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ABSTRACT
Beta-diversity, defined as spatial replacement in species composition, is crucial to the
understanding of how local communities assemble. These changes can be driven by
environmental or geographic factors (such as geographic distance), or a combination
of the two. Spiders have been shown to be good indicators of environmental quality.
Accordingly, spiders are used in this work as model taxa to establish whether there
is a decrease in community similarity that corresponds to geographic distance in
the grasslands of the Campos & Malezales ecoregion (Corrientes). Furthermore,
the influence of climactic factors and local vegetation heterogeneity (environmental
factors) on assemblage compositionwas evaluated. Finally, this study evaluatedwhether
the differential dispersal capacity of spider families is a factor that influences their
community structure at a regional scale. Spiders were collected with a G-Vac from
vegetation in six grassland sites in the Campos & Malezales ecoregion that were
separated by a minimum of 13 km. With this data, the impact of alpha-diversity
and different environmental variables on the beta-diversity of spider communities
was analysed. Likewise, the importance of species replacement and nesting on beta-
diversity and their contribution to the regional diversity of spider families with different
dispersion capacities was evaluated. The regional and site-specific inventories obtained
were complete. The similarity between spider communities declined as the geographic
distance between sites increased. Environmental variables also influenced community
composition; stochastic events and abiotic forces were the principal intervening
factors in assembly structure. The differential dispersal capacity of spider groups also
influenced community structure at a regional scale. The regional beta-diversity, as well
as species replacement, was greater in high and intermediate vagility spiders; while
nesting was greater in spiders with low dispersion capacity. Geographic distance, among
other factors (climate, and active and passive dispersion capacity), explains assembly
structure and the decrease spider community similarity between geographically distant
sites. Spiders with the highest dispersal capacity showed greater species replacement.
This may be due to the discontinuity (both natural and anthropic) of the grasslands
in this ecoregion, which limits the dispersal capacity of these spiders, and their close
dependence onmicrohabitats. The dispersal capacity of the least vagile spiders is limited
by geographic distance and biotic factors, such as competition, which could explain the
nesting observed between their communities.
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INTRODUCTION
The relative importance of local and regional environmental factors as controllers of
local community assembly is a central question in ecology and biogeography (Bell, 2001;
Hubbell, 2001; Ricklefs, 2004). Beta-diversity (β), defined as the spatial change in species
composition (Whittaker, 1960), can be the result of the replacement of some species from
one community to another; or the result of nesting that reflects a process of species loss (or
gain) (Baselga, 2010; Baselga, 2012). Thus, beta-diversity can be considered a key concept
to understand how is the local community assembly (Condit et al., 2002; Gering & Crist,
2002); the behaviour of ecosystems; their operation and for the conservation of biodiversity
(Legendre, Borcard & Peres-Neto, 2005).

There is a growing interest in identifying which factors determine beta-diversity patterns,
andhow these influence assembly structure ondifferent spatial scales (Carvalho et al., 2011).
Several authors have associated beta-diversity with environmental or geographic factors,
as well as combinations of the two (Tuomisto, Ruokolainen & Yli-Halla, 2003; Legendre,
Borcard & Peres-Neto, 2005; Soininen, McDonald & Hillebrand, 2007; Qian, Badgley &
Fox, 2009; Jiménez-Valverde et al., 2010; Carvalho et al., 2011), demonstrating that the
importance of these factors depends on the group and taxonomic level studied, on spatial
scale and the geographic region analysed.

Whittaker (1956) andWhittaker (1960) proposed the decline in similarity with increasing
geographic distance. That is to say, the similarity in species composition between two sites
diminishes as the geographic distance between them increases (Whittaker, 1956; Nekola
& White, 1999). Soininen, McDonald & Hillebrand (2007) proposed three mechanisms
which can act simultaneously and allow explain this phenomenon. The first suggests
that similarity decreases with geographic distance because there is a corresponding
increase in environmental dissimilarity that provokes greater species replacement. This
mechanism supposes that species are distributed according to their distinct and specific
requirements and to their tolerance for diverse environmental conditions (Nekola &
White, 1999). A second mechanism suggests that the decline in similarity could be
due to structural properties of the landscape that limit the range of dispersal. This
proposal envisions a non-homogeneous landscape and the presence of barriers to
dispersal (Garcillán & Ezcurra, 2003) that affect displacement. Finally, the decrease in
similarity due to increasing distance between communities could be explained by a
species own dispersal limit (neutral theory) within a homogeneous space (Hubbell, 2001).

