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GENOMICS OF SEASONAL HAIR SHEDDING AND ECOREGION-SPECIFIC 

GROWTH TO IDENTIFY ENVIRONMENTALLY-ADAPTED BEEF CATTLE 

Harly Jane Durbin 

Dr. Jared Decker, Dissertation Supervisor 

ABSTRACT 

Recently, interest has increased in augmenting current national scale cattle 

evaluations with precision genetic predictions tailored to specific environmental 

conditions. Some efforts to develop environmentally-aware predictions have 

focused on the use of novel phenotypes and others on the incorporation of 

genotype-by-environment interactions (GxE) to existing methodologies. Cattle 

and other mammal species molt thick winter coats at the beginning of summer in 

order to prepare for the oncoming stress of warmer weather. In warm climates, 

cattle that shed their winter coat earlier and more completely have an adaptive 

advantage over later-shedding herd-mates, and previous work has demonstrated 

the relationship between seasonal coat shedding and production traits. Using a 

novel trait (early summer hair shedding score) we develop a genetic evaluation 

for heat tolerance. We find that hair shedding score is moderately heritable and 

controlled by genomic loci involved in light sensing and metabolism. Additionally, 

we explore the degree to which GxE interactions across discrete ecoregions 

affect pre-weaning growth in American Angus cattle. We find evidence for GxE in 

the maternal but not direct effect of weaning weight, particularly in heat-stressed 

environments. Together, these efforts will help beef cattle breeders match 

genetics to the environmental conditions in which they are best suited.  
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CHAPTER 1 

DEVELOPMENT OF A GENETIC EVALUATION FOR HAIR 

SHEDDING IN AMERICAN ANGUS CATTLE TO IMPROVE 

THERMOTOLERANCE 

Abstract 

Background 

Heat stress and fescue toxicosis caused by ingesting tall fescue infected with the 

endophytic fungus Epichloë coenophiala represent two of the most prevalent 

stressors to beef cattle in the United States and cost the beef industry millions of 

dollars each year. The rate at which a beef cow sheds her winter coat early in the 

summer is an indicator of adaptation to heat and an economically relevant trait in 

temperate or subtropical parts of the world. Furthermore, research suggests that 

early-summer hair shedding may reflect tolerance to fescue toxicosis, since 

vasoconstriction induced by fescue toxicosis limits the ability of an animal to shed 

its winter coat. Both heat stress and fescue toxicosis reduce profitability partly via 

indirect maternal effects on calf weaning weight. Here, we developed parameters 

for routine genetic evaluation of hair shedding score in American Angus cattle, 

and identified genomic loci associated with variation in hair shedding score via 

genome-wide association analysis (GWAA). 

Results 
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Hair shedding score was moderately heritable (h2 = 0.34 to 0.40), with different 

repeatability estimates between cattle grazing versus not grazing endophyte-

infected tall fescue. Our results suggest modestly negative genetic and 

phenotypic correlations between a dam’s hair shedding score (lower score is 

earlier shedding) and the weaning weight of her calf, which is one metric of 

performance. Together, these results indicate that economic gains can be made 

by using hair shedding score breeding values to select for heat-tolerant cattle. 

GWAA identified 176 variants significant at FDR < 0.05. Functional enrichment 

analyses using genes that were located within 50 kb of these variants identified 

pathways involved in keratin formation, prolactin signaling, host-virus interaction, 

and other biological processes. 

Conclusions 

This work contributes to a continuing trend in the development of genetic 

evaluations for environmental adaptation. Our results will aid beef cattle 

producers in selecting more sustainable and climate-adapted cattle, as well as 

enable the development of similar routine genetic evaluations in other breeds. 

Background 

At the beginning of the summer, many mammalian species molt thick winter 

coats in response to changing day length in order to prepare for warmer 

temperatures  [1–6]. There is evidence of quantitative variation in the rate and 

timing of this yearly shedding across taxa [7,8], including cattle [9]. In warm 
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climates, cattle that shed their winter coat earlier and more completely have an 

adaptive advantage over later-shedding herd-mates. Late-shedding cattle will 

need to partition energy that could have gone towards growth and production 

towards overcoming heat stress [10]. Economic losses attributable to heat stress 

cost the U.S. beef cattle industry more than $360 million each year in 2003 [11], 

which equates to ~ $518 million in 2020 after adjustment for inflation. In the cow-

calf sector, a portion of this economic impact is a result of lowered calf weaning 

weights caused by reduced dam productivity [12]. However, there is currently no 

national-scale genetic evaluation for heat tolerance. In the United States, much 

of the beef herd that is at risk of heat stress is also at risk for fescue toxicosis. 

Tall fescue (Lolium arundinaceum) is the most widely available forage in the 

United States [13], thanks in part to its symbiotic relationship with the endophytic 

fungus Epichloë coenophiala. E coenophiala produces ergot alkaloids that 

benefit the forage by increasing drought tolerance and pathogen resistance [14], 

but negatively impact livestock to varying degrees. In cattle, one side-effect of 

fescue toxicosis is peripheral vasoconstriction, which reduces the animal’s ability 

to dissipate heat. The ergot alkaloids that cause fescue toxicosis also disrupt the 

hair follicle growth cycle, which interferes with hair coat shedding and, in turn, 

further increases the potential for heat stress [15]. Therefore, effective early-

summer hair shedding while grazing endophyte-infected (hereafter referred to as 

“toxic”) tall fescue may also be an indicator of tolerance to fescue toxicosis. One 

way to mitigate heat stress is through introgression of beneficial alleles from 

tropically-adapted breeds [16]. However, this can take many generations and 
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may come at the cost of other production traits. An alternative strategy is the 

exploitation of standing genetic variation in the population of interest. Recently, 

interest has grown in augmenting national genetic evaluations with predictions of 

regional adaptability and suitability [17–19], particularly by using novel traits [20]. 

Here, we develop parameters for a prototype national genetic evaluation of hair 

shedding in American Angus cattle, a novel trait that directly influences cattle’s 

ability to dissipate heat. To assess one potential impact of such an evaluation on 

beef cattle producers, we also demonstrate the relationship between dam hair 

shedding score and the weaning weight of her calf. This evaluation will aid beef 

cattle producers in heat-stressed regions in the selection of more sustainable 

cattle. 

Methods 

Data 

All data originated from purebred cattle registered in the American Angus 

Association (AAA) and commercial cattle enrolled in the AAA Breed Improvement 

Record program. Phenotypic data comprised hair shedding scores recorded by 

beef cattle producers enrolled in the Mizzou Hair Shedding Project (MU data) 

between 2016 and 2019 in combination with hair shedding scores collected by 

technicians in 2011, 2012, 2018, and 2019 as part of Angus Foundation-funded 

projects at Mississippi State University and North Carolina State University (AGI 

data). Across all years and both datasets, scores were recorded on one day 

between April 17th and June 30th in the late spring or early summer, with most 
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scores recorded in mid- to late-May. Hair shedding was evaluated using a 1 to 5 

visual appraisal scale, where 1 was 0% dead winter coat remaining and 5 was 

100% winter coat remaining based on the systems developed by Turner and 

Schleger [21] and Gray et al. [22] (Fig. 1). While there is variation in the onset of 

hair shedding between individuals, cattle and other mammals tend to shed from 

the head towards the tail and from the topline towards the legs [2,8,23]. 

