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ORIGINAL ARTICLE Open Access

Artificial intelligence-aided CT
segmentation for body composition
analysis: a validation study
Pablo Borrelli1* , Reza Kaboteh1, Olof Enqvist2,3, Johannes Ulén2, Elin Trägårdh4, Henrik Kjölhede5,6 and Lars Edenbrandt1,7

Abstract

Background: Body composition is associated with survival outcome in oncological patients, but it is not routinely
calculated. Manual segmentation of subcutaneous adipose tissue (SAT) and muscle is time-consuming and
therefore limited to a single CT slice. Our goal was to develop an artificial-intelligence (AI)-based method for
automated quantification of three-dimensional SAT and muscle volumes from CT images.

Methods: Ethical approvals from Gothenburg and Lund Universities were obtained. Convolutional neural networks
were trained to segment SAT and muscle using manual segmentations on CT images from a training group of 50
patients. The method was applied to a separate test group of 74 cancer patients, who had two CT studies each
with a median interval between the studies of 3 days. Manual segmentations in a single CT slice were used for
comparison. The accuracy was measured as overlap between the automated and manual segmentations.

Results: The accuracy of the AI method was 0.96 for SAT and 0.94 for muscle. The average differences in volumes
were significantly lower than the corresponding differences in areas in a single CT slice: 1.8% versus 5.0% (p < 0.001)
for SAT and 1.9% versus 3.9% (p < 0.001) for muscle. The 95% confidence intervals for predicted volumes in an
individual subject from the corresponding single CT slice areas were in the order of ± 20%.

Conclusions: The AI-based tool for quantification of SAT and muscle volumes showed high accuracy and reproducibility
and provided a body composition analysis that is more relevant than manual analysis of a single CT slice.
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Key points

� Body composition measurements can give relevant
prognostic information in specific clinical sttings.

� There is a need for reproductible and fast methods
for body composition analysis.

� Computed tomography three-dimensional volumes
proved to be more reliable than single-slice two-
dimensional areas.

� Artificial intelligence-based tools are reliable and fast
for body composition analysis.

Background
Body composition has been shown to be associated with
survival outcome in several of studies, both in onco-
logical [1–6] and non-oncological patient groups [7].
One of the main applications of body composition ana-
lysis is to aid the diagnosis and management of sarcope-
nia. Sarcopenia usually is characterised as a progressive
and generalised skeletal muscle loss and/or reduction of
muscle function in elderly people and is associated with
increased risk for falls, fractures, physical disability and
mortality [8, 9]. In oncology, sarcopenia has been
strongly associated with poor prognosis in a wide variety
of malignancies [10].
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Computed tomography (CT) and magnetic resonance
imaging are usually considered as the best suitable
methods for body composition analysis [9]. One of the
most common approach to assess body composition is
to measure the volumes of subcutaneous adipose tissue
(SAT) and muscle on CT images. As part of the clinical
workup for oncological patients, a CT examination is
almost always present and available, either stand alone
or as part of a positron emission tomography/CT (PET/
CT) study.
Despite its prognostic value and the availability of CT

in clinical practice, body composition is not routinely
calculated. This is partly due to the fact that automated
quantification tools are still under investigation and not
widely available for clinical use. Another reason is the la-
borious work involved to manually segment SAT and
muscle on CT images. The time burden for manual seg-
mentations is probably the reason why, in many studies,
SAT and muscle is only segmented on a single CT slice,
i.e, using a two-dimensional (2D) approach, instead of a
volumetric, three-dimensional (3D) assessment. The ap-
proximation of measurements obtained from a single
CT slice (i.e, 2D measurements) to 3D fat and muscle
volume measurements has shown to be poor [11]. Thus,
there is an unmet need for an automated method for
calculation of 3D volume of SAT and muscle in CT.
In the field of artificial intelligence (AI), deep learning

methods offer new possibilities for automated analysis of
medical images. Recently AI-based methods for auto-
mated analysis of body composition on CT images have
been presented [12–16]. These methods are, however,
trained to segment muscle and fat on single CT slices
and not using the whole 3D volume. Our goal was to de-
velop an AI-based method for automated quantification
of 3D SAT and muscle volume from CT and to evaluate
its accuracy and reproducibility in a separate test group
of patients with prostate cancer.

