adjustment are precisely these decoupled IFBij,kl

estimates.

2.3. Near-Real-Time TEC Mapping

Every 15 minutes, and also by means of a weighted least squares adjust-

ment, both the IFBs and the SH coefficients for the regional VTEC rep-

resentation are updated. In essence, the same software, methodology and

parametrization described in the previews section are employed. However,

in this case only the most recent observations available, within a one hour

moving-window, are used. In addition, here four sets of pice-wise constant

SH coefficients are estimated, each one valid for a quarter of an hour. Fur-

thermore, the IFBij,kl parameters are now actively constrained to their most

recent, hourly, and decoupled estimates. In practice, this results in new

hardware delays estimates that are simultaneously up-to-date (i.e., less than

30 minutes old) and decoupled from the coefficients of the SH expansion.
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Thereafter, tracks of instantaneous, VTEC estimates are obtained from the

original GF observations by

VTECij,kl,ϕλ =
(
αkl MF(z)

)−1(
L̃GF,ij,kl − IFBij,kl

)
(5)

where ϕ and λ are the geographic latitude and longitude, respectively, of

the ionospheric pierce points (IPPs), that is, the intersection point between

the instantaneous satellite-receiver line-of-sight with the single layer of the

model. Similarly, traces of slant TEC (STEC) estimates can be computed

by

STECij,kl,ϕλ = α−1
kl

(
L̃GF,ij,kl − IFBij,kl

)
. (6)

At this point two representations of the current state of the regional iono-

spheric TEC are available. In one hand, an analytical representation, given

by the coefficients of a low degree SH expansion in μ and t, with mean epoch

at the middle of the latest 15 minutes of the observational window. On the

other hand, a discreet and huge set of instantaneous VTECij,kl,ϕλ estimates,

along the IPP tracks, during the same interval. In fact, the issued TEC

product is obtained by mapping these tracks in the space domain.

This postprocessing of the VTECij,kl,ϕλ estimates comprises three steps,

all performed with the Generic Mapping Tools software package (GMT, Wes-

sel et al., 2013). Firstly, all available estimates are averaged within the cells of

a uniform 0.5×0.5 degrees grid, previously discarding cells with very few ob-

servations, and effectively resulting in N space- and time-averaged 〈VTEC〉p
values, for p = 1, . . . , N . Secondly, this regular grid is approximated, using

a generalized Green’s function for continuous curvature spherical spline in
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tension (Wessel and Becker, 2008), by

VTEC(ϕ, λ) = c0 +
M∑

p=1

cp g(ϕ, λ, ϕp, λp) (7)

where ϕ and λ are arbitrary coordinates, M ≤ N is the number of employed

coefficients, ϕp and λp are the coordinates of the corresponding cells, c0 is

the mean VTEC over all populated cells (in TECU), g is the generalized

Green’s function and cp are the spline coefficients (also in TECU), solved for

by Singular-Value Decomposition (SVD) on the square linear system

〈VTEC〉p − c0 =
N∑

q=1

cq g(ϕp, λp, ϕq, λq) (8)

and retaining only those M eigenvalues whose ratios, to the largest, are

greater than a given threshold. While we empirically determined optimal

(fixed) values for both the tension and the threshold, searching over thou-

sand of maps for minimization of the misfits, the number M of contributing

eigenvalues is dynamically determined, every time, to accommodate the vari-

ance of the current data. That is, the more spatial variability in the regional

VTEC the more eingenvalues are retained in the mapping procedure. Finally,

the adjusted function is evaluated on a uniform 0.5 × 0.5 degrees grid and

areas far away from IPP tracks are automatically masked out. The resulting

grid constitutes the actual, near-real-time, regional TEC map produced by

the system, as no additional postprocessing (e.g., smoothing) is required nor

performed.
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3. Results

3.1. Year-round Intercomparison with Global Products

To evaluate the quality of the produced maps, and particularly the pos-

sible presence of systematic biases, we compared them with several IGS final

VTEC products, provided in IONEX format, and computed by several IGS

Ionosphere Associated Analysis Centers (IAACs): Center for Orbit Determi-

nation in Europe (CODE, Switzerland; see Schaer, 1999), European Space

Agency/European Space Operations Centre (ESA/ESOC, Germany, see Fel-

tens, 2007), IGS (see Hernández-Pajares et al., 2009), Jet Propulsion Labo-

ratory/National Aeronautics and Space Administration (JPL/NASA, USA;