Records were removed when the breeder-reported sex of an animal did not 

match the sex recorded in the AAA pedigree. Hair shedding scores that 

originated from male animals comprised less than 1% of the dataset and only 

female records were retained. Age classifications were assigned to each record 

based on age in days determined by the AAA-recorded birth date and the date 

the hair shedding score was recorded. Similar to the system used in the Beef 

Improvement Federation (BIF) Guidelines for age-of-dam classification [24], age 

classifications were defined as  to , where  is the age classification and  is days. 

Records where the breeder-reported age in years differed from the calculated 

age classification by more than two years and records from animals younger than 

275 days-of-age were removed. When no calving season was reported, it was 

imputed using the most recent natural birth calving date available in the AAA 

database prior to the recorded score. When no natural birth calving dates were 

available, calving season was imputed using the animal’s own birth date. In the 

AGI data, some animals were scored by multiple scoring technicians on the 

same day. In these cases, phenotypes recorded on the same animal and the 

same day were averaged. In the MU data, participating producers were asked to 
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report whether or not (yes or no) animals grazed toxic fescue during the spring of 

the recording year. Grazing status was not explicitly recorded in the AGI data, but 

animals scored in Texas were assumed not to have grazed toxic fescue. This 

resulted in 14,839 scores in the combined, filtered dataset. Among the 8,619 

individuals included, 49% had between 2 and 6 years of data. Most data came 

from herds in the Southeast and Fescue Belt (Fig. 2). The mean hair shedding 

score was slightly higher in the AGI data (! = 3.10; n = 6,374) compared to the 

MU data (!	= 2.65; n = 8,465), but the standard deviation was identical in both 

datasets (#	= 1.15). 

Genotypes and imputation 

Genotypes for 3,898 of the 8,619 animals were imputed to a union marker set ( = 

233,246) of the GGP-F250 genotyping chip and various commercial assays 

using FImpute v.3.0 [25]. The commercial assays were those used in routine 

genotyping of Angus cattle for genomic selection purposes, which include ~ 50 K 

markers or a lower density panel that can be imputed to ~ 50 K with sufficient 

accuracy. Although FImpute provides the capacity to infer the genotypes of un-

genotyped animals based on information from relatives, markers were imputed 

only for genotyped individuals. Prior to imputation, markers with a GenCall score 

lower than 0.15 were set to missing and individuals with Mendelian error rates 

higher than 2% had their parents set to missing in the pedigree. The GGP-F250 

was designed to genotype functional variants and thus has more variants at low 

minor allele frequencies [26]. Therefore, no minor allele frequency filter was 
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applied during or after imputation beyond the removal of monomorphic SNPs. 

Animals and markers with call rates lower than 85% were removed. The resulting 

marker set consisted of 174,894 autosomal variants.  

Construction of the blended relationship matrix H-1 

In single-step genomic best linear unbiased prediction (BLUP) as used in the 

AAA National Cattle Evaluation (NCE), relationships between individuals are 

represented in the matrix H-1 which is a blended form of the genomic and additive 

relationship matrices [27], allowing information from both genotyped and non-

genotyped animals to be used. H-1 calculated as: 

$!" + &
0 0
0 (#

!" − $$$
!"*, 

where A-1 represents the inverted pedigree relationship matrix traditionally used 

to represent relationships, A-122 represents the inverted pedigree relationship 

matrix for the subset of animals with genotypes available, and G-1w is the inverted 

genomic relationship matrix. The genomic relationship matrix was calculated 

using the VanRaden method [28] and was blended with A22 using the default 

weight of 0.05 using the preGSf90 program [29]. In all subsequent models 

including a random genetic effect, H-1 was constructed using the 3-generation 

pedigree (in total, 17,652 animals; 1,987 distinct sires and 9,509 distinct dams) in 

combination with imputed genotypes. 
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Effect of age on hair shedding score and contemporary group definition 

Understanding how and which environmental factors shape phenotypic variation 

enables the development of more appropriate contemporary group definitions 

during genetic evaluation. In order to quantify the effect of animal age on hair 

shedding score, we fitted age as a categorical fixed effect in a repeated records 

animal model. Age categories were defined in three ways. First, age in years was 

fit (i.e. all possible values between 1 and 16). Second, ages were grouped as 1, 

2, 3, or other (“four-class model”). Third, age groups were defined according to 

the guidelines set forth by the BIF for age-of-dam effects on birth weight and 

weaning weight (i.e., 2, 3, 4, 5-9, 10, 11, 12, 13+; [24]) plus yearlings (“BIF 

model”). The four-class model and the BIF model were each compared against a 

null model with no age effect included using Akaike's Information Criterion (AIC) 

and likelihood ratio tests. In all three models with age classification fitted as a 

categorical fixed effect, classifications with fewer than five animals were 

excluded. These models are summarized below: 

+ = -". + -$/ + 0"1 +	0$2 + 3, 

where y is a vector of hair shedding scores; b is a vector of contemporary group 

effects for each hair shedding score, with contemporary group defined as farm 

ID, year scored, calving season, score group, and toxic fescue grazing status; a 

is a vector of age classification effects for each individual (based on age-in-years, 

BIF classifications, or the four age classes); u is the random additive genetic 

effect with 1	~	N(0, 8σ%&); p is the random permanent environment effect with 
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2	~	N(0, ;σ'(& );  is the random residual with 3	~	N(0, ;σ'(& ); and X1, X2, Z1, and Z2 

are incidence matrices relating the elements of y to b, a, u, and p, respectively. 

Effect of toxic fescue grazing status on hair shedding 

Cattle reared in heat-stressed regions but not exposed to endophyte-infected 

fescue demonstrate similar benefits from early summer hair shedding, but it is 

unclear if the biological mechanisms that govern hair shedding under fescue 

toxicosis and heat stress alone are the same. This could have implications for 

routine genetic evaluation, as it might require that some hair shedding score 

observations be treated as a separate trait. In order to clarify the relationship 

between hair shedding score while grazing toxic fescue versus while not grazing 

toxic fescue, we calculated the covariance and genetic correlation between hair 

shedding score grazing toxic fescue and not grazing toxic fescue using the 

bivariate repeated records animal model below: 

+) =	-).) + 0")1) +	0$)2) + 3), 

where y is a vector hair shedding scores and t is toxic fescue grazing status (yes 

or no); b is a vector of contemporary group effects for each hair shedding score, 

with contemporary groups defined as farm ID, year scored, calving season, score 

group, and age class (yearling, 2-year-old, 3-year-old, or other; based on the 

results of the age classification analyses above); u is the additive genetic effect 

and Var(1) = 	 ?
σ*+(,
& σ*+(,,*./

σ*./,*+(, σ*./
& @ ⊗ 8; p is the permanent environment effect 
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and Var(2) = 	 ?
σ'+(,
& 0

0 σ'./
& @ ⊗ ;; e is the random residual and Var(3) =

?
σ(+(,
& σ(+(,,(./

σ(./,(+(, σ(./
& @ ⊗ ;; and X, Z1, and Z2 are incidence matrices relating the 

elements of y to b, u and p, respectively. 

