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EFFECTS OF LARGE FIRES ON BOREAL FORESTS OF CHINA 

—Historical Reconstruction and Future Prediction through Landscape 

Modeling 

Wenru Xu  

Under the supervision of Professor Hong S. H 

ABSTRACT 

Boreal forests of China store about 350 Tg tree biomass carbon, which is 

approximately 24–31% of the total forest carbon storage in China, and thus, play an 

important role in maintain national carbon balance. Long-term fire exclusion and climate 

warming have foster larger and more severe fires. On 1987 May 6, a catastrophic fire, 

known as the Black Dragon Fire, occurred in this region, and burned 1.3 million ha. This 

fire is among the top five of such megafires ever recorded in the world, resulting in high 

degree of tree mortality and reset forest succession stage for most burned stands. Forests 

have grown back since, with much more homogeneous age classes and composition, which 

post new ecological risks and challenges. It is predicted that the warming will continue in 

the next century, and thus uncertainties exist in future fire regimes and vegetation response 

under novel climate. 

Chapter II estimate the burn severity and carbon emissions from the Black Dragon 

fire. I combined field and remote sensing data to map four burn severity classes and 

calculated combustion efficiency in terms of the biomass immediately consumed in the 
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fire. Results of this chapter showed that 1.30 million hectares burned and 52% of that 

area burned with high severity. The emitted carbon dioxide equivalents (CO2e), 

accounted for approximately 10% of total fossil fuel emissions from China in 1987, along 

with CO (2% - 3% of annual anthropogenic CO emissions from China) and non-methane 

hydrocarbons (NMHC) contributing to the atmospheric pollutants. This study provides an 

important basis for carbon emission estimation and understanding the impacts of 

megafires.  

Chapter III developed a novel framework to spatially reconstruct the post-fire 

time-series of forest conditions after the 1987 Black Dragon fire of China by integrating a 

forest landscape model (LANDIS) with remote sensing and inventory data. I derived pre-

fire (1985) forest composition and the megafire perimeter and severity using remote 

sensing and inventory data. I simulated the megafire and the post-megafire forest 

recovery from 1985-2015 using the LANDIS model. I calibrated the model and validated 

the simulation results using inventory data. I demonstrated that the framework was 

effective in reconstructing the post-fire stand dynamics and that it is applicable to other 

types of disturbances. 

Chapter IV investigated the effects of future fire regimes on boreal forests of China 

under a warming climate. I simulated species composition and distribution changes to the 

year 2100 using a coupled forest dynamic model (LANDIS PRO) and ecosystem process 

model (LINKAGES).  I focused on two possible fire regimes (frequent small fires and 

infrequent large fires).  Results of this chapter showed that climate warming and fires 

strongly affected tree species composition and distribution in the boreal forests of China. 

Climate warming promoted transitions from boreal species to pioneer and temperate 
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species. Fire effects acted in the same direction as climate change effects on species 

occurrences, thereby catalyzing climate-induced transitions. Frequent small fires exerted 

stronger effects on the species composition shifts than infrequent large fires. The combined 

effects of climate warming and fire on the shifts in species composition will accumulate 

through time and space and can induce a complete transition of forest type, and alter forest 

dynamics and functions. 
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CHAPTER I. INTRODUCTION 

1.  Research background 

Boreal forests cover in excess of 1.2 billion hectares, retain about 32% of the 

world’s forest carbon stocks, and play an important role in maintaining global carbon 

balance (Melillo et al. 1993). Fires have been well recognized as a primary disturbance 

affecting the dynamics of forest structure, composition, and carbon storage across the 

boreal forest region (Lecomte et al. 2006; Bowman et al. 2009; Rogers et al. 2015). Over 

the past decades, fire suppression and fire exclusion in the Chinese boreal forest region has 

been carried out and resulted in an increase in hazardous fuels. Coupled with climate 

warming, the hazardous fuels can foster larger and more severe fires (Chang et al. 2007; 

Stephen et al. 2014). Large fires (or also called megafires) that burned extensive areas with 

high intensity can cause abrupt changes to the ecosystem by killing live trees and 

combusting a great amount of woody biomass carbon into atmosphere (Bradstock et al. 

2008; Kean et al. 2009). Despite the increased megafires and their profound impact on the 

boreal forests, few have assessed the megafire effects on forest landscape and regional 

carbon balance. Thus, accurate assessments of megafires effects are needed to better 

understand the role of megafires in national and global carbon balance and forest dynamics, 

and provide insight into how boreal ecosystems would respond to changing fire regimes. 

Assessing megafire effects on boreal forests is challenging because they have long-

lasting impacts on forest ecosystems. Megafires can create large burn patches that could 

delay vegetation recovery processes by limiting the reach of seed dispersal (Kean et al. 

2009; Johnstone et al. 2016). They produce ecological legacies that endure for decades to 
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centuries as forests recover following fires (Hicke et al.2013; Kashian et al. 2013; Turner 

et al. 2019). Precise information on extent and severity of the fire as well as on post-fire 

forest conditions is required to quantify the legacy effects of megafires over a large spatial 

extent and long time periods (i.e., decades to centuries). Spatial reconstructions of 

historical forest landscapes can capture spatial heterogeneity of the burn severity, and 

species regeneration strategies that determine forests recover and thus provide baseline 

information for anticipating future landscapes (Seidl et al. 2014; Thrippleton et al. 2014).  

Quantifying megafire effects on boreal forests involves uncertainty in future fire 

regime and vegetation response under the warming climate. Both the fire occurrence 

probability and burned area have been projected to increase in the next century due to 

climate warming, extreme weather, increased anthropogenic ignitions, and fuel 

accumulation from fire exclusion policies (Arno et al. 2000; Flannigan et al. 2009; Liu et 

al. 2012; Stephens et al. 2014). However, there is considerable debate over the future fire 

regime. Even if the fire return interval and the total area burned are similar, the predicted 

fire regimes in a region can be from many small fires to a few large fires (Cui et al. 2008; 

Thonicke et al. 2010). Large and small fires are distinctively different in creating and 

regulating burn patterns (Romme et al. 1998; Bradstock 2008; Keane et al. 2008; Miller et 

al. 2012), which may lead to different tree species responses and post-fire succession 

trajectories especially under warming climate. 

Boreal forests of China are at the southern range of Siberia boreal forest biome.  

They are a fire prone system historically characterized with small but low intensity fires 

(Chang et al. 2008). Due to decades of fire suppression and fire exclusion, forest fuel built 

up rapidly. These boreal forests have experienced considerable temperature increases over 
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the past decades, and are predicted to warm further over the 21st century (IPCC, 2013). 

The 1987 Black Dragon fire, which occurred in this region, stood out as fifth largest fire 

among all recorded megafires (the top four megafires are: the 1997/1998 Kalimantan 

Complex in Indonesia, the 2008 Ghanzi Fire in Botswana, the 1963 Paraná Forest Fire in 

Brazil, and the 1950 Chinchaga Fire in Canada) since the early 1800s and ranked first if 

the area burned in Russia is included (Leistikow et al. 2000; Williams et al. 2011; Ferreira-

Leite et al. 2015).The fire burned 1.3 million ha over 28 days and resulted in over 200 

deaths and 4 billion Yuan of losses at that time. In addition to the significant social and 

economic losses, the fire resulted in a high degree of tree mortality, emitted a large amount 

of carbon, and reset forest succession for most burned stands. Forests have grown back 

since, with much more homogeneous age classes and composition, which post new 

ecological risks and challenges.  

2.  Research objectives 

The objectives of this research were to (1) assess the burn severity and carbon 

emission of the Black Dragon fire combining satellite and forest inventory data, (2) 

spatially reconstruct the post-fire time-series of forest conditions from 1987 to 2015 

integrating forest landscape model (LANDIS) with remote sensing and inventory data, and 

(3) investigate how the boreal forests are influenced by future fires under warming climate 

in the next 100 years. The following three chapters in this dissertation each addresses one 

of these objectives. 

3. Chapter outlines 

Chapter II presents a study on the immediate effects of the megafires on the boreal 

forest ecosystem (i.e. the biomass immediately consumed in the fire and carbon emissions). 
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I integrated Landsat data, recent forest inventory data and the established correlation 

between remotely sensed indices and the composite burn index to (1) spatially reconstruct 

historical burn severity patterns for the megafire; (2) estimate aboveground forest-type 

specific combustion efficiency using tree mortality levels and consumed foliage estimated 

for each burn severity class; and (3) calculate aboveground forest biomass consumption 

and carbon emissions using the estimates of combustion efficiency.  

Chapter III proposes a framework for integrating a forest landscape model 

(LANDIS) with remote sensing and inventory data to spatially reconstruct the post-fire 

time-series of forest conditions (i.e., forest composition, structure, and aboveground 

biomass) after the 1987 Black Dragon fire. I derived pre-fire (1985) forest composition and 

the megafire perimeter and severity using remote sensing and inventory data. I simulated 

the megafire and the post-megafire forest recovery from 1985-2015 using the LANDIS 

model and calibrated model parameters using inventory data. I evaluated whether the 

reconstructed forest conditions could realistically capture the post-fire recovery (e.g., 

density and basal area) at the level of individual tree species under different burn severities. 

In Chapter IV, I predicted forest dynamics in response to climate change and future 

fire regime over a large region by using a hybrid forest ecosystem model LINKAGES (v3.0) 

and a forest landscape model LANDIS PRO (7.0). I choose to focus on two kinds of fire 

regimes (frequent small fires and infrequent large fires) under a warming climate and 

included the current climate as a baseline climate scenario, the current fire as a baseline 

fire scenario. By comparing and contrasting results of these different scenarios, I addressed 

the following research questions: 1) how fires interact with climate warming to affect the 

species composition and distribution, 2) whether the climate-induced composition and 
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distribution shifts will respond differently between small and large fires, and 3) to what 

extent could the small or large fires enhance or hinder the shifts in species composition and 

distribution under a warming climate? 
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CHAPTER II. Estimating burn severity and carbon emissions from a 

historic megafire in boreal forests of China 

1. Introduction 

Natural and anthropogenic forest fires, especially megafires (large and 

uncontrolled forest fire events, burning large areas >10,000 ha) emit a great amount of 

carbon (Van der Werf et al. 2010; Ito 2011).  Carbon dioxide (CO2) is predominant 

among the emissions, along with other carbon-containing trace gases including carbon 

monoxide (CO), methane (CH4) and non-methane hydrocarbons (NMHC), resulting in 

perturbations in air quality and the carbon cycle (Urbanski er al. 2008). Forest fires 

(extent, frequency aand severity) are predicted to increase under warmer and dryer 

conditions, earlier snowmelt and longer fire seasons (Flannigan et al. 2009; Liu et al. 

2012), contributing to the increase in carbon emissions from forest fires. Thus, accurate 

estimation of carbon emissions from forest fires is important to understand carbon 

balance and atmospheric chemistry. 

Boreal forests of China store about 350 Tg tree biomass carbon, which is 

approximately 24–31% of the total forest carbon storage in China, and thus, play an 

important role in maintaining national carbon balance (Fang et al. 2001; Fu et al. 2013). 

The Black Dragon fire occurred in 1987, reduced forest cover by 15% in the boreal 

forests of China (Luo et al. 2002), and coincided with another 13 million ha burned in 

Russia (Cahoon et al. 1994). This megafire was noteworthy due to its size, rapid spread, 

and variable severities. The fire in China ranks fifth among all recorded megafires (the 



11 
 

top four megafires are: the 1997/1998 Kalimantan Complex in Indonesia, the 2008 

Ghanzi Fire in Botswana, the 1963 Paraná Forest Fire in Brazil, and the 1950 Chinchaga 

Fire in Canada) since the early 1800s and ranked first if the area burned in Russia is 

included (Leistikow et al. 2000; Williams et al. 2011; Ferreira-Leite et al. 2015). Given 

the scale and catastrophic impacts, quantitative assessment of carbon emissions of the 

1987 Black Dragon fire helps to better understand the role of extreme megafires in 

national and global carbon balance and atmospheric chemistry, especially for complying 

with the Paris Agreement on greenhouse gas reduction (UNFCCC, 2015). 

Carbon emissions from forest fires are commonly calculated as the product of 

burned area, pre-fire biomass, combustion efficiency (the proportion of biomass 

consumed during burning), and emission factors (Seiler and Crutzen 1980). Each of the 

above components contribute to uncertainties in emission estimates (French et al. 2004). 

Burned area and pre-fire biomass density can be estimated and constrained with satellite 

imagery (Palacios-Orueta et al. 2005; Giglio et al. 2013). There are, however, few studies 

on combustion efficiency, particularly in boreal forests of Asia (Van Leeuwen et al. 

2014). Field estimates of combustion efficiency are generally based on pre- and post-fire 

biomass sampling, which is costly, cumbersome, and spatially limited. As a result, many 

studies assume an average combustion efficiency, either by major vegetation type or over 

the entire burned area (e.g. Cahoon et al. 1994; Yi and Bao 2016). Uncertainties in 

combustion efficiency estimates due to spatial variability of fuel consumption within 

burned areas can lead to large errors in carbon emission estimates (French et al. 2004; De 

Santis et al. 2010). This is especially important for megafires given their spatial 

variability in fire severity. Burn severity quantifies the degree of vegetation change due to 
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fire and thus can be and has been used as an estimate of combustion efficiency (Boby et 

al. 2010; De Santis et al. 2010). Remote sensing indices are generally used in conjunction 

with field-based indices such as the composite burn index (CBI) to estimate burn severity 

(Key and Benson 2005; Kasischke et al. 2008). However, it is challenging to use CBI 

values to evaluate the burn severity of the historical fires that occurred decades ago 

because forest inventories immediately after fire are often not available. Relationships 

between remotely sensed indices and burn severity have been established in many 

ecosystems and regions and can be extrapolated to similar fires (Miller and Thode 2007; 

Escuin et al. 2008; Schepers et al. 2014). For example, Epting et al. (2005) demonstrated 

that normalized burn ratio (NBR) was highly correlated with the field-based CBI in 

forested burned sites of Alaska; Allen and Sorbel (2008) found strong linear relationship 

between a differenced normalized burn ratio (dNBR) and CBI (R2 ranged from 0.45 to 

0.88). In addition, spatial patterns of forest age structure developed after fires encapsulate 

disturbance and recovery history and can be used to verify and improve the established 

relationships, making spatially reconstructed burn severity sound (Naficy 2017). The 

well-established relationship between spectral indices and severity facilitates the 

estimation of biomass combustion and thus carbon emission in relation to heterogeneity 

in burned severity from historical megafires.  

