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provide minimum codes in most of the resulting graph classes.
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1 Introduction and preliminaries

Let G = (V,E) be a graph and V = {1, , . . . , n}. The open neighborhood of a vertex

u is the set N(u) of all vertices of G adjacent to u, and N [u] = {u} ∪ N(u) is the

closed neighborhood of u. A subset C ⊆ V is dominating (resp. total-dominating)

if N [i] ∩ C (resp. N(i) ∩ C) are non-empty sets for all i ∈ V .

In this work we study four problems that have been actively studied during the

last decade, see e.g. the bibliography maintained by Lobstein [16].

A subset C ⊆ V is:

• an identifying code (ID) if it is a dominating set and N [i] ∩ C �= N [j] ∩ C, for

i, j ∈ V [15].

• a locating-dominating set (LD) if it is a dominating set and N(i)∩C �= N(j)∩C,

for i, j ∈ V − C [21].

• an open locating-dominating set (OLD) if it is a total-dominating set and N(i)∩
C �= N(j) ∩ C, for i, j ∈ V [20].

• a locating total-dominating set (LTD) if it is a total-dominating set andN(i)∩C �=
N(j) ∩ C, for i, j ∈ V − C [11].

Note that not every graph admits an identifying code, in fact, a graph G admits

an identifying code (or G is identifiable) if there are no true twins in G, i.e., there

is no pair of distinct vertices i, j ∈ V such that N [i] = N [j], see [15]. Analogously,

a graph G without isolated vertices admits a open locating-dominating set if there

are no false twins in G, i.e., there is no pair of distinct vertices i, j ∈ V such that

N(i) = N(j), see [20].

Given a graph G, for X ∈ {ID,LD,OLD,LTD}, the X-problem on G is the

problem of finding an X-set of minimum size of G. The size of such a set is called

the X-number of G and it is denoted by γX(G). From the definitions, the following

relations hold for any graph G (admitting an X-set):

γLD(G) ≤ γLTD(G) ≤ γOLD(G), (1)

and

γLD(G) ≤ γID(G).

Note that γID(G) and γOLD(G) are not comparable as the following examples show:

Determining γID(G) is in general NP-hard [5] and even remains hard for several

graph classes where other in general hard problems are easy to solve, including

bipartite graphs [5] and two classes of chordal graphs, namely split graphs and

interval graphs [8]. The identifying code problem has been actively studied during

the last decade, where typical lines of attack are to determine minimum identifying

1 This work was partially supported by grants PID-UNR ING539 (2017-2020), PID-UNR ING629 (2018-
2019) and PIP CONICET 2016-0410 (2017-2019)
2 Email: garua@fceia.unr.edu.ar
3 Email: sbianchi@fceia.unr.edu.ar
4 Email: lucarini@fceia.unr.edu.ar
5 Email: wagler@isima.fr

G. Argiroffo et al. / Electronic Notes in Theoretical Computer Science 346 (2019) 135–145136

mailto:garua@fceia.unr.edu.ar
mailto:sbianchi@fceia.unr.edu.ar
mailto:lucarini@fceia.unr.edu.ar
mailto:wagler@isima.fr


Fig. 1. (a, b) γID(P4) = 3 < 4 = γOLD(P4); (c, d) γID(G) = 4 > 3 = γOLD(G)

codes of special graphs or to provide bounds for their size. Closed formulas for the

exact value of γID(G) have been found so far only for restricted graph families (e.g.

for paths and cycles [4], for stars [9], for complete multipartite graphs [1] and some

subclasses of split graphs [2]).

Also determining γLD(G) is in general NP-hard [5] and even remains hard for

bipartite graphs [5]. This result is extended to planar bipartite unit disk graphs

in [17]. Closed formulas for the exact value of γLD(G) have been found so far for

restricted graph families as e.g. paths [21], cycles [4], stars, complete multipartite

graphs and thin suns [3].

Determining γOLD(G) is in general NP-hard [20] and remains NP-hard for per-

fect elimination bipartite graphs and APX-complete for chordal graphs with maxi-

mum degree 4 [18]. Closed formulas for the exact value of γOLD(G) have been found

so far only for restricted graph families such as cliques and paths [20].