In addition, we fitted a univariate model with toxic fescue grazing status included 

as a categorical fixed effect. The goal of this model was to quantify the effect of 

reported toxic fescue grazing status on hair shedding score: 

+ = -". + -$B + 0"1 +	0$2 + 3, 

where y is a vector of hair shedding scores; b is a vector of contemporary group 

effects, defined in the same way as the univariate model above; f is the toxic 

fescue status effect (yes or no); u is the additive genetic effect with 

1	~	N(0, 8σ%&); p is the permanent environment effect with 2	~	N(0, ;σ'(& ); e is the 

random residual with 3	~	N(0, ;σ(&); and X1, X2, Z1, Z2, are incidence matrices 

relating the elements of y to b, f, u, and p respectively. 

In both models, only females with known toxic fescue grazing status were 

retained for analysis. Contemporary groups with fewer than five animals or no 

variation were discarded, resulting in 5,832 observations from cattle grazing toxic 

fescue and 4,197 observations from cattle not grazing toxic fescue. Three 

hundred ninety-six animals had observations over multiple years both grazing 

and not grazing toxic fescue. 
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Genetic parameters, breeding values, and estimated bias 

Variance components, heritability, repeatability, and breeding values were 

estimated using the univariate repeated records animal model below 

implemented in AIREMLF90 [29]. 

+ = -. + 0"1 +	0$2 + 3, 

where y is a vector of hair shedding scores; b is the contemporary group effect; u 

is the additive genetic effect with 1	~	N(0, 8σ%&); p is the permanent environment 

effect with 2	~	N(0, ;σ'(& ); e is the random residual with 3	~	N(0, ;σ(&); and X, Z1, 

and Z2 are incidence matrices relating the elements of y to b, u, and p, 

respectively. 

The definition of contemporary groups used in this final prediction model was 

informed by the results of the age classification and toxic fescue grazing status 

analyses above. It included a combination of farm, year scored, calving season 

(spring or fall), toxic fescue grazing status (yes or no), age group (yearling, 2-

year-old, 3-year-old, or other), and score group. In herds where cattle were 

scored for hair shedding over more than one day, the score group was 

determined using a 7-day sliding window to maximize the number of animals per 

contemporary group. In the future, it will be recommended that producers score 

all cattle for hair shedding within a week of one another to maximize the size of 

contemporary groups. Although yearling heifers have not yet experienced the 

stress of pregnancy, calving season/birth season is a good proxy for 
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management group in the absence of breeder-reported codes. Therefore, 

“calving season” was included in the contemporary group definition for all 

animals regardless of reproductive status. Contemporary groups with fewer than 

five animals or no variation were dropped. This resulted in 14,438 total scores 

from 8,449 animals in 395 contemporary groups. 

In order to evaluate model bias, we estimated breeding values in ten separate 

iterations, excluding all phenotypes for a randomly selected 25% of animals. 

These “partial” breeding values were then compared to breeding values obtained 

via the “whole” model including all possible information using the “LR method” 

parameters proposed by Legarra and Reverter [30]. First, we calculated the 

absolute difference between whole breeding values and partial breeding values 

for the validation set, or animals whose phenotypes were excluded (dvw,p) and the 

reference set, or animals whose phenotypes were not excluded (drw,p). The 

expectation of this value is zero in the absence of bias, where bias is introduced 

by incorrect estimation of the genetic trend. Next, we regressed whole breeding 

values on partial breeding values for both validation (bvw,p) and reference (brw,p) 

sets. In this model, deviations of the slope from 1 are suggestive of dispersion. 

Finally, we calculated the correlation between partial and whole breeding values 

(C0,1 =	
234(67!,67")
94:;(67!,67")

) within the validation and reference sets, where the correlation 

within the validation set (C0,14 ) is a metric of prediction accuracy. 
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Weaning weight 

The effects of heat stress on pre-weaning growth are well characterized in cattle. 

Heat stress impacts calf performance most severely via reduced milk production 

in the dam [12]. Fescue toxicosis induces reduced milk production in a similar 

fashion [31]. Therefore, we quantified the phenotypic and genetic correlations 

between hair shedding score and weaning weight. 

Weaning weight phenotypes and contemporary group designations came from 

the weekly growth run of the AAA national cattle evaluation (NCE). Prior to 

entering the NCE, phenotypes were adjusted for age-of-dam effects as used in 

Angus’s weekly NCE and to 205 days-of-age. Weaning weight data were 

retrieved for: (1) own weaning weight of cows with at least one hair shedding 

score recorded, (2) all of cow’s recorded calves, (3) cow’s weaning weight 

contemporary group peers, and (4) all of their recorded calves’ weaning weight 

contemporary group peers. Weaning weights from animals born via embryo 

transfer and contemporary groups with fewer than five animals or no variation 

were excluded, resulting in 40,794 total weaning weight and 14,039 total hair 

shedding score records. Of the 45,420 phenotyped animals retained for analysis, 

3,850 had both a recorded weaning weight and at least one hair shedding score. 

Furthermore, 6,448 dams had both hair shedding scores and calf weights 

recorded in at least one year (n = 9,092 score/weight pairs). 

Conceivably, environmental factors that affect a dam’s hair shedding 

performance could also affect the direct weaning weight of her calf and her 
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maternal effect on the calf’s growth, creating a residual covariance between the 

two traits. In order to reflect this covariance, a bivariate model was fitted in which 

a direct hair shedding score effect was modeled for the cow, a direct weaning 

weight effect was modeled for the calf, and a maternal weaning weight effect was 

modeled for the cow. In practice, this model was implemented by fitting a 

maternal genetic effect for hair shedding, no direct genetic effect of hair shedding 

(no genetic effect of the calf on the hair shedding score of its dam), and direct 

and maternal genetic effects for weaning weight. This model created a direct tie 

between a dam’s hair shedding score and the calf she weaned that year, which 

reflects more accurately the relationship of interest and is similar to models used 

to assess the correlations between weaning weight and actual milk yield [32]. For 

cows with a hair shedding score but no calf weaning weight reported during the 

scoring year, a “dummy calf” with a weaning weight set to missing and unknown 

sire was created. This model was fitted three separate times: once including only 

dams explicitly recorded to have been grazing toxic fescue, once including only 

dams explicitly recorded to have not been grazing toxic fescue, and once with all 

available data. 
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where yt is the phenotype and t is the trait (hair shedding score (HS) or weaning 

weight (WW)); bt is the contemporary group effect; ut is the calf genetic effect (fit 
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only for weaning weight) and Var(1) = 	 &
0 0
0 σ*@@

& * ⊗ 8, where σ*@@
&  represents 

the genetic variance for the calf direct effect of weaning weight; mt is the cow 

genetic effect and Var(F) = 	 ?
σABC
& σABC,A@@

σA@@,ABC σA@@
& @ ⊗ 8, where σABC

&  

represents the genetic variance for hair shedding and σA@@
&  represents the 

genetic variance for the cow maternal effect of weaning weight; mpet is the cow 

permanent environment effect and Var(F23) =

?
σA'(BC
& σA'(BC,A'(@@

σA'(@@,A'(BC σA'(@@
& @ ⊗ ;, where σA'(BC

&  represents the permanent 

environmental variance for hair shedding and σA'(@@
&  represents the permanent 

environmental variance for the maternal effect of weaning weight; et is the 

random residual and Var(3) = 	 ?
σ(BC
& σ(BC,(@@

σ(@@,(BC σ(@@
& @ ⊗ ;; and X, Z1, Z2, and Z3, 

are incidence matrices relating the elements of y to b, u, m, and mpe, 

respectively. 