Among arthropods, spiders have gained wide acceptance as indicators of environmental
quality (Pinkus-Rendón, León-Cortés & Ibarra-Núñez, 2006); as such, their abundance,
species richness and community structure are useful indicators of the biodiversity of
the biocoenosis as a whole (Willett, 2001). Spider species richness has been correlated
with latitude and mean annual temperature (Finch, Blick & Schuldt, 2008; Whitehouse
et al., 2009), with habitat complexity and maximum regional temperature (Jiménez-
Valverde & Lobo, 2007) as well as with altitudinal gradients (Chatzaki et al., 2005; Bowden
& Buddle, 2010). Spiders respond quickly to brusque changes in habitat heterogeneity
(Rubio, Corronca & Damborsky, 2008), and as a consequence of the narrow spatial
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scale in which spiders divide these biotic and abiotic changes, they become an
appropriate species to evaluate patterns in diversity at a regional scale. As follows, a
decrease in similarity between spider assemblages was recorded as climatic and geographic
distance increased (Carvalho et al., 2011), although the response to the latter was weak in
some cases (Jiménez-Valverde et al., 2010).

Spiders use different strategies to capture prey, this variety not only indicates their
diversity, but can also reflect diversity at other trophic levels (Żmudzki & Laskowski,
2012). They are distributed across the majority of terrestrial ecosystems, as well as some
freshwater ecosystems (Turnbull, 1973). Their wide distribution can be explained by the
capacity to disperse passively through the air via silk threads (ballooning) (Brændegaard,
1937;Humphreys, 1987; Foelix, 2011) and occupy a variety of available niches. The distance
that a spider can travel by this method depends primarily on body weight and wind, though
under favourable conditions a spider could travel several hundred kilometres (Okuma &
Kisimoto, 1981). The wide variety of body sizes and ecological strategies between spider
families renders differences in their capacity to disperse passively (Bishop & Riechert,
1990; Suter, 1999). Consequently, supposing that ballooning is the primary method of
long-distance dispersal (Bishop & Riechert, 1990; Thomas, Brain & Jepson, 2003), different
families should have different beta-diversity patterns. Some vagile species can reach any
available habitat under favourable environmental conditions, while other species with poor
dispersal capabilities are unable to colonize all of the habitats in which they could survive
(Araujo & Pearson, 2005; Steinitz et al., 2006).

In addition to the dispersal capacity, other factors can explain the diversity of spiders
including their correspondence with the habitat heterogeneity (Uetz, 1991;Whitmore et al.,
2002; Jiménez-Valverde & Lobo, 2007); understood the latter as the complexity of vertical
and horizontal vegetation (Tews et al., 2004). Thus, heterogeneous habitats provide more
available niches and many alternative ways of exploit environmental resources (Bazzaz,
1975). Habitat heterogeneity influences microclimate and determines the community
of herbivorous species, which are spiders’ primary food source; and, consequently, it
influences species composition and abundance in different habitats (Pearce et al., 2004).
Moreover, climate factors such as temperature, humidity and precipitation (Bonte, Baert
& Maelfait, 2002; Jiménez-Valverde & Lobo, 2007; Paredes Mungía, 2012), select the species
that can live in each locality (Jiménez-Valverde et al., 2010).