There have been many efforts to estimate carbon emissions from fires. Andreae 

and Merlet (2001) estimated global carbon emissions for important species emitted by the 

various types of biomass burning in the late 1990s. Using a combination of satellite 

derived datasets, Ito and Penner (2004) developed a monthly fire emissions inventory for 

the year 2000. The Global Fire Emissions Database (GFED, Van Der Werf et al., 2006, 
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2010, 2017) is a widely applied global biomass burning emissions dataset. GFED4s 

includes 8-day and monthly emissions of selected trace gas and particulate emissions 

from burning globally at horizontal resolutions as fine as 0.25°  for 1997–2016 (Van Der 

Werf et al. 2017). The Fire Inventory from NCAR (FINN) includes daily 1 km resolution 

global carbon and particle emission estimates from open biomass burning (Wiedinmyer 

et al. 2011). The Global Fire Assimilation System (GFAS) provides daily emissions from 

biomass burning on a global 0.5° ×0.5° grid from 2003 to 2010 (Kaiser et al. 2012). All 

of these studies used relatively coarse resolution (e.g. 1.1 km of AVHRR, 250 m, 500 m 

and 1 km of MODIS) and generalized forest types (e.g. boreal forest, temperate forest, 

tropical forest, peat, and agriculture), and did not account for fine-scale variability in 

combustion efficiency that determines fire emissions and impacts. Thus, the uncertainty 

associated with fire emissions remains. For example, the GFED4s may overestimate tree 

mortality by overlooking remaining trees from the fire using coarse resolution and thus 

overestimate carbon emissions.  Landsat data provide a high-resolution alternative at a 

spatial scale comparable with on-the-ground tree mortality data (30 m; Kennedy et al. 

(2014)). Landsat also has an extensive historical archive in some parts of the world 

(Wulder et al. 2016), and Landsat data have been used extensively to monitor 

disturbances and land-cover change around the world (Wulder et al. 2012).   

In this chapter, I integrated Landsat data, recent forest inventory data and the 

established correlation between remotely sensed indices and CBI to assess the impact of 

the Black Dragon fire on aboveground forest carbon. The objectives were (1) to spatially 

reconstruct historical burn severity patterns for the megafire; (2) to estimate aboveground 

forest-type specific combustion efficiency using tree mortality levels and consumed 
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foliage estimated for each burn severity class; and (3) to calculate aboveground forest 

biomass consumption and carbon emissions using the estimates of combustion efficiency. 

2. Materials and Methods 

2.1. Study area 

The Great Hinggan Mountain forests compose more than 30% of the total forest 

area in China, represent a major portion of forest carbon stocks in China, and are also 

within a fire-prone boreal forest region. Surface fire is historically the dominant fire type, 

occasionally mixed with stand-replacing fire in the high elevation regions (Xu et al. 1997). 

However, fire exclusion has altered fire regimes in this area. Since the 1980s, fires have 

been infrequent, but more intense than historically (Chang et al. 2008). 

The Black Dragon fire ignited on May 6, 1987, within the Great Hinggan 

Mountains (Figure 2-1). The fire burned within four Forest Bureaus (Xilinji, Tuqiang, 

Amuer, and Tahe) over 28 days and resulted in over 200 deaths and 4 billion Yuan of losses 

at that time. In addition to the significant social and economic losses, the fire resulted in a 

high degree of tree mortality, reset forest succession for most burned stands, emitted a large 

amount of carbon, and caused the most forest fire damage in the history of China. The 

timing of the Black Dragon fire coincides with the start of the megafire era (Williams 2013). 

2.2. Data Sets 

2.2.1 Landsat data and Pre-Processing 

Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper plus (ETM+) 

data provide the longest consistent source of relatively high spatial and spectral resolution 

data, with 30-m spatial resolution, an 8 - to 16 - day repeat cycle, and a long-time span 

(1984-2018). Landsat data are responsive to relative changes in aboveground biomass 
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because of fire and can be used to discriminate fire occurrence and severity (Epting et al. 

2005). In this chapter, nine pre- and post-fire Landsat images from the U.S. Geological 

Survey (USGS, http://earthexplorer.usgs.gov) were used to cover the 1987 Black Dragon 

fire to estimate aboveground biomass and burn severity. Only post-fire Landsat images 

were used for burn severity, given that NBR has been found to perform better than dNBR 

in my study area (Chang et al. 2016). The images were chosen primarily from June to 

August (growing season) shortly before and after the fire (June 26, 1986 and June 24, 1987 

for path 121, row 23; June 12, 1986 and June 15, 1987 for path 122, row 23; August 6, 

1986 for path 123, row 23; June 15, 1987 for path 122, row 24) to ensure the trees were in 

the same phenological phase. Because of a gap in the data, however, I chose April 26, 1989 

and September 2, 1990 for path 123, row 23, and September 14, 1988 for path 121, row 24. 

The images were processed by the USGS to convert from DN (digital numbers) to surface 

reflectance using the LEDAPS algorithm (Landsat ecosystem disturbance adaptive 

processing system, Masek et al. 2006). Clouds, cloud shadows, and snow pixels were 

masked using the function of mask algorithm (FMASK; Zhu and Woodcock (2012)).  

2.2.2 Pre-fire forest aboveground biomass density 

Pre-fire forests in this area were primarily affected by historical harvesting, 

resulting in a homogenous species composition and an even-age distribution, with most 

trees between 40-60 years old. Zhang et al. (2018a) combined 2000s forest inventory data 

and remote sensing data to map species-level biomass in the boreal forests of China. The 

pre-fire aboveground biomass density maps by species in this study were produced using 

pre-fire Landsat data, according to the AGB estimation model developed by Zhang et al. 

(2018a). I calibrated and validated the results with post-fire forest inventory data (Figure 
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2-2).  I subtracted biomass gained from succession based on stand-specific age-related 

increases in biomass estimated from 2000s (1997-2001) and 2010s (2010-2015) forest 

inventory data. I assumed that the forest species composition did not change within the 

20-year period. The total aboveground biomass before fire was highly consistent between 

estimated results and forest inventory data (Figure 2-3), suggesting that my estimated 

species biomass could adequately represent the real pre-fire species biomass.  

Aboveground biomass before the Black Dragon fire was generally homogeneous 

and averaged 63 Mg ha-1 (Figure 2-4a). Dahurian larch (Larix gmelinii Rupr. Kuzen, 34 

Mg ha-1, Figure 2-4b) and white birch (Betula platyphylla Suk, 24 Mg ha-1, Figure 2-4c) 

were the most dominant species. Aspen (Populus davidiana Dode and Populus 

suaveolens Fischer, Figure 2-4d) and Mongolian Scots pine (Pinus sylvestris var. 

mongolica Litvinov, Figure 2-4e) were few, taking up less than 5% of total biomass. 

2.3. Quantification of burn severity 

Traditional methods of quantifying burn severity are based on field data (the 

difference between pre-fire and post-fire forest condition). However, historical pre- and 

post-fire inventories are not available for many regions of the world and collecting post-

fire inventories is often not feasible for large fires.  Therefore, the assessment of burn 

severity for a large area normally relies on remote sensing in conjunction with field-based 

indices (Loboda et al. 2007).  The composite burn index (CBI) is the most commonly 

used index for burn severity characterization (Key and Benson 2005). It is calculated with 

field data to represent the magnitude of fire effects on a numeric scale between 0.0 and 

3.0 (Table 2-1). Chang et al. (2016) explored relationships between remote sensing 

indices and CBI based on 85 CBI plots within 16 fires in this area. They found that 
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normalized burn ratio (NBR) was highly correlated with the field-based CBI (R2=0.63, 

p<0.0001). Here, I used the developed relationship of CBI and NBR by Chang et al. 

(2016) to assess burn severity using the historical Landsat imagery for the Black Dragon 

fire, including four classes: no effect (unburned), low severity, moderate severity, and 

high severity. From the above relationship, I assigned tree mortality levels and consumed 

foliage rate based on the evaluation criterion of CBI (Table 2-2). The outermost fire 

perimeter was manually interpreted based on NBR values, because valleys and low-

elevation areas in the south were not burned, but also characterized with low NBR values, 

which could be misclassified as low-severity burned areas using the NBR thresholds. My 

fire perimeter is highly consistent with the fire perimeter derived by Chen et al. (2016) 

using enhanced vegetation index with overall accuracy of 99.83% and kappa coefficient 

of 0.9946. 

To validate the tree mortality levels assigned for each severity class, I used 612 

recent (2010-2015) forest inventory plots in which tree species and diameter at breast 

height (DBH >5 cm) were recorded for each tree (Figure 2-2). I estimated the age for each 

tree using age-DBH relationships (Zhang et al. 2018b). I assumed that tree numbers from 

unburned forests were representative of tree numbers in this region prior to the 1987 fire, 

and that the trees older than the time gap between inventory year and 1987 represent the 

survived trees from the fire. I used the differences in tree number between the unburned 

forests and burned forests to estimate tree mortality due to the fire. 

2.4. Calculation of aboveground biomass consumption and carbon emission 

Total aboveground biomass consumed from the burned area was calculated with 

Equation (1), where Ct,c,s is biomass consumption for species t, component c, and severity 
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s, Ai is the area of pixel i, Bt,c,i is aboveground biomass density for species t, component c, 

pixel i, and CEc,s,i is combustion efficiency for component c, severity s and pixel i. 

𝐶𝑡,𝑐,𝑠 = ∑ 𝐴𝑖 × 𝐵𝑡,𝑐,𝑖 × 𝐶𝐸𝑐,𝑠,𝑖𝑖  (2-1) 

Stand-replacing fires rarely burn entire trees and instead leave many standing 

dead trees. Here, I defined combustion efficiency as the proportion of tree biomass 

consumed in a fire. In this study, the combustion efficiency (Table 2-3) of burned area 

was derived based on previously published results (Susott et al. 1991; Campbell et al. 

2007; Hu et al. 2007; Garcia et al. 2017) and adjusted based on tree mortality levels and 

consumed foliage for different severity classes. To better estimate biomass consumed, I 

allowed combustion efficiency to vary among components (barks, branches, stems, and 

leaves). Since biomass allocation to different components varies among tree species, I 

compiled this information from published data for each of the four most common tree 

species in my study area (Wang et al. 2001; Hu et al. 2007; Poorter et al. 2015). For the 

remaining species in my area, I use the average biomass of components of all other tree 

species. Combining these data with the biomass by tree species within the burned area, I 

determined the distribution of combustion efficiency.  

The equation for the emission of specific gases, ,  was based 

on the Seiler and Crutzen (1980) biomass combustion model, where 𝐸𝑠 is the amount of 

specific gas released, 𝐶𝑏 is consumed biomass, 𝑓𝑐 is the fraction of carbon contained in 

the biomass, and 𝐸𝑓𝑠 is the emission factor for a specific gas. There are numerous 

experimental studies on the carbon content of different biomass components and species 

(Hu et al. 2012; Yu et al. 2012). Based on the results of this research, I determined the 
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fractional carbon content in different biomass components by tree species (Table 2-4). 

Emission factors of different gases are usually derived from laboratory or field 

experiments for different species or forest types (Susott et al. 1991; Kaufman et al. 1992). 

Many researchers have adopted the emission factors at the biome level. In this research, I 

further categorized the biome into more specific forest types based on dominant tree 

species, in contrast to the earlier approach where a single value was used for each biome. 

These emission factors for each emitted gas (Table 2-5) were based on previously 

published results from my study area (Hu et al. 2012). 

3. Results 

Burned and unburned areas were clearly distinguished from each other using an 

NBR value of 585 (Table 2-2, Figure 2-1), allowing for determining patterns of burned 

area affected by this megafire. The total burned area of the Black Dragon fire was 

approximately 1.3 million ha including four burn severity classes: unchanged\unburned, 

low severity, moderate severity, and high severity. High severity burned areas accounted 

for 52% (672,857 ha) of the total burned area; moderate severity burned areas accounted 

for 22% (288,483 ha), and low severity burned areas accounted for 26% (340,623 ha) 

(Table 2-6). Areas burned with high severity tended to be patchy with a few large and 

aggregated patches that fragmented the remaining area of the fire that had moderate and 

low severity (Figure 2-5).  It was apparent that the fire crossed the rivers, and that the 

extreme conditions allowed for rapid fire spread over a large geographical area (Figure 2-

5). Less affected areas were located mainly in high elevations (the mountain range 

blocked the path of fire spread) and close to the border of the burned area where fire 

suppression efforts were concentrated using the few fire breaks available in the area. 
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Combustion efficiency varied significantly among different severity classes with 

the highest value (0.67) in the high severity class, followed by 0.46 in the moderate 

severity class and 0.06 in the low severity class (Table 2-6). Total aboveground biomass 

consumption due to the Black Dragon fire was estimated to be 36.99 Tg. Most consumed 

biomass was in the high severity class, contributing to a total of 27.7 Tg, whereas the low 

and moderate severity classes only accounted for 4% and 22% of the total biomass 

consumed, respectively. The consumed biomass had very high spatial variability within 

and among burn severity classes because of the differences in tree species, pre-fire 

biomass and combustion efficiency, with extremely high values of biomass consumed 

primarily within the high severity burned areas (Figure 2-6). I assumed all biomass of the 

remaining live trees after the fire remained as live biomass because they can recovery 

relatively quickly. The remaining live biomass had an opposite trend compared to the 

consumed biomass. The high severity burned areas had fewer live trees and more 

standing dead trees (Table 2-6). Biomass consumed by fire was always less than the 

biomass lost to mortality, indicating that additional carbon will be lost through 

decomposition over time. 

The Black Dragon fire in northern China emitted a total of 6.31 1010 kg CO2e 

including 5.88×1010 kg CO2, 3.71×109 kg CO, 1.73×108 kg CH4, and 1.35×108 kg 

NMHC (Table 2-7). High severity burned areas contributed the most to fire emissions. 

