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The discovery of novel antigens is an essential requirement in devising new diagnostics or vaccines for use in control pro-

grammes against human tuberculosis (TB) and bovine tuberculosis (bTB). Identification of potential epitopes recognised by

CD4+ T cells requires prediction of peptide binding to MHC class-II, an obligatory prerequisite for T cell recognition. To

comprehensively prioritise potential MHC-II-binding epitopes from Mycobacterium bovis, the agent of bTB and zoonotic TB

in humans, we integrated three binding prediction methods with the M. bovisproteome using a subset of human HLA alleles

to approximate the binding of epitope-containing peptides to the bovine MHC class II molecule BoLA-DRB3. Two parallel

strategies were then applied to filter the resulting set of binders: identification of the top-scoring binders or clusters of bind-

ers. Our approach was tested experimentally by assessing the capacity of predicted promiscuous peptides to drive inter-

feron-g secretion from T cells of M. bovis infected cattle. Thus, 376 20-mer peptides, were synthesised (270 predicted

epitopes, 94 random peptides with low predictive scores and 12 positive controls of known epitopes). The results of this val-

idation demonstrated significant enrichment (>24 %) of promiscuously recognised peptides predicted in our selection strat-

egies, compared with randomly selected peptides with low prediction scores. Our strategy offers a general approach to the

identification of promiscuous epitopes tailored to target populations where there is limited knowledge of MHC allelic

diversity.

Keywords: Mycobacterium bovis; Tuberculosis; epitope; MHC; bovine.

Abbreviations: MHC, major histocompatibility complex; bTB, bovine tuberculosis; MTBC, Mycobacterium tuberculosis

complex.

Data statement: All supporting data, code and protocols have been provided within the article or through supplementary

data files.

Data Summary

1. All computational work described here was imple-
mented using custom Python scripts. The majority of
code is implemented as a Python library called
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epitopepredict and is available at https://github.com/
dmnfarrell/epitopepredict under the Apache license.

2. Extensive use was made of the IPython (Jupyter) note-
book environment to generate publication plots and
allow the workflow to be reproduced. The notebook
and intermediate data files for generating the plots are
available at https://github.com/dmnfarrell/gordon-
group/tree/master/antigen-mining. This includes the
lists of binders generated from each prediction method
for the entire proteome.

3. Individual prediction results for any protein in the M.
bovis genome can be visualised at http://enzyme.ucd.ie/
epitopemap using the Epitopemap web application
(Farrell & Gordon, 2015). Login details are given in
Appendix S1.

Introduction

Mycobacterium bovis is the main causative pathogen of
bovine tuberculosis (bTB), which remains a significant eco-
nomic and animal welfare concern to global agriculture, as
well as representing a zoonotic risk to human health. Con-
trol of bTB currently relies on the identification of infected
cattle using a crude mix of bacterial proteins (termed puri-
fied protein derivative, or PPD) that are used in a skin test;
animals that show evidence of M. bovis infection are
deemed ‘reactors’ and culled. The use of such crude antigen
preparations presents problems in terms of standardisation,
potency testing and specificity. Vaccination is not currently
used as a control strategy as the only available vaccine, BCG,
compromises the skin test by confounding the identification
of vaccinated vs infected animals (Hogarth et al., 2006). A
new generation of bTB disease control tools is needed that
exploits advances in ‘omics technologies and allied compu-
tational approaches to transcend the limitations of current
diagnostics.

The predominant protective and immunopathological
responses against M. bovis rely on cellular immune
responses involving mainly CD4+ T cells; thus the rational
development of new immunodiagnostics and vaccines relies
on knowledge of the underlying T cell responses. For exam-
ple, diagnostic antigen prototypes that will work in the face
of BCG vaccination have been based on proteins whose
genes are deleted from BCG (e.g. ESAT-6 or CFP-10) or are
not secreted by BCG (e.g. Rv3615c) (Sidders et al., 2008). A
parallel approach is to improve BCG vaccine efficacy by
boosting or supplementing its efficacy with subunit vaccines
such as virally-vectored vaccines that encode T-cell antigens
(Vordermeier et al., 2011; Waters et al., 2012). Both
approaches rely on the identification of distinct antigen rep-
ertoires. Identification of antigens or epitopes currently
relies on direct testing of purified proteins or peptides in
interferon-gamma release assays (IGRAs), or other tests that
probe T-cell recognition, using populations of immune cells
from infected animals. Given the 3961 annotated protein-
encoding genes in the M. bovis genome, and the millions of
potential epitopes, such an empirical approach to

comprehensive, genome-wide antigen discovery is prohibi-

tively expensive (Lindestam Arlehamn & Sette, 2014).
Therefore, antigen discovery for the purposes of vaccine or

diagnostic test development has in the past been done
largely using knowledge-based rationale, i.e. according to

known functional classification; this has a tendency to be
self-reinforcing (Geluk et al., 2014) and concentrates on

specific subsets of the proteome. A pre-screen where poten-
tial T-cell epitopes could be identified based on their pre-

dicted binding to the MHC complex would be an ideal filter
to identify peptides that could then be synthesised and

screened in infected animals. Accurate prediction of the
peptides that will form antigenic epitopes is therefore essen-

tial for genome-wide antigen discovery.