Methods
Patients
The study was approved by the local research ethics at
Universities of Gothenburg, Sweden (295-08;2016/103)
and Lund, Sweden (LU552/2007). The AI-based method
was trained using a retrospective set of CT scans from
50 patients with lymphoma, who had undergone
18F-fluorodeoxyglucose PET/CT examinations between
January 2011 and August 2012. The patients of the
training group (18 female and 32 male patients) had a
mean age of 61 years (range 41–81) and a mean body
weight of 78 kg (range 53–114).
A completely separate test set consisted of patients

who had been part of a previous study investigating the
value of PET/CT for staging of prostate cancer [17].
Each patient with biopsy-proven prostate cancer had

undergone two PET/CT studies prior to treatment, one
18F-fluorocholine PET/CT and one 18F-fluoride PET/CT.
From this retrospective group, we excluded five patients
with more than two-week interval between the PET/CT
studies, assuming that the volumes of SAT and muscle
are relatively unchanged during a 2-week period. We
also excluded five patients with hip prosthesis and corre-
sponding metal artefacts in the CT images and five pa-
tients with limited field of view in one of the CT study.
The remaining test group of 74 patients had a mean age
of 67 years (range 50–76) and a mean body weight of 86
kg (range 54–120).

Imaging
Training CT scans were acquired using an integrated
PET/CT system (Biograph Truepoint 64; Siemens
Healthineers, Erlangen, Germany). A low-dose CT scan
(64-slice helical, 120 kVp, 30 mAs, 512 × 512 matrix)
was obtained from the base of the skull to the mid-
thigh, with a slice thickness was 3 mm. The test CT
scans were acquired using an integrated PET/CT system
(Philips Gemini TF, Philips Healthcare, Best, The
Netherlands). A low-dose CT scan (16-slice helical, 120
kV, 50–300 mAs based on the patient’s total body mass,
512 × 512 matrix) was obtained from the base of the
skull to the mid-thigh, with a slice thickness was 5mm.
The test set included CT scans obtained both with and
without intravenous and/or oral contrast agents. The
training and separate test studies were obtained from
two different hospitals, Sahlgrenska University Hospital,
Gothenburg, Sweden and Skåne University Hospital,
Malmö/Lund, Sweden respectively. The PET images
were not used in this study.

Manual annotations
A cloud-based annotation tool (RECOMIA, www.
recomia.org) was used for the annotation tasks in the
training and test groups [18]. In the training studies,
SAT and muscle were segmented by a nuclear medicine
specialist experienced in CT annotations. Only SAT and
muscle outside the peritoneal cavity were segmented;
visceral adipose tissue (VAT) was not included. All CT
slices from the cranial part of vertebrae T11 to the cau-
dal part of the hip bone were segmented, resulting in 3D
volumes of SAT and muscle. Density value thresholds
were used during the segmentation process so that only
voxels with HU between -190 and -30 were marked as
SAT and voxels with HU between -30 and 150 were
marked as muscle according to literature consensus for
CT segmentation [6, 19, 20].
In the test set, two experienced nuclear medicine spe-

cialists with over 6 years of experience in reading PET/
CT studies performed manual segmentations of SAT
and muscle on a single CT slice at L3 vertebral level
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mid-point, as used in recently published studies [20–22].
The manual annotation task comprised of 50 3D seg-
mentations in the training group and 148 2D segmenta-
tions in the test group for both SAT and muscle. The
same definition of SAT and muscle and the same HU
thresholds were applied as in the training set. The two
studies from the same patients were segmented at differ-
ent occasions with at least 3 days of time interval; in 35/
74 patients (47%), studies were not segmented by the
same physician. The areas of SAT and muscle were cal-
culated from the manual 2D segmentations.
The quality of the AI-based segmentations in the test

set was checked by one of the physicians. If a larger part
of the body than from the cranial part of vertebrae T11 to
the caudal part of the hip bone were included, i.e, the au-
tomated segmentation of vertebrae T11 and hip bone had
failed, the SAT and muscle volumes of the slices outside
the targeted body part were excluded. No other correc-
tions of the automated segmentations were performed.