see Mannucci et al., 1998) and Universitat Politècnica de Catalunya (UPC,

Spain; see Hernández-Pajares et al., 1999; Orús et al., 2005). From UPC

we employed both, their standard and their high rate products. We also in-

cluded in the analysis VTEC products from two additional IGS ACs: Natural

Resources Canada (NRCAN, Canada; see Ghoddousi-Fard et al., 2011) and

Wuhan University (WHU, China; see Wang et al., 2018). These products

are usually available with latencies of a few days or, at best, several hours.

In addition, we also included in the intercomparison the (non-IGS) global

and high resolution TEC products provided by the Massachusetts Institute

of Technology (MIT Haystack Observatory, USA; see Rideout and Coster,

2006).

The comparison extends a full year, from June 1, 2017 to May 31, 2018,

and it was performed on a map by map basis (i.e., epoch by epoch). In

order to assess the expected differences we performed the same one-to-one

comparison between pairs of global products. Although these maps have
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global coverage, the comparison was restricted to the area covered by our

regional maps, that is, between 80◦ S and 40◦ N in latitude and 110◦ W and

0◦ E in longitude (see Figure 1 in Mendoza et al., 2019). Also, no spatial

or temporal interpolation was performed. Rather, only VTEC samples at

common epochs, and exactly the same reported locations, were differenced.

For this reason, and before the comparisons, our high resolution maps were

downsampled. Thus, the results were controlled by the standard 5 × 2.5

degrees spatial sampling (in longitude and latitude, respectively) of the IGS

products or, alternatively, by the 1 × 1 degrees spatial sampling of the MIT

products.

For this analysis, instead of the real-time data streams, we employed

daily observational and navigational RINEX files available at the servers of

the respective data providers. However, to reproduce exactly the results of

the near-real-time system, we only used data from those GNSS stations that

are actually accessible in real-time, leaving all off-line stations out of the

analysis. We also employed the very same broadcasted orbits and satellite

clocks, and no other products. In addition, we followed exactly the same

two-steps methodology previously described. That is, a first step resulted

in IFBs estimates, from a 24 hours observational moving-window, while in

a second and final step the TEC maps were produced, from a 15 minutes

moving-window. To speed up this year-round analysis, and although some of

the selected products are currently provided at a higher rate (e.g.,by CODE,

NRCAN and particularly UPC and MIT), we computed maps with 2 hours

of temporal sampling, following the classical IGS standard practice.

The year-round (and regional) comparison shows the existence of system-
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atic differences between all the analyzed pairs of VTEC products (Table 2).

In average, our near-real-time VTEC maps show a very good agreement with

the maps produced by ESA/ESOC, CODE, UPC (high rate) and especially

NRCAN, resulting for all the cases in a mean bias lower or equivalent to 1

TECU, comparable with the differences found between pairs of global prod-

ucts. Nevertheless, while there seems to be no significantly biases between

both, our products and the ones from NRCAN and between them and the

ones from CODE, a small systematic bias do exists between the former and

our products. The reason for this seemingly discordant results is simple:

given their global coverage, the comparisons between pairs of IGS products

span the entire area mapped (Figure 1 in Mendoza et al., 2019), whereas

those comparisons involving our regional product are mostly restricted to

the land, leaving large portions of the oceans out of the analysis, and this

is evident in the lower number of common TEC samples found (Table 2).

This contributes also to the higher mean standard deviation encountered

while comparing our maps with the other products, both in average and in-

dividually (Figure 1). Indeed, not only a smaller number of differences are

averaged, also the smoothest areas of the IGS maps over the oceans, where

no actual GNSS observations were available, are systematically left out of

these comparisons. At the same time, all comparisons show, to a greater or

lesser extent, smaller variance during the southern winter (i.e., June, July

and August). This is probably due to the lower, regional, mean ionospheric

TEC in that season.
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Table 2: Year-round one-to-one comparison between selected (GNSS-based) VTEC
products, from June 1, 2017 to May 31, 2018: codg (CODE), emrg (NRCAN), esag
(ESA/ESOC), igsg (IGS, combination of codg and jplg), jplg (JPL/NASA), mapgps
(MIT), upcg (UPC), uqrg (UPC, high rate), whug (WHU) and magn (our near-real-
time product). The mean difference xA−B and mean standard deviation σA−B , over all
compared maps, are expressed in TECU.