Epitope prediction methods have thus far concentrated

largely on the MHC–peptide binding step since this is most
amenable to computational analysis (Nielsen et al., 2010;

Wang et al., 2008). These methods predict the binding affin-
ity of a peptide sequence to a specific MHC molecule. A

variety of data-driven approaches have been used (Patronov
& Doytchinova, 2013). All such methods vary in accuracy

over MHC loci and alleles, largely depending on the avail-
ability of binding data. A given peptide may also be able to

bind to multiple alleles, often described as ’binding promis-
cuity’. In the context of eliciting an immune response, high

binding affinity and promiscuity implies responses in a large

Impact Statement

The discovery of new antigens is a prerequisite in
devising new diagnostics and vaccines for use in
infectious disease control programmes. Protein anti-
gens are digested by the cellular machinery into
smaller fragments called peptides with a small frac-
tion of these peptides, called epitopes, then presented
to T cells on the surface of cells (designated antigen-
presenting cells) in a complex composed of T cell
receptor (TCR), and the peptide bound to a major
histocompatibility complex (MHC) protein mole-
cule. Computer algorithms can scan an entire bacte-
rial genome and predict which parts of the protein
sequences are potential MHC-binders. Such fast-
track screening is needed because it is impossible to
experimentally test all the possible peptides in a
pathogen genome (e.g. for Mycobacterium bovis >1
million peptides). Using a computational strategy we
selected 376 peptides to be synthesized and tested in
M. bovis-infected animals. Our computational pipe-
line successfully enriched for peptides containing
promiscuous epitopes, far in excess of what would
be expected by chance. Our work increases consider-
ably the hitherto known set of potential M. bovis
antigens, and proves the utility of computational
approaches to T-cell antigen-identification for infec-
tious diseases.
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proportion of populations with diverse MHC genotypes.
There may also only be a few dominant peptides in a given
protein responsible for its antigenicity in much of the popu-
lation. The challenge in designing both epitope-based vac-
cines and diagnostics is to find an optimal epitope
repertoire that provides broad population coverage. Results
from binding-prediction algorithms must be treated care-
fully if trying to extract immunogenic epitopes from many
possible peptides (Chaves et al., 2012). Cut-offs can be
raised at the cost of missing potential valuable antigenic
peptides; on the other hand, too low a cut-off yields a larger
number of synthetic peptides to test, many of which will be
negative. There is therefore a trade-off between discovery
and costs of experimental validation. Some current predic-
tion approaches are detailed and compared in a review by
Schubert et al. (2013a).

Specific strategies for filtering candidate T cell epitopes
from the large number of possible peptides will vary
depending on the desired outcome (Lundegaard et al.,
2010). The simplest method is to rank peptides by binding
affinity and select the top scorers; this is however problem-
atic due to predictor accuracy. Several recent studies (Santos
et al., 2013; Zhang et al., 2008; Zvi et al., 2012) have instead
used the concept of epitope density to find likely regions of
antigenicity within protein sequences. These computational
screens calculated clusters or hotspots of epitopes in regions
along the sequence and ranked them by a density-related
metric. Furthermore Gaseitsiwe et al. (2010) calculated the
number of experimentally derived epitopes per total pepti-
des in each protein as a criterion to rank 61 M. tuberculosis
proteins for potential antigenicity. There is empirical evi-
dence that these cluster-based approaches are valid: MHC
class II-binding T cell epitopes have been observed to occur
in clusters of up to 25 amino acids in length (De Groot &
Martin, 2009). Thus MHC class II T cell epitope clusters
may represent regions of the protein with high affinity
across multiple MHC alleles, ideal for promiscuous epitope
prediction.

Prediction tools have been used commonly to study small,
manageable subsets of proteins selected on the basis of
known properties, and have largely focussed on human
MHC alleles [human leukocyte antigens (HLA’s)] (Gurung
et al., 2012; Zvi et al., 2011). Computational methods for T-
cell epitope identification have been applied to theMycobac-
terium tuberculosis genome (Lindestam Arlehamn et al.,
2013; Santos et al., 2013; Zvi et al., 2008) with some success.
These latter studies use a mixture of knowledge-based and
unbiased methods; however, truly unbiased methods have
the most potential for novel antigen discovery.

The MHC loci have a similar structure among mammalian
species, and in cattle are called the bovine leukocyte antigen
(BoLA) genes. The BoLA class II region consists of one
DRA, at least three DRB loci and multiple DQA and DQB
genes. The extensive diversity of MHC genes in domestic
cattle demonstrates the dynamic nature of the MHC region
despite controlled breeding and population bottlenecks

(Mikko & Andersson, 1995). BoLA-DRB3.2, which is the
second DRB3 exon, is responsible for the b1 domain of the
only widely expressed DRB gene in cattle (Behl et al., 2012).
Numerous studies in diverse cattle breeds have reported a
high degree of polymorphism at this locus and the Immuno
Polymorphism Database (IPD-MHC) (Robinson et al.,
2010) for cattle currently contains 130 alleles for this gene.
The DQA and DQB loci are also polymorphic.

Our objective was to predict a set of M. bovis epitopes that
reflect the allele-specific immune response to this pathogen.
Since experimental binding data specific to BoLA-DRB3
alleles is not available, we used pan-computational methods
to approximate predictions based on already known HLA-
DR alleles. ’Pan’ approaches are designed to allow methods
trained on known alleles (those with available binding data
sets) to be extrapolated to unknown alleles. Despite very
limited validation, it has also been shown that MHC class II
pan-specific predictions can be applied to cattle (Jones
et al., 2011; Vordermeier et al., 2003) using human alleles.
Our approach provided a significant enrichment for identi-
fication of T-cell epitopes, and underlines the potential of
computational methods to accelerate antigen identification.

Methods

MHC class II binding-prediction tools

For large-scale screening of epitopes in an entire proteome
binding-prediction methods must be rapid since a calcula-
tion must be made for each potential sequence. In M bovis
the total number of 20-mer peptides is 1 228 066 in 3961
proteins. Even allocating two weeks to run the entire
genome requires that each prediction takes at most 1.8 s per
peptide per cpu; this then has to be repeated for each allele.

Two MHC class II binding-prediction methods that fit the
speed and accuracy requirements were used in this study:

1. TEPITOPEpan (Zhang et al., 2012) is a position-spe-

cific scoring matrix (PSSM)-based algorithm (Raddriz-
zani & Hammer, 2000). It uses 11 scoring matrices
derived from combinatorial competitive binding assays
on 11 HLA-DR alleles (Sturniolo et al., 1999). This
method covers 700 HLA-DR molecules with unknown
binding specificities based on pocket similarity (Zhang
et al., 2009) to the original set of 11 library sequences.
We have independently implemented this algorithm in
Python and it is available as part of the epitopepredict
library.

2. NetMHCIIpan (Nielsen et al., 2008) is an artificial neu-

ral network algorithm trained on binding data for mul-
tiple MHC-II alleles. Predictions are now extended to
all HLA-DR, DQ and DP known sequences as from
version 3.0 (Karosiene et al., 2013).