Concerning the LTD-problem we observe that it is as hard as the OLD-problem

by just using the same arguments as in [20]. Bounds for the LTD-number of trees

are given in [11,12]. In addition, the LTD-number in special families of graphs,

including cubic graphs and grid graphs, is investigated in [12].

To apply polyhedral methods, a reformulation as set covering problem is in

order. For a 0/1-matrix M with n columns, the set covering polyhedron is Q∗(M) =

conv
{
x ∈ Zn

+ : Mx ≥ 1
}
and Q(M) =

{
x ∈ Rn

+ : Mx ≥ 1
}
is its linear relaxation.

By [2] and [3] such constraint systems MXx ≥ 1 with X ∈ {ID,LD}, respectively,
are

MID(G) =

⎛
⎜⎜⎜⎝

N [G]

	1[i, j]

	2[i, j]

⎞
⎟⎟⎟⎠ MLD(G) =

⎛
⎜⎜⎜⎝

N [G]

	1(i, j)

	2[i, j]

⎞
⎟⎟⎟⎠

where i, j ∈ V (G), every row in matrix N [G] (resp. N(G)) is the characteristic

vector of a closed (resp. open) neighborhood of a vertex in G and 	k(i, j) (resp.

	k[i, j]) is the characteristic vector of a symmetric difference of open (resp. closed)

neighborhoods of vertices at distance k. Using analogous arguments as in [2] and
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[3], it is not hard to verify that, if X ∈ {OLD,LTD}, we have:

MOLD(G) =

⎛
⎜⎜⎜⎝

N(G)

	1(i, j)

	2(i, j)

⎞
⎟⎟⎟⎠ MLTD(G) =

⎛
⎜⎜⎜⎝

N(G)

	1(i, j)

	2[i, j]

⎞
⎟⎟⎟⎠

Observe that, when considering these problems as set covering problems, we can

delete from MX(G) the redundant (duplicated or dominated) rows.

The work is organized as follows: in Section 2, given a graph G, we study the

change of γX(G) with X ∈ {ID,LD,OLD,LTD} under the addition of a universal

vertex to G. Then we apply these results to calculate γX(G) when G is a fan or a

wheel. In Section 3 we use the polyhedral approach to find γX(G) when G is the

generalized corona of a graph. Finally, in Section 4, we study the same numbers

when G is the square of a path or cycle.

2 Graphs obtained from adding a universal vertex

Let G = (V,E) be a connected graph and 0 /∈ V . We define the graph obtained by

adding a universal vertex G′ = (V ′, E′) as the graph such that V ′ = V ∪ {0} and

E′ = E ∪ {0i, i ∈ V }.
Remark 2.1 Let G = (V,E) be a graph and 0 /∈ V .

(i) G′ has true twins iff G has true twins or a universal vertex (i.e. a vertex i such

that N [i] = V ).

(ii) G′ has false twins iff G also has.

Theorem 2.2 Let X ∈ {ID,LD,OLD,LTD} and G = (V,E) be a connected

graph admitting an X-set. In particular, if X = ID we assume that G does not

contain a universal vertex. Then, if G’ is the graph obtained by adding a universal

vertex to G, it holds that

γX(G) ≤ γX(G′) ≤ γX(G) + 1.

Moreover, if there is a minimum X-set C such that for all i ∈ V , C � N [i] when

X = ID or C � N(i) when X ∈ {LD,OLD,LTD} then γX(G′) = γX(G) and

γX(G′) = γX(G) + 1 otherwise.