Five ecoregions converge in Corrientes province, including the Campos & Malezales
ecoregion (Burkart et al., 1999). This ecoregion is considered a prolongation of the
Paranaense jungle and extends outward from the southeastern edge of Misiones province,
encompassing an area of 30,000 km2. The landscape matrix, principally grassland, bestows
the region with great potential for agriculture and cattle farming, the latter being the
predominant anthropic activity in the region (Matteucci, 2012). Over the last ten years,
multiple authors (Avalos et al., 2007; Rubio, Corronca & Damborsky, 2008; Avalos et al.,
2009; Rubio & Moreno, 2010) have analysed spider fauna in the province however, only
the recent study by Rodriguez Artigas (2014) has attempted to identify which factors
influence spider communities at different spatial scales in the four ecoregions in Corrientes.
Notwithstanding, that study did not consider geographic distance as a possible determinant
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Figure 1 Studied area.Map of the area of study highlighting sampling sites.

in diversity patterns. For this reason, the present study seeks to examine the influence of
geographical distance and the effect of environmental variables (climate and habitat
heterogeneity) on spider diversity patterns of Campos & Malezales ecoregion. Likewise,
this study evaluates whether the differences in the dispersal capacity of spider species
influences their community structure at a regional scale. We expect that spider assemblages
would differ between sites, and more so at more distant sites; demonstrating that the
most vagile spider families are more dependent on environmental characteristics and that
geographic distance would not be among the primary forces driving assembly structure.
Moreover, it is expected that spiders with high vagility can reach to more available niches,
showing a low beta diversity.

MATERIALS AND METHODS
Area of study: Six sites that were geo-referenced of grasslands in eastern Corrientes province
(Argentina) within the Campos & Malezales ecoregion were considered in this study. Sites
were arranged fromnorth to south between 27◦33′–29◦30′S and 56◦14′–58◦49′W, separated
by a distance no smaller than 13 km and reaching 250 km between the most distant pair
(Fig. 1). This ecoregion is distinguished by its vegetation, the matrix consisting of vast
grasslands of plain, periodically interrupted by relict patches of Paranaense jungle-like
forest. The region has a humid subtropical climate with isohyets at 1,800 mm to the
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northeast and 1,300 mm to the southeast and uniform rain throughout the year. The mean
temperature oscillates between 20 and 22 ◦C. There are periodic floods and fires, the latter
used as a management tool that to regulate the dynamic vegetation of the ecoregion. The
grasslands are low and dominated byAndropogon, Aristida, Briza, Erianthus, Piptochaetium,
Poa, Stipa, Paspalum, Axonpus and Panicum species. The small patches of open forest that
arise from the savannah are characterized by Syagrus,Acacia,Allagoptera andDiplothemium
species (Matteucci, 2012).

Sampling: Samples were collected from vegetation with a G-Vac (garden vacuum) by
the IEBI team (Institute for the Study of Invertebrate Biodiversity- FCN-U.N.Sa) between
the spring of 2006 and autumn of 2007. In each collecting site, we selected two areas of
2 ha each, located one on the left and the other on the right side of the route, separating
from the route border by no less than 150 m. In each area, 10 randomly samples were
taken per season (Spring and Autumn). Each suction sample was spaced from another
by not less than 50 m. Thus, a total of 40 suction samples was taken per collecting site. A
single suction sample consisted of vacuuming an area of one square meter for one minute.
The material collected was placed in polyethylene bags with 70% ethyl alcohol, labelled
appropriately, and transported to the laboratory for analysis. Spiders were recorded in
spreadsheets and all were classified by family following the keys available (Dippenaar-
Schoeman & Jocqué, 1997; Ramírez, 1999; Ubick et al., 2005). Morphospecies were assigned
according to the methodology proposed by Oliver & Beattie (1996) to those spiders that
could not be identified to species taxonomic level. This information was incorporated into
the database at IEBI (IEBIData) which includes digital pictures of somatic and external
genital distinctive characters of each species/morphospecies that easily permit to identify
individuals and assign them to a correct species morphospecies. Collected specimens were
deposited in the IEBI-MCN Collection (Instituto para el Estudio de la Biodiversidad de
Invertebrados-Museo de Ciencias Naturales, Universidad Nacional de Salta).

Environmental variables: To characterize each of the selected samples sites, information
on eight bioclimatic variables were obtained from the WorldClim-Bioclim (www.
worldclim.org) database, including temperature and precipitation; two variables associated
with productivity (Normalized vegetation Index, NDVI) for the months in which
samples were taken, which were obtained from Modis satellite images from NASA
(http://modis.gsfc.nasa.gov/), and four variables, measured in situ, of local vegetation
heterogeneity. The latter variables were quantified as a percentage vegetation per strata
at 50 cm intervals, from ground level to 2 m, as described by Huang et al. (2011). This
measurement was only taken in the autumn and, therefore, variables associated with
environmental heterogeneity were only incorporated into analysis that included autumn.