For MHC class I binding prediction the IEDB prediction

tools were used with the ‘recommended’ option (Kim et al.,

2012).
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Cut-offs for predictors

A typical approach to binder selection is to select the top

nth percentile per protein rather than using an absolute

threshold value; however for whole-proteome studies this is

likely to introduce multiple false positives from peptides in

proteins that would otherwise score very low globally. We

therefore adopted a method of global standardization of the

score over the entire proteome, similar to that used by Bre-

mel & Homan (2010) and others, by setting a global cut-off

based on the top 3 % of scores from the entire proteome.

In addition, some alleles have a significantly higher score

distribution and will dominate the results if a uniform score

cut-off is applied; this applies in general to MHC-binding

predictors. Thus we applied a separate global cut-off per

allele so that low-scoring alleles would be better represented

when calculating our promiscuity criterion. This approach

is consistent with recent work by. Paul et al. (2013) regard-

ing allele-specific thresholds in MHC-I prediction.

Comparison of alleles

The available list of all BoLA-DRB3 alleles was downloaded
from the IPD-MHC database (https://www.ebi.ac.uk/ipd/
mhc/) and compared with known HLA-DR alleles from the
IMGT/HLA database (https://www.ebi.ac.uk/ipd/imgt/hla/)
(Robinson et al., 2013). A multiple-sequence alignment was
used to generate a set of pseudo-sequences, representing the
allele using only the polymorphic residues in the binding
groove of the MHC molecule. In order to determine the
valid overlap between human and bovine alleles, the
pseudo-sequence distance to each Tepitope library allele
was calculated using the method of Nielsen et al. (2008).
The concept of pocket profiles and pseudo-sequence is illus-
trated in Fig. 1.

Epitope selection approaches

We used two contrasting strategies to select peptide candi-
dates from the large list of potential binders that is summar-
ised in Fig. 2. We applied both MHC-II binding-prediction

The polymorphic binding pockets in

chain B of the MHC-II complex can

be represented as

pseudosequences

Pocket profiles

WR(l\q) =

HLA-DRB1 * 0101 :

HLA-DRB1 * 0301 :
HLA-DRB1 * 0401 :

New allele :

L
ib

ra
ry

 a
lle

le
s

1 4 6 7 9

Library PSSM for

each allele derived

from experiment

Create virtual matrix

based on the

weighted sum of each

library binding pocket

Pseudosequences

SR(q,l)a

SR(q,K)a

k
Â

Fig. 1. Pocket profile concept for MHC binding prediction. The polymorphic binding pockets in chain B of the MHC-II complex. This con-
cept is used in TEPITOPEpan to treat alleles being composed of independent, modular pockets that can be extrapolated to other alleles

with no binding data. The weight between query pocket W with query pseudo-sequence q, and a pocket in the library, with pseudo-
sequence l is calculated as shown. Sp(q,l) is the sequence similarity score. K denotes a sum over the entire pocket library. a is a positive
parameter that determines the range of similarity scores that give high weights.
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methods over the whole proteome for eight HLA alleles
(detailed in results). In all cases a binding promiscuity crite-
rion was applied to binders whereby only predicted binders
present across multiple alleles (three or more) were consid-
ered. These lists of binders could then be used in each of the
three selection strategies described below.

Top-Scoring Binders. This strategy is a variation on the
standard approach (Hammond & Klein, 2005) of using top-
ranking binders, but applied across the proteome using
allele-specific cut-offs. It is designed to capture a set of pro-
teins enriched with epitopes by finding proteins containing
multiple high-scoring binders. A binder must satisfy the
promiscuity criterion in both prediction methods to be con-
sidered. For each protein the number of binders per unit
length is calculated (binders per unit length is used to pre-
vent large proteins with many binders dominating). Pro-
teins are then ranked by the sum of binder score and
binder/length ranking. The final 92 peptides chosen are the
20-mers covering the top shared binders in the most highly
ranked proteins.

Binder Clusters. This strategy is designed to detect broad
areas of both promiscuity and high binder density in each
sequence. The assumption underlying this method is that
approximatley 20-mer peptides covering these regions will
be more likely to yield at least one true positive epitope and
hence elicit a T-cell response. As above, only high promiscu-
ity binders are considered. For each protein the set of all
binders above appropriate cut-offs and present in at least
three alleles were passed to the DBSCAN algorithm, (Ester
et al., 1996), a density-based clustering method, to detect
areas of high binder density. Though normally employed on
higher-dimensional data DBSCAN was found to be an
appropriate solution. Only a distance measure between
members and a minimum number of members are required
as parameters, values that were estimated empirically to
exclude sparse areas of binders. We used a distance of ten
and minimum of three binders. The results are a set of clus-
ters for both prediction methods, ranked by number of
binders per unit length. This has also been referred to as the
‘epitope density’ method (Santos et al., 2013). It was applied
using both netMHCIIpan and TEPITOPEpan and finding
overlaps between these methods.

Random binders (control). To generate a control set of
peptides to compare with our filtering methods we chose a
random selection of 20 mers from the total list of 74 525
high promiscuity binders. Half of these were taken from
TEPITOPEpan and half from netMHCIIpan predictions.
They did not need to be present in both prediction meth-
ods. The only other filter placed on this selection was that
they be contained in proteins with non-zero abundance as
measured in M. tuberculosis H37Rv cultures (described
below).

We therefore had two distinct strategies along with a set of
randomly selected controls, summarised in Table 1. We

could then compare the results from each strategy by their
success in discovering immunogenic epitopes.

Filtering with overlapping predictions

Due to the large n-mer sequence space over the whole pro-
teome, all three strategies produce a very large number of
potential epitopes. To enhance our chances of identifying
true epitopes, a key part of our method is to select out epi-
tope regions that overlap with the other prediction meth-
ods, both MHC-I and MHC-II. That is, we selected only
top-scoring binders or binder clusters that have at least one
high-promiscuity binder according to the other methods
also. This narrowed down our lists considerably.