Proof. Let C ′ be an X-set of minimum size of G′, i.e., γX(G′) = |C ′|.
If 0 /∈ C ′ then C ′ is an X-set of G and γX(G) ≤ |C ′| = γX(G′). If 0 ∈ C ′, as

0 ∈ N [i] for all i ∈ V , 0 does not identify the vertices in V . On the other hand, as

C ′ is minimal, then there exists j ∈ V such that N [j] ∩ C ′ = {0}. Moreover j is

the only vertex with this property since C ′ is an X-set of G′. Since G is connected,

there exists k ∈ N(j)∩ V then we define C = C ′ − {0} ∪ {k}. It holds that C is an

X-set of G such that |C| = |C ′|. Therefore, γX(G) ≤ |C| = |C ′| = γX(G′).
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Assume that if C is an X-set of minimum size of G, there is iC ∈ V such that

C ⊆ N [iC ]. Clearly C is not an X-set of G′. But if X = ID then there is j /∈ N [iC ]

and C ∪ {j} is an ID-set of G′. If X ∈ {LD,OLD,LTD} then C ∪ {0} is an X-set

of G′. In any case γX(G′) ≤ γX(G) + 1.

Now, assume that there is an X-set C of minimum size of G such that for all

i ∈ V , C � N [i] when X = ID or C � N(i) when X ∈ {LD,OLD,LTD}. We will

prove that C is an X-set of G′.
As N(0) ∩ C = C �= ∅ then C total-dominates or dominates the vertices in V ′.
On the other hand, we suppose that N [0]∩C = N [i]∩C (or N(0)∩C = N(i)∩C)

for some i ∈ V if C is an X-set with X = ID (or X ∈ {LD,OLD,LTD}) then

C ⊆ N [i] ∩ C (resp. C ⊆ N(i) ∩ C) and this contradicts the assumption on C.

Then, N [0]∩C �= N [i]∩C (N(0)∩C �= N(i)∩C ) for all i ∈ V , i.e., C is an X-set

of G′ with X ∈ {ID,LD,OLD,LTD}. Therefore, γX(G′) ≤ |C| = γX(G).

Finally, assume that for every minimum X-set C of G there exists i ∈ V such

that C ⊆ N [i] if X = ID (C ⊆ N(i) if X ∈ {LD,OLD,LTD}). Let D be a

minimum X-code of G′ such that |D| = γX(G). It is clear that 0 ∈ D. Hence there

is a unique k ∈ V such thatN [k]∩D = {0}. Let j ∈ N(k) and letD′ = D−{0}∪{j}.
It is easy to check that D′ is an X-set of G′ of cardinality γX(G) not containing

vertex 0. Hence D′ is an X-set of G of cardinality γX(G), then from assumption

there exists h ∈ V such that D′ ⊆ N [h], but this contradicts the fact that D′ is an
X-set of G′ since vertices 0 and h are not separated. �

Let Fn (resp. Wn) denote the fan (resp. wheel) of n+ 1 vertices, i.e., Fn (resp.

Wn) is the graph obtained by adding a universal vertex to the path Pn (resp. cycle

Cn).

For X ∈ {ID,LD,OLD,LTD}, γX(Pn) has already been calculated, see the

following table.

X γX(Pn)

ID �n+1
2 � [4]

LD �2n5 � [4]

OLD 4k + r for n = 6k + r, r ∈ {0, 1, 2, 3, 4}, 4k + 4 for n = 6k + 5 [20]

LTD n2 �+ n4 � − �n4 � [11]

Table 1
γX(Pn)

Now, in the case of cycles, γID(Cn), γLD(Cn) and γLTD(Cn) are known. The

value of γOLD(Cn) is provided in the following result.

Lemma 2.3 For n ≥ 3, γOLD(Cn) = �2n3 �.
Proof (Sketch) In [20] it is proved that γOLD(Cn) ≥ �2n3 �. The bound is tight as

we can show, if n = 3k + r with r = 0, 1, 2, the sets

• {3i− 2, 3i− 1 : 1 ≤ i ≤ k} if r = 0,
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• {3i− 2, 3i− 1 : 1 ≤ i ≤ k} ∪ {n− 1} if r = 1,

• {3i− 2, 3i− 1 : 1 ≤ i ≤ k} ∪ {n− 1, n− 2} if r = 2,

are OLD-sets of Cn of cardinality �2n3 �. �

We summarize the results for cycles in the following table:

X γX(Cn)

ID γID(Cn) =
n
2 if n is even and n+1

2 + 1 if n ≥ 7 is odd [10]

LD �2n5 � [4]

OLD �2n3 � Lemma 2.3

LTD n2 �+ n4 � − �n4 � [6]

Table 2
γX(Cn)

For n ≥ 4 and X ∈ {ID,LD,OLD,LTD}, from Theorem 2.2 we have γX(Pn) ≤
γX(Fn) and γX(Cn) ≤ γX(Wn). If n = 4, X-sets of minimum size (the black

vertices) are depicted in the figure below.