Low severity burned areas had lower emissions although they covered a larger area than 

moderate severity areas. 
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4. Discussion 

4.1. Estimation of carbon emissions from the Black Dragon fire 

The total burned area (1.3 million ha) of the Black Dragon fire mapped using 

NBR thresholds from remote sensing data was smaller than the official fire area (1.7 

million ha). The fire burned over 20 days and generated large smoke plumes (Cahoon et 

al. 1994). Post-fire conditions and the remoteness of the area made it difficult to assess 

combustion efficiency across the entire megafire with a field inventory. The official fire 

area was derived from the maps of the outermost extent of the fire perimeter, whereas not 

all areas were burned within this perimeter. Thus, the estimates based on the outermost 

extent probably overestimate the total burned area and emissions. My estimates of burned 

area were derived from Landsat NBR values that highlighted areas with changes in 

vegetation biomass based on the change on visible-to-near-infrared surface reflectance 

and shortwave infrared reflectance (Trigg and Flasse 2000; Smith et al. 2005). The areal 

estimate from the remote sensing data was made using NBR thresholds consistently 

applied across the entire burned area, an approach that is more reproducible and is less 

error prone than field-based burned area mapping (Schepers et al. 2014).  

The combustion efficiency varied depending on fuel type, soils, topography, and 

fire behavior within the megafire (Roy and Landmann 2005). Accounting for combustion 

efficiency using actual tree mortality estimated in different burn severity classes could 

reduce uncertainties in emission estimates compared to methods that use biome-wide 

combustion efficiencies. The average combustion efficiency (0.45) estimated in my study 

is relatively higher than the fixed values used by most studies (Table 2-8). However, my 
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high average combustion efficiency is reasonable given the extensive area within the fire 

that had high burn severity. The high average combustion efficiency is expected for such 

a megafire given the feedback loop between fire and fire weather: the increased air 

moving by heatwaves from the megafire and enhancement of dryness by radiative forcing 

of smoke particles further accelerated the fire, which exacerbates burn severity with high 

combustion efficiency (Liu et al. 2014; Coen et al. 2018). The estimates of combustion 

efficiency in high severity (0.67) and moderate severity (0.45) classes compare favorably 

with the estimates developed by De Santis et al. (2010) and reported by Chen et al. 

(2011). 

The potential importance of the Black Dragon fire on the carbon cycle was first 

recognized by Cahoon et al. (1994), with an estimate of total 14.6 Tg C released. They 

used a bottom-up approach (the product of burned area, pre-fire biomass, combustion 

efficiency, and emission factors) with an average carbon consumption rate (1.125 kg C 

m-2) derived from the prescribed burns in Canadian boreal forests. However, the Black 

Dragon fire was a megafire and the large area burned by megafires can create feedbacks 

with fire weather, which in turn leads to higher combustion efficiency, resulting in higher 

carbon emission than small-scale prescribed fires. Consequently, it is likely that the 

Cahoon et al. (1994) estimate of total carbon emissions is conservative. Wang et al. 

(2001) estimated that the Black Dragon fire released between 25 and 49 Tg C according 

to the live biomass difference between unburned forests and burned forests. They 

extrapolated the total carbon emission based on plot-scale inventories and scenarios of 

the percent of burned area for each burn severity without accounting for spatial variation. 

Also, Wang et al. (2001) assumed biomass for all live trees was consumed without 
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counting the standing dead trees, and thus, might overestimate the total carbon released. 

The total carbon loss (18.24 Tg C) estimated in this study is further constrained and more 

reasonable given that I accounted for fine-scale heterogeneity in fire combustion and 

post-fire residue. However, consumption of belowground biomass, and the understory 

and ground vegetation following the fire were not included in my estimates due to 

insufficient pre-fire data. Because these components were not included, my estimates are 

a conservative estimate of carbon loss.  

4.2. Implications for understanding megafire impacts on fire emissions  

The Black Dragon fire can be directly compared in terms of fire extent and carbon 

emissions to regional and global estimates as well as to other fires (Table 2-9). The fire 

burned an area larger than the annual area burned by all fires in China (0.9 Mha; 1950-

2000), with a higher carbon loss and more emissions (13.2 Mg C ha-1; Lu et al. 2006). Its 

carbon loss density was three times that of global biomass burning (Randerson et al. 

2012; Van Der Werf et al. 2017). The 1997/1998 Kalimantan Complex was the largest 

fire (9.7 Mha) recorded in the fire history globally (Ferreira-Leite et al. 2015). The 

carbon loss density from the 1997/1998 Kalimantan Complex (96.3-112.4 Mg C ha-1, 

Page et al.2002) was far greater than that of the Black Dragon fire (14 Mg C ha-1). 

Because greater pre-fire biomass and more complete combustion were in peatlands than 

in boreal forests. That’s especially true in the boreal forests of china where the forests 

have been highly affected by historical harvesting, resulting in low forest biomass with 

most trees between 40-60 years old. The 1988 Yellowstone Fire (1988) occurred at a 

similar time as the Black Dragon fire (1987) and was the largest and most intensive 

wildfire recorded in the world’s first National Park (Ferreira-Leite et al. 2015). It burned 
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321,270 ha of which 31% burned by high severity fire and released 23.3 Mg C ha-1 

(Turner et al. 1994; Zhao et al. 2018). The fire was quite patchy due to spotting behavior 

and variation in fuel conditions and topography (Christensen et al. 1989).  Although the 

1988 Yellowstone Fire was less severe than the Black Dragon fire, it had greater carbon 

loss density than the Black Dragon fire in part because of its high pre-fire biomass (175.4 

Mg ha-1 C, Smithwick et al. (2009)). Russian boreal forests are comparable with the 

boreal forests of China based on the similar forest composition, structure and disturbance. 

The 1997 Taseevsky Fire in Russian boreal forests was a relatively low severity fire 

(2467.2 ha) and only released 6.5 Mg C ha-1 (Isaev et al. 2002). The comparisons between 

the Black Dragon fire and the 1997 Taseevsky Fire showed that the high percentage of 

high severity burned area in the Black Dragon fire resulted in higher carbon loss density.  

National assessments of ecosystem carbon emissions are a critical component of 

documenting and fulfilling commitments to reduce overall carbon emissions. Wildfires 

are considered carbon neutral based on assumptions that forest regrowth will eventually 

recover carbon lost in the fire (Intergovernmental Panel on Climate Change 2015). 

However, regrowth may take much longer than the timeframe set for reductions in carbon 

emissions. Also, a great deal of uncertainty is involved in the recovery process especially 

under positive feedbacks between increased fire emissions and climate warming 

(Bowman et al. 2009). Hence, it is important to include and track emissions from 

wildfires in carbon accounting. Megafires have large effects on carbon emissions because 

of the large amount of carbon suddenly released into the atmosphere. For example, the 

Black Dragon fire released approximately 160% of China’s mean annual carbon 

emissions from forest fires, and CO2e emissions from the Black Dragon fire were 
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equivalent to 10% of China’s annual CO2 emissions from fossil fuel consumption (Table 

2-9). This suggests that increases in megafires and their emissions may counteract efforts 

to reduce emissions from fossil fuel consumption. At present, estimation of carbon 

emissions in China has not included the potential impact of megafires. As a result, there 

is a large uncertainty in the national level of carbon emission estimates. Thus, this study 

of the Black Dragon fire provides an important step forward to accurately account for 

carbon emissions in China. 

5. Conclusions 

Significant amounts of carbon are emitted to the atmosphere due to large and 

catastrophic fires, affecting air quality and climate (Hurteau et al. 2008; Adams 2013). To 

better assess these effects of megafires, we improved estimates of satellite-based 

combustion efficiency for the Black Dragon fire using actual tree mortality estimates for 

different burn severity classes. This megafire burned 1.30 million ha, of which 52% was 

in high severity burned areas. Comparisons of combustion efficiency suggest that using 

fixed combustion efficiency values (usually the average combustion efficiency of forest 

fires that are primarily low-severity surface fires) may underestimate carbon emissions 

from megafires, and that the correlation between burn severity and combustion efficiency 

provides an alternative way to improve estimates of carbon emissions from megafires, 

especially historical megafires where pre- and post-fire field inventory data are lacking. 

Our approach can be used to constrain fire emission models and presents a methodology 

to estimate near-term emissions from fire and long-term emissions from dead biomass 

decay. The methodology can be applied on a continuous basis for forest fire monitoring 

and emissions accounting in different forested regions of the world. Furthermore, the 
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estimated fire emissions could be combined with estimates of forest regrowth biomass 

accumulation for including emissions from wildfire in a national carbon accounting and 

reporting framework. Hence, our study provides an important basis for considering the 

impacts of megafires on national-scale carbon accounting for China. 

Figures 

 

 

Figure 2-1. Location of the Black Dragon fire and the normalized burn ratio (NBR) value 

from Landsat Thematic Mapper data. 
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Figure 2-2. The location of the forest inventory data; Inventory data A includes 1426 

natural succession forest inventory polygons with mean stand DBH, height, age, tree 

species composition (volume proportion), and stand volume density from 1997 to 2001; 

Inventory data B includes 612 plots with tree species and diameter at breast height 

(DBH >5 cm) for each tree from 2010 to 2015. 

 

Figure 2-3. a) validation of pre-fire aboveground total biomass (single factor ANOVA 

p=0.78) and b) pre-fire species biomass composition (single factor ANOVA p>0.05 for 

each species). Error bars are marked as ± standard deviation. 
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Figure 2-4. Maps of (a) total aboveground biomass and species-level biomass (b, 

Dahurian larch; c, white birch; d, aspen; e, Mongolian Scots pine) before the Black 

Dragon fire (1987). 
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Figure 2-5. Map of burn severity classification produced from the normalized burn ratio 

thresholds. 
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Figure 2-6. Maps of aboveground biomass consumption due to the Black Dragon fire in 

1987. 

 

Tables 

Table 2-1. Investigated items and evaluation criterion of composite burn index (CBI). 

Strata rating factors 
Composite burn index 

No effect Low Moderate High 

0 0.5 1 1.5 2 2.5 3 

Herbs, low shrubs and trees less than 1 m 

Foliage consumed (%) 0 30 80 95 100% branch loss 

Mortality (%) 0 10 50 >80 100 

Tall shrubs and small trees 1–5 m  

Foliage consumed (%) 0 20 60-90 >95 100 

Mortality (%) 0 10 70 >85 100 

Intermediate trees (sub-canopy, 5–15 m) 

Canopy consumed (%) 0 15 60 80 100 

Mortality (%) 0 15 60 80 100 

Big trees (upper-canopy, >15 m) 

Canopy consumed (%) 0 10 50 70 100 

Mortality (%) 0 10 50 70 100 

Table 2-2. Normalized burn ratio (NBR) thresholds, tree mortality, and foliage 

consumption by burn severity class. 

Burn severity NBR threshold Tree mortality levels Consumed foliage 

Unchanged  > 585 0 0 

Low 585 - 252 15% 20% 

Moderate 252 - 53 65% 70% 

High ≤ 53 90% 100% 

Table 2-3. Combustion efficiency (CE) and tree species biomass distribution of different 

components. 

Organs CE 
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High Moderat

e 

Low Dahurian 

larch % 

White 

birch 

% 

Aspen 

% 

Mongolian 

Scots pine % 

Other 

species % 
Leaves 1 0.7 0.2 2.7 5 5 3.2 4.9 

Stems 0.62 0.41 0.03 80.3 73 70 86.5 75.8 

Branch

es 

0.79 0.57 0.13 9 12 12.5 6.3 10.1 

Barks 0.85 0.62 0.16 8 10 12.5 4 9.2 

 

Table 2-4. Carbon fraction (𝑓𝑐) of organs by tree species (mg g-1) 

Species Stems Branches Leaves Bark 

White Birch   478.76 489.75 503.37 472.75 

Dahurian larch   464.71 471.45 495.81 500.26 

Mongolian Scots pine   473.26 475.45 499.87 471.93 

Quaking aspen   463.87 458.39 460.72 471.4 

Other species  465.6 473.21 475.91 470.56 

  

Table 2-5. Carbon emission factors for each species, in g per kg carbon of dry biomass 

burned. 

Forest type Emission factors       

CO2 CO CH4 NMHC 

Dahurian larch forests 3180 194 8.8 7 

White birch forests 3256 206 10 6.5 

Mongolian Scots pine forests 3032 239 10.5 8.4 

Others 3250 202 9.8 7.6 
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Table 2-6. Estimates of consumed and remaining aboveground biomass and combustion efficiency (CE) in different burn 

severity classes. 

Burn 

severity 

Area (ha) CE Pre-fire 

biomass  

Consumed 

biomass  

Remaining live 

biomass  

Remaining dead biomass Mg ha-1 Total Burned  

Mg ha-1  Mg ha-1 Mg ha-1 stems branches barks Carbon Tg 

Low 340,623 0.06 66 3.81 57.69 4.31 0.12 0.07 0.61 

Moderate 288,483 0.46 60 27.69 19.44 12.2 0.51 0.16 3.81 

High 672,857 0.67 61 41.17 4.96 14 0.62 0.25 13.82 

Total 1,301,963 0.45 62.63 28.41 22.51 11.04 0.5 0.17 18.24 

 

Table 2-7. Emissions of CO2, CO, CH4 and NMHC (kg) during the Black Dragon fire. 

Burn severity CO2 CO CH4 NMHC 

Low 3.5×109 2.17×108 1.02 107 7.91×106 

Moderate 1.34×1010 8.38×108 3.92 107 3.03×107 

High 4.19×1010 2.66×109 1.24 108 9.64×107 

Total 5.88×1010 3.71×109 1.73 108 1.35×108 
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Table 2-8. Combustion efficiency comparison (CBI: composite burn index, dNBR difference normalized burn ratio, NBR: 

normalized burn ratio). 