For both strategies we only selected those binders that over-
lapped with at least one high-promiscuity MHC-II 9-mer
binder from the other prediction algorithm., i.e. if using
netMHCIIpan we require at least one overlapping binder
from TEPITOPEpan and vice versa. At least one MHC-I 9-
mer and MHC-I 11-mer binder was also required for a
binder cluster to be considered. These MHC-I binder over-
laps were not required for the top-scoring binders method
since these are relatively rare and would remove too many
of the top-scoring candidates.

Other filters:

For both strategies candidate peptides were further filtered
by using the following criteria:

. Verification with abundance data from proteomics. We

utilised recent data on absolute abundance levels of
proteins in an unfractionated mixed lysate of M. tuber-
culosis H37Rv cultures identified by Schubert et al.
(2013b). Screening antigen candidates based on expres-
sion is not novel (Sidders et al., 2008) but these con-
centrations represent, to our knowledge, the most
comprehensive proteome-wide estimates of M. tubercu-
losis protein expression thus far. All proteins undetected
using selected reaction monitoring (concentration = 0
and <2 peptides detected) in the Schubert et al. study
were filtered out. Protein selection was not ranked or
biased with respect to abundance.

. Length based filter – remove all sequences with host

proteins greater than 400 amino acids in length. The
rationale for this is to select for epitopes in antigens
that would be easier to clone and express recombinant
protein from, if required.

. Burial/exposure based on Netsurfp predict (Petersen

et al., 2009). Jørgensen et al. (2010) concluded that
MHC class II ligands are significantly more exposed
than other peptides in the same protein with similar
predicted binding affinity. They used sequence-based
prediction of solvent exposure to establish a bias that
exposed peptide fragments are more likely to be pre-
sented by MHC-II molecules compared with affinity-
matched peptides in the same protein. We used this

http://mgen.microbiologyresearch.org 5
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information as a screen to exclude and peptides pre-
dicted to have more than 50 % buried residues.

. Existence of already characterised peptides. Evidence

that a candidate peptide has already been characterised
was checked using data in the IEDB (Sette et al., 2005)
and other studies. However none were found.

. Hydrophobicity of peptide. Since strongly hydrophobic

sequences can affect the solubility of the peptide we
removed all peptides with >60 % hydrophobic residues.
This is consistent with the data for T cell epitopes in
the IEDB.

. Amino acid bias. We found a strong bias in the netMH-

CIIpan clusters for R, V and L amino acids. The distri-
bution is skewed in relation to that seen for known
epitopes in the IEDB. All peptides with highly biased R,
V and L sequence content were also removed.

Peptide synthesis

Peptides were prepared in standard PepSet (MimoTopes,
2014) libraries by Mimotopes (Victoria, Australia) in three
randomized batches of 94 each. These were received in
dried-down form and solubilised using 20 ml of DMSO, and
then 180 ml of RPMI to obtain a concentration of 5 mg

All coding
sequences in

genome

Binding predictions
for chosen alleles

Find set of all
binders > alleles=3

and >=cutoffs 

MHC-I
predictions

Overlapping MHC-I
and MHC-II
predictions

Candidate
peptides

Repeat for all proteins and
both predictors

Detect regions of high
binder density
(length < 30 &

binders >= 3 alleles)

Top scoring
promiscuous

binders in both
prediction methods

Absolute
abundance

estimates for Mtb

Post filtering

Select proteins with non-
zero abundance in vitro
surface exposure
(NetSurfP)
hydrophobicity of target
peptide
amino acid bias

Fig. 2. Schemes for peptide selection used in this study. In all selection strategies only binders above the cut-off in at least three alleles

were considered. We chose 92 peptides from the top-scoring binders strategy and 176 from the binder clusters strategy for validation.

Table 1. Summary of the two epitope selection strategies and
control used in this study

Strategy Summary

Top-scoring

binders

Highest scoring MHC-II binders in at least

three alleles with at least one overlapping

binder in both prediction algorithms

(netMHCIIpan and TEPITOPEpan).

Binder clusters Detects regions of densest binders using both

TEPITOPEpan and netMHCIIpan

predictors. Uses only overlapping binders

from both methods and at least one MHC-I

binder. Results vary depending on the order

in which predictors are selected.

Random binders

(control)

Baseline method using random binders from

the entire set of predicted binders. Half

were taken from TEPITOPEpan and half

from netMHCIIpan without requiring that

there is any overlap between predictors.

All binders are defined as being present in at least three of the eight
chosen HLA MHC-II alleles.

6 Microbial Genomics

D. Farrell and others



ml�1. Individual peptides were used in T cell assays at a
final concentration of 20 mg ml�1.

Experimental animals

Heparinised blood samples or peripheral blood mononu-
clear cells (PBMC) were obtained from naturally infected,
single intradermal cervical comparative tuberculin-test-pos-
itive TB-reactors from herds known to have bovine tuber-
culosis. All animals were housed at the Animal and Plant
Health Agency, UK, at the time of blood sampling, and the
procedures were conducted within the limits of a United
Kingdom Home Office Licence under the Animal (Scientific
Procedures) Act 1986, which were approved by the local
ethical review committee.

T-cell assays

Whole-blood aliquots (250 ml) from four TB-reactor ani-
mals were added in duplicate to the peptides in 96-well
plates, which were then incubated at 37

�
C in the presence

of 5 % CO2 for 24 h, after which plasma supernatants were
harvested and stored at �80

�
C until required. Cryopre-

served PBMC from seven TB-reactor animals were thawed,
re-suspended in cell culture media (RPMI 1640 containing
25 mM HEPES, 10 % FCS, 1 % NEAA, 5�10–5 M b-mer-
captoethanol, 100 U penicillin ml�1 and 100 mg streptomy-
cin ml�1) and added in duplicate (4�105 cells per well) to
the peptides in 96-well plates, which were then incubated at
37

�
C in the presence of 5 % CO2 for three days, after

which cell culture supernatants were harvested and stored at
�80

�
C until required. In both assays, pokeweed mitogen

was included as a positive control at a final concentration of
10 mg ml�1, while RPMI 1640 alone served as a negative
control. Quantification of IFN-g in plasma or cell culture
supernatant was performed using the Bovigam ELISA kit
(Prionics). For the whole-blood assay, a result was consid-
ered positive if the OD450 with antigen minus the OD450

without antigen was �0.1, as previously reported (Jones
et al., 2010). For the PBMC assay, any OD450 value that was
greater than a cut off calculated as the mean OD450 for 23
negative control wells plus three standard deviations plus
0.1 OD unit was considered positive.