Fig. 2. Minimum X-sets for P4 and F4

For W4 and W5, X-sets of minimum size are shown in Fig. 3 and 4.

Fig. 3. Minimum X-sets for C4 and W4

As a consequence of Theorem 2.2, we obtain:

Corollary 2.4 For X ∈ {ID,LD,OLD,LTD} we have γX(Fn) = γX(Pn) if n ≥ 5

and γX(Wn) = γX(Cn) if n ≥ 6.

Proof. If n ≥ 5, at least one vertex in each of the sets {1, 2} and {n− 1, n} must

belong to an X-set of Pn. Then, from Theorem 2.2, γX(Fn) = γX(Pn).
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Fig. 4. Minimum X-sets for C5 and W5

Now, as n ≥ 6, it is immediate to observe that no minimum X-set is contained

in N [i] (N(i)) when X ∈ {ID,LD} (when X ∈ {OLD,LTD}), then again from

Theorem 2.2, γX(Wn) = γX(Cn). �

Observe that by combining the results in Corollary 2.4 and Tables 1 and 2,

we compute the exact value of a minimum X-set of a fan or a wheel for X ∈
{ID,LD,OLD,LTD}.

3 Generalized corona of a graph

Let G = (V,E) be a graph and k ∈ Z|V |
+ . The k-corona of G, denoted by Gk is the

graph obtained by adding ki pendant vertices to each i ∈ V .

As the pendant vertices are false twins if ki ≥ 2 for some i ∈ V , the graph Gk

does not admit an OLD-set. But in the case ki = 1 for all i ∈ V the only OLD-set

of Gk is V . We now study the remaining problems.

Theorem 3.1 Let Gk be the k-corona of a graph G with k ∈ Z|V |
+ , k = (k1, k2, . . . , k|V |),

ki ≥ 2 for all i ∈ {1, 2, . . . , |V |}. Then, γID(G
k) = γLD(G

k) = γLTD(G
k) =

k1 + · · ·+ k|V |.

Proof. Let V = {v1, . . . , v|V |} and for each vi ∈ V , Pi = {p1i , . . . , pkii } the set of the

pendent vertices of vi with ki ≥ 3 for all i ∈ {1, . . . , |V |}.
Clearly, N [pji ] = {pji , vi} and 	2[p

j
i , p

k
i ] = {pji , pki }. Hence, the rows correspond-

ing to the sets N [vi] = Pi ∪{vi}∪NG(vi), 	1[vi, vj ] = Pi ∪Pj ∪ (NG(vi)	NG(vj)),

	1[vi, p
j
i ] = (Pi − {pji}) ∪ NG(vi), 	2[vi, p

k
j ] = Pi ∪ (NG[vi] − {vj}) ∪ {pkj } (since

vj ∈ N(vi)) and 	2[vi, vj ] ⊇ Pi ∪ {vi} ∪ Pj ∪ {vj} are redundant. Thus MID(G
k)

exactly contains all 2-element subsets of Pi for each i ∈ {1, 2, . . . , |V |} and then

MID(G
k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

R2
k1+1 0 · · · 0

0 R2
k2+1 · · · 0

...
...

. . .
...

0 0 · · · R2
|V |+1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where R2
j denotes the matrix whose rows are all the vectors in {0, 1}j with exactly
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two 1’s. It is known that the covering number of R2
j is j − 1 (see [19]). Hence,

γID(G
k) = k1 + · · ·+ k|V |.