Products TEC TEC
A B xA−B σA−B Maps Samples

codg magn 0.7 1.9 4380 1965432
emrg 0.1 2.1 8758 9869733
esag −0.1 1.6 4368 4922736
igsg −1.0 0.6 4380 4936260
jplg −2.2 1.3 4380 4936260

mapgps 2.3 2.3 8568 1232740
upcg −0.7 1.5 4284 4828068
uqrg −0.7 1.7 8736 9845472
whug 1.7 4.4 5280 5950560

emrg magn 0.1 2.4 4380 1965367
esag −0.2 2.6 4368 4922471
igsg −1.0 2.1 4380 4935994
jplg −2.2 2.4 4380 4935994

mapgps 2.1 2.2 8566 1232401
upcg −0.8 2.0 4284 4827806
uqrg −0.7 2.3 8734 9842685
whug 1.7 4.6 5278 5947974

esag magn 0.9 2.2 4368 1960492
igsg −0.8 1.7 4368 4922736
jplg −2.0 2.0 4368 4922736

mapgps 2.4 2.8 4272 614605
upcg −0.5 1.7 4272 4814544
uqrg −0.5 2.3 4356 4909212
whug 2.4 5.0 4368 4922736

igsg magn 1.6 1.9 4380 1965432
jplg −1.2 0.7 4380 4936260

mapgps 3.3 2.3 4284 616229
upcg 0.3 1.5 4284 4828068
uqrg 0.3 1.6 4368 4922736
whug 3.2 5.1 4380 4936260

jplg magn 2.9 2.1 4380 1965432
mapgps 4.6 2.4 4284 616229
upcg 1.5 1.8 4284 4828068
uqrg 1.5 1.8 4368 4922736
whug 4.4 5.3 4380 4936260

mapgps magn −2.0 2.8 4284 10182540
upcg −2.7 2.3 4188 603294
uqrg −2.7 2.2 33470 4816557
whug −0.1 4.2 5160 749695

upcg magn 1.1 1.9 4128 1848581
uqrg 0.0 1.1 4272 4814544
whug 2.9 4.9 4284 4828068

uqrg magn 1.0 1.9 4369 1960667
whug 2.3 4.7 5268 5937036

whug magn −2.7 5.0 4377 1963993
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3.2. Differential STEC Evaluation

In order to independently assess the accuracy of the produced VTEC

maps we applied a differential STEC (dSTEC) test developed by the IGS

Ionosphere Working Group (IIWG) for the evaluation, and relative weighting,

of their Global Ionosphere Maps (GIMs) (see, for example, Orús et al., 2005,

2007; Roma-Dollase et al., 2018). In essence, the test is based on the ability

to make highly accurate dSTEC measurements, on the order of 10−2 TECU

(Hernández-Pajares et al., 2017; Coster et al., 2013), and to compare them

with synthetic (i.e., mapped) dSTEC values. In fact, we employed the very

same implementation of the test as described in detail by Hernández-Pajares

et al. (2017), the only difference being our extension of the test to the multi-

frequency case.

The analysis is performed on a per station basis, involving only GNSS

stations that were not employed for the computation of the VTEC maps

being evaluated. Firstly, and after preprocessing the corresponding raw data

(e.g., outliers rejection, phase wind-up correction, etc.), observed dSTECo (in

TECU) are obtained from (non-leveled) carrier phase GF linear combinations

(in meters) by

dSTECo(ts) = α−1
kl

(
LGF,ij,kl(ts) − LGF,ij,kl(tr)

)
with tr �= ts, (9)

taking advantage of the total cancellation of the phase ambiguities within

each phase-continuous interval. Here tr (in hours) represents a reference

epoch, when the satellite reaches its minimum zenith distance within each

phase-continuous interval, whereas ts (in hours) are all other sample epochs

within the same phase interval. Here we employed a sampling rate of 60 sec-
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onds and, following the convention stated by Hernández-Pajares et al. (2017),

only GF observations no more than 900 seconds apart were differenced. This

results in a maximum of 30 dSTECo samples per phase-continuous interval,

regardless of its total length. In addition, the corresponding zenith distances

zr and zs (both in radians), with zr �= zs, are stored for subsequent use.