RESULTS

Selection of alleles

Ideally the alleles selected as the basis for prediction should
reflect the genetic diversity of the population under study,
in this case that of European domestic cattle. However since
the available prediction methods do not cover BoLA-DRB3
alleles we were required to use HLA alleles to approximate
the bovine response; this restricted our coverage to a subset
of BoLA-DRB3 alleles that are similar enough to HLA alleles
to be accurate proxies. The population coverage is therefore
partial and serves largely to remove alleles unlikely to be
present in a bovine population. Although the DQ locus is
also expressed and relevant to immune response in cattle,

we did not consider it here as homologous human alleles
are not covered by either of the predictors.

The distributions of the average nearest neighbour (pseudo-
sequence distance to the closest human allele) for all BoLA-
DRB3 sequences and the set of 700 HLA-DR covered by
Tepitope are compared in Fig. 3(a). The region of overlap
illustrates that a subset of BoLA alleles are close enough to
extrapolate predictions from human HLA-DR alleles to
bovine BoLADRB3 binding peptides. We chose to use near-
est distance �0.25 as a valid cut-off, based on predictor per-
formance versus distance data from the literature (Nielsen
et al., 2008). We then used this cut-off to determine the set
of HLA-DR alleles close enough on average to the BoLA
sequences to be useful. Fig. 3(b) is a heat map showing the
distances between the top closest BoLA-DRB3 and corre-
sponding HLA-DR pseudo-sequences. There were eight
representative HLA alleles close enough that cover a portion
of the BoLA sequences, and these are listed in Table 2.

For the MHC-I predictions we chose the first nine BoLA
alleles that are available in the IEDB prediction tools using
the ‘recommended’ method. These are BoLA-N:00101,
BoLA-N:00201, BoLA-N:00301, BoLA-N:00401, BoLA-
N:00501, BoLA-N:00601, BoLA-N:00801, BoLA-N:00901,
and BoLA-N:01001.

Bovine alleles in the target population

There is limited data on allelic frequencies for comparison
but an investigation of the literature revealed several sources
on allele representation in UK Holstein–Friesian herds. The
first is a study of MHC genotyping in crossbred herd of 409
Holstein–Charolais cattle (Baxter et al., 2008). This herd
was found to have 24 distinct alleles with *2707 being the
most frequent. The second is from a genotyping of 1100
Holstein cows from 93 dairy herds in Minnesota and Illinois
(Dietz et al., 1997). Finally a description of DRB3 polymor-
phism in 752 Polish Holstein–Friesian cattle (Oprz� dek
et al., 2012) in two distinct herds was used. All three datasets
are compared in Fig. 4 showing good agreement where the
studies overlapped in allele coverage. The Holstein–Charo-
lais alleles can be seen to be more distinct, presumably due
to the mixed nature of the herd. Several of the common
BoLA alleles identified do indeed overlap with those covered
by our HLA 8 alleles as indicated in Table 3 which shows
frequencies for each allele across the three studies.

Peptide selection

We applied the two binding-prediction algorithms for all
proteins in the M. bovis proteome. As described in the
Methods the same eight HLA MHC-II alleles were used for
both predictors and nine MHC-I BoLA alleles. This yielded
large lists of binders from each prediction method. (For
example there were 47 370 11-mer binders predicted by the
TEPITOPEpan method). Any binders in proteins not meet-
ing the absolute abundance and length criteria were
removed from the analysis. This left 1871 proteins and 1272
after the length filter was applied. This gave final lists of

http://mgen.microbiologyresearch.org 7

Computational epitope prediction



9

8

7

6

5

N
o
rm

al
is

e
d

 c
o
u
n
t

4

3

2

1

0

0.0

(a)

(b)

BoLA-DRB3*2002
BoLA-DRB3*1901
BoLA-DRB3*1201
BoLA-DRB3*6301

BoLA-DRB3*03021
BoLA-DRB3*3701
BoLA-DRB3*3001
BoLA-DRB3*4301
BoLA-DRB3*3501
BoLA-DRB3*0401
BoLA-DRB3*4901

BoLA-DRB3*6701
BoLA-DRB3*46011

BoLA-DRB3*3301
BoLA-DRB3*4101

0.1 0.2 0.3

Nearest neighbour distance

TEPITOPEpan HLA-DR alleles

BoLA-DRB3 alleles

0.4 0.5 0.6 0.7

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

BoLA-DRB3*7001

BoLA-DRB3*2101
BoLA-DRB3*1301
BoLA-DRB3*1601

H
LA

-D
R

B
1

*1
1

0
1

H
LA

-D
R

B
1

*0
4

0
1

H
LA

-D
R

B
1

*1
3

0
1

H
LA

-D
R

B
1

*0
8

0
1

H
LA

-D
R

B
1

*1
4

0
1

H
LA

-D
R

B
1

*0
3

0
1

H
LA

-D
R

B
3

*0
2

0
1

H
LA

-D
R

B
1

*1
0

0
1

H
LA

-D
R

B
1

*1
6

0
1

H
LA

-D
R

B
3

*0
1

0
1

H
LA

-D
R

B
1

*1
5

0
1

H
LA

-D
R

B
3

*0
3

0
1

H
LA

-D
R

B
4

*0
1

0
1

H
LA

-D
R

B
5

*0
1

0
1

H
LA

-D
R

B
1

*0
1

0
1

H
LA

-D
R

B
5

*0
2

0
2

H
LA

-D
R

B
1

*1
2

0
1

H
LA

-D
R

B
1

*0
7

0
1

H
LA

-D
R

B
1

*0
9

0
1

H
LA

-D
R

B
4

*0
2

0
1

Fig. 3. Similarity of human and bovine alleles. (a) Distributions of mean nearest neighbour distance to Tepitope library alleles for the 700
HLA alleles covered by TEPITOPEpan (blue) and known BoLA alleles (green). Though most of the BoLA pseudo-sequences are too distant
to be used, there is a substantial overlapping region with the HLA alleles covered by TEPITOPEpan. (b) BoLA vs HLA alleles pseudo-