Now, observe that, N [pji ] = {pji , vi} and 	2[p
j
i , p

k
i ] = {pji , pki }. Hence, the rows

corresponding to the sets N [vi] = Pi∪{vi}∪NG(vi), 	1(vi, vj) = Pi∪{vi}∪Pj∪{vj},
	1(vi, p

j
i ) ⊇ {pji , vi}, 	2[vi, p

k
j ] ⊇ Pi∪{vi} and 	2[vi, vj ] ⊇ Pi∪{vi} are redundant.

So, MLD(G
k) = MID(G

k) and hence γID(G
k) = γLD(G

k).

Finally, to study γLTD(G
k) observe that the symmetric differences are analogous

to the LD-problem, then they are all dominated except from 	2[p
j
i , p

k
i ] = {pji , pki }

and N(vi) = Pi ∪ NG(vi) is dominated by 	2[p
j
i , p

k
i ] too. On the other hand,

N(pji ) = {vi} are not dominated for i ∈ {1, . . . , |V |}. Thus,

MLTD(G
k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

In 0 · · · 0

0 R2
k1

· · · 0
...

...
. . .

...

0 0 · · · R2
|V |

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Therefore, we obtain that γID(G
k) = γLD(G

k) = γLTD(G
k) = k1 + · · ·+ k|V |. �

4 Square of paths and cycles

The square of a graph G = (V,E) is the graph G2 = (V,E′) where E′ = E ∪ {ij :

dist(i, j) = 2}. In this section wes analyze theX-sets, forX ∈ {ID,LD,OLD,LTD}
in the case G = Pn and G = Cn.

It is easy to check that γID(P
2
5 ) = 4, γID(P

2
6 ) = γID(P

2
7 ) = γID(P

2
8 ) = 5 and

γID(P
2
9 ) = γID(P

2
10) = 6.

In [14] it is shown that
⌈
n+1
2

⌉ ≤ γID(P
2
n) ≤

⌈
n+1
2

⌉
+1 for n ≥ 11. In addition, the

same authors identify the values of n ≥ 11 for which this bounds are attained. Ac-

tually, they discuss a generalization of identifying codes, called r-identifying codes.

In general, we have that the r-identifying code number of a graph G equals the

identifying code number of the r-th power of G such that the 2-identifying code

number of a path equals the identifying code number of the square of this path.

Now, if X = LD or X = LTD, it can be checked that γLD(P
2
4 ) = γLTD(P

2
4 ) =

γLD(P
2
5 ) = γLTD(P

2
5 ) = 2 and γLD(P

2
6 ) = γLTD(P

2
6 ) = 3. Moreover, in [13], it is

proved that γLD(P
2
n) =

⌈
n+1
3

⌉
, if n ≥ 1.

Remark 4.1 Combining relation (1) with the lower bound for γLD(P
2
n) in [4], we

have that for every n ≥ 1

γLTD(P
2
n) ≥ γLD(P

2
n) ≥

⌈
n+ 1

3

⌉
.

G. Argiroffo et al. / Electronic Notes in Theoretical Computer Science 346 (2019) 135–145142



Theorem 4.2 For P 2
n with n ≥ 7 we have that

⌈
n+ 1

3

⌉
≤ γLTD(P

2
n) ≤

⌈
n+ 1

3

⌉
+ 1.

Moreover, the lower bound is attained if n = 6k.

Proof (Sketch) For n ≥ 7, let n = 6k + r, with k ≥ 1 and r ∈ {0, 1, . . . , 5}. We

can show that

• {4} ∪ {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} for r = 0

is an LTD-set of P 2
n of cardinality �n+1

3 �, and that

• {4, n} ∪ {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} for r = 1,

• {4, n− 1} ∪ {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} for r = 2,

• {4, n− 1, n} ∪ {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} for r = 3,

• {4, n− 3, n− 1} ∪ {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} for r = 4,

• {4, n− 2, n} ∪ {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} for r = 5,

are LTD-sets of P 2
n of cardinality �n+1

3 �+ 1. �

Finally, it is not hard to check that γOLD(P
2
5 ) = 3 and γOLD(P

2
n) = 4 when

n = 6, 7, 8, 9.