AI-based segmentation
The body composition measurements are based on a con-
volutional neural network trained to segment a 3D CT
image into SAT, muscle and others. The network archi-
tecture as well as the training pipeline is borrowed from
Trägårdh et al. [18]. The network gives output scores ran-
ging from 0 to 1 and normally a pixel would be assigned

to the label with highest score, but to reduce noise, any
scores not consistent with the HU thresholds above were
first set to zero. Finally, the method from Trägårdh et al.
[18] was used to find T11 and the hip bone, and the tissue
segmentation was restricted to the CT slices in between.

Statistical analysis
The Sørensen-Dice index was used to evaluate the
accuracy of the AI-based method by calculating the
overlap between the automated and the manual segmen-
tations in the single CT slice at L3 level. The Wilcoxon
signed rank test was used to evaluate the difference in
reproducibility between the 2D areas at L3 level and the
3D volumes, both based on the AI-based method. The
relative difference between the two AI-based volume
measurements was calculated for the 74 pairs of CT
studies. Linear regression models were applied for pre-
dicting 3D volumes of SAT and muscle from the corre-
sponding 2D areas. The statistical analysis was carried
out in R (version 4.0.3).

Results
The test group comprised 74 male patients with prostate
cancer who had a mean age of 67 years (range 50–76)
and a mean body weight of 86 kg (range 54–120). The
median interval between the studies was 3 days. The AI-
based method segmented SAT and muscle in 148 CT

Fig. 1 Manual and AI-based segmentations of SAT and muscle. Left: segmentation on a CT slice at L3 level: manual (a) and AI-based (b). Coronal slice
showing the AI-based 3D segmentation from T11 to the hip bone (c). Measurements: manual areas, 186 cm2 (SAT) and 170 cm2 (muscle); AI-based
areas, 184 cm2 (SAT) and 158 cm2 (muscle); AI-based volumes 6,832 cm3 (SAT) and 8,253 cm3 (muscle). AI Artificial intelligence, SAT Subcutaneous fat
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studies from those 74 patients from the cranial part of
T11 to the caudal part of the hip bone. In 13/148 studies
(9%), the AI-based method selected a vertebra above
T11, and for these studies, the SAT and muscle segmen-
tations of the slices above T11 were removed manually.
No other manual corrections were applied. An example
of manual and AI-based segmentations of SAT and
muscle is shown in Fig. 1. The automated 3D segmenta-
tions covered on average 85 CT slices (range 77–98).
The average Sørensen-Dice index resulted to be 0.96

(range 0.86–0.99) for SAT and 0.94 (range 0.82–0.97)
for muscle. The manual 2D areas, the AI-based 2D areas
and the AI-based 3D volumes of SAT and muscle in the
74 patients are presented in Table 1, where also the dif-
ferences for the same measurements calculated from the
two CT scans from the same patient are shown. The AI-
based 3D volumes showed a significantly better reprodu-
cibility, measured as lower relative inter-study differ-
ences, compared to the AI-based 2D areas. The relative
inter-study differences for 3D volumes and 2D areas
were 1.8% versus 5.0% for SAT (p < 0.001) and 1.9% ver-
sus 3.9% for muscle (p < 0.001).
The linear regression models used to predict the 3D

volumes from the corresponding 2D areas, both seg-
mented by the AI-based method, are presented in Fig. 2.
For SAT, the linear model is

y ¼ 35:63 xþ 630:3

with an r2 value of 0.83. For muscle, the estimated
model is

y ¼ 40:15 xþ 1461

with an r2 value of 0.64. If we consider a 95% prediction
interval for an average subject´s 3D volume estimated
from the 2D area, it had a size of ± 1.800 cm3 (24% of

the average 3D volume) for SAT and ± 1.330 cm3 (17%
of the average 3D volume) for muscle.