Selection of spider families with different dispersal capacities: To test whether the
differential dispersal capacities of spider families influence the structure of spider
communities on a regional scale, six spider families were selected: Araneidae, Theridiidae,
Thomisidae, Salticidae, Anyphaenidae and Miturgidae. The first two families build webs to
capture prey; while the other four ones hunt on the ground and in the vegetation (Cardoso
et al., 2011). Different spider families have distinct dispersal capacities, both active and
passive. Araneidae and Theridiidae dispersal passively through the air (ballooning), which
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allows them to travel several hundred kilometres under favourable conditions (Okuma
& Kisimoto, 1981). Thomisidae can also dispersal via ballooning (Foelix, 2011); however,
like Salticidae (both foliage runners) they tend to dispersal on the ground (Liljesthröm et
al., 2002). These families can rapidly run short distances and use this dispersal method
widely (Dondale et al., 1970). Finally, Anyphaenidae and Miturgidae exclusively dispersal
on the ground (Gertsch, 1979), and this dispersal is limited. Following this criteria and
that outlined by Jiménez-Valverde et al. (2010), the families are grouped as: high vagility
(Araneidae and Theridiidae); intermediate vagility (Thomisidae and Salticidae); and low
vagility (Anyphaenidae and Miturgidae).

Data analysis
Inventory and alpha diversity : Inventory completeness was evaluated using the non-
parametric estimators of species richness Chao1 and ACE, which represent the lower and
upper limits, respectively, of the species richness in communities with highly heterogeneous
samples (Chao & Shen, 2012). These estimators were calculated with the program SPADE
(Chao & Shen, 2009) and were used to calculate inventory completeness at different
scales. The program PAST v2.17 (Hammer, Harper & Ryan, 2001) was used to run an
analysis of similarities (ANOSIM) to test for statistically significant differences between
spider assemblages at the sampling sites. To evaluate and compare the diversity between
sites, the true observed diversity and the estimated diversity for each community were
calculated using the Rényi one-parametric diversity index family (Tóthmérész, 1995) and
the estimators Chao, Chao & Shen and MVUE to estimate zero, first, and second-order
diversity, respectively. Both calculations weremade using the PAST v2.17 (Hammer, Harper
& Ryan, 2001) and SPADE (Chao & Shen, 2009) programs.

Evaluation of geographic distance and environmental variables with respect to spider
communities: A simple Mantel test verified the relative importance of geographic distance
on the patterns of beta-diversity obtained. The test considered a faunistic matrix (generated
using Jaccard distance data as a measure of the similarity between spider communities
between sites), and a geographic distance matrix (generated using site coordinates in
WGS84 format and the geographic distance as a measure of distance between site pairs).
The Mantel tests were performed with the PAST v2.17 (Hammer, Harper & Ryan, 2001)
program, using Pearson’s correlation coefficient and 10,000 permutations to evaluate
the statistical significance between matrices. The influence of geographical distance and
environmental variables (climate and vegetation) on the distribution pattern of spiders
was assessed by a variation partitioning procedure (Borcard, Legendre & Drapeau, 1992)
using the package ‘‘Vegan’’ in the software R. Thus, the total variation of the abundance
matrix was partitioned in its purely spatial, purely climate and purely vegetation complexity
effects in the fraction explained by the correlation between them; and also by the residual
fraction. Previously, principal coordinates of neighbour matrices (PCNM) was performed
to obtain spatial variables. These variables, as environmental ones, were subjected to a run
forward selection, using an analysis of canonical redundancy (RDA) (Legendre & Legendre,
1998) to select the variables that were included in the variation partitioning procedure
(Blanchet, Legendre & Borcard, 2008). βRC was calculated based on the Raup-Crick
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similarity, following the formula outlined by Chase et al. (2011). This measurement
permitted the inference of events associated the dissimilarity between site pairs in
accordance with the following interpretation: βRC ≈ 0: Similarityobserved≈ Similarityexpected
(stochastic events structure communities, high dispersion between sites); βRC ≈ 1:
Similarityobserved < Similarityexpected (differences in deterministic environmental filters
between sites favours dissimilarity in species composition, biotic forces drive differentiation
in adjacent communities); and βRC ≈−1: Similarityobserved > Similarityexpected (shared
deterministic environmental filters generate high similarity between sites as a result of
abiotic factors).