sequence distances. The heatmap shows the nearest-neighbour distances between BoLA (y-axis) and closest HLA alleles covered by
TEPITOPEpan. The colour scale represents pseudo-sequence distance on a scale of 0 to 1. Low values (red) are more closely matching
alleles. The x-axis is sorted by mean distance. We choose the eight closest HLA alleles with nearest neighbour distance �0.25 (leftmost on

the x-axis) for both our prediction methods.
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12 746 MHC-I, 7584 netMHCIIpan and 13 004 TEPITO-
PEpan binders respectively. All of these were 11-mer
sequences.

The top-scoring binders selection strategy, was applied to
both the MHC-II binder sets and resulted in 8834 shared
binders found in 239 proteins. Filtering those with overlap-
ping MHC-I binders produced a list of 454 peptide candi-
dates; 42 of these overlapped with the binder clusters
method and were removed. This final list was ranked by
mean score.

For the binder clusters method, the cluster detection and
overlap filters were applied to both sets of binders creating
two sets of binder clusters. These were filtered and then
ranked by binder density (binders per cluster). These two

sets of 124 clusters and 131 clusters differ only in the order
in which the binding predictions algorithms were applied.

Experimental validation

For validation, 20-mer peptide sequences optimally covering
the binders or cluster regions in each list were generated. A
total of 376 peptides were synthesised as follows:

1. The 94 highest ranked top scoring binders.

2. The top 88 from each binder cluster set giving a total

of 176.

3. A further random selection of 94 peptides covering low

scoring binders constituted a ‘non-filtered’ control set.

4. 12 positive-control peptides representing known epito-

pes recognised by bovine CD4+ T cells from infected
animals.

All peptides were tested using whole blood (WB) (four ani-

mals) or PBMC (seven animals) collected from 11 field-

reactor cattle naturally infected with M. bovis. Peptide-spe-

cific IFN-g responses were determined by ELISA. Positive

peptides were assigned as described in Methods. Mean OD

values plotted by number of animals responding to peptide

are shown in Fig. 5 for both sample types. When PBMC

responses were considered, the maximal number of animals

responding to a given peptide were five out of seven

(Fig. 5b), whilst a number of peptides were recognised by

four out of four animals providing whole blood for testing

(Fig. 5a). Fig. 5 demonstrates that the IFN-g responses

towards individual peptides tended to increase with the

Table 2. Subset of HLA-DR alleles used for predictions

Reference Nearest* Mean

HLA-DRB1*0301 0.20 0.43

HLA-DRB1*0401 0.18 0.40

HLA-DRB1*0801 0.17 0.42

HLA-DRB1*1101 0.16 0.37

HLA-DRB1*1301 0.17 0.41

HLA-DRB1*1401 0.18 0.40

HLA-DRB3*0101 0.21 0.49

HLA-DRB3*0201 0.16 0.45

*Nearest-neighbour distance is the pseudo-sequence similarity to the
closest BoLA allele. For efficiency one allele subtype is chosen to rep-
resent all alleles for that allotype, i.e. HLA-DRB1*0301 represents
DRB1*03. HLA allele nomenclature is explained on the IMGT/HLA
website (Robinson et al., 2013).
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tion of two subtypes (e.g. *2703 and *2707). In these cases the higher value was used. Alleles with frequencies less than 2 % are not
shown for clarity.
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degree of promiscuous recognition of individual peptides,

i.e. peptides recognised by the five out of seven or four out

of four cattle when tested as PBMC or whole-blood sam-
ples, respectively, induced the strongest IFN-g responses.
None of the 94 randomly selected control peptides induced
whole-blood responses and only 2 out of 94 control pepti-
des were recognised by two out of seven animals in the
PBMC assay.

Whole-blood and PBMC responses of each peptide tested
were integrated by adding the positives from both sample
matrices. Responder frequency was then calculated as the
fraction of positives out of the total 11 animals. Peptides
were then ranked depending on responder frequency. The
cut-off defining a high response was defined by the mini-
mum responder frequencies for the positive control pepti-
des, all of which are known to be promiscuously recognised.
Thus, a cut-off of �26 % was used to define a high-
responder or promiscuous peptide. Applying this interpre-
tation, we defined 66 out of 270 peptides as being promiscu-
ously recognised by bovine T cells (24.4 %), whilst none of
the randomly selected control peptides met this criterion
(Fig. 6). To extend this analysis, we tabulated these results
broken down in relation to the two prediction strategies.
Although there was no statistically significant difference
between the success rate for predicting peptides recognised
at high frequencies, the binder cluster method was margin-
ally more successful (27.3 % compared with the top-binders
method with 19.2 %). The randomly selected control set
contained no peptides with a high response. Eleven peptides
had responder frequencies greater than the mean response
for the positive controls (60 %). These are listed in Table 4.
The entire list of 376 peptides tested with responses for each
animal and additional annotation is given in Table S1 (avail-
able in the online Supplementry Material).