Vegetation type Combustion efficiency Study area References 

Conifer 
0.28 India Prasad et al. (2001) 

0.25-low;0.47-moderate;0.65-high    California USA De Santis et al. (2010) 

(spatial burn severity-GeoCBI) 

Deciduous 

0.4 Northeast China Yi and Bao (2016) 

0.25-low; 0.40-moderate; 0.56-high  California USA De Santis et al. (2010) 

(spatial burn severity-GeoCBI) 

0.3 India Prasad et al. (2001) 

Mixed forest 

0.4 India Prasad et al. (2001) 

0.2-low; 0.4-moderate; 0.6-high  Utah USA Chen et al. (2011) 

(spatial burn severity-dNBR) 

0.4 Northeast China Yi and Bao (2016) 

Temperate 

forest 

0.4 India Prasad et al. (2001) 

0.105 China Lü et al. (2006) 

Boreal forest 

0.25 China Lü et al. (2006) 

0.17-low; 0.37-moderate; 0.48-severe  Alaska Kasischke et al. (1995) 

(the proportion of crown fires) 

0.06-low; 0.46-moderate; 0.67-severe Northeast China This study 

(spatial burn severity-NBR) 
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Table 2-9. Fire and carbon emissions comparison.  

Carbon loss only included burned area.  

Sources Burned Burn severity CO2, g C CO, g C CH4, g C Carbon 

loss  
area Mg C ha-1 

The Black Dragon 

fire 

1.3 Mha 3% unburned; 25%, 22% and 

50% 

1.6×1013  1.6×1012  1.3×1011  14 

 
for low, moderate and high 

severity 
China forest biomass  0.9 Mha -- 1.1×1013 1.2×1012 8.4×1010 13.2 

burning (1950-2000) 

a 
Global biomass  464 Mha 26% small fires 1.9×1015 1.4×1014 1.1×1013 4.4 

burningb 

1997/1998 

Kalimantan  

9.7 Mha -- -- -- -- 96.3-112.4 

Complexc 

The 1997 Taseevsky  
2467.2 ha 

7% crown fire; 22%, 34% and 

37% 

-- -- -- 6.5 
Fire of Russian 

boreal 

for low, moderate and high 

severity 
forests ground fires 

1988 Yellowstone 

Fire 

0.32 Mha 
28% unburned; 16%, 25% and 

31%  

-- -- -- 23.3 
for low, moderate and high 

severity  
in Wyoming 

China fossil-fuels -- -- 1.64×1014  6-

9.8×1013  

2.89×101

3  

-- 

consumptiond (1987 

year) 

(2000s) (2000s) 
a Annual average during 1950-2000 (Lü et al. 2006). b Agricultural residuals; annual average burned area during 2001-2010 

(Randerson et al. 2012) and carbon emissions during 1997-2016 (Van Der Werf et al. 2017). c The carbon loss density of 

1997/1998 Kalimantan Complex was calculated based on part of the burned area (the central of Kalimantan, page et al. 2002). d 

Annual average (Marland et al. 2006; Zhao et al. 2012; Peng et al. 2016)
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CHAPTER III. Spatially explicit reconstruction of post-megafire forest 

recovery through landscape modeling 

1.  Introduction 

Forest fire is a primary disturbance in many forest ecosystems, influencing 

succession dynamics and carbon storage (Lecomte et al. 2006; Bowman et al. 2009). Fires 

that burned large areas with high intensity (areal extent > 100 km2, often called megafires) 

can cause abrupt changes to ecosystems and have distinctly different ecological effects 

from other fires (Bradstock. 2008; Keane et al. 2008; Stephens et al. 2014). Post-fire 

recovery is an important variable for understanding fire effects on forest ecosystems, which 

is mainly determined by burn severity and species regeneration strategies (Johnstone et al. 

2010; Halofsky et al. 2011). Megafires often result in a heterogeneous mosaic of burn 

severities across a wide range of environmental conditions; consequently, the vegetational 

response can be complex. Seedlings regenerated after the fire vary strongly among areas 

with contrasting burn severities due to species-specific differences in dispersal, seed size, 

shade tolerance and parent tree locations. Large-seeded species (e.g., Pinus spp.) have 

higher regeneration rates under partial shade, and thus have higher regeneration rates in 

areas with low or moderate severity burns, while fecund, light-seeded broadleaf species 

(e.g., Betula spp.) are wind dispersed and are more likely to colonize in areas with high 

severity burns (Greene et al. 2007; Johnstone et al. 2010). Megafires can also create large 

high-severity burn patches that could delay tree regeneration and prolong early seral 

conditions by limiting the reach of seed dispersal (Johnstone et al. 2016), which may even 

trigger a shift from forest to shrub- or grass-dominated cover types due to seed limitation 
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and climate-induced regeneration failure (Collins and Roller 2013; Savage et al. 2013; 

Harvey et al. 2016). Even with similar burn severity and sufficient seed availability, 

germination and establishment can be affected by tolerances to temperature and moisture 

that vary by species (Petrie et al. 2016; Davis et al. 2018) and microsite conditions, which 

can influence the success of tree establishment and regeneration, with fewer tree seedlings 

found on harsh sites (Broncano and Retana 2004; Bonnet et al. 2005; Kemp et al. 2019). 

The complex vegetation responses to megafires make assessments of post-fire recovery 

challenging. 

Assessment of post-fire forest recovery is traditionally completed with plot-based 

field inventories. This method can provide relatively accurate and detailed measurements 

of post-fire plant communities, which can be used to quantify burn severity and recovery 

based on the time the plots were surveyed after the fire (e.g., Johnstone et al. 2004; 

Turner et al. 2016). However, field-based inventories generally cover small spatial 

extents and provide plot-based information on burn severity and recovery but not about 

the size and shape of burned patches (e.g., Crotteau et al. 2013). Since megafires burn 

large areas across a range of environmental gradients and a mix of burn severities, it is 

challenging to capture the heterogeneous burn severities and post-fire recovery patterns 

using field-based methods alone. In addition, forest inventories before and immediately 

after megafires, and the subsequent monitoring of vegetation recovery, are often lacking. 

These limitations hinder field-based approaches for assessing megafire effects and post-

fire recovery. 

Remote sensing is effective in capturing burn severity patterns and monitoring 

post-fire vegetation recovery for megafires (French et al. 2008; Gitas et al. 2012; Chu and 
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Guo 2014). Remote sensing-based vegetation indices such as the normalized burn ratio 

(NBR) (García and Caselles 1991; Epting et al. 2005) and its derivatives, differenced 

NBR (dNBR) and relative differenced NBR (RdNBR) (Key and Benson 2005; Miller and 

Thode 2007), have been widely used for detecting burn severity patterns (Eidenshink et 

al. 2007). The normalized difference vegetation index (NDVI), enhanced vegetation 

index (EVI) and soil adjusted vegetation index (SAVI) have been used for monitoring 

post-fire recovery (van Leeuwen et al. 2010; Gitas et al. 2012; Veraverbeke et al. 2012). 

However, a great deal of uncertainty exists when using these vegetation indices to assess 

post-fire recovery in terms of species composition and forest structure. Forest recovery 

assessments using vegetation indices can become complicated when different vegetation 

recovery states have similar vegetation index values (Glenn et al. 2008; Chu and Guo 

2014). For instance, young (e.g., two years post-fire) broadleaf forest pixels may exhibit 

the same NDVI value as the unburned coniferous forest pixels that are on a very different 

successional stage (Idris et al. 2005; Cuevas-Gonzalez et al. 2009; Cai et al. 2018). The 

limited availability of cloud-free satellite images during the growing season can also 

impede continuous assessment of post-fire forest recovery (Ju and Roy 2008). In 

addition, remote sensing-based vegetation indices are limited in their ability to monitor 

demographic processes such as seed dispersal, tree establishment and mortality, species 

competition, and competition-caused mortality (self-thinning), which drive post-fire 

forest recovery.  

Fire-succession models have been used to understand the interactions between 

vegetation response to forest fire, including post-fire forest structure, composition, and 

diversity (Boychuk et al., 1997; Millington et al., 2009; Miller and Ager, 2013). 
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However, most of these models lack demographic processes to capture the species 

regeneration traits. Alternatively, Forest landscape models (FLMs) spatially simulate 

forest dynamics (seed establishment, growth, competition, and succession) accounting for 

the processes not captured by remote sensing and fire-succession models, and have been 

effectively applied to spatially reconstructing historical post-disturbance forest conditions 

(He 2008; Seidl et al. 2014; Thrippleton et al. 2014). FLMs can also incorporate 

information from fire perimeters and the spatial patterns of burn severity derived from 

remote sensing as inputs (Wang et al. 2009). They can track the location and abundance 

of parent trees and seedlings when simulating the demographic processes that drive post-

fire forest recovery (Wang et al. 2013; Wang et al. 2014a). Finally, FLMs can be 

calibrated and validated with forest inventory data (Seidl et al. 2012; Wang et al. 2014b; 

Luo et al. 2015). 

The 1987 Black Dragon fire, which occurred in the boreal forest of China, stood 

out due to its size and severity. The fire burned 1.3×104 km2, resulted in a high degree of 

tree mortality, and reset forest succession for most burned stands. It created opportunities 

to study post-fire forest dynamics at an unprecedented scale. In this study, my objectives 

were to (1) present a novel framework that integrates an FLM with field inventory and 

remote sensing data to spatially reconstruct the burn severity of the Black Dragon fire and 

the post-fire time series of forest conditions (i.e., forest composition, structure and 

aboveground biomass) and (2) evaluate whether the reconstructed forest conditions could 

realistically capture the post-fire recovery (e.g., density and basal area) at the level of 

individual tree species under different burn severities. Spatiotemporal reconstruction of 

the post-megafire forest condition provides a platform to investigate the recovery rate and 
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trajectories through model simulations and thus improve realism and reduce 

uncertainties. 

2.  Data and methods 

2.1. Study area 

My study area is located in the Great Xing 'an Mountains and encompasses 

approximately 8.46×104 km2 (50°10’ N, 121°12’ E to 53°33’ N, 127°00’ E) in Northeast 

China. (Fig. 3-1). The area is hilly and mountainous (altitudes ranging from 134 to 1511 

m) and falls within the continental cold temperate climate zone with long and severe 

winters but short summers. The average annual temperature is -3.9 °C with an average 

temperature of –33 °C in the coldest month (January), and an average temperature of 

17.5 °C in the hottest month (July). The annual cumulative precipitation ranges from 400 

to 500 mm. More than 60% of the annual precipitation occurs in the summer season from 

June to August (Zhou 1991; Xu 1998). Vegetation in this region is representative of cool 

boreal coniferous forests that cover 83% of the study area. The canopy species 

composition is relatively simple. Dahurian larch (Larix gmelini（Rupr.) Kuzen, hereafter 

“larch”), a deciduous conifer, and white birch (Betula platyphylla Suk.), a deciduous 

broadleaved species, are dominant, covering more than 80% of the study area. Other tree 

species include the evergreen conifers, Korean spruce (Picea koriensis Nakai, hereafter 

“spruce”) and Scots pine (Pinus sylvestris var. mongolica Litvinov, hereafter “pine”), and 

the deciduous broadleaved species, aspen (Populus davidiana Dole and P. suaveolens 

Fischer), willow (Chosenia arbutifolia (Pall.) A. Skv), Asian black birch (Betula 

davurica Pall., hereafter “black birch”), and Mongolian oak (Quercus mongolica Fisch.ex 
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Ledeb.). Black birch and Mongolian oak are mainly distributed in the southeastern low 

elevation part of the study area, whereas pine is distributed in the northern part. 

Wildfire frequency and area burned in my study area are linked to human 

disturbances and annual variations in monsoonal strength (Liu et al. 2012).  Low intensity 

surface fires (mean return interval ca. 30 yr) were historically frequent, occasionally 

mixed with infrequent stand-replacing fires (mean return interval ca. 120 yr) in the high 

elevation regions (Xu et al. 1997). However, long-term fire exclusion and timber harvest 

have altered the fire regime, where fires are infrequent but more intense (Chang et al. 

2007). In my study area, fires burned 6.64×104 km2 from 1967 to 2005 (Chang et al. 

2008; Liu et al. 2012).  One of the most noteworthy fires, known as the Black Dragon 

fire, ignited on 6 May 1987 and burned four forest bureaus (Xilinji, Tuqiang, Amuer, and 

Tahe). The Black Dragon fire resulted in over 200 deaths and 4 billion Yuan of losses at 

that time, causing the most forest fire damage in the history of China.  

2.2. General approach  

I first reconstructed forest stand conditions in my study area before the Black 

Dragon fire (i.e., in 1985) using remote sensing and forest inventory data (Fig.3-2). Since 

the remote sensing data could not provide detailed stand information at the pixel level 

across my entire landscape and pre-fire field inventory data were not available, I 

constructed the pre-fire forest conditions following the k-Nearest Neighbor (kNN) stand 

imputation approach of Zhang et al. (2018a, 2018b). I used Landsat data to delineate fire 

perimeters and derive burn severity classes associated with total tree mortalities (Xu et al. 

2020). With the pre-fire landscape as a starting point, I ‘burned in’ the Black Dragon fire 

perimeter and severity in LANDIS PRO at the fire year 1987 and simulated the post-
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megafire time series forest conditions using a forest landscape model (LANDIS PRO) 

(Fig. 3-2). 

LANDIS PRO has been parameterized for numerous forest regions under 

different environmental settings (Huang et al. 2018; Wang et al. 2019). However, to 

ensure tree species parameters of the model (e.g., growth rate, available seeds, maximum 

stand density index, and maximum diameter) accurately captured the tree species in my 

study area, I used a data assimilation approach (Luo et al. 2011; Wang et al. 2014b) that 

iteratively calibrated the parameters by comparing the simulated results at years with the 

respective forest inventory data (Fig. 3-2a). The calibration process was followed by 

validation against field inventory data at a later stage (2015) to ensure that forest 

dynamics under no disturbance were correctly simulated (Fig. 3-2a). To ensure the 

response of tree species corresponded to various burn severities, I also applied the data 

assimilation approach to calibrate fire parameters (e.g., height of bark charring) in 

LANDIS PRO to precisely constrain post-fire tree species recovery processes (Fig. 3-2b). 

I used the year 2000 post-fire inventory data for the calibration and used the year 2015 

post-fire inventory data for model validation since these were the only post-fire inventory 

data available in the burned area (Fig. 3-2b). Through the iterative calibration and 

validation processes, I was able to derive the continuous time-series forest conditions 

from which post-fire forest landscape recovery could be analyzed spatially and 

temporally (Fig. 3-2c).  