We also evaluated the phenotypic relationship between dam hair shedding score 

and calf weaning weight using the subset of 6,448 dams with both hair shedding 

scores and calf weights recorded in at least one year. We did this by calculating 

the estimated change in calf weaning weight as a function of dam hair shedding 

score using four separate simple linear regression models. In the first two 

models, unadjusted calf weaning weight was regressed on unadjusted dam hair 

shedding score. Using weaning weight unadjusted for age in days captures 

increased gain from an earlier birth date (older when weighed), which might be 
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an indicator of increased fertility for earlier shedding cows. In the other two 

models, 205-day, age-of-dam, and contemporary group solution adjusted calf 

weaning weight was regressed on un-adjusted dam hair shedding score. Both 

the unadjusted weaning weight and adjusted weaning models were fitted 

separately for all available data, dams explicitly recorded as grazing toxic fescue, 

and dams explicitly recorded as not grazing toxic fescue. 

Genome-wide association 

In order to evaluate the genetic architecture of hair shedding and identify variants 

that contribute to hair shedding score breeding values, we performed a single-

SNP genome-wide association analysis using the SNP1101 v.1 software [33]. 

The breeding values calculated above using AIREMLF90 were de-regressed and 

used as the phenotype such that each of the 3,783 animals had one record. The 

de-regressed breeding values were weighted by their reliability 1 −	
DEF

G&'
, where 

HIJ = (KI&) ∗ #H& and #:& and #H& are the estimated additive genetic and residual 

variances for hair shedding score, respectively. Heritability was constrained to 

0.40 and the genomic relatedness matrix used to control for family structure was 

calculated using the VanRaden method [28]. 

Using the UMD 3.1 bovine genome assembly [34] coordinates and annotations, 

we searched genes within 50 kb of SNPs with a genome-wide q-value lower than 

0.05. The size of our search space was determined based on the density of our 

marker set, and the resulting gene list was used as input for cluster enrichment 

analysis within ClueGO v.2.5.6 [35]. KEGG pathways and biological process 
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gene ontologies with at least four associated genes were considered for search 

terms. We also searched for protein-protein interaction between genes in our list 

using STRING v.10 [36], considering co-expression, experimental data, and 

curated databases as active interaction sources. 

Results 

Effect of age on hair shedding score and contemporary group definition 

The results of the age-in-years model suggest a non-linear effect of age with 

larger effect sizes in two-year-old, three-year-old cows, yearlings, and old cows 

relative to mature cows (Figure 1.3a). Both the BIF age class model and the four 

age class model had lower AIC values than the null model with no age effect 

(38912.38, 38906.17, and 38983.31 respectively). Likelihood ratio test results 

indicate a better fit of the four class model over the null (-log10(p) = 8.899) and no 

improvement in model fit using BIF age classes over four age classes (-log10(p) = 

0). The power of contemporary grouping is undermined by over-

parameterization, which can result in fewer animals per contemporary group. 

Therefore, we chose to classify age using the simpler four age class definition in 

all downstream analyses where contemporary group was fitted as a fixed effect 

in order to maximize contemporary group size. 

Effect of toxic fescue grazing status on hair shedding 

When treated as separate traits, hair shedding while grazing and not grazing 

toxic fescue had similar heritability estimates (Table 1.1) and a high genetic 



 18 

correlation (rg = 0.93). Furthermore, the Pearson correlation between breeding 

values grazing and not grazing toxic fescue was 0.99. The total phenotypic 

variation in hair shedding grazing toxic fescue was slightly higher than hair 

shedding not grazing toxic fescue, which suggests that reduced peripheral blood 

flow caused by fescue toxicosis is more detrimental to hair shedding than heat 

stress alone (Table 1.1). The fixed-effect model solutions support this conclusion 

(MI = 0 vs. -0.59 hair shedding score units for grazing and not grazing toxic 

fescue, respectively). Furthermore, the estimated permanent environment effect 

(and therefore estimated repeatability, r) was much higher for hair shedding while 

grazing toxic fescue (Table 1.1). 

Genetic parameters, breeding values, and estimated bias 

Using all available data, the estimated narrow-sense heritability (
G&'

G&'JG!(' JG('
) was 

0.40 with an approximate standard error of 0.018. Likewise, the estimated 

repeatability (
G&'J	G!('

G&'JG!(' JG('
) was 0.44 with an approximate standard error of 0.012. 

These estimates are similar to those previously reported in Angus cattle based 

on pedigree relatedness [22]. 

Across ten iterations, dvp,w averaged 0.25, ranging from 0 to 1.48. In the absence 

of bias introduced by incorrect estimation of the genetic trend, this value is 

expected to be zero. Estimates of bvp,w ranged from 0.96 to 1.05, which suggests 

minimal dispersion of breeding values (Figure 1.4). Prediction accuracy (C0,14 ) 

ranged from 0.70 to 0.73. 
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Relationship between hair shedding and weaning weight 

All three bivariate models suggest a moderately negative genetic correlation 

between weaning weight and hair shedding score. In the model using all 

available data, the estimated rg between the maternal component of weaning 

weight and hair shedding was -0.19 (Table 1.2). When the data were stratified by 

dam toxic fescue grazing status, this estimate increased slightly in magnitude for 

both grazing and not grazing toxic fescue (rg = -0.25 and -0.28, respectively). For 

dams not grazing toxic fescue, the rg between the direct and maternal effect of 

weaning weight fell near commonly reported estimates (rg  = -0.29; [37]) but was 

much higher for dams grazing toxic fescue (rg = -0.63) and for all possible dams 

(rg = -0.43) (Table 1.2). The rg between the direct effect of weaning weight and 

hair shedding ranged from -0.10 (dams not grazing toxic fescue) to -0.03 (all 

possible data) to 0 (dams grazing toxic fescue). 

In the simple linear models predicting unadjusted weaning weight from dam hair 

shedding score, unadjusted calf weaning weight was estimated to decrease by 

1.30 kg with every unit increase in hair shedding score using all available data, 

by 3.22 kg for dams grazing toxic fescue and by 5.08 kg for dams not grazing 

toxic fescue. Slope estimates from the simple linear models predicting adjusted 

weaning weight from dam hair shedding score were more modest but also 

negative. Adjusted calf weaning weight was estimated to decrease by 1.45 kg 

using all possible data, by 2.47 kg among dams grazing toxic fescue, and by 1.11 

kg among dams not grazing toxic fescue with every unit increase in hair shedding 
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score (Figure 1.5). 