Table 3. Common BoLA-DRB3 allele frequencies

DRB3.2

alleles

Holstein–

Charolais

Holstein

(USA)

Polish Holstein–

Freisian

*24 – 0.14 0.21

*08 – 0.14 0.14

*22† – 0.14 0.12

*27 0.2 0.04 –

*11 0.16 0.09 0.03

*16† 0.1 0.10 0.08

*23 – 0.09 0.08

*06 0.06 – –

*09 0.06 – –

*01 0.06 – –

*02 0.07 – 0.03

*05 0.04 – –

*36† – – 0.04

*12† 0.06 0.03 0.03

*07 – 0.05 –

*28 – – 0.06

*03 – 0.04 0.03

*10 0.05 – 0.02

*26 – 0.02 –

Shown are frequencies derived from USA Holstein (Dietz et al.,
1997), Holstein–Charolais (UK) (Baxter et al., 2008) and Polish Hol-
stein–Friesian cattle (Oprzadek et al., 2012). †Alleles covered by pre-
diction methods.
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Fig. 5. Results for both sets of IGRA assays. (a) IGRA whole-blood assays, in four animals. White data points are nil-subtracted mean OD
values for all animals responding to a given peptide. The boxplots show the underlying distribution for the raw OD values (all animals).
Results are grouped by each peptide’s number of responders. Peptides inducing no responses are not shown. (b) PBMC IGRA assays in

seven animals. White data points are nil-subtracted mean OD values with boxplots showing distribution for all data points.
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Next, we categorised the peptides into functional groups of
the proteins they represent as defined at the TubercuList
database, http://tuberculist.epfl.ch. There was no obvious
enrichment of any functional categories by host protein of
positive peptides compared with the negative set or the fil-
tered genome as a whole.

Conservation of predicted epitopes

We examined the conservation of positive and negative pep-
tides across nine mycobacterial species by BLAST searching
a local database and searching for the sequence substring
within any orthologs. All epitopes were conserved between
M. bovis and M. tuberculosis H37Rv and all but six are con-
served withMycobacterium canetti. The remaining species in
the Mycobacterium tuberculoisis complex (MTBC) showed
enough variation in conservation to allow an analysis of
possible differences in the positive and negative set. We
compared the proportions of peptides conserved for seven
species between the two sets by performing a two-sample Z-
test. No significant differences were seen using a P-value
cut-off of 0.05.

Discussion

Previous approaches for antigen identification in both M.
bovis and M. tuberculosis have relied heavily on prior
knowledge to guide selection, such as cellular location,
functional classification or species distribution. Sources of
suitable antigens are hence usually restricted to some
known subset of proteins in the species. Few studies use
purely computational methods relying on MHC binding
predictions to screen and test epitopes on the scale we
describe here. Our method is distinct in that it chooses
from across the bacterial proteome, regardless of functional
class. Our overall positive rate of 24.4 % for the predicted
set of 270 epitopes shows the high success rate of the
method, particularly when considered in the context of

selection from 1 million peptides with no a priori knowl-
edge of host proteins used apart from the abundance data.

It has been known for some time that secretion of anti-
genic proteins by mycobacteria induces strong cellular
immune responses in the host. Members of the ESAT-6
protein family, for example, are among the most frequently
recognized antigens from M. bovis. Our methods sample a
different subset of proteins than those derived from such a
knowledge-based perspective. A good illustration of this is
provided by the well-studied bovine antigen Rv3874 (CFP-
10). Promiscuous peptides recognized by M. bovis- infected
cattle have previously been mapped by Vordermeier et al.
(2001); comparing these mapped epitopes to the four pro-
miscuous binders predicted by TEPITOPEpan shows that
the predictions accurately reflect the epitopic sequence
regions. However CFP-10 is not selected by our approach
since it does not contain clusters and the binders are not
highly ranked globally in terms of score. Several of our
positives are contained in proteins previously cited in the
literature as antigens, for example Rv1833c (Mb1864c) and
Rv1239c (Mb1271c). However in general our predicted
epitopes are found in proteins previously unexplored as
antigens.

Since both of our epitope-enrichment strategies are essen-
tially a set of iteratively applied filters, it is not possible to
assert which steps are most effective in enrichment of posi-
tives. We applied sufficient filters to narrow down the
search space to a reasonable number of testable peptides,
i.e. the filters chosen were tailored to the target test set.
However some general conclusions can be drawn from the
results from each strategy. The cluster strategy had more
success, with 27 % positives compared with an approxi-
mately 19 % positive rate for the top-binders strategy. Both
performed far better than our set of randomised binders,
which had no significant positives.

Though the top-scoring binders strategy was also designed
to find the proteins with highest number of epitopes, it did
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Fig. 6. Enrichment of peptides containing epitopes predicted to bind to BoLA-DRB3. Responder frequencies (based on four whole-blood
and seven PBMC samples) of all peptides tested were grouped by the epitope-selection strategy. Peptides were deemed promiscuous
based on a cut-off of �26 % derived from the lowest positive control responder frequencies (purple). The cut-off level is indicated by the
red dashed line. The binder clusters method should a superior enrichment of high response peptides at 27.3 %.
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not enrich for epitopes in individual proteins with a few
exceptions. Indeed it was observed that many of the posi-
tives from this method are also located within clusters of
binders such as Rv3676 as shown in Fig. 7(a). Given these
results we would recommend the binder cluster approach
using both prediction algorithms as a general strategy. Bind-
ing promiscuity should also be a requirement but must be
tailored to the target population and application. Other fil-
ters are likely to be less important and could be applied as
needed to limit peptides for screening.

Our results are consistent with the findings of Weaver et al.
(2008) who found that the immunodominance of a peptide
tracks with the peptide itself, rather than the site in a given
protein or the protein in which it is contained (though DM
editing may also be vital). If this is the case, it is not clear
why a peptide’s context apparently plays such a minor role
in immunodominance. In this view binding affinity to
MHC class II molecules of a peptide compared with its
competitors is the overriding factor. Similar points have
been made by Sette & Peters (2007), who point out that
there can be no absolute correlation between antigen func-
tion and the ability of peptides to elicit immune responses.
In the studies they reviewed it is seen that CDS from all
functional categories, times of expression and cellular local-
izations are found to evoke responses. In this context, global
selection from the proteome according to promiscuous
binding, as we have attempted, is a rational approach.

For choice of binding-prediction algorithms we are for the
moment constrained by availability of quality pan-specific
methods. TEPITOPEpan was implemented because of its
simplicity and the robustness of the PickPocket method
(Zhang et al., 2009) when the similarity to MHC molecules
with known binding specificity is low. TEPITOPEpan [using
the ProPred (Singh & Raghava, 2001) implementation] has
already been used in several studies relating to M. tuberculo-
sis, for example by Mustafa (2009). Our results show that

this is still an effective algorithm when applied appropriately
and was as successful as netMHCIIpan that is the current
‘state of the art’ algorithm.