2.3. Forest inventory data 

The forest inventory data used for model initialization, calibration, and results 

validation in this study were collected from the China Forestry Science Data Center 
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(CFSDC, http://www.cfsdc.org), including forest plot inventory data from 2000, 2010, 

and 2015, and a forest stand map in polygons with relatively complete attributes from the 

early 2000s (Fig. 3-3). The plot inventory data includes 5752 unburned plots and 1305 

burned plots following the Black Dragon fire. Each plot contained the number of trees 

and diameter at breast height (DBH >5 cm) class by species. The forest stand map 

comprised 276,273 stands with homogeneous forest attributes (e.g., dominant tree 

species, stand age, and site index) in each stand. The data contained stand area, mean 

DBH, stand height, stand age, stand volume, tree species composition (species percent 

volume), forest origin (natural regeneration vs. afforestation), and management and 

disturbances (harvest, plantation and forest fires) information in each stand polygon.  

2.4 Remote sensing data 

In this study, 20 pre- and post-fire Landsat TM (Thematic Mapper) images (Table 

3-1) from the U.S. Geological Survey (USGS, http://earthexplorer.usgs.gov) were used to 

estimate pre-fire forest composition and burn severity of the 1987 Black Dragon fire. The 

images were processed by the USGS to convert from DN (digital numbers) to surface 

reflectance using the LEDAPS algorithm (Landsat Ecosystem Disturbance Adaptive 

Processing System, Masek et al. 2006). Clouds, cloud shadows, and snow pixels were 

masked using the function of mask algorithm (FMASK; Zhu and Woodcock 2012). The 

1980s images were processed by radiometric normalization based on the images from the 

2000s, using a histogram matching method to reduce radiometric differences among 

images caused by inconsistencies of acquisition conditions. 

http://www.cfsdc.org/
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2.5. Pre-fire forest conditions 

Forest inventory data before the Black Dragon fire were lacking. I combined 

2000s forest inventory data with 1980s and 2000s Landsat TM data to map 1980s 

aboveground forest biomass and tree lists (i.e., lists of species and diameter for every 

tree), following the approaches of Zhang et al. (2018a, 2018b). I used 2000s forest 

inventory data and 2000s Landsat TM data as the training samples to fit a nonparametric 

random forest-based kNN model for biomass and kNN and Weibull parameter prediction 

models (WPPMs) for tree lists. Then I mapped species-level biomass and tree lists before 

the Black Dragon fire at 30-m resolution using 1980s Landsat TM data based on the 

developed biomass estimation model and tree-lists estimation model. Thus, the pre-fire 

forest composition (Figs. 3-4 and 3-5) represents the distribution and abundance of tree 

species before the 1987 Black Dragon fire.  

My imputation results (Figs. 3-4 and 3-5) conformed to previous studies and field 

observations. The total tree density (ranging from 400 to 2500 trees/ha, Fig. 3-4) and 

aboveground biomass (62.4 ± 22.76 Mg/ha, Fig. 3-5) were close to the values reported 

by Zhai et al. (1990), Hu et al. (2015), and Fang et al. (2001) for northeastern China. 

Moreover, my estimates of the species distribution (Figs. 3-4 and 3-5) were consistent 

with the environmental niches of tree species. Larch, the representative Siberian boreal 

tree species, is distributed most widely since it can endure extremely cold winters and a 

short growing season, and it can grow in both well-drained and boggy sites due to its 

shallow roots (Xu 1998; Kajimoto et al. 2003; Yang et al. 2014). White birch is also 

distributed widely in the area but is less adaptable to shade and humid environments and 

typically has less biomass than larch (Xu. 1998). Aspen requires warmer temperatures 
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and higher soil fertility and is negatively correlated with elevation (Xu 1998). Scots pine 

has high tolerance of drought and low temperatures and consequently was mainly 

distributed on the sunny slopes and ridges of the northern part of my study area (Zhu et 

al. 2006). Mongolian oak and black birch were mainly distributed in the southeast of the 

area since they thrive in areas with higher temperatures (Xu 1998). Spruce grows under 

cold environments and therefore was mainly mapped in areas of relatively high elevation 

of the northern area. Willow requires sufficient humidity to survive and is therefore 

widespread along rivers, which are fed by water from the glaciers and snows of the high 

surrounding mountains. These evaluations ensured the subsequent reconstructions of 

forest recovery rate and trajectories bear high realism (Temperli et al. 2013). 

2.6 Landscape model parameterization 

I used the LANDIS PRO forest landscape model to simulate forest landscape 

changes and reconstruct tree species recovery trajectories after the Black Dragon fire. 

The model tracks the number (density) of each tree species by age cohort (size class) at 

the pixel level (i.e., 100 m resolution in this study) and simulates species-, stand-, and 

landscape-scale processes over large spatial and temporal extents (Wang et al. 2013; 

Wang et al. 2014a). I used the succession module in LANDIS PRO to simulate individual 

tree establishment, growth, resprouting, and mortality at the species level, resources 

competition, self-thinning and seedling establishment at stand level, and seed dispersal at 

the landscape level. Establishment success is determined by species-specific biological 

traits, such as shade tolerance, and suitability to establish under the other environmental 

conditions besides shade. Mortality is determined by longevity (i.e., maximum lifespans), 

competition, and disturbances. Other landscape-scale processes (i.e., natural and 
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anthropogenic disturbances) were simulated by independent modules (e.g., fire, 

harvesting, and fuel treatments are simulated using the fire, harvest, and fuel modules, 

respectively). Forest change is determined by the interactions of species-, stand-, and 

landscape-scale processes.  

I modeled the eight most common tree species, which accounted for 

approximately 95% of stand volume in this study region. Tree species life history 

attributes included longevity, age of reproductive maturity, shade tolerance, fire 

tolerance, seed dispersal distance, maximum tree diameter, maximum stand density 

index, and number of potential germination seeds (Table 3-2). LANDIS PRO does not 

require climate and soil parameters; however, it requires species establishment 

probability (SEP) and maximum growing space occupied (MGSO) by land type, which 

delineates heterogeneous landscapes into smaller but relatively homogeneous land type 

units. Within each land type unit, resource availability represented by the MGSO and 

SEP is assumed to be homogeneous. For this study, SEP and MGSO were derived from 

an ecosystem process model LINKAGES 3.0 (Dijak et al. 2017) for each land type.  

LINKAGES is a plot-based forest ecosystem process model that simulates seedling 

establishment, tree growth and competition for light, nutrients and soil moisture, carbon-

nitrogen storage cycles, evapotranspiration, and soil hydrology (Dijak et al., 2017). I 

divided our study area into 166 land types based on the ecoregions (topography and climate; 

Xu, 1998), soil, land cover, and forest bureaus to reflect the variation of environment 

conditions (Fig. 3-6). Parameters for eight major tree species (Table 3-3) were derived from 

previous studies in northeastern China (He et al. 2005, Huang et al. 2018). Daily climate 

data (including daily minimum and maximum temperature, precipitation, average wind 
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speed, and total solar radiation) were derived from a China national meteorological 

monitoring dataset (http://data.cma.cn). I obtained soil parameters (thickness of soil layer, 

organic matter, nitrogen, rock fragment, clay, and sand content) from the China soil 

scientific database (http://www.soil.csdb.cn) and the China soil database 

(http://vdb3.soil.csdb.cn). Soil water-holding capacity and wilting point were estimated by 

rock fragment, clay, and sand content. 

I estimated SEP on each land type by simulating species establishment and growth 

from bare ground over 30 years. I calculated SEPs from the maximum biomass reached by 

a species on each land type by converting biomass to a relative scale of 0–1 across species 

(He et al., 1999). I estimated MGSO as the maximum total biomass reached on each land 

type by simulating the establishment and growth of plots composed of the 8 mixed tree 

species over 300 years. Each simulation was replicated 20 times. 

2.7 Black Dragon fire and its implementation in LANDIS PRO 

The spatial pattern and variability of burn severity strongly influences vegetation 

response, forest structure, and post-fire successional trajectories (Halofsky et al. 2011). 

The burn severity map of the Black Dragon fire used in this study was extracted based on 

the remote sensing classification from a relationship between normalized burn ration 

(NBR) and composite burn index (CBI) (Xu et al. 2020). The burn severity explicitly 

accounted for different levels of tree mortality that are important for post-fire forest 

succession: unburned (no sign of fire effects, NBR > 585), low severity (252 < NBR < 

585), moderate severity (53 < NBR < 252), and high severity (NBR < 53). 

The simulation of fire is treated as a stochastic process in the LANDIS PRO Fire 

module. However, there was no guarantee that the Black Dragon fire would occur in 

http://www.soil.csdb.cn/
http://vdb3.soil.csdb.cn/
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1987 in my simulation. Thus, I mimicked this specific fire event, and its effects using the 

LANDIS PRO Fuel module (He et al. 2004), which can deterministically specify how 

live fuel loads are reduced (corresponding to tree mortality detected for each burn 

severity class) in fuel reduction treatments. Post-fire live tree mortality was modeled 

using a logistic regression equation (Equation (1) where P is probability of mortality 

following fire,  𝛽𝑖 are model coefficients determining fire tolerance, X1 is tree diameter 

(cm), and X2 is height of bark charring (m) analogously for burn severity) based on 

previous studies (Woolley et al. 2012; Fraser et al. 2019). I divided my study area into 

four fuel management areas based on the four fire severity classes (Xu et al. 2020). Initial 

model coefficients for each species were defined based on the species fire tolerance 

(Fraser et al 2019). 

P = (1 + 𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2))−1                                    Equation (3-1) 

2.8 Model calibration and results validation 

Forest inventory data in unburned area were available for years 2000, 2010, and 

2015. The 2000 and 2010 data were used to calibrate tree species parameters while the 

2015 data were used to validate the simulated results. Forest inventory data in burned 

areas were only available for years 2000 and 2015. The 2000 data were used to calibrate 

fire parameters and the 2015 data were used to validate the simulated fire effects (Fig. 3-

2a, b). Only simulated trees with DBH > 5 cm and forest inventory data that were in the 

study areas with no evidence of disturbance (e.g., logging, insects, disease, and fire) after 

1987 were used in the calibration and validation processes. 

Model fit can be assessed using the difference between the simulated results and 

true values, while overfitting can result in deterioration in prediction accuracy (Lever et 
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al. 2016). In this study, to calibrate tree species parameters, I iteratively adjusted the age-

DBH relationship and available seeds for each species by land types until the differences 

between simulated density and basal area by species and the forest inventory were not 

significant (no differences based on a one-way analysis of variance (ANOVA) test (p > 

0.05)) at 2000 and 2010, to ensure that the these parameters realistically represented the 

actual forests in my study area. I validated the simulated results at the landscape scale by 

stratifying the simulation results and forest inventory data into subecoregions based on 

the ecoregion classification of Xu (1998) and soil types (Fig. 3-6), because resource 

availability and species assemblages were relatively homogeneous within a subecoregion 

and heterogeneous among subecoregions in LANDIS PRO for undisturbed forests. 

Specifically, I compared the simulated mean basal area and tree density of all cells to the 

observed mean values of all plots for each subecoregion in 2015 by using paired t-test to 

evaluate the overall accuracy, and the square of the Pearson correlation (R2) and root 

mean square deviation (RMSD) for each species. RMSD was based on squared 

simulation errors and thus was sensitive to outliers.  

To calibrate fire parameters, I iteratively adjusted fuel model coefficients for each 

species fire tolerance class and height of bark charring for each burn severity until the 

comparison between simulated density and basal area by species and the forest inventory 

data passed the significance test (no differences based on an ANOVA test (p > 0.05)) at 

2000. I validated the simulation results for each burn severity class at site scale by 

extracting simulated results from raster cells corresponding to the forest inventory plot 

locations, because heterogeneous post-fire tree species recovery patterns overrode 

environmental heterogeneity delineated by subecoregion. Specifically, I compared basal 
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area and tree density within extracted raster cells with observed values in inventory plots 

for each burn severity class at 2015 by using two sample t-test to evaluate the accuracy of 

simulated post-fire recovery. All statistical analyses were performed using R statistical 

software (R Core Team, 2015). 

2.9. Post-fire tree planting simulation  

Large-scale tree plantings in the years immediately after the fire were 

implemented in each Forest Bureau. Thus, I simulated planting using the LANDIS PRO 

Harvest module (Fraser et al. 2013). The planting management units in this study were 

constructed based on the burn severity map of the 1987 Black Dragon fire, Forest Bureau 

boundaries, and harvest management units to capture the variation in planting practices 

across the region. I parameterized the percent area and number of trees planted every two 

years for each management unit based on forest management records from the China 

National Forest Inventory third tier data (http://www.cfsdc.org) and previous studies 

(Yang et al. 1998; Chen et al. 2014). Only coniferous species of larch and Scots pine 

were planted in the high burn severity area (70% larch + 30% pine) with a regular plant 

spacing (1.5 m×1.5 m or 1.5 m×2 m) according to field conditions (Chen et al. 2014). By 

the end of the 1990s, less than 10% of the burned forests were managed with planting 

(Yang et al. 1998). 

3.  Results 

3.1. Results validation 

Model simulations showed high agreement in the magnitude and time of observed 

basal area and density from unburned forests at the landscape scale (paired t-tests, p > 

0.05). R2 (> 0.8) is high and RMSD is low for both basal area and density for all species 
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(Fig. 3-7). The comparisons of different species demonstrated that dominant tree species 

(larch and white birch) had relatively higher accuracy than other species. The simulation 

accuracy for tree density was higher than for basal area because the density in the model 

was largely determined by a single parameter (available seeds), while the basal area was 

affected by the species age-DBH relationship that introduced additional uncertainties into 

estimation. Overall, my results indicated that the simulated forest development was 

consistent with the actual forest dynamics, and simulated density had higher accuracy 

than simulated basal area. 

Comparison between simulated data and observed data showed that post-fire 

forest composition and structure closely represented the real forest composition and 

structure at different burn severity classes in 2015 (for all species and severities, two 

sample t-test, p > 0.05) (Fig. 3-8). My results indicated that the simulated post-fire forest 

development captured current forest composition and structure after the Black Dragon 

fire and thus the simulated fire-caused tree species mortality could be close to the real 

tree species mortality of the Black Dragon fire.  