Genome-wide association analysis 

We found 176 variants that passed the genome-wide false discovery rate 

threshold of 0.05 and 56 variants that passed the false discovery rate threshold 

of 0.01 (Figure 1.6). Of these 176 variants, 33% are on chromosome 5. Two 

hundred and six unique genes were found to be within 50 kb of significant 

variants. The two strongest associations were observed within CEP290. Perhaps 

interestingly, near our largest peak, we identified several members of the KRT 

gene family (KRT1, KRT3, KRT4, KRT76, KRT77, KRT78, and KRT79), which 

are involved in creating structural epithelial cells like hair. 

We found significant enrichment (Benjamini-Hochberg corrected p-value < 0.05) 

for pathways involved in virus-host interaction, fat cell differentiation, prolactin 

signalling, cellular response to starvation, vasopressin-regulated water 

reabsorption, and other biological processes (Table 1.3). We also found more 

protein-protein interactions than expected (PPI enrichment p-value = 0.00462) 

and enrichment for PFAM protein domains “keratin type II head” (FDR = 8.89e-

06), “somatotropin hormone family” (FDR = 8.09e-05), and “intermediate filament 

protein” (FDR = 0.00064). 

Discussion 

The expression of a phenotype is not always consistent across lifespan [38]. We 

found that the relationship between age and hair shedding is non-linear with 
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young cows, especially 2-year-old and 3-year-old cows, that displayed higher 

hair shedding scores than their older herd mates. This is in line with 

expectations, as young cows require increased energy expenditure associated 

with continued growth [39] and the new stress of lactation [40]. To a lesser 

extent, cows 10 to 13 years old tended to have higher hair shedding scores than 

young animals. A similar U-shaped relationship between age and molt date was 

reported in other ungulate species [8] and was reflected in the estimates of effect 

size from the BIF age class model (Figure 1.2b). Cows are typically culled from 

the herd or die after 10 to 11 years of age [41,42]. Thus, estimates of effects for 

cows older than 12 years reflect a selected sample. However, the early shedding 

estimates for these very old cows support early hair shedding as an important 

characteristic of longevity, especially in heat-stressed environments. 

Although our results suggest a high correlation between hair shedding score 

breeding value across toxic fescue grazing status, we found a slightly higher 

heritability estimate and much larger effect of permanent environment among 

cattle grazing toxic fescue than those not grazing toxic fescue. Stress can 

sometimes increase phenotypic variation [38], which could result in the higher 

heritability observed among cattle grazing toxic fescue. Because repeatability is 

the upper bound of broad sense heritability, the disparity found in permanent 

environment estimates might be explained by a larger contribution of non-

additive genetic effects (i.e., epistatic and dominance effects) to variation in hair 

shedding while grazing toxic fescue versus while not grazing toxic fescue. It is 

also possible that certain permanent environmental effects (i.e., physiological 
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differences between the ability of animals to shed their winter hair) are manifest 

when cattle graze infected tall fescue. Most likely, the increased estimate of the 

permanent environment effect reflects the accumulation of physiological damage 

from long-term fescue toxicosis. The medial layer of blood vessels tends to be 

thickened in animals that suffer from fescue toxicosis, which Strickland et al. [43] 

linked to hyperplasia of the smooth muscle. Repeated exposure to ergovaline 

also increases venous contractile response, suggesting bioaccumulation [44]. 

Typically, measurements of the same trait across different environments that 

result in genetic correlations rg lower than 0.80 are considered “very different” 

[45]. Hair shedding scores recorded while grazing toxic fescue versus while not 

grazing toxic fescue have an rg of 0.93, which suggests minimal re-ranking of 

breeding values. However, the magnitude of the difference in permanent 

environment effects found here may justify treating hair shedding grazing and not 

grazing toxic fescue as separate traits in research studies that examine 

physiological or non-additive genetic effects. For the implementation of the 

American Angus NCE, we have chosen to minimize the effect of toxic grazing 

status by including it in the definition of contemporary groups. Many biotic and 

abiotic factors affect the prevalence of toxicity-inducing ergot alkaloids within 

forage, including moisture, reproductive status, soil nitrogen, and most notably, 

temperature [46]. Previous work suggests that animals must ingest a threshold 

level of ergot alkaloids before fescue toxicosis symptoms become evident [47]. 

However, in these analyses, toxic fescue grazing was treated as a binary 

producer-reported status in the absence of quantitative measures of ergot 
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alkaloid levels, which may affect the interpretation of our results. Furthermore, we 

did not account for the effect of grazing toxic fescue in previous years. 

Our enrichment results identified pathways associated with prolactin signaling, 

which is a well-known modulator of seasonal hair shedding and hair growth as 

well as milk production [4]. In 2014, Littlejohn et al. identified mutations in 

prolactin (PRL) and its receptor (PRLR) that cause abnormal pelage, milk 

production, and thermoregulation phenotypes in cattle [48]. Furthermore, low 

serum prolactin level is often used as an indicator of fescue toxicosis [49]. Gray 

et al. [22] suggested that the negative relationship that they found between calf 

weaning weight and dam hair shedding was due in part to differences in serum 

prolactin level. Our results support this conclusion. While the genetic correlation 

found here using all possible data between a dam’s hair shedding score and the 

weaning weight of her calf is moderate, it is nearly three times less than the 

previous estimate reported by Gray et al. [22] (rg = -0.58), which was identical to 

the correlation reported by Turner and Schleger [21] for a calf’s own hair 

shedding score and its post-weaning gain. This is likely due, in part, to our use of 

a slightly different phenotype. Turner and Schleger [21] used an expanded 7-

point scoring system, whereas Gray et al. [22] used the same scoring system but 

categorized dams based on the month of the year that they first achieved a hair 

shedding score of 3 (about 50% shed; Figure 1.1c). We also considered the 

relationship between hair shedding score and the maternal effect of weaning 

weight rather than the direct effect of weaning weight. Another possibility could 

be confounding environmental effects. The relationship between dam hair 



 24 

shedding score and calf weaning weight was also different across toxic fescue 

grazing statuses, and when toxic fescue grazing statuses are modelled 

separately the rg between hair shedding score and the maternal effect of weaning 

weight increases relative to the rg estimated using all data. This is similar to the 

results reported in Hoff et al. [50], where the accuracy of bovine respiratory 

disease (BRD) genomic prediction was higher when analysis of the data was 

done with data stratified by state than taken all together. The authors postulated 

that the discrepancy in prediction accuracy was likely due to the prevalence of 

different BRD-causing pathogens between environments [50]. Similarly, our 

results suggest that the relationship between hair shedding and other production 

traits may be environment- or context-specific. 

In the four phenotypic regressions of calf weaning weight on dam hair shedding 

score, dam hair shedding while grazing toxic fescue was estimated to have the 

largest effect on adjusted weaning weight, but not on unadjusted weight. When 

contemporary grouping is fitted as a fixed effect in BLUP, the resulting 

contemporary group solution can be interpreted as a metric of environmental 

stress [51,52]. Larger contemporary group solutions indicate a greater advantage 

to the phenotype from the environment, including plane of nutrition and 

management practices. The disparity that we found between adjusted and 

unadjusted weaning weight results can be explained by smaller contemporary 

group solutions among calves whose dams grazed toxic fescue. Indeed, the 

mean contemporary group solution among calves whose dams did not graze 

toxic fescue was 20.75 kg higher than that of those whose dams did graze toxic 
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fescue (258.95 and 238.20 kg, respectively). 