The same methodology above described was applied to the question of correlation
between the faunistic, geographic distance and environmental matrices for each of
the family groups selected, taking into account dispersal capacity and the importance
of ballooning (wind dispersal) as a dispersal technique in the structuring of spider
communities at a regional scale.

Dispersal and beta-diversity: The contribution of beta-diversity in the regional diversity
(gamma) of the groups with different dispersal capacities was calculated from a
multiplicative partition of diversity using the program PARTITION 3.0 (Veech & Crist,
2009), where: γ = α1 (within the samples) × β1 (between samples) × β2 (between
regional sites). The latter observed β value was collated with the value expected with
random distribution (Crist et al., 2003), and compared between groups. Finally, the total
beta-diversity of each group of families with distinct dispersal capacities was partitioned
into its components, nesting and species replacement, as described in the Sørensen index.
The R ‘‘betapart’’ pack provided by Baselga et al. (2013) was used for this analysis.

RESULTS
Inventory and alpha diversity
A total of 3.873 adult and immature spiders, belonging to 251 species/morphospecies and
27 families, were collected. Araneidae, Theridiidae and Oxyopidae were the dominant
families, representing 29.43%, 19.42% and 19.10%, respectively, of total abundance; while
Araneidae and Salticidae had greater species richness (S= 52 and S= 40, respectively). The
performance of the non-parametric estimators of species richness found that the inventory
reached 74% of the value estimated by Chao1 (Table 1).

Spider communities differed between pair of sites (Anosim: R> 0.63,p< 0.01). All
sites had a specific richness equal to or greater than 80 species, except for site 1 (Table 1).
The inventory of each site was unable to capture the total spider diversity present in each
site, though completeness values were good and were near to or greater than 60% of the
Chao1 estimate (Table 1). The true observed and estimated diversity parameters indicate
different community behaviour in rare and dominant species; consequently, under these
circumstances sites were not able to compare in this respect (Table 1).

Beta-diversity: similarity decreases with geographic distance
The Mantel test (R= 0.53;p< 0.05), demonstrated that geographic distance had a direct
effect of the similarity of spider assemblages, confirming that these communities become less
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Table 1 Diversity parameters. The abundance and species richness of spider species, non-parametric estimator values (Chao1 y ACE), of the in-
ventory completeness and the true observed and estimated diversity.

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 TOTAL

Richness 40 80 110 82 84 103 251
Abundance 102 803 703 480 843 942 3,873
Chao1 67.56 121.88 175.03 122.83 114.15 166.18 339.11
ACE 72.6 138.7 182.0 129.3 121.7 224.9 342.6
Inventory completeness (Chao1) 59.20% 65.64% 62.84% 66.76% 73.58% 61.98% 74.02%

0D(Sobs) 40 80 110 82 84 103 –
1D(Shannonentropy) 27.13 13.20 28.22 29.50 31.59 20.59 –Observed diversity
2D(Gini−SimpsonIndex) 19.12 4.61 11.12 12.78 19.95 8.62 –
0D(Chao) 67.6 121.9 175.0 122.8 114.2 166.2 –
1D(Chao&Shen) 37.70 15.31 34.49 35.12 34.73 24.17 –Estimated diversity
2D(MVUE) 23.31 4.63 11.28 13.10 20.41 8.69 –

Table 2 Raup–Crick values. Raup–Crick values are indicated below the diagonal and modified Chase et
al. (2011) values above the diagonal (light grey=βRC ≈ 0, black=βRC ≈ 1, dark grey=βRC ≈−1).