The observed and simulated density of conifer and broadleaf species in burned 

areas showed similar patterns in relation to distance to live-tree edges (trees mortality rate 

< 90% by the Black Dragon fire) (Fig. 3-9). Post-fire conifer density showed a decline 

with increasing distance to the live tree edge and was almost absent in the interior of high 

burn severity patches in 2015 (Fig. 3-9a). Post-fire broadleaf density was high across the 

whole high severity area and had an opposite trend of density versus distance relationship 

compared with conifer species (Fig. 3-9b). The self-thinning among competing trees led 

to a decrease in tree density near seed sources. The evaluation results increased my 
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confidence in the ability of the calibrated LANDIS PRO model to explore the long-term 

fire effects and post-fire forest recovery. 

3.2. The Black Dragon fire effects and post-fire forest recovery trajectories  

Tree mortality and post-fire recovery varied greatly among burn severities and 

tree species (Figs. 3-10 and 3-11). Mortalities of conifer and broadleaf species were both 

positively related to burn severity and were very high in areas with moderate and high 

burn severity (Fig. 3-10a and b). Approximately 50% - 90% of conifer and almost 100% 

of broadleaf stems died in areas of moderate and high burn severity. Nevertheless, 

recruitment of broadleaf trees was abundant in moderate and high severity burned areas. 

The post-fire density of broadleaf species gradually increased over the first 12 years, then 

sharply peaked between 2005 – 2010 (12,000 and 10,000 trees/ha), and finally decreased 

to 10,000 and 7,000 trees/ha by 2015 in high and moderate burn severity areas, 

respectively. The changes in density, basal area, and biomass over time in unburned and 

low severity areas were not significant (Fig. 3-10b). The post-fire density of conifer 

species showed a low rate of increase compared to broadleaf species (Fig. 3-10a). The 

post-fire basal areas of conifer and broadleaf species both showed increasing trends 

throughout the simulation years under all burn severities (Fig. 3-10c and d). For broadleaf 

species, the basal area has recovered to, and even exceeded pre-fire levels, although 

aboveground biomass always remained lower than pre-fire levels (Fig. 3-10c-f). For 

conifer species, both basal area and biomass remained below pre-fire levels, but the 

recovery rate in low burn severity was fastest (Fig. 3-10c and 3-10e). With time, the 

percentage of coniferous species decreased in high and moderate severity burned areas, 

but no significant changes occurred in low severity and unburned areas (Fig. 3-12a). The 
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percent of coniferous species in high and moderate severity burned areas was far less than 

the value in unburned forests at 2015, but the edges of these burned patches showed a 

composition recovery sign with larger conifer percentages than the interior (Fig. 3-12). 

4. Discussion 

I presented a spatially explicit framework to reconstruct post-megafire forest recovery 

through integrating a forest landscape model (FLM) and remote sensing and field inventory 

data. Reconstruction results showed that burn severity affected the relative dominance of 

broadleaf vs. conifer species in burned stands with probable effects on subsequent canopy 

dominance. In high severity burned areas, broadleaf species (e.g., white birch) rapidly 

emerged despite the large burn size, while regeneration of coniferous species (e.g., larch) 

was minimal in the interior of the burned patches. This pattern matches expectations 

because white birch can rapidly regenerate either by resprouting from stumps or roots that 

survived fires or by long distance seed dispersal (e.g., > 1000 m). However, the 

regeneration of larch depends on the seeds from surviving trees and a relatively short seed 

dispersal distance (<400 m) (Xu, 1998). Thirty years after the megafire, the broadleaf 

species fully recovered, and white birch stands went into the self-thinning stage in the 

interior of the high severity burned area as the newly established trees matured. However, 

coniferous species were still in the initial stand development stage. In contrast, more 

conifers than broadleaf species regrew in the low-severity burned areas, where canopies 

provided suitable conditions for the relatively more shade-tolerant conifers and where 

sufficient seeds from surviving trees had a higher chance to reach fire-released areas in the 

low-severity burned patches. The comparison of pre- and post-fire tree composition in the 

burned patches indicated that self-replacement succession was likely to occur in areas that 
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burned with low severity, whereas high severity burned areas are more likely to shift forest 

successional trajectories away from conifer self-replacement to pathways with greater 

broadleaf dominance, a finding that is reported in other post-fire studies (Johnstone and 

Chapin 2006; Johnstone et al. 2010; Cai et al. 2013). My reconstructed trajectories of post-

megafire forest recovery were well supported by known data and empirical knowledge of 

forest stand development after large-scale disturbances (Oliver et al. 1996; Turner et al. 

1998; Kurkowski et al. 2008), suggesting that my model framework is effective in spatially 

reconstructing post-megafire historical forest conditions. 

Validating simulation results from FLMs is critical in quantifying the reliability and 

credibility of landscape reconstructions. My framework of reconstructing the 

spatiotemporal history of post-megafire forest conditions provided not only the spatial 

pattern and dynamics at the landscape scale, but also detailed stand attributes such as basal 

area, tree density, and age classes by species. I validated the simulated stand attributes with 

the contemporary inventory data. My simulated tree mortality rates were close to the 

estimates of tree mortality rates from field inventories within different burn severity classes 

of the Black Dragon fire (Luo 2002). The simulated post-fire density and biomass were 

comparable to the field observations reported by Wang et al. (2001), Wang et al. (2003), 

and  Hu et al. (2016) for the same fire and other post-fire studies in boreal forests after 

similar recovery periods (Johnstone et al. 2004; Alexander et al. 2012; Cai et al. 2013). My 

validation results from current forest inventory data demonstrated the calibrated model 

performed well and ensured that the model was a reasonable and reliable platform for 

subsequent applications to quantify the effects of megafires on forest composition and 

landscape succession.  
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A notable benefit of my framework is that, once calibrated, the model is highly 

scalable and can be applied to filling the gaps where inventory data are not available to 

assess recovery trajectories across the whole landscape. This method offers an approach 

to augment traditional uses of forest inventory data in post-fire studies. My approach 

realistically captures the heterogeneity of post-fire recovery process in both time and 

space (Figs. 3-9, 3-10, 3-11). In contrast, forest inventories, when applied alone, have 

generally focused on fixed plots or time periods and on describing entire landscapes, 

which limit their ability to constrain the impacts of heterogeneity on timber volumes and 

carbon stocks (e.g., Kashian et al. 2005).  Furthermore, inventory approaches can suffer 

from biased sampling design. For example, Wang et al. (2001) and Hu et al. (2016) 

conducted studies near the live-tree edges due to the logistical limitations, observed a 

higher biomass recovery than I did in this study, and thus overestimated the post-fire 

recovery status. They assumed that the mature forests were representative of the forests in 

this region prior to the 1987 fire. However, through historical forest conditions 

reconstruction, I found that pre-fire forests in this area were younger than Wang et al. 

(2001) and Hu et al. (2016) assumed, because forests in this region were affected by 

historical harvesting and fires, which resulted in relatively young stands with most trees 

between 40-60 years old. These studies may have overestimated pre-fire forest biomass 

and consequently biomass loss due to the Black Dragon fire, while my simulated biomass 

loss was closer to the estimated values from the traditional bottom-up method (Xu et al. 

2020). This highlights the importance of my approach that reconstruction of the entire 

historical landscape reduced the biases from field sampling. 
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This framework can be applied to assess the legacy effects of a megafire over 

long time periods (i.e., decades to centuries). While previous empirical and field-based 

studies documented legacy effects (e.g., Downing et al. 2019), such effects can persist for 

decades to centuries (Seidl et al. 2012) and thus require long-term assessment. My 

framework can be further applied to projecting how forest landscapes respond to future 

megafires, which are expected to increase under warming climate and increased fuel 

accumulation from fire exclusion policies (Chang et al. 2007; Flannigan et al. 2009; Liu 

et al. 2012).  

My framework can also be used to examine alternative management and 

disturbance scenarios. Managers could use the framework to evaluate forest resistance, 

rate of recovery, and the time to return to pre-disturbance states after megafires under 

various management and climate scenarios as well as to study the effect of alternative 

managements on mitigating future megafire risk. For example, reforestation is 

increasingly used to assist forest restoration and improve resilience, especially under 

warming climate as conifer forests will be increasingly regeneration limited with 

intensifying fire regimes (Hof et al. 2017; North et al. 2019). Different reforestation 

strategies (e.g., planting intensity and spatial assignment) can be evaluated with FLMs 

(Wang et al. 2006a; Wang et al. 2006b). Researchers can also use this framework to 

evaluate the response of forest landscapes to other forest disturbances such as drought, 

insect, and harvest under different environmental settings. 

Figures 
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Fig. 3-1. The location of study area and the Black Dragon fire with Landsat 5 derived 

normalized burn ratio (NBR) values. The boundaries of the 10 forest bureaus are shown 

with thin black lines. 
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Fig. 3-2. The framework of reconstructing historical forest conditions and post-megafire 

recovery trajectories of density and basal area at species level. (a) Calibrating tree species 

parameters to constrain tree species growth strategies. (b) Calibrating fire parameters to 

constrain fire-caused mortality. (c) The outcome of the calibration and validation 

processes is the time-series post-fire forest conditions at species level. 
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Fig. 3-3. The distribution map of forest inventory plots. 
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Fig. 3-4. Maps of total tree density and species-level density before the Black Dragon 

fire. 
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Fig. 3-5. Maps of total aboveground biomass and species-level biomass before the Black 

Dragon fire.



 

 
 

7
2

 

 

Fig. 3-6. Study area with a) 7 ecoregions divided by Xu et al. (1998), b) 8 land cover types, and c) 11 soil types. 
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Fig. 3-7. Scatterplots of simulated versus forest inventory density (a) and basal area (b) of 

eight species at the landscape scale in 2015 (n=21). The black line is the regression line 

and the grey shaded area represents 95% confidence intervals. RMSD: root mean squared 

deviation. 
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Fig. 3-8. Comparison of simulated tree species density (a) and basal area (b) with 

inventory data by burn severities of the Black Dragon fire at 2015. Error bars are marked 

as ± 1 standard deviation (n= 584, 366, and 355 for low, moderate, and high severity 

area, respectively).  
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Fig. 3-9. Post-fire 28-year coniferous (a) and broadleaf (b) density in high burned area as 

a function of Euclidean distance to 1987 live-tree edge (trees mortality rate < 90%) after 

the Black Dragon fire. The black lines are simulated means and grey lines are ± 1 

standard error (SE). The points are observed values from field inventory data. 

 

 

Fig. 3-10. Tree species recovery trajectories over time for each burn severity following 

the 1987 Black Dragon fire: the trajectories of conifer species recovery in density (a), 

basal area (c), and biomass (e), and broadleaf species recovery in density (b), basal area 

(d), and biomass (f) from 1985 to 2015. 
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Fig. 3-11. Spatial pattern of post-fire coniferous and broadleaf recovery in basal area (a), 

density (b), and aboveground biomass (c) from 1987 to 2015 in the burned area of the 

Black Dragon fire. 
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Fig. 3-12. Tracking changes in species composition. (a) Trajectories of conifer proportion 

in basal area for each burn severity from 1985 to 2015. (b) Map of conifer proportion in 

basal area in 2015.  Red line denotes perimeter of Black Dragon fire. 

 

Tables 

 

Table 3-1. The acquired date, orbit number, and burning cover of Landsat. 

Orbit number 
Acquired data 

The 1987 fire  
1980s 2000s 

119024 1985.06.04 2000.06.13 Unburned area 

119025 1985.06.04 2000.06.13 Unburned area 

120023 1988.09.23 2002.09.14 Unburned area 

120024 1988.09.23 2002.09.14 Unburned area 

120025 1987.09.05 2002.09.14 Unburned area 

121023 1986.06.26 2000.05.26 Burned area 

121024 1988.09.14 2000.09.15 Unburned area 

122023 1986.06.12 2000.06.18 Burned area 

122024 1987.06.15 2000.06.18 Unburned area 

123023 1986.08.06 2000.08.12 Burned area 
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Table 3-2. Individual tree species biological traits used in LANDIS PRO in the boreal 

forests of China. 

Major species 
Longevit

y (years) 

Maturit

y age 

(years) 

Shade 

tolerance 
a 

Fire 

tolerance 
b 

Maximum 

seeding 

distance/m 

Maximu

m 

DBH/cm 

Maximum 

stand density 

(trees/ha) 

Potential 

germinatio

n seeds c 

Larch  

(Larix 

gmelinii) 

300 20 2 4 150 55 600 10 

Scots pine 

(Pinus 

sylvestris) 

250 25 2 3 200 60 560 20 

White birch 

(Betula 

platyphylla) 

150 15 1 3 2000 30 690 30 

Aspen  

(Populus 

davidiana) 

120 10 1 4 2000 50 680 30 

Spruce  

(Picea 

koraiensis) 

300 30 4 3 150 60 520 10 

Willow 

(Chosenia 

arbutifolia) 

250 12 2 5 2000 50 780 20 

Black birch 

(Betula 

davurica) 

150 15 2 3 800 50 750 25 

Mongolian oak 

(Quercus 

mongolica) 

300 20 3 5 200 95 600 20 

Species data were obtained from the Scientific Database of China Plant Species (http://db.kib.ac.cn) and 

previous studies (Li et al. 2013; Luo et al. 2015). a, b Shade/fire tolerance classes 1–5: 1 = least tolerant, 5 = 

most tolerant; 

c Mean number of potential germinating seeds produced/mature tree/year.
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Table 3-3. Individual tree species biological traits used in the ecosystem model LINKAGES 3.0 in the boreal forests of China.  

Species name DMAX DMIN B3 B2 SWITCH D3 FROST TL FWT SLTA SLTB RTST FRT 

Larch 1900 400 0.35 63.62 FFFFT 0.374 -45 12 440 0.804 0.069 1 1 

Scots pine 1900 100 0.37 59.08 TTTFF 0.6 -58 12 440 0.804 0.069 1 2 

Korean spruce 2500 600 0.35 63.62 FTFFF 0.18 -38 11 440 0.804 0.069 1 3 

White birch 3167 600 0.94 94.52 FFFFT 0.412 -40 4 248 0.804 0.069 0.8 1 

Aspen 3009 800 0.66 78.77 TTFFT 0.333 -32 7 248 0.804 0.069 0.5 1 

Black birch 3169 1060 0.52 63.62 TTTFF 0.314 -30 4 248 0.804 0.069 0.8 1 

Willow 1600 40 0.35 63.62 TTFFT 0.03 -35 7 248 0.804 0.069 0.5 1 

Mongolian oak 3004 1010 0.37 59.08 TTTFF 0.514 -30 9 440 0.904 0.095 1 1 

DMAX, degree day maximum for each species (degree). 