Discussion
The AI-based method for automated segmentation of
SAT and muscle showed a high accuracy when com-
pared to manual segmentations on a CT slice at the L3
level, with a Sørensen-Dice index of 0.96 and 0.94, re-
spectively. These results are comparable to previous
published data [12–16]. The reproducibility was, as
expected, significantly better for 3D volumes com-
pared to 2D area measurements. The 95% confidence
intervals for predicted 3D SAT and muscle volumes
in an individual subject from the corresponding single
CT slice areas resulted to be in the order of 25% and
17% of the average 3D volume of SAT and muscle,
respectively. These volumes estimated from extrapola-
tions from a single CT-slice area could lead to signifi-
cant variations of actual volumes and hence affect
clinical decisions and eventually prognosis. 3D volume
variability obtained using extrapolations from single-
CT areas is already a known phenomenon described
almost 40 years ago [16]. Results obtained in our
study are quite similar to those presented by Shen
et al. and Greenfield et al. [11, 23].
The prediction error of volumes from single CT slice

areas and the low reproducibility for these area measure-
ments, obtained in our study, indicate that 3D volumes
of SAT and muscle should be used instead of corre-
sponding areas at L3 level in studies assessing the prog-
nostic value of body composition.
The use of the CT performed in the PET/CT study for

oncological patients to analyse body composition was an
added benefit for the present study. In fact, the use of CT
scans as part of PET/CT examination routinely performed
in oncologic patients translates into a reduced radiation
dose for patients and reduced costs for hospitals (medical
equipment usage, health care personnel etc.) [24, 25].
The presented AI method is neither Conformité

Européenne-marked in Europe nor Food and Drug
Administration-cleared in the USA and therefore should
considered a research tool, not ready for clinical use. It is,
however, available for other researchers (www.recomia.org)
who are interested in giving valuable input to what eventu-
ally can become a clinically available AI method.
Our study has limitations. First, we used manual seg-

mentations of SAT and muscle in a single CT slice at L3
level to validate the AI-based method. A corresponding
reference for the 3D volumes would have required man-
ual segmentations of more than 12,000 CT slices (on
average 85 slices each in 148 studies) and that was not
possible due to time constraints. Based on the visual ap-
pearance of the 3D segmentations as in Fig. 1, our im-
pression is that the AI-based method is accurate also for

Table 1 Subcutaneous adipose tissue and muscle areas and
volumes calculated from manual and AI-based segmentations in
the test group (74 patients and two studies each)

Segmentation Area (cm2)/volume (cm3) Difference (%)

SAT

Manual 2D 191 (65–358) 5.5% (0.1–26.2)

AI-based 2D 190 (64–349) 5.0% (0.1-25.9)

AI-based 3D 7,386 (2,021–13,889) 1.8% (0.0–7.8)

Muscle

Manual 2D 168 (90–229) 5.1% (0.0–19.7)

AI-based 2D 162 (92–217) 3.9% (0.0–15.9)

AI-based 3D 7,982 (5122–11,422) 1.9% (0.1–5.0)

Data are given as mean and ranges (minimum–maximum). 2D Two-
dimensional, 3D Three-dimensional, AI Artificial intelligence, SAT Subcutaneous
adipose tissue
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the volumetric measurements. Second, in 9% of the
cases, a manual correction was needed due to difficulty
to detect T11 by the AI-based tool. An alternative ana-
tomical landmark than T11 could make the method
more robust. Third, the VAT compartment was not in-
cluded in the analysis. VAT analysis has been consist-
ently been associated with poorer agreement with
reference values [26–28] and carry a much more chal-
lenging analysis algorithm; due to those reasons, we de-
cided not to include VAT in this first software version.
In conclusion, our AI-based tool for quantification of

SAT and muscle volume from CT showed high accuracy
and reproducibility. The tool is automated and provides
a 3D analysis that is could be more clinically relevant

than corresponding 2D methods for analysis of a single
CT slice at the L3 level. Further studies are needed to
assess the prognostic value of the AI tool, which is avail-
able for research purposes on reasonable request at
www.recomia.org.
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