Secondly, and for each observed dSTECo sample, synthetic dSTECm values

(in TECU) are computed by

dSTECm(ts) = MF(zs) VTEC(ϕs, λs, ts) − MF(zr) VTEC(ϕr, λr, tr) (10)

where ϕr, λr and ϕs, λs (in degrees) are the coordinates of the corresponding

IPPs. Here both VTEC(ϕ, λ, t) are obtained, following Schaer and Feltens

(1998), by temporal interpolation between consecutive rotated TEC maps

VTEC(ϕ, λ, t) =
Ti+1 − t

Ti+1 − Ti

VTECi(ϕ, λ′
i) +

t − Ti

Ti+1 − Ti

VTECi+1(ϕ, λ′
i+1)

(11)

being Ti and Ti+1 the epochs of the corresponding maps (in hours), with

Ti < t < Ti+1, whereas the rotated longitudes λ′
i = λ+15 (t−Ti) and λ′

i+1 =

λ + 15 (t − Ti+1) compensate the strong correlation between the ionospheric

TEC and the (longitude of the) subsolar point. Within each map, the VTECi

and VTECi+1 are spatially interpolated by a simple 4-point bilinear algorithm

(see also Schaer and Feltens, 1998). Finally, the observed minus computed

ΔdSTEC (in TECU) are obtained

Δ dSTEC(ts) = dSTECo(ts) − dSTECm(ts). (12)
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In turn, the RMS of ΔdSTEC, per station, can be computed.

In practice, we employed daily RINEX files from ten GNSS stations dis-

tributed over the study area (Figure 2). In addition to files from the men-

tioned data providers we also employed observations from off-line GNSS sta-

tions supplied by the Centro Sismológico Nacional (CSN, Chile). The anal-

ysis was repeated in four independent days, during the years 2017 and 2018,

near the ascending equinox, the descending equinox, the summer solstice

and the winter solstice. Also, the TEC maps employed in this analysis are

the very same produced for the year-round comparison with the IGS GIMs.

However, for these four particular days, additional maps were produced in

order to achieve the standard 15 minutes sampling rate of the monitoring

system.

In summary, the observed dSTECs are fairly reproduced by the syn-

thetic values, implying that the near-real-time maps, in combination with

the corresponding mapping function, are capable of representing the regional

ionospheric VTEC with an average accuracy better than 1 TECU (Table 3).

Finally, the three stations leading to a total RMS > 0.7 TECU are located

in areas where the IPPs coverage is, systematically, not optimal (especially

near BOAV and PUMO, but to a lesser extent also near PISR, see Figure 1

in Mendoza et al., 2019, right). This suggests that the monitoring system

could benefit from the use of additional data from GNSS stations located in

these specific areas.

3.3. W-Index

The spatial and temporal variations of ionized plasma parameters are of

particular interest in many applications, such as radiocommunications, and
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Table 3: Per station daily and total RMS (in TECU) resulting from the dSTEC evaluation
of the near-real-time ionospheric VTEC maps.

GNSS Station 2017 2018 Total ΔdSTEC
# ID Jun 21 Sep 22 Dec 21 Mar 20 RMS Samples
1 BOAV 0.59 1.17 1.01 0.75 0.91 38611
2 BYSP 0.44 0.43 0.32 0.50 0.43 24498
3 CCHR 0.47 0.65 0.84 0.54 0.61 16690
4 ILHA 0.28 0.64 0.89 0.58 0.66 35539
5 JUNT 0.84 0.41 0.42 0.73 0.64 12793
6 MA01 0.26 0.52 0.86 0.46 0.59 23448
7 PISR 0.43 0.80 1.11 0.86 0.84 20104
8 PRNA† – 0.23 0.62 0.42 0.50 17036
9 PUMO 0.51 0.73 0.51 1.44 0.89 23461
10 TERO 0.30 0.93 0.54 0.65 0.65 39588
†No daily RINEX file, for June 21, 2017, was available.

space-based navigation and positioning. There are many kind of ionospheric

indexes proposed to describe ionosphere-plasmasphere variations. In this

work we focus on those indexes derived from GNSS measurements through

VTEC estimates. In particular, the deviation from the quiet median which

is defined as

DEV(VTEC) = log

(
VTEC (t)

VTECmed

)
(13)

where VTECmed is the quiet reference 27-days-running median prior to the

epoch of observation (Gulyaeva et al., 2014, 2013). Therefore, from DEV(VTEC)

the W-index is defined as a measure of the ionosphere-plasmasphere state,

and it could be computed at each point of a regular grid (Table 4).