DMIN, degree day minimum for each species (degree). 

B2 and B3 are growth scaling parameters for each species. 

SWITCH, reproduction switches. 

D3, drought tolerance (maximum proportion of growing season that species can withstand drought). 

FROST, Frost tolerance: minimum January temperature species can withstand (degree). 

TL, leaf litter quality class (1-12; note: we assigned all root litter to class 13, fresh wood from trees < 10 cm to class 14, fresh wood from trees > 10 to 

class 15, twig litter to class 16, and well-decayed wood not contained in humus to class 17).   

FWT, leaf weight per unit crown area (100g/m2). 

SLTA and SLTB can be used to calculate crown area from diameter. SLTA and SLTB convert DBH to crown area (100 m2). 

RTST, root-shoot ratio for each species. 

FRT, foliage retention time (year). 
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CHAPTER IV. Large fires or small fires, will they differ in affecting 

shifts in species composition and distribution under climate warming? 

1.  Introduction 

Global warming has led to tree species migrating toward higher latitudes and 

elevations (Parmesan et al. 2003; Chen et al. 2011), resulting in shifts in species 

composition and distribution in local systems. Increasing evidence suggests tree species 

may fail to keep pace with the rate of climate change due to demographic constraints, 

resulting in a migration lag (Woodall et al. 2013; Sittaro et al. 2017; Wang et al. 2018; 

Román-Palacios et al. 2020). Indeed, trees are long-lived species, have limited dispersal 

capacity, and need time (10–40 years) to reach reproductive maturity. Thus, colonization 

and extinction events in response to environmental changes are often delayed (Loehle 

2000; Boulangeat et al. 2012; Bertrand et al. 2016). Accordingly, tree species shifts in 

composition and distribution following natural succession pathways are expected to be 

slow (Davis et al. 2001; Mcgill 2012; Vanderwel et al. 2014; Zhu et al. 2012) because 

they are limited by the persistence of resident tree species (Loehle 2000; Bouchard et al. 

2019) and the dispersal and establishment of migrating tree species (Wang et al. 2018). 

Many studies showed that disturbances can catalyze climate-induced shifts in 

species composition and distribution, because they can remove resident trees that could 

otherwise persist in novel climate conditions no longer suitable for seedling 

establishment, and thus increase the turnover of resident tree species to provide 

establishment opportunities for migrating tree species (Turner 2010; Boulanger et al. 
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2019; Brice et al. 2020). However, some studies have predicted that disturbances are 

unlikely to promote extensive species shifts in the next century because they would favor 

mainly the rapid recovery of resident species (Liang et al. 2018) or the expansion of 

pioneer species (Vanderwel et al. 2014).  Since size, heterogeneity, frequency, and 

severity of the disturbances may interact with tree species with varied life history 

attributes differently, often resulting in multiple succession pathways, forest dynamics 

may respond to climate warming in different ways. For example, low severity 

disturbances create canopy gaps, often favoring shade-tolerance species, whereas high 

severity disturbances could create large open areas, often benefiting pioneer species 

(Landhäusser et al. 2010; Grondin et al. 2018). Larger severe disturbance patches could 

delay tree regeneration and prolong early seral conditions by limiting the reach of seed 

dispersal (Johnstone et al. 2016), which may even trigger climate-induced regeneration 

failure (Savage et al. 2013; Harvey et al. 2016).  

Fire is the major disturbance agent, and the ongoing climate warming and human 

activities are altering fire regimes relative to their historic range of variability. Both the 

fire occurrence probability and burned area have been projected to increase in the next 

century due to climate warming, extreme weather, increased anthropogenic ignitions, and 

fuel accumulation from fire exclusion policies (Arno et al. 2000; Flannigan et al. 2009; 

Liu et al. 2012; Stephens et al. 2014). However, there is considerable controversy over 

the future fire sizes even if return interval and the total area burned may be similar ( the 

total area burned in a region could be from many small fires or a few large fires with the 

same return interval and total area burned) (Cui et al. 2008; Thonicke et al. 2010). Some 

studies showed that future fire regimes could be characterized by large fires because 
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warmer temperatures and drier conditions leading to dryer fuels that favor fire spread 

while fire suppression could lead to increased fuel accumulation that favors large fires 

(Parsons et al. 1979; Stavros et al. 2014). Yet other studies predicted that future fire 

regimes could be characterized by frequent small fires because increased fire suppression 

efficiency and landscape fragmentation could impede large fires even under very dry 

weather conditions (Loepfe et al. 2014; Hantson et al. 2015). Furthermore, active fuel 

management increasingly using prescribed fires and naturally ignited managed small fires 

as a tool to reduce fuels (Collins et al. 2010; Parks et al. 2014; Meyer 2015). Large and 

small fires are distinctively different in creating larger and more regular and aggregated 

patterns of high-severity patches (Romme et al. 1998; Bradstock 2008; Keane et al. 2008; 

Miller et al. 2012). They may lead to different tree species response to climate warming.  

Boreal forests of China, the southern extension of the eastern Siberian boreal 

forests, have experienced considerable temperature increases, and are predicted to warm 

further over the 21st century (IPCC 2013). Warming improves recruitment, survival, and 

growth of temperate tree species (e.g. Mongolian oak, Quercus mongolica Fisch.ex 

Ledeb.) at their northern limits, whereas boreal tree species (e.g. Dahurian larch, Larix 

gmelini（Rupr.) Kuzen) are competitively disadvantaged by slower growth and a larger 

increase in mortality associated with heat and drought stress (Kharuk et al. 2007; Leng et 

al. 2008; Peng et al. 2011). Thus, climate warming will promote colonization by 

temperate species into boreal forests and competitive exclusion of boreal species, causing 

an increase in the proportion of temperate species. Meanwhile, fire is the primary 

disturbance and has a significant impact on the forest dynamics in the flammable boreal 

forest ecosystems (Bowman et al. 2009). Historically, fire regime in this area is 
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characterized by small frequent fires (Xu et al. 1997). With effective fire suppression and 

warming climate, future fire regimes are predicted to be either large infrequent fires or 

small frequent fires (Chang et al. 2008; Hu et al. 2014). The boreal forests will have 

different responses to these fire regimes.  

In this study, I investigated how the boreal forests of China are influenced by 

future fires under warming climate in the next 100 years. In particular, I asked the 

following questions: 1) how fires interact with climate warming to affect the species 

composition and distribution; 2) whether the climate-induced composition and 

distribution shifts will respond differently between small and large fires; and 3) to what 

extent could the small or large fires enhance or hinder the shifts in species composition 

and distribution under a warming climate? I hypotheses that fires may provoke shifts to 

pioneer species and favor temperate species shifts, but large fires should have less effect 

on the temperate species distribution shifts than small fires because the larger burn 

patches may hinder the mitigation of temperate species at their northern limits due to low 

sprouting from pre-fire trees and the limitation of dispersed tree seeds from unburned 

edges. I answer these questions through a simulation approach using a species-specific, 

forest landscape model, LANDIS PRO. Forest landscape models have been considered 

the effective tool for spatially studying forest dynamics in response to disturbances and 

climate change (Seidl et al. 2011, He et al. 2017; Wang et al. 2019). They are designed to 

spatially simulate demographic processes (seed establishment, growth, competition, and 

succession) that drive the shifts of tree species composition and distribution interacted 

with disturbances. The models also have the ability to examine alternative disturbance 

and climate scenarios, disentangling compounding impacts of climate and disturbances 
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by studying the effect of different scenarios separately as well as in combination 

(Temperli et al. 2013; Seidl et al. 2014). 

2.  Materials and methods 

2.1 Study area 

My study area is located on the Great Xing'an Mountains of northeast China (Fig. 

4-1), encompassing approximately 8.46×104 km2 (from 50°10’ N, 121°12’ E to 53°33’ N, 

127°00’ E) and ranging in elevation from 134 to 1511 m. The Great Xing'an Mountains 

forests lie in the southern extension of eastern Siberian boreal forests, where vegetation is 

representative of cool-temperate coniferous forests. The forests mainly comprise of 

Dahurian Larch (Larix gmelini（Rupr.) Kuzen), with a few other locally abundant 

species, such as white birch (Betula platyphylla Suk.), Korean spruce (Picea koriensis 

Nakai) and Scots pine (Pinus sylvestris var. mongolica Litvinov), aspen (Populus 

davidiana Dole and P. suaveolens Fischer) and willow (Chosenia arbutifolia (Pall.) A. 

Skv). Few Asian black birch (Betula davurica Pall., hereafter “black birch”) and 

Mongolian oak (Quercus mongolica Fisch.ex Ledeb.) are only distributed in the 

southeastern low-elevation part of the forests. Since the temperate species have the 

potential to migrate northward in response to climate warming (approximately 50 km per 

100 years), I extended my study area southward by 100 km (the extended area was 

treated as the seed buffer) to reflect the impact of species shifts on the species 

composition and distribution of the Great Xing’an Mountains. 

2.2 Model simulation and parameterization 

I used the forest landscape model, LANDIS PRO, to simulate forest dynamics in 

response to fire and climate change (Wang et al. 2013, 2014). The model tracks the 
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density and size by species age cohort at pixel level (100 m resolution in this study) and 

simulates changes to each pixel over time. I used the succession module in LANDIS to 

simulate tree establishment, growth, resprouting, mortality, and seed dispersal. Mortality 

is determined by longevity (i.e., maximum lifespans) and competition (i.e., self-thinning). 

Seed dispersal is simulated by accounting for seed source location, abundance, and 

dispersal distance (dispersal kernel) (Wang et al. 2013).  

I simulated forest fires using the LANDIS PRO fire module under each fire scenario 

(Yang et al. 2004; Fraser et al. 2019). Fire regimes in the LANDIS PRO fire module are 

defined by ignition probability, fire return interval, and fire size distribution. Post-fire 

mortality is modeled as a function of model coefficients (correspond to species fire 

tolerance classes), tree diameter, and height of bark charring (Fraser et al. 2019). The height 

of bark charring is used analogously for fire intensity level which is determined by the 

quantity and quality of fuel in the site (He et al. 2004). These parameters for the post-fire 

mortality rate used in this study have been well calibrated using forest inventory data in 

my previous study (Xu et al. 2020).  

I used the forest ecosystem process model, LINKAGES III, to encapsulate the 

climate change effects. Novel climates affected maximum growing space occupied (MGSO) 

and species demography by modifying species establishment probability (SEP). I divided 

my study area into 166 land types to account for environmental heterogeneity in vegetation, 

topography, soil, temperature, and precipitation (Dijak et al. 2017). Within each land type 

unit, resource availability represented by the MGSO and SEP is assumed to be 

homogeneous. I estimated SEP on each land type by simulating species establishment and 

growth from bare ground over 30 years. I calculated SEPs from the maximum biomass 
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reached by a species on each land type by converting biomass to a relative scale of 0–1 

across species (He et al. 1999). I estimated MGSO as the maximum total biomass reached 

on each land type by simulating the establishment and growth of plots composed of the 8 

mixed tree species over 300 years. Each simulation was replicated 20 times. The SEPs and 

MGSO for each land type under two climate scenarios were inputted into LANDIS PRO 

as model parameters. 

2.3 Climate scenarios 

I included the current climate as a baseline climate scenario and a climate 

warming scenario based on the GFDL-CM3 general circulation models (GCMs) under 

the representative concentration pathway (RCP) 8.5. The GFDL-CM3 model that was 

developed by the NOAA Geophysical Fluid Dynamics Laboratory, effectively 

represented the warming tendency and inter-annual variation of precipitation in 

northeastern China (Sun et al. 2015). The RCP 8.5 emission scenario is the highest 

emission scenario used in the IPCC Fifth Assessment Report and is close to current 

emission trajectories. 

Current daily climate data (including daily minimum and maximum temperature, 

precipitation, average wind speed, and total solar radiation) were derived from a China 

national meteorological monitoring dataset (1980-2009; http://data.cma.cn). Future daily 

GFDL-CM3 data were obtained from the Coupled Model Inter-Comparison Project Phase 

five (CMIP5; 2005-2100;  https://esgf-node.ipsl.upmc.fr/search/cmip5-ipsl/). I 

interpolated current climate data to 0.25˚ × 0.25˚ grids using an R package ‘meteoland’ 

(De Caceres et al. 2018). I downscaled future climate data based on the interpolated finer-

scale current climate data (Wang and Chen 2014). 

https://esgf-node.ipsl.upmc.fr/search/cmip5-ipsl/
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2.4 Fire scenarios 

To investigate the effect of future fire regimes (large infrequent fires or small 

frequent fires) on tree species in response to climate change, I developed two future fire 

scenarios, and a baseline fire scenario. The baseline fire scenario corresponds to the fire-

size distribution, ignition probability, and return interval from the historical fire dataset 

from 1965 to 2009 (http://www.cfsdc.org/). A “long-tailed” distribution is needed to 

accurately depict fire size distributions where most fires are small, but rare extreme 

events account for most area burned. Therefore, I fitted lognormal fire-size distributions. 

The future fire scenarios included a small fires scenario and a large fires scenario by 

fitting different fire-size distributions with the same return interval and total area burned. 

The future fire return interval in my study region under the climate warming scenario 

(projected by the GFDL-CM3, RCP8.5) was derived by integrating a forest ecosystem 

model LINKAGES, a forest landscape model LANDIS, and a spatial point pattern 

analysis model SPP (Huang et al. 2020). Fire occurrences would increase by 138% 

compared to historical fire regimes by the year 2100.  

2.5 Simulation design and model validation 

I designed five simulation scenarios: (1) baseline climate scenario ( current 

climate without fire); (2) baseline fire scenario (current climate and current fire regime) 

(3) climate warming scenario (future climate without fire); (4) small fires scenario (future 

climate and future small fires); and (5) large fires scenario (future climate and future 

large fires). For each scenario, I ran five replicate simulations in LANDIS PRO for 115 

years at 5-year time steps starting in the year 1985. Baseline parameters were used for the 

http://www.cfsdc.org/
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1985-2100 period for all simulations except for the climate-sensitive parameters (fire 

regime, SEP, and MGSO).  