Theorem 4.3 For P 2
n with n ≥ 10, n = 10k + r with r ∈ {0, . . . , 9} we have that

γOLD(P
2
n) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4k + 1 if r = 0, 1

4k + 2 if r = 2, 3

4k + 3 if r = 4, 5

4k + 4 if r = 6, 7, 8, 9

Proof (Sketch) Let n = 10k+ r with k ≥ 1 and r ∈ {0, . . . , 9}. We can show that

• {2i : 1 ≤ i ≤ k} − {10i : 1 ≤ i ≤ k − 1} when r ∈ {0, . . . , 7},
• {2i : 1 ≤ i ≤ k} − {10i : 1 ≤ i ≤ k} when r = 8, 9

are OLD-sets with cardinality 4k + 1 +
⌊
r
2

⌋
in the first case and 4k +

⌊
r
2

⌋
in the

second case. �

Finally, computational evidence encourages us to conjecture that Thm. 4.3 in

fact gives the exact values for γOLD(P
2
n).

In a similar way, we will study now the squares of cycles. Note that C2
n equals

a clique when n ≤ 5 so that no ID-codes exist and γX(C2
n) is known for X ∈

{LD,OLD,LTD}. If X = ID, γID(C
2
n) =

n
2 if n is even and, if n is odd, γID(C

2
n) =

n+1
2 if n = 5k, 5k + 2, 5k + 3 and γID(C

2
n) =

n+1
2 + 1 if n = 5k + 1, 5k + 4 (see [7]).

If X = LD, and n = 6k + r, k ≥ 1, r = 0, 1, . . . 5, γLD(C
2
n) =

⌈
n
3

⌉
+ 1 if

r = 3 and γLD(C
2
n) =

⌈
n
3

⌉
otherwise (see [7]). If X = LTD, it can be checked that
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γLTD(C
2
6 ) = 3.

Theorem 4.4 For C2
n with n ≥ 7, we have that

⌈n
3

⌉
≤ γLTD(C

2
n) ≤

⌈n
3

⌉
+ 1.

Moreover, the lower bound is attained if n = 6k, 6k + 1, 6k + 2, 6k + 4.

Proof. If n ≥ 7, let n = 6k + r, with k ≥ 1 and r ∈ {0, 1, . . . , 5}. It is not hard to

check that:

• {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} if r = 0,

• {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} ∪ {n− 1} if r = 1, 2, and

• {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} ∪ {n− 3, n− 1} if r = 4,

are LTD-sets of C2
n of cardinality �n3 �, and

• {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} ∪ {n− 1, n} if r = 3,

• {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} ∪ {4, n− 2, n} if r = 5,

are LTD-sets of C2
n of cardinality �n3 �+ 1, but not necessarily minimum. �

If X = OLD, it can be easily seen that C2
6 has false twins and, thus, no OLD-set

and that γOLD(C
2
7 ), γOLD(C

2
8 ) = 4 holds. Moreover, we can show:

Theorem 4.5 For C2
n with n ≥ 9, we have that

⌈n
3

⌉
≤ γLTD(C

2
n) ≤ γOLD(C

2
n) ≤

⌈
n− 2

2

⌉
+ 1.

Proof (Sketch) From the general relation (1) and the lower bound for γLTD(C
2
n)

given in Thm. 4.4, we conclude the lower bound for γOLD(C
2
n). The upper bound

is true as we can show that

• {2i− 1 : 1 ≤ i < k} ∪ {2k − 2} if n = 2k + 1,

• {2i− 1 : 1 ≤ i ≤ k} if n = 2k + 2

form OLD-codes of size k in C2
n. �

Note that this implies γLTD(C
2
n) = γOLD(C

2
n) for 9 ≤ n ≤ 11. For 12 ≤ n ≤ 15,

we know that the upper bound is tight and conjecture this also for all n ≥ 16.

To conclude, we showed that adding a universal vertex changes the studied X-

numbers by at most one (but remain the same in the case of paths and cycles),

whereas taking the square of a graph can result in very different X-numbers. More-

over, the studied X-numbers of generalized coronas of a graph depend in most cases

only on the corona, but not on the graph.
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