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

Site 1 – 0.773 −0.664 −0.915 −0.247 −0.424
Site 2 0.887 – 0.531 0.331 −0.971 −0.721
Site 3 0.168 0.766 – 0.846 −0.939 −0.956
Site 4 0.043 0.666 0.077 – 0.005 −0.353
Site 5 0.377 0.015 0.031 0.503 – −0.674
Site 6 0.288 0.140 0.022 0.324 0.163 –

Notes.
βRC ≈ 0: Similarityobserved ≈ Similarityexpected (stochastic events structure communities, high dispersion between
site); βRC ≈ 1: Similarityobserved < Similarityexpected (differences in deterministic environmental filters between sites
favors dissimilarity in species composition, biotic forces drive differentiation in adjacent communities); βRC ≈ −1:
Similarityobserved > Similarityexpected (shared deterministic environmental filters generate high similarity between sites as a
result of abiotic factors).

similar as the distance between them increases. This variable, together with environmental
ones explained 39% of the changes in the composition of spider assemblages (Fig. 2).
The variation mainly corresponded to the pure effects of vegetation complexity (17%),
the latter with climate explained 28% of the composition changes. The analysis of Raup-
Crick similarity based on standardized values also supported these findings, showing
that deterministic abiotic forces followed by stochastic events are important factors that
contribute to the structure of the spider communities considered in this study (Table 2).

Beta-diversity: the relationship between dispersion and beta-diversity
With respect to the dispersal capacity of spider families, the geographic distance
explained 16% of the variation in the composition of the spider assemblages with high
dispersal capacity (Fig. 3A), however, it was not significant according to the Mantel test
(R= 0.44;p> 0.05). Meanwhile, 21% of the changes in the composition of communities
can be attributed to the purely climate and purely vegetation complexity effects. This
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Figure 2 Variation partitioning.Variation partitioning showing the relative influence of the geograph-
ical distance, climate and vegetation complexity variables on the spider assemblages in grassland of Cam-
pos & Malezales ecoregion (Corrientes-Argentina).

percentage rises to 25% if it also considers its spatial structure. Thus, even though stochastic
event are important, the deterministic abiotic forces were the key factor driving spider
community structure (Table 3).

In the intermediate vagile spider families, the geographical distance had little influence
in the dissimilarity of spider assemblages (Mantel test: R= 0.31;p> 0.05) (Fig. 3B), being
environmental variables the most important in structuring community. However, the
model only explained 10% of the changes in spider assemblages indicating that other
factors, mainly biotic according to βRC values, could influence the distribution pattern of
the species (Table 3).

Geographic distance did an important role in structuring the assemblages of families
with a low dispersal capacity (Mantel test: R= 0.49;p< 0.05), explaining 18% of the
variation of the assemblages (Fig. 3C). Environmental variables also influenced on the
community dissimilarity, although the biotic forces and stochastic factors would be the
most important for structuring the communities of the least vagile spider (Table 3).

Regional beta-diversity (β2) was greater in families with a high dispersal capacity and
lesser in less vagile families, exceeding the values expected by chance by 34%, 29% and
14%, respectively (Fig. 4). β2 (between sites) diversity significantly exceeded expected
diversity values, indicating that these species were not randomly distributed. Likewise,
the differences between the expected and observed β1 (between samples) diversity values
were statistically significant for the families with the greatest and lowest dispersal capacity,
revealing their capacity to occupy different available niches.
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Figure 3 Variation partitioning by families with different dispersal capacity.Variation partitioning
showing the relative influence of the geographical distance, climate and vegetation complexity variables in
spider families with high (A), intermediate (B) and low (C) dispersal capacity.

Dissimilarity (βSOR) and species replacement between sites (βSIM ) were greater for
spiders with high and intermediate dispersal capacity (Table 4), representing 91% and
87%, respectively, of the total beta-diversity. The least vagile families had the least species
replacement but the highest nesting value (25% of the observed dissimilarity) (Table 4).

DISCUSSION
Spider species richness in the grassland of the Campos & Malezales ecoregion is high; 251
species/morphospecies from27Araneomorphae families were recorded, which corresponds
to 90% of the total number of families recorded in Corrientes province (Rodriguez Artigas,
2014). Our results are comparable to those obtained by other authors in the same province
who have used intensive sampling methods. Rubio, Corronca & Damborsky (2008) reported
28 spider families in forests and grasslands in the Mburucuyá National Park; while Avalos
et al. (2009) found 33 families in samples obtained from the Iberá Provincial Reserve. In
this work, four of the families corresponded to orbicular spiders, three of which were also
described in the forests and grasslands of the same ecoregion by Rubio & Moreno (2010).