It is very important to train binding-prediction methods on
MHC binding data from the appropriate alleles. This data is
usually obtained from MHC–peptide affinity competition
assays. This is a relatively resource-intensive process that
has to be done for each allele (Lundegaard et al., 2012). For
non-model organisms there is little such binding data. Even
with trained predictors for some animal alleles, studies are
typically limited by lack of information on the MHC haplo-
types of the group under study. Without this information
many more alleles than actually necessary might have to be
covered. Performing predictions for all known alleles is only
practical for screening a small number of known antigens
or perhaps scanning a viral genome for epitopes (Liao et al.,
2013). The alternative is to make a best guess of the
target alleles and select for promiscuity, as pursued here.
MHC genotypes are rarely characterized comprehensively
because of the prohibitive cost of standard technologies and
the technical challenges of accurately discriminating
between these highly related genes. With the advent of next-
generation sequencing (Sommer et al., 2013; Westbrook
et al., 2015) approaches this is due to change in the near
future. The use of animal-allele-specific methods could cre-
ate a significant improvement in accuracy for our method.

Our clusters method required at least one overlapping
(within the 20-mer) predicted MHC-I binder to potentially
enhance detection. For the top-scoring binders strategy, we
did not apply this requirement (to avoid eliminating too
many high scorers). We found that MHC class I binders fre-
quently coincided with MHC-II binder clusters and single
binders in any case. The randomised set of binders had 30
out of 94 with an overlapping binder and the top shared
binder set had 46 out of 94. No correlation was observed
between positive responses and MHC-I binder overlap. Also

Table 4. The 11 most frequently recognized peptides

M. tuberculosis

H37Rv locus tag

M. bovis tag Peptide sequence Method Responder frequency *Start position

Rv3732 Mb3759 PYVRDGWAFVAIRLTSTDLI Binder clusters 82 178

Rv1822 Mb1853 DWADGKIARLLNQSSRLGAL Binder clusters 73 53

Rv2140c Mb2164c PGGALTLVNDAGMRRYVGAA Top-scoring binders 73 102

Rv3671c Mb3695c NEAAPTWLKTVPKRLSALLN Binder clusters 73 150

Rv3863 Mb3893 LAADGIINAGALIAFEKGRS Binder clusters 73 183

Rv1239c Mb1271c PTVIGGMVLICLFLYHVFRN Binder clusters 64 344

Rv1591 Mb1617 TQAPPVFFARRPLQIALTLM Binder clusters 64 158

Rv1762c Mb1793c EHLEFMAVGTAVRYTAKPGA Binder clusters 64 111

Rv1833c Mb1864c VMSSPPVQYAILRRNFFVER Binder clusters 64 154

Rv2412 Mb2435 RNKAVKSSLRTAVRAFREAA Binder clusters 64 20

Rv3247c Mb3275c ASSVYAMATLFALDRAGAVH Binder clusters 64 62

Peptides with responder frequencies �60% of the mean value for the positive controls. *Start position is the location of the start of the peptide in
the protein sequence. All peptides are 20 amino acids in length.
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the number of overlapping MHC-I binders did not seem to
affect the positive rate of peptides derived in the cluster
strategy. It is probable that the effect of filtering for overlap-
ping MHC-I binders is minimal though the number of data
points is too small to make any conclusion. Our choice of
MHC-I alleles was not optimal since we did not attempt to
estimate the population-specific alleles and chose an arbi-
trary set. Data on bovine MHC-I haplotypes is available
(Codner, 2010) and could be integrated into future
predictions.

As noted already our predicted sequences had a bias for
hydrophobic sequences, seen most obviously with the TEPI-
TOPEpan method (Bian & Hammer, 2004). This is in part

a fundamental property of the MHC ligand binding motif
(Parry, 2008). Approximately 70 % of clusters found in the
cluster strategy were inside or overlapped with transmem-
brane helix domains. Since this may have affected solubility
we included a filter to remove strongly hydrophobic
sequences using a relatively crude measure (simply counting
the proportion of hydrophobic amino acid residues). How-
ever this could unnecessarily have removed actual positives
and the omitted peptides may be tested in a later study.
Hydrophobicity measures indicate no bias for negative or
positive peptides.

Although the MHC-II processing pathway leading to CD4+

proliferation is still incompletely understood this knowledge
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could be used to narrow down the list of epitopes further in
future predictions. For example, though the specificity of
cathepsins (Zavasnik-Bergant & Turk, 2007) that control
degradation of peptides is not well known, a method for
cleavage prediction during peptide pre-processing has been
developed by Hoze et al. (2013). However this tool is only
available via a web page and was not practical for high-
throughput use at the time the study was conducted.

The review by Lundegaard et al. (2012) has discussed the
present status and future for computational epitope predic-
tion systems. The authors stress that despite continued
debate over the efficacy of prediction algorithms (Wu et al.,
2011) there is good reason to expect computational models
to have a significant clinical effect in the coming years. This
study has certainly reinforced the utility of such in silico
methods, even using algorithms not specifically optimised
for animal genotypes. In the veterinary field in particular,
the rational design approach for vaccines and diagnostics
has been very under-explored. This is partly because MHC
genetic variation has been unmeasured (though it is now
quite well known in cattle) and limited efforts have been
made to derive binding data on the MHC alleles in ques-
tion. This is likely to change in the future as MHC binding
assays for animal species are developed.

Conclusions

We have used two contrasting computational strategies
based primarily on MHC-II binding predictions to select
potential mycobacterial peptidic epitopes recognised by
bovine T cells from the very large sequence space of the M.
bovis proteome. Both of our methods were successful in
capturing epitope-rich sequences using an almost purely
computational approach, and our strategy based on finding
regions of high-promiscuity binder clusters seems the most
promising. These epitopes are excellent candidates for use
in future studies of M. bovis diagnostics or potential sub-
unit vaccines, while the computational methods presented
here have general application in epitope selection for multi-
ple infectious diseases.
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