The negative genetic correlation that is often found between the maternal and 

direct genetic effects of weaning weight has puzzled researchers since the first 

large-scale national cattle evaluations, with some suggesting that it is an artefact 

and others that it reflects real biological phenomena [53]. We found that the 

magnitude of this genetic correlation varied across toxic fescue grazing statuses, 

with dams grazing toxic fescue showing a more negative correlation (-0.63) than 

dams not grazing toxic fescue (-0.29) (Table 1.2). There are several potential 

explanations for this result. First, the variation that we found in genetic 

correlations between maternal and direct weaning weight could result from sire-

by-herd and sire-by year interactions [54]. These interactions can arise via 

multiple avenues, including genotype-by-environment interactions, selective data 

reporting, and preferential management of the progeny of certain sires. If this 

interaction were larger in certain herds, our estimates would be skewed. 

Alternatively, it is possible that our results reflect the effect of fescue toxicosis on 

dam nutrient partitioning. Our enrichment analysis identified multiple pathways 

involved in response to nutrient levels, response to starvation, and fat cell 

differentiation, which could support this conclusion. During the initiation of 

lactation, mammals draw upon their own energy reserves in order to meet 

increased metabolic demand [55,56], which implies genetic antagonism between 

maternal and direct weaning weight [37,53]. The nutrient partitioning process is 

influenced by stress. For example, Rhoads et al. [57] demonstrated that 

decreased feed intake explains only part of the reduction in milk yield found in 
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heat-stressed dairy cows, indicating further changes in metabolism and 

partitioning of nutrients in response to hyperthermia.  

Although associations with a FDR less than 0.05 were detected on 20 of the 29 

bovine autosomes and associations with an FDR less than 0.01 were found on 

seven chromosomes, one third of the associated variants were on chromosome 

5. Among these, ten variants were located near or within members of the keratin 

gene family. In particular, KRT1, KRT3, KRT4, KRT77, KRT78, and KRT79 form 

a protein-protein interaction network, the orthologs of which are co-expressed in 

other species during the formation of intermediate filament proteins. However, it 

is possible that significant variants near and within keratin genes are simply an 

artefact of extensive linkage disequilibrium (Figure 1.6b). Using the current 

sample, this result is difficult to disentangle. 

The two most significant associations were both detected in CEP290. In humans, 

mutations in CEP290 cause abnormal photoreceptors [58,59]. Photoreceptors 

affect an animal’s ability to detect changes in seasons [60], and changes in 

photoreceptors could have large impacts on this function. Mutations in CEP290 

affect cilia formation, and are believed to interact with Bardet–Biedl syndrome 

(BBS) proteins [61]. Recently, BBS1 was associated with local adaptation in Red 

Angus cattle [19]. Furthermore, the strength of these associations on 

chromosome 5 from 12 to 28 Mb could be due to multiple causal mutations [62] 

affecting multiple genes. 

Many strategies have been proposed to phenotype heat stress in cattle. These 
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methods often require the use of specialized equipment and training (e.g., body 

temperature, respiration rate, heart rate, and sweating rate; see [63]), or at the 

very least increased labor cost. Therefore, routine collection of such “gold 

standard” phenotypes is currently limited to use in dairy cattle or in research 

settings. Early summer hair shedding scoring is minimally labor intensive, since 

cattle need not be physically handled or processed in order to be scored. 

Furthermore, accurate hair shedding scoring requires a relatively small time 

commitment and little to no training, making it an ideal candidate for genetic 

evaluation at a national scale. Automated sensing technologies present an 

opportunity to deeply phenotype animals at large scale [65], but are not currently 

accessible or easily implemented by the majority of beef producers. In the future, 

such “gold standard” measures of heat stress could be combined with routinely 

collected hair shedding scores to provide a comprehensive prediction of 

tolerance to heat stress, fescue toxicosis, or both. 

Cattle produced in sub-tropical environments account for nearly 80% of the 

global beef herd [64]. However, exports to South America and Australia 

accounted for ~84% of 5,333,490 total units of beef semen exported from the 

United States in 2019, suggesting that selection decisions made in the U.S. beef 

herd still have an influence on the sustainability of beef production in the global 

south. Furthermore, Angus genetics accounted for 86% of total semen exports in 

2019 (National Association of Animal Breeders, personal communication). At an 

international scale, a genetic evaluation for heat stress in American Angus cattle 

could enable global producers to exploit elite American genetics and make faster 
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genetic progress in production and meat quality traits while minimizing loss of 

environmental adaptability. Furthermore, because of the ease of phenotype 

collection, hair shedding scores can be collected in any temperate or subtropical 

environment and used in phenotypic or genetic selection for heat tolerance. 

Conclusions 

We developed a prototype genetic evaluation for early-summer hair shedding in 

American Angus cattle in order to enable genetic selection for heat tolerance. In 

agreement with previous research [21,22], we found that early summer hair 

shedding is moderately heritable. We also identified variants associated with 

biological pathways such as prolactin signaling, response to starvation, and 

keratin formation that contribute to genetic variation for hair shedding score. 

Weaning weight and hair shedding score appear to be negatively correlated. 

However, we found evidence for a greater impact of hair shedding score on 

performance for cows experiencing heat stress alone compared to cows grazing 

toxic fescue. Therefore, further investigation of the relationship between hair 

shedding and other symptoms of fescue toxicosis (such as reduced fertility) are 

warranted in order to determine the appropriateness of using hair shedding 

scores as an indicator trait for tolerance to fescue toxicosis. Exploration of the 

functional biology of hair shedding both on and off toxic fescue is also necessary. 

Finally, our results support the use of hair shedding scoring as a barometer of 

cow wellbeing in addition to other routinely collected phenotypes such as body 

condition score. 
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Figures 

 

Figure 1.1. Hair shedding scoring system. Examples of the 1 to 5 visual appraisal 
hair shedding scoring system used in this research. (a) Score of 1, 0% dead winter coat 
remaining. (b) Score of 2, approximately 25% of winter coat remaining, typically observed on the 
lower hindquarter, flank and belly. (c) Score of 3, approximately 50% of winter coat remaining. (d) 
Score of 4, approximately 75% of winter coat remaining. Hair is typically removed from the head 
and neck first. (e) Score of 5, 100% winter coat remaining. 
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Figure 1.2. Geographic distribution of animals with hair shedding scores. 
Hair shedding scores in both the AGI and MU datasets originated primarily from the South and 
the Fescue Belt. Here, the approximate location of the Fescue Belt is shaded in grey. Size of 
circles denotes the number of hair shedding scores recorded at that location. Farmers and 
ranchers in the MU dataset reported whether cattle grazed the predominant endophyte-infected 
fescue forage or a different forage species. 
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Figure 1.3. Estimates of the effect of age on hair shedding score. (a) The effect 
of age in years on hair shedding score appears to be non-linear and follows a U-shaped pattern. 
(b) Comparison of effect estimates using BIF age-of-dam classifications or four age classes. Error 
bars represent standard error. Age groups with at least five observations are plotted. 
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Figure 1.4. Linear regression evaluation of breeding values. Comparison of 
breeding values estimated using all available data (!̂1) and breeding values estimated using a 
reduced dataset (!̂0) across ten iterations within validation animals. The solid red line represents 
bvp,w and the dotted black line represents the expectation of bvp,w = 1 in the absence of dispersion. 
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Figure 1.5. Comparison of dam’s hair shedding score to the weaning 
weight of her calf. The effect of a dam’s hair shedding score on the unadjusted (a, b) and 
adjusted (c, d) weaning weight of her calf with outlier weaning weights highlighted in orange. 
Regardless of fescue grazing status, there is very little difference in calf weaning weight between 
dams with hair shedding scores 1, 2, and 3. 
  





bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb



Grazing toxic fescue Not grazing toxic fescue

U
nadjusted

Adjusted

1 2 3 4 5 1 2 3 4 5

100

200

300

400

−100

−50

0

50

100

Dam's unadjusted hair shedding score,
rounded to the nearest whole number

C
al

f's
 w

ea
ni

ng
 w

ei
gh

t



 34 

 

 
Figure 1.6. Manhattan plot of variants associated with hair shedding. Using 
de-regressed hair shedding score breeding values in SNP1101 sin regression, we found 176 
variants that are significantly associated with hair shedding (FDR < 0.05, red line) (a). Of these 
176 variants, 33% reside in a peak on chromosome 5 (b). 
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Tables 

Table 1.1. Comparison of genetic parameters estimated using cattle grazing 
and not grazing toxic fescue. 

 Bivariate model Univariate model 
")*  "+*  h2 r βf 

Grazing toxic fescue 0.90 0.38 0.40 0.45 0 
Not grazing toxic 
fescue 

0.95 0.30 0.34 0.34 -0.59 hair shedding score units 

The estimated phenotypic variance (#,-), additive genetic variance (#.-), narrow sense heritability 
(h2), and repeatability (r) from a bivariate model and fixed effect of grazing versus not grazing 
fescue from a univariate model. Additive genetic variance, heritability, and repeatability are higher 
for hair shedding recorded while grazing toxic fescue when treated as a different trait from hair 
shedding while not grazing toxic fescue. When fescue grazing status is fit as a fixed effect in a 
univariate model, the estimated effect of toxic fescue on hair shedding score (βf) is also higher 
(i.e. later shedding animals). 
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Table 1.2. Estimated genetic correlations between dam hair shedding and 
calf weaning weight. 

 Weaning weight 
(direct) 

Weaning weight (maternal) 

All available data 
Hair shedding -0.03 (0.055) -0.19 (0.066) 
Weaning weight (direct)  -0.43 (0.050) 

Grazing toxic fescue 
Hair shedding 0.01 (0.080) -0.25 (0.104) 
Weaning weight (direct)  -0.63 (0.071) 

Not grazing toxic fescue 
Hair shedding 0.10 (0.091) -0.28 (0.097) 
Weaning weight (direct)  -0.29 (0.097) 

Genetic correlation estimates between hair shedding, the direct effect of weaning weight, and the 
maternal effect of weaning weight vary across toxic fescue grazing statuses with approximated 
standard errors in parentheses. 
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Table 1.3 Terms significantly associated with genes within 50 kb of hair 
shedding GWAA variants with FDR < 0.05 

Term Ontology source p-value Associated genes 
Modulation by virus of host 
morphology or physiology 

GO BP <0.001 ATG7, SMAD3, VAPB, 
ZC3H12A 

Modification by symbiont of host 
morphology or physiology 

GO BP <0.001 ATG7, SMAD3, VAPB, 
ZC3H12A 

Modification of morphology or 
physiology of other organism 
involved in symbiotic interaction 

GO BP 0.004 ATG7, SMAD3, VAPB, 
ZC3H12A, ZNF502 

Modification of morphology or 
physiology of other organism 

GO BP 0.008 ATG7, SMAD3, VAPB, 
ZC3H12A, ZNF502 

Interaction with host GO BP 0.010 ATG7, SMAD3, VAPB, 
ZC3H12A, ZNF502 

dsRNA fragmentation GO BP 0.014 SNIP1, TARBP2, 
ZC3H12A 

Production of small RNA involved in 
gene silencing by RNA 

GO BP 0.014 SNIP1, TARBP2, 
ZC3H12A 

Production of miRNAs involved in 
gene silencing by miRNA 

GO BP 0.015 SNIP1, TARBP2, 
ZC3H12A 

Gene silencing by miRNA GO BP 0.020 SNIP1, TARBP2, 
ZC3H12A 

Positive regulation of fat cell 
differentiation 

GO BP 0.020 PRDM16, SH3PXD2B, 
ZC3H12A 

Cellular response to extracellular 
stimulus 

GO BP 0.021 AQP3, ATF4, ATG7, 
KLF10, ZC3H12A 

Cellular response to dsRNA GO BP 0.021 SNIP1, TARBP2, 
ZC3H12A 

Vasopressin-regulated water 
reabsorption 

KEGG 0.021 AQP3, LOC784058, 
RAB11A 

Posttranscriptional gene silencing GO BP 0.022 SNIP1, TARBP2, 
ZC3H12A 

Regulation of viral genome 
replication 

GO BP 0.022 TARBP2, VAPB, 
ZC3H12A 

Posttranscriptional gene silencing 
by RNA 

GO BP 0.022 SNIP1, TARBP2, 
ZC3H12A 

Positive regulation of viral life cycle GO BP 0.022 TARBP2, VAPB, ZNF502 
Prolactin signaling pathway KEGG 0.022 LOC100336962, PRP-

VII, PRP14, PRP9 
Regulation of viral life cycle GO BP 0.022 TARBP2, VAPB, 

ZC3H12A, ZNF502 
Cellular response to starvation GO BP 0.023 ATF4, ATG7, KLF10, 

ZC3H12A 
Regulation of mitochondrion 
organization 

GO BP 0.024 MIEF1, PEMT, SNIP1, 
TRIAP1, WDR75 

Positive regulation of mitochondrion 
organization 

GO BP 0.024 MIEF1, PEMT, SNIP1, 
WDR75 

Cellular response to nutrient levels GO BP 0.024 AQP3, ATF4, ATG7, 
KLF10, ZC3H12A 

Regulation of fat cell differentiation GO BP 0.024 PRDM16, SH3PXD2B, 
SMAD3, ZC3H12A 

Response to dsRNA GO BP 0.024 IFNE, SNIP1, TARBP2, 
ZC3H12A 
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Regulation of viral process GO BP 0.025 TARBP2, VAPB, 
ZC3H12A, ZNF502 