Although it is difficult to sample the totality of a spider assemblage due to the large
number of rare species collected (Haddad et al., 2010), a large proportion (74%) of the
species present in the Campos & Malezales grasslands were captured in this study; this
percentage was near to or greater than 60% for each site included in this study. These results
indicate good (Cardoso, 2009) and complete inventories, since the percentage exceeds 50%
of the estimated total number of species (Chao et al., 2009).
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Table 3 Raup–Crick values by families with different dispersal capacity. Raup–Crick values are indi-
cated below the diagonal and modified Chase et al. (2011) values above the diagonal (light grey= βRC ≈
0, black=βRC ≈ 1, dark grey=βRC ≈−1) in families with high intermediate and low vagility.

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

High
Site 1 – 0.539 −0.326 −0.923 −0.120 −0.526
Site 2 0.770 – 0.512 −0.744 −0.609 0.165
Site 3 0.337 0.756 – −0.903 −0.629 0.522
Site 4 0.039 0.128 0.049 – 0.359 −0.623
Site 5 0.440 0.196 0.186 0.680 – −0.085
Site 6 0.237 0.583 0.761 0.189 0.458 –

Medium
Site 1 – −0.465 −0.519 −0.537 −0.879 −0.739
Site 2 0.268 – 0.163 0.856 −0.835 −0.379
Site 3 0.241 0.582 – −0.225 0.581 −0.786
Site 4 0.232 0.929 0.388 – 0.685 −0.848
Site 5 0.061 0.083 0.210 0.843 – 0.580
Site 6 0.131 0.311 0.107 0.076 0.210 –

Low
Site 1 – 0.895 0.560 0.753 0.643 0.542
Site 2 0.948 – 0.065 0.954 −0.276 0.008
Site 3 0.780 0.533 – 0.095 0.575 −0.877
Site 4 0.877 0.977 0.548 – −0.577 −0.467
Site 5 0.822 0.362 0.788 0.212 – 0.012
Site 6 0.771 0.504 0.062 0.267 0.506 –

Notes.
βRC ≈ 0: Similarityobserved ≈ Similarityexpected (stochastic events structure communities, high dispersion between
site); βRC ≈ 1: Similarityobserved < Similarityexpected (differences in deterministic environmental filters between sites
favors dissimilarity in species composition, biotic forces drive differentiation in adjacent communities); βRC ≈ −1:
Similarityobserved > Similarityexpected (shared deterministic environmental filters generate high similarity between sites as a
result of abiotic factors).

Table 4 Partition of the total beta diversity into its components. Partition of the total beta-diversity
into its components, species replacement (βSIM) and nesting (βSNE) for families with varying vagility (dif-
ferent letters indicate statistically significant differences between groups p< 0.05).

VAGILITY βSIM βSNE βSOR

High 0.676a 0.069a 0.745a

Medium 0.665a 0.100b 0.765a

Low 0.531b 0.177c 0.709b

Whittaker (1956) and Whittaker (1960) proposed that geographic distance influences
the structure of the spider assemblages studied, showing a decrease in the similarity of
spider communities as geographic separation increases. Similar results were reported by
Carvalho et al. (2011) in the Portuguese region of the Iberian Peninsula. The effect of
geographical distance could be explained by the first mechanism proposed by Soininen,
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Figure 4 Partition of gamma diversity of spider diversity.Multiplicative partition of the diversity of
families with high, intermediate and low dispersal capacity (* indicates statistically significant differences
between observed and expected values).

McDonald & Hillebrand (2007), because environmental variables, also explained the species
turnover, being the habitat heterogeneity (complexity of vegetation) the most relevant.
Thus, stochastic and deterministic events like dispersal and abiotic factors, respectively,
would be the principle intervening forces on community structure, as was verified by the
variation partitioning and βRC values.