The performance of W-index for the quiet and moderate disturbed periods

after the magnetic storm is presented in Fig. 4, whereas the geomagnetic

indices are shown in Fig. 3, where the selected interval is indicated between

yellow arrows. The values of the W-index are mainly between -2 and 2,
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Table 4: Categories of the ionospheric weather W-index corresponding to the logarithmic
deviation from the median.

W-index DEV(VTEC)
4 DEV > 0.301
3 0.155 < DEV ≤ 0.301
2 0.046 < DEV ≤ 0.155
1 0 < DEV ≤ 0.046
0 DEV = 0

−1 −0.046 < DEV ≤ 0
−2 −0.155 < DEV ≤ −0.046
−3 −0.301 < DEV ≤ −0.155
−4 DEV < −0.301

the positive perturbation prevailing towards negative geomagnetic latitude

and equator and the negative disturbance becomes more evident towards

positive latitudes. Figure 5 shows the evolution of two intense geomagnetic

storms (marked between red arrows in Fig. 3). The Dst value, which varies

from −15 to −20 nT after the initial phase, reaches −84 nT at 23:00 UT

(September 7th), −125 nT at 00:00 UT (same day) and −142 nT at 1:00

UT (September 8th). During the main phase of this event, again a severe

storm has appeared with a minimum value of Dst = −142 nT at 15:00 UT

on 8 September 2017. The W-index spatial distribution is very complex, as

the responses of the ionosphere to each consecutive storms is very different

(Blagoveshchensky and Sergeeva, 2019). The first one is a “classical” storm,

while the second is totally distinct. The mechanisms responsible for the

two minimums in Dst, and the background of the spatial climate before

each Dst drop, are very different. The first storm was caused by solar wind

perturbed by two consecutive shock waves of the CME, which is associated
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with an X9.3-class solar flare on 6 September 2017. The second storm was

caused by the arrival of the second CME on September 8th. The ionosphere

before the first Dst minimum was affected by the intense solar flares, but

still no geomagnetic storm occurred. The ionosphere before the second storm

was already perturbed by the previous Dst minimum. Figure 5 shows W-

index values between +4 and −3 or −4 on September 8th at 00:00 UT (near

the first minimum Dst value), which are produced by the large increase of

VTEC at low geomagnetic latitudes, and a remarkable decrease of VTEC

at the Equator. The work by de Paula et al. (2019) evidence the same

results studying the ionospheric irregularity signatures on the SWARM-A

electron density (see Fig. 10 in de Paula et al., 2019). Then, the Northern and

Southern Hemisphere have different response to the recovery phase of the first

storm, and the main phase of the second storm, highlighting large negative

values of W-index at northern mid latitudes and large positive values at low

and at southern mid latitudes. These characteristics almost disappear on

September 9th at 12:00 UT. Gonzalez-Esparza et al. (2018) and Imtiaz et al.

(2019) show the same results using VTEC values from GNSS stations located

at different latitudes in Central and South America. Gonzalez-Esparza et

al. analyzed the VTEC values in Mexico. In particular, the GNSS station

located at mid latitude showed a positive VTEC disturbance during the main

phase of the first storm, whereas a negative disturbance was observed, at

the same station, during the recuperation phase and also during the second

geomagnetic storm.
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4. Conclusions and Outlook

A multi-GNSS, operational, high-rate and openly accessible ionospheric

TEC monitoring system for South America has been successfully developed,

tested and implemented. Both the comparison of the produced maps against

global products, including several final IGS GIMs, and also against indepen-

dent and highly accurate dSTEC observations, resulted in mean biases and

RMS lower than 1 TECU, respectively. Offline W-index maps generated from

our VTEC operational products inherit their high temporal and spatial res-

olutions (15 min and 0.5 × 0.5 degrees, respectively), and they were capable

to describes fairly well the variability of the ionosphere. These maps proved

useful to analyze the main characteristics of a complex perturbation, both

spatially and temporally, and were in agreement with independent analyses.

