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Abstract—Robot applications are being increasingly used in
real life to help humans performing dangerous, heavy, and/or
monotonous tasks. They usually rely on planners that given a
robot or a team of robots compute plans that specify how the
robot(s) can fulfill their missions. Current robot applications ask
for planners that make automated planning possible even when
only partial knowledge about the environment in which the robots
are deployed is available. To tackle such challenges we developed
MAPmAKER, which provides a decentralized planning solution
and is able to work in partially known environments. Decentral-
ization is realized by decomposing the robotic team into subteams
based on their missions, and then by running a classical planning
algorithm. Partial knowledge is handled by calling several times
a classical planning algorithm.

Demo video available at: https://youtu.be/TJzC u2yfzQ

I. INTRODUCTION

Robotic applications usually rely on a set of robots that
are used to perform missions. The term mission can refer
to a global mission, i.e., the high-level mission that must be
accomplished by the whole team [1] or a local mission, i.e.,
the mission that should be achieved by a single robot, possibly
by collaborating with other robots [2]. Planners are one of
the main ingredients that allow robots to achieve missions.
A planner is a software component that receives as input
a model of the robotic application and computes a set of
actions—a plan—that, if performed, allow the achievement of
a desired mission [3]. Recent works in robotics have defined
robot applications using finite transition systems and some of
them define their local missions as a Linear-time Temporal
Logic (LTL) property (e.g., [2], [4]–[6]). Current robotic
applications require planners to address two main challenges:
1) the planning algorithm should work when (only) partial
knowledge about the system—including the robots and their
working environment—is present; 2) the planning problem
should be solved by decentralized algorithms that help to
reduce the planning overhead.

Several works studied centralized planners that are able
to manage teams of robots that collaborate to achieve a
certain goal (a global mission) [1], [7]. However, planning
is computationally expensive, especially when the number of
robots within the team increases and they need to collaborate
to fulfill their local missions. For this reason, research interest
had focused on decomposing a global mission into a set of
local missions to be achieved by each robot of the team [2],

[5], [8]. These local missions have been recently exploited
by decentralized planners [2], i.e., planners that instead of
evaluating the global mission over the whole team of robots,
analyze the satisfaction of local missions inside a subset of the
team of robots. In this way, the problem of finding a collective
team behavior is decomposed into sub-problems that avoid the
expensive fully centralized planning. However, the applicability
of these algorithms has never been studied when only partial
knowledge about the system is available.

The role of partial knowledge or uncertainty in software de-
velopment has been strongly studied in literature. Research has
been done on how to consider partial knowledge in requirement
analysis and elicitation [9]–[11], in the development of a model
of the system that satisfies a set of desired properties [12]–
[16], and in checking whether an already designed model
possesses some properties of interest [17]–[19]. However,
most of the existing planners assume that the environment in
which the robots are deployed is known [20]. This assumption
does not usually hold in real-word scenarios [21], where,
for example, the robots navigate in environments affected by
natural disasters, where the movement between locations or
the execution of specific actions may be impossible. While
planners that consider partial information about the environment
in which the robots operate exist (e.g., [22]–[24]), they usually
rely on probabilistic algorithms and are not decentralized.

This work presents MAPmAKER: a Multi-robot plAnner
for PArtially Known EnviRonments. MAPmAKER provides a
decentralized planning solution that works in partially known

environments. Decentralization is realized by decomposing the
robotic team into subteams based on their missions, and then
by running a classical planning algorithm. Partial knowledge
is handled by calling twice a classical planning algorithm.
The theory that supports MAPmAKER including proofs of
correctness, a detailed description of the modelling formalisms,
and the verification procedures can be found in [4]. In this
paper we present the implementation of MAPmAKER, the
components that compound it, the models it uses, and how
it can be used. We also provide a demonstration video to
illustrate such concepts. In this sense, the contribution is more
a proof of concept than a tool ready to be used for real-world
scenarios. MAPmAKER builds upon the planner proposed by
Tumova et al. [2] and is evaluated by analyzing its behavior
on a robot application simulating a hospital environment with
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using the communication network.

The same figure also shows different plans that can be
performed by the robots, accomplishing a number of actions
in a periodic fashion. Every robot can perform different plans,
but only some of them are showed to improve readability. P1’
represents a possible plan where true evidence was detected
by the robot (in actions execution, service provisioning, and
meeting capabilities), reaching the cell to accomplish service
help grasping (action 1) and meet with r2. P2 is a definitive
plan, where r2 must synchronize with r1 to accomplish
service fetch supplies. P2’ represents a possible plan (same
uncertainty seen in P1’) that performs similar actions to P2 but
in another room. P3’ represents a possible path where robot r3
accomplishes action 4 in cell 11 and action 5 in cell 6. Finally,
P3 is a definitive plan, which substitutes the location of service
take snapshot from cell 11 to cell 39.

IV. EVALUATION

To evaluate MAPmAKER we formulate a research question,
RQ: Is MAPmAKER able to perform planning in partially

known environments? To answer it, we had considered the
simulated scenario introduced in Sec. III. We created a partial
robot application starting from the models of the robots and
their environment. We then introduced uncertainty in the three
considered dimensions introduced in Sec. II. Examples of such
uncertainties are whether the system has certain knowledge
about the transition through doors (e.g., the one between cells 37
and 38 in Fig. 2) or about the provision of services (e.g., deliver

at cells 24 and 26). We introduced uncertainty through a random
process and created three different scenario configurations
based on the same environment. We also randomized the initial
position of each robot, creating three different sets of initial
configurations. The nine experiments we performed to validate
MAPmAKER consist of the nine possible combinations of the
scenario and initial configurations.

The results show that the decentralized algorithm actually
helps in improving performances and that MAPmAKER is
able to compute plans in situations where traditional plan-
ners cannot. MAPmAKER also improves the performance
in terms of plan length in various situations. In the folder
ResultsPaperRoSE of our repository [25] we provide a
set of videos showing the performance of MAPmAKER in these
experiments. We also provide results, containing computation
time, plan length, false and true evidences found by the robots,
and ratio between the definitive and possible plans in terms
of computation time and plan length. The evaluation of the
underlying algorithms might be found in [4].

V. CONCLUSION

We presented MAPmAKER, a decentralized planner for par-
tially known environments. The MAPmAKER implementation
relies on a naive implementation of a planner that comes from
literature and has been customized within the proposing frame-
work. Our evaluation showed how MAPmAKER improves
planning in cases in which partial information is present.

As future work we plan to experiment in complex scenarios
and with real robots. We will make use of more efficient
planners to speed up the computation. Other work will include
the study of appropriate policies to select between definitive
and possible plans.
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