The results obtained here counter previous findings from a spider study in Madrid
Province (Spain), in which Jiménez-Valverde et al. (2010) observed that geographic distance
was not an important factor explaining the differences in community composition.
However, other empiric studies revealed that the relationship between similarity and
geographic distance is strongly dependent on the extent of the area of study (Martiny et
al., 2011; Soininen et al., 2011; Steinbauer et al., 2012). This could explain the discrepancy
between the results obtained here and in the Spanish study, since the distance between the
most distant sites in our study was double that of the Jiménez-Valverde et al. (2010) study.

Although the environmental variables considered have an effect on the similarity of
spider assemblages.Thus, as suggested by Jiménez-Valverde et al. (2010) climate conditions
select which spider species can live in a given locality, but not how many, and that
habitat complexity is the principal factor determining the number of species that a locality
can support.

Furthermore, the differential dispersal capacities of the spiders can influence community
structure at a regional scale. Araneidae and Theridiidae contributed the most to regional
beta-diversity and, together with Salticidae and Thomisidae, were the most dissimilar and
with a higher species replacement between communities. These results are not consistent
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with the findings of Jiménez-Valverde et al. (2010), who considered a different set families in
their analysis (Araneidae= high vagility; Thomisidae and Salticidae= intermediate vagility
and Gnaphosidae= low vagility). The dispersal capacity a species can be affected by habitat
fragmentation (Garcillán & Ezcurra, 2003), increasing beta-diversity between communities.
This could explain our results, since thematrix of the grasslands in the Campos &Malezales
ecoregion contains remnant patches of Paranaense jungle (Matteucci, 2012) interspersed
in a landscape where humans undertake a variety of activities (ranching, agriculture and
road-building, among others). This could interrupt aerial dispersal increasing beta-diversity
of the most vagile spider communities.

The geographic distance was not a relevant factor structuring the assemblages
intermediate vagility spiders. In this group, the dissimilarity between communities
might be determined by other abiotic factors not included in this analysis. For their
part, the vegetation complexity and climatic distance explained the composition of the
high-vagility spider assemblages; suggesting, as mentioned by Jiménez-Valverde & Lobo
(2007), that spider diversity is principally determined by vegetation complexity and the
climatic conditions of a given site. As in the general model, geographic distance generates
an environmental dissimilarity (Soininen, McDonald & Hillebrand, 2007) that explains
the changes in species composition of the families of more vagile spiders. The spiders
of these families dispersal aggregately on a local scale, showing a close dependence on
micro-habitats, which are necessary to fasten webs (Simó et al., 2011) and serve as sites of
refuge (Jiménez-Valverde & Lobo, 2007). These spiders select micro-habitats that favour
prey availability (Sunderland & Samu, 2000) or minimize competitive exclusion and
cannibalism (Viera, 2011).

Stochastic factors like dispersal are important in structuring the assemblages of low
vagility spider families. However, this last factor (dispersal) would be limited by the
separation between sites, as was demonstrated in these results. Thus, the dispersal of this
group of spiders is affected by the distance between sites responding to second and third
mechanism proposed by Soininen, McDonald & Hillebrand (2007). For their part, biotic
factors such as competition could lead to species exclusion (Wise, 2006) and would be
relevant to this group of spiders; this would explain the greater degree of nesting between
these communities with respect to families with high and intermediate dispersal capacity.

CONCLUSIONS
Our results reflect that the grasslands in the Campos &Malezales ecoregion support a great
diversity of spider species that vary between sites. This indicates that despite a homogeneous
appearance, grasslands are a heterogeneous habitat from a spider perspective (Ferro &
Romanowski, 2012). Geographic distance does influence the decrease in spider community
similarity, but it is not the only force explain beta-diversity between distant sites. There are
other factors that contribute to the structuring of the local and regional spider assemblages:
such as climatic factors, vegetation complexity, and dispersal acting differently according
to the studied group. Dispersal has a differential effect on distinct spider assemblages; this
effect is heavily influenced by the active and passive dispersal capacity of each assemblages
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constituents. Future studies that evaluate additional variables may be necessary to identify
additional forces that determine the structure of the spider communities in these grasslands,
particularly of intermediate vagility spiders, which are important for maintaining diversity
in their communities.
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