Accordingly, we are highly motivated to develop operational W-index maps,

in parallel with our VTEC products, in order to improve the capabilities of

the ionosphere monitoring system. We hope to achieve this goal in the near

future.

Data Availability Statement

A plot of the most recent TEC map can be accessed anonymously from

wilkilen .fcaglp.unlp.edu.ar/ion/latest.png (or alternatively in Spanish from

wilkilen .fcaglp.unlp.edu.ar/ion/ultimo.png), whereas registered users can re-

trieve the TEC maps produced by the system, in IONEX and NetCDF for-

mats, from wilkilen .fcaglp.unlp.edu.ar/ion/magn/.
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E.R., Costa, S.M.A., Otsuka, Y., Shiokawa, K., Monico, J.F.G., Ivo, A.,

Sant’Anna, N., 2016. Ionospheric TEC Weather Map Over South America.

Space Weather 14, 937–949. doi:10.1002/2016SW001474.

Tange, O., 2011. GNU Parallel: The Command-Line

Power Tool. ;login: The USENIX Magazine 36, 42–

47. URL: https://www.usenix.org/system/files/login-

/articles/105438-Tange.pdf.

Valladares, C.E., Chau, J.L., 2012. The Low-Latitude Ionosphere

Sensor Network: Initial results. Radio Science 47, RS0L17.

doi:10.1029/2011RS004978.

VanZele, M., Meza, A., 2011. The geomagnetic solar flare effect identified by

SIIG as an indicator of a solar flare observed by GOES satellites. Advances

in Space Research 48, 826 – 836. doi:10.1016/j.asr.2011.04.037.

Wang, C., Shi, C., Fan, L., Zhang, H., 2018. Improved Modeling of Global

Ionospheric Total Electron Content Using Prior Information. Remote Sens-

ing 10, 63, 1–19. doi:10.3390/rs10010063.

30



Wessel, P., Becker, J.M., 2008. Interpolation using a generalized Green’s

function for a spherical surface spline in tension. Geophys. J. Int. 174,

21–28. doi:10.1111/j.1365-246x.2008.03829.x.

Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J., Wobbe, F., 2013. Generic

Mapping Tools: Improved Version Released. Eos Trans. AGU 94, 409–410.

doi:10.1002/2013eo450001.

Wieczorek, M.A., Meschede, M., 2018. SHTools: Tools for Working with

Spherical Harmonics. Geochem. Geophys. Geosyst. 19, 8, 2574–2592.

doi:10.1029/2018gc007529.

31



−4

−2

0

2

4

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May

codg − magn

−4

−2

0

2

4

pe
r 

m
ap

, m
ea

n 
T

E
C

 d
if

fe
re

nc
es

 [
T

E
C

U
]

codg − uqrg

−4

−2

0

2

4

codg − upcg

−4

−2

0

2

4

codg − igsg

0
2
4
6
8

K
p

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May
2017 2018

Figure 1: Examples of mean differences and standard deviations, per map, resulting from
the year-round one-to-one VTEC products comparisons: between a final IGS and our
near-real-time product (codg and magn, respectively), between two final IGS products
(codg and the high rate uqrg), between two final IGS products (codg and upcg, noting
that no upcg IONEX files were available for October 8–13 and 21, 2017 and for January
28, 2018) and between a final and the combined IGS product (codg and igsg, respectively).
The global Kp index, provided by the GeoForschungsZentrum (GFZ, Germany), is also
plotted.
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Figure 2: Location of the off-line GNSS stations, listed in Table 3, and employed for the
dSTEC evaluation of the near-real-time TEC maps. For convenience the geomagnetic
equator is also plotted.
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Figure 4: Ionospheric W-index maps during quiet and moderate disturbance period
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Figure 5: Ionospheric W-index maps during the first CMEs associated with an X9.3-
class solar flare on 6 September 2017, the largest solar X-ray flare seen in 12 years with
multiple partial halo ejecta. They led to the sudden storm commencement SSC=23:44 UT
of a severe geomagnetic storm. 36