Validation of natural succession results was assessed under the baseline climate 

scenario by comparing simulated species-specific basal area and density with the actual 

basal area and density from forest inventory data in 2015 (Xu et al. 2020). Validation of 

the burned area was assessed under the baseline fire scenario by comparing simulated 

mean burned area/year with the actual mean burned area/year from the historical fire 

dataset. 

2.6 Data analysis 

I combined the tree species in my study area into three groups based on their 

ecological and successional states, namely boreal (Dahurian larch, Scots pine, Korean 

spruce, and willow), temperate (black birch and Mongolian oak), and pioneer species 

(white birch and aspen, early successional species which can be found any disturbed 

habitats across the study area). I calculated importance value (IV) for each species group 

IV = ([individual group density]/total density] + [individual group basal area]/total basal 

area]/2). Differences in species composition among scenarios and across time (initial 

conditions and year 2100) was evaluated using the Bray-Curtis (BC) dissimilarity index 

(Faith et al. 1987) based on IVs. I used non-parametric Wilcoxon test to test if there was 

a significant difference in species composition shifts between large fires and small fires 

scenarios. All statistical analyses were performed using R statistical software (R Core 

Team, 2015). 
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3.  Results 

3.1 Model validation 

My simulated results showed that the simulations reasonably captured the forest 

composition and species distribution in the year 2015. Simulated basal area and tree 

species density from LANDIS PRO were in high agreement with forest inventory data. 

((paired t-tests, df = 6, p > 0.05 for each species, Fig. 4-2). Larch and white birch were 

the most dominant species in all ecoregions and widely distributed in the study area, 

while larch is more abundant than white birch. Aspen and willow were mainly distributed 

on terraces. Scots pine was mainly distributed on exposed slopes in the northern area. 

Mongolian oak and Black birch were mainly found in the southeastern area.  

My simulated burned area under the base fire scenario was similar to the observed 

burned area and the simulated post-fire recovery in tree density and basal area dynamics 

closely followed the observed data (Fig. 4-3). High values in tree density were observed 

within10 years after fires due to the release of growing space that provided for the 

establishment of seedlings. The tree density then decreased in the following years 

because of the mortality from self-thinning after post-fire stands reaching the stem 

exclusion stage (Fig. 4-3a). The post-fire basal area increased steadily throughout the first 

30 years (Fig. 4-3b). 

3.2 Shifts in species composition and distribution  

Changes in forest species composition relative to baseline climate were highly 

variable among scenarios and temperate zones, with the most dramatic (Bray-Curtis 

dissimilarity 0.4) occurring in the medium temperate zone under the small fires scenario 

(Fig. 4-4). The medium temperate zone appeared to be more vulnerable to changes in 
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composition with the particularly swift and large increases in Bray-Curtis dissimilarity. 

The changes in species composition were strongly driven by a shift in dominance from 

boreal to pioneer, disturbance-adapted species (Table 4-1, Fig. 4-5). Boreal tree species 

experienced an overall decrease in IV, and a large decrease occurred in the southern low-

elevation part (medium temperate zone). Pioneer species showed an opposite trend of 

changes in IV compared with boreal species with great increases in the southern low-

elevation part and small increases in the northern part of the region. In the southern low-

elevation region, the shift in species composition resulted partially from an increase in the 

IV of temperate, warm-adapted species (Fig.4-5). Temperate tree species were limited in 

the southern low elevation region since they thrive in areas with higher temperatures, but 

were more abundant under a warming climate (Table 4-1, Fig.4-5). These changes were 

rather small under climate warming scenario but became more pronounced under fires 

scenarios (Table 4-1, Figs. 4-4, 4-5). Both small and large fires favored climate-reduced 

shifts from boreal to pioneer and temperate species. The IVs of pioneer species and 

temperate species surged almost 4 and 2 times higher respectively under fires scenarios 

compared to climate warming scenario. However, the magnitude of shifts in species 

composition and distribution was different between small and large fires scenarios. Based 

on the non-parametric Wilcoxon test, there was a significant difference (P < 0.05) in 

overall species composition (Bray-Curtis dissimilarity relative to initial conditions) 

between large fires and small fires scenarios. Frequent small fires exert stronger effects 

on the species composition shifts than infrequent large fires (Table 4-1, Figs. 4-4, 4-5). 

The increases of IVs in pioneer and temperate species from the small fires scenario were 

13% and 23% higher than those from the large fires scenario, respectively (Table 4-1). 
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4.  Discussion 

My study reveals that climate warming and future fire regimes strongly affect tree 

species composition in the boreal forests of China. Many studies have shown that boreal 

tree species growing at their southern limits of present-day distribution are vulnerable to 

warmer temperatures (Pedlar et al. 2017; Huang et al. 2013; Reich et al. 2018). My 

results demonstrate a widespread decline of boreal tree species under warming climate 

due to warming-induced potential decreases in regeneration and growth, and thus 

confirmed the findings from these studies. In contrast, warming climate improves 

recruitment, survival, and growth of pioneer and temperate tree species in the boreal 

forests (Bolte et al. 2014; Fisichelli et al. 2014; Boisvert-Marsh et al. 2019), thus 

providing a competitive advantage to these species over the boreal species. Overall, my 

results support the work that showed climate warming promoted transitions from boreal 

coniferous species to broadleaf species (pioneer and temperate species in this study) (Wu 

et al. 2017; Boulanger et al. 2019).  In my study, fires were projected to catalyze the 

transitions under climate warming, in line with the work of others (Turner, 2010; 

Johnstone et al., 2016). Fires caused widespread mortality of dominant boreal species, 

while climate warming likely increased the growth of pioneer and temperate species in 

the newly opened canopy gaps, thus altering post-disturbance successional trajectories 

and catalyzing regional composition transitions (Johnstone et al., 2016). The combined 

effects of climate warming and fire on the shifts in species composition will accumulate 

through time and space and can induce a complete transition of forest type, and alter 

forest dynamics and functions.  
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My study highlights that frequent small fires exerted stronger effects on the 

species composition shifts than infrequent large fires, although both fire regimes had 

equivalent burned areas and interacted with trees at stand-level similarly. Many 

researchers believed that large fires could cause major shifts in structure and composition 

through the creation of large, high-severity patches (Bradstock 2008; Keane et al. 2008; 

Miller et al. 2012). They showed that the large opened areas were colonized swiftly by 

pioneer species because these species have long dispersal distances, high resprouting 

probabilities, and fast growth rates (Boucher et al. 2017; Grondin et al., 2018), whereas 

boreal coniferous species were slower to come back following large fires because of their 

dispersal limitations (e.g. maximums of 200 m dispersal distance for Dahurian larch 

compared to 2,000 m for white birch) and restricted abundance of seed sources (Xu, 

1998). However, my results exhibited a greater composition shift under the small fires 

scenario where more boreal species shifted to pioneer and temperate species. This can be 

explained by the relatively small percent of pioneer species that were directly killed from 

small fires. Most of fires occurred in boreal coniferous species dominated stands due to 

higher flammability of surface fuels than broadleaf forests (Hély et al. 2000; Krawchuk et 

al. 2006). Large fires are more likely to burn into broadleaf stands, resulting in higher 

mortality of broadleaf species (e.g. white birch), and consequently more boreal 

coniferous species than small fires at the landscape scale. Moreover, temperate species 

have a slower migration rate under large fire scenarios because of the dispersal 

limitations and the competition with the swiftly colonized pioneer species that can persist 

for a long time after large fires. Therefore, the forests with infrequent large fires likely 
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maintain a higher percentage of boreal coniferous species, and thus exhibited less shift in 

species composition than that with frequent small fires.  

Although climate warming and fires significantly influenced species’ importance 

(promoting an increase in the proportion of pioneer and temperate species), species’ 

range distribution (represented by absence/presence) exhibited little change in the year 

2100. For example, temperate species were still mostly confined in the southern low-

elevation area of the study area. The reason for this may be from the competition of the 

resident species. Tree species may take decades to centuries to respond to changing 

climates due to inherent demographic inertia that enables adult trees to resist extinction 

during unfavorable climatic conditions, and thus may wield a strong competition to 

newcomers (Sittaro et al. 2017; Wang et al. 2019). Furthermore, temperate species in 

their northern limits have limited dispersal and establishment capabilities and long 

generation times that result in very slow rates of migration even with the competitive 

advantage (Hanski et al. 1993). As a result, my 100‐year simulation may not be long 

enough for the effects of climate warming and fires to manifest. However, over longer 

time scales (e.g. 200-300 years), fires may accelerate boreal tree species extinctions in the 

southern portion of their range, and thus the northward shift of temperate species ranges 

through accelerated species turnover under warming climates. 

As forests are increasingly affected by intensifying fire regimes and a greater 

degree of climatic variability, forest management faces new challenges. In forests where 

managers seek to maintain the composition and structure of the historic forest conditions, 

prescribed burning and harvesting have been used to mimic historic disturbance regimes 

and reduce structural and compositional dissimilarities with historical forests (Stanturf et 
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al. 2014). However, Boulanger et al. (2019) showed that these methods would fail to 

restore historic forest conditions under future climate because the novel climate 

conditions would not favor the regeneration of resident species but bring in new 

migrating species to fill in the gaps. Moreover, my results from the frequent small fire 

scenario indicate that prescribed burn and stand-level harvest could trigger more rapid 

transitions in forest composition than large-scale harvest and natural disturbances. Since 

maintaining historic forest conditions is likely impractical under future climate, some 

studies suggested adaptive management strategy- replacing declining species (e.g. boreal 

species) with advancing species (e.g. temperate species) in response to climate warming 

(McLachlan et al. 2007; Pedlar et al. 2012; Stanturf et al. 2014). My study suggests that 

natural recruitment of temperate trees might not be sufficient due to seed source and 

dispersal limitation. Thus, assisted migration may be necessary to facilitate temperate 

trees range expansion to improve forest adaptation to future climate warming (Duveneck 

et al. 2016).  
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Fig. 4-1. The location of the study area with 10 forest bureaus and a seed buffer zone. I 

only buffered the boundaries in China because they include the transition between 

temperate forests and boreal forests. 
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Fig. 4-2 Comparison of simulated basal area (a) and tree species density (b) with inventory data by ecoregions in 2015 
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Fig. 4-3. Comparison between simulated and observed values for total burned area (a), 

post-fire density (b) and basal area (c). The observed burned area represents the mean 

burned area/5 years from historic fire spanning 1965-2009. Error bars of simulated post-

fire density and basal area are marked as ± 1 standard deviation (n= 100 for each 

timestep). 
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Fig. 4-4. Bray-Curtis dissimilarity indices for simulated forest communities projected 

under climate warming, large fires and small fires scenarios compared with those 

simulated under baseline climate at the same timestep by temperate zones. 
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Fig. 4-5. Predicted differences in important value for boreal, pioneer, and temperate tree 

species between climate warming vs base climate, small fires vs climate warming, and 

large fires vs climate warming scenarios in 2100. 
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Tables 

Table 4-1. Changes (%) of tree species important values under climate warming, large 

fires, and small fires scenarios relative to baseline climate scenario by the year 2100. 

Species group 

Climate warming 

scenario 

Large fires 

scenario 

Small fires 

scenario 

Boreal species -8.18 -29.24 -32.90 

Pioneer species 63.15 232.38 261.92 

Temperate 

species 23.23 44.50 54.90 
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CHAPTER V. CONCLUSIONS 

The dissertation focused on the effects of large fires on the boreal forests of China. 

Specifically, I estimated the burn severity and carbon emissions from a large fire, 

investigated post-fire forest recovery, and examine the effects of future fire regimes on 

forest dynamics under a warming climate. Key findings and insights gained from this study 

are listed below. 

The Black Dragon fire released significant amounts of carbon into the atmosphere. 

The emitted carbon dioxide equivalents (CO2e) from the Black Dragon fire, accounted for 

approximately 10% of total fossil fuel emissions from China in 1987, along with CO (2% 

- 3% of annual anthropogenic CO emissions from China) and non-methane hydrocarbons 

(NMHC) contributing to the atmospheric pollutants. The estimates of carbon emissions 

were improved by using burn severity related combustion efficiency that was calculated 

using actual tree mortality estimates for different burn severity classes. The methodology 

can be applied on a continuous basis for forest fire monitoring and emissions accounting 

in different forested regions of the world. Furthermore, the estimated fire emissions could 

be combined with estimates of forest regrowth biomass accumulation for including 

emissions from wildfire in a national carbon accounting and reporting framework. My 

study provides an important basis for considering the impacts of megafires on national-

scale carbon accounting for China. 

I developed a framework to spatially reconstruct the post-fire time-series of forest 

conditions (i.e., forest composition, structure, and aboveground biomass) after the 1987 
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Black Dragon fire. This framework provided not only the spatial pattern and dynamics at 

the landscape scale, but also detailed stand attributes such as basal area, tree density, and 

age classes by species that can be validated against the contemporary inventory data. The 

framework can be applied to filling the gaps where inventory data are not available to 

assess recovery trajectories across the whole landscape and capture the heterogeneity of 

the post-fire recovery process in both time and space. The framework can be used to assess 

the legacy effects of a megafire over long time periods (i.e., decades to centuries) and 

examine alternative management and disturbance scenarios. 

I investigated the effects of two possible future fire regimes (frequent small fires 

and infrequent large fires) on forest dynamics in the boreal forests of China under a 

warming climate. Climate warming and fires strongly affected tree species composition 

and distribution in the boreal forests of China. Climate warming promoted transitions from 

boreal species to pioneer and temperate species. Fires were projected to catalyze the 

transitions under climate warming, whereas frequent small fires exerted stronger effects on 

the species composition shifts than infrequent large fires. The combined effects of climate 

warming and fire on the shifts in species composition will accumulate through time and 

space and can induce a complete transition of forest type, and alter forest dynamics and 

functions.  

My study brings insights into the role of large fires in national and global carbon 

balance and forest dynamics, and provide reference for other large fires. For example, the 

large fires often result in large and aggregated high severity patches that can jump over the 

terrain limitation. The large burn patches could delay vegetation recovery processes by 

limiting the reach of seed, and thus the forest recovery after large fires is a long-lasting 
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process. Reasonable human help to natural recovery to pre-fire forests is necessary for 

severe burns with a large patch size. This study also provides important implications for 

developing adaptive management plans under future climate. 
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