Viral genome replication GO BP 0.025 TARBP2, VAPB, 
ZC3H12A 

Regulation of protein targeting to 
mitochondrion 

GO BP 0.025 PEMT, SNIP1, WDR75 

Gene silencing by RNA GO BP 0.025 SNIP1, TARBP2, 
ZC3H12A 

Osteoclast differentiation GO BP 0.025 EPHA2, KLF10, OSTM1 
Regulation of establishment of 
protein localization to 
mitochondrion 

GO BP 0.025 PEMT, SNIP1, WDR75 

Oxidative phosphorylation GO BP 0.025 COX6A1, NDUFA12, 
TEFM 

Response to starvation GO BP 0.025 ATF4, ATG7, KLF10, 
ZC3H12A 

Negative regulation of defense 
response 

GO BP 0.026 KRT1, SMAD3, TARBP2, 
ZC3H12A 

Positive regulation of viral process GO BP 0.026 TARBP2, VAPB, ZNF502 
Positive regulation of establishment 
of protein localization to 
mitochondrion 

GO BP 0.026 PEMT, SNIP1, WDR75 

Positive regulation of protein 
targeting to mitochondrion 

GO BP 0.026 PEMT, SNIP1, WDR75 

Negative regulation of inflammatory 
response 

GO BP 0.036 KRT1, SMAD3, 
ZC3H12A 

Ribosome biogenesis in eukaryotes KEGG 0.039 GNL2, NOL6, WDR75 
Regulation of protein targeting GO BP 0.041 PEMT, SNIP1, WDR75 
We find enrichment for pathways involved in virus-host interaction, response to starvation, 
prolactin signalling, and other biological processes. P-value are corrected for multiple testing 
using Benjamini-Hochberg methodology. Enrichments represent gene ontology biological process 
(GO BP) or Kyoto Encyclopedia of Genes and Genomes pathways (KEGG). 
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CHAPTER 2 

GENOMIC LOCI INVOLVED IN SENSING 

ENVIRONMENTAL CUES AND METABOLISM AFFECT 

SEASONAL COAT SHEDDING IN BOS TAURUS AND 

BOS INDICUS CATTLE 

Background 

Most mammals replace their coat or molt either completely or incompletely at 

annual or bi-annual intervals as an adaptive response to seasonal and climatic 

variation [6]. In cattle, molting occurs annually in the late spring and early 

summer when thick winter coats are exchanged for short and sleek ones in 

preparation for warmer temperatures. Generally, the onset of seasonal shedding 

is driven by hormone cascades initiated by the hypothalamus–pituitary–gonadal 

axis in response to environmental cues such as day length and changes in 

temperature [65]. Among ungulates and other mammals, the effects of 

temperature and day length interact to induce seasonal molting. This interaction 

has never been explicitly demonstrated in cattle, although Yeates (1955) [9] 

showed that artificial manipulation of day length can be used to perturb the timing 

of hair coat shedding regardless of temperature, while Murray (1965) [66] found a 

moderate effect of temperature on hair coat shedding among cattle at similar 

latitudes.  
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The timing and completeness of molting is also influenced by variables intrinsic 

to the individual, including plane of nutrition, life stage, and social status [5,8,67]. 

In some species, inaccurate molt timing has a high fitness cost, and therefore 

phenotypic variation is limited [68]. In other species (including cattle), variation in 

molting has been documented within groups of contemporary individuals [21,69], 

suggesting genetic variation influences the ability to respond to environmental 

cues. Despite the extensive body of research exploring its biological basis in wild 

populations, domestic populations, and humans, very few studies have focused 

on the genetic basis of seasonal coat change (see [70,71]) and to our knowledge 

only Durbin et al., 2020 [72] has associated genetic variation with phenotypic 

variation in coat change. Though the consequences of a “mismatched” seasonal 

phenotype may be lower in domestic species like cattle compared to many wild 

populations, they can still have large impacts on productivity [10,11]. Previous 

work has demonstrated the impact of poor early summer hair shedding upon 

economically relevant traits such as growth and milk production in cattle. Here, 

we explore the genetic basis of variation that controls early summer hair 

shedding. We use a multi-breed, repeated records dataset of early summer hair 

shedding scores collected in a range of environments and latitudes to investigate 

how light, temperature, and nutrition interact with genomic loci to affect the 

degree of summer hair shedding in cattle. 
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Methods 

Phenotypes 

Hair shedding scores were collected over 9 years by 77 beef cattle producers 

and university groups. Hair shedding was classified on an integer 1-5 scale 

based on the systems developed by [22] and [21] as described in [72], where a 

score of 5 indicated 0% winter coat lost and a score of 1 indicated no remaining 

winter coat. Most herds were hair shedding scored once per year between mid-

April and mid-June, but some groups chose to score cattle multiple times across 

the span of several months. This resulted in between 1 and 8 scores per animal 

per year. Most cattle were scored in at least two separate years (8,839 or 

66.11% of all individuals; Figure S2.1b).When an animal's date of birth was 

available, its "age class" was calculated based on the date that the score was 

recorded. When no date of birth was available, the producer-provided integer age 

was used. Unreported score dates were assumed to be May 1 of the scoring 

year for the purposes of age class calculation. Age class was calculated as 

(n*365d)-90d to (n+1)*365d-90d, where n is the age classification and d is days. 

This means that animals that had not yet reached their first birthday could still be 

classified as yearlings and so on.  Age class calculations were based on the Beef 

Improvement Federation age-of-dam definitions [24] as in [72], and hair shedding 

scores recorded on animals fewer than 275 (i.e., 365-90) days of age were 

excluded. Animals with differing sexes reported across multiple years were also 

excluded. Finally, hair shedding scores recorded on bulls and steers were 
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excluded as they comprised < 5% of the data, and work in other species 

suggests the biological mechanisms underlying molting may be different between 

sexes [8]. After filtering, 36,899 phenotypes from 13,364 cattle were retained for 

analysis.  

Genotypes and imputation  

Array SNP genotypes were available for 10,511 phenotyped individuals and an 

additional 1,049 relatives. These genotypes originated from multiple commercial 

and research assays varying in density from 26,504 to 777,962 markers. Most 

animals were genotyped with the GGP-F250, a research assay enriched for low-

frequency and putatively functional SNPs [26]. On an assay-by-assay basis, 

markers with > 10% missing data and markers significantly deviating from Hardy-

Weinberg equilibrium (p < 10-50) were set to missing. After site-level filtration, 

samples with > 10% missing data were removed. The remaining genotypes for all 

assays were merged by position, with discordant calls set to missing for 

individuals genotyped with more than one assay. The merged genotypes were 

then imputed to the union of the GGP-F250 and Illumina BovineHD assays using 

a multi-breed reference panel and the two-step approach described in [26]. 

Finally, SNPs with a minor allele frequency below 1% were removed, resulting in 

genotypes at 747,009 markers for 11,560 individuals.  
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Generation of the pedigree and relatedness matrices 

Using records provided by various participating breed associations, a three-

generation pedigree was constructed for registered animals with at least one 

phenotype retained for analysis. This pedigree was then supplemented with 

parentage information provided by project participants for un-registered and 

commercial animals with a registered sire and/or dam. To increase pedigree 

connectedness, the American Angus Association registration number was used 

for cross-registered American Angus individuals, sires, and dams with records in 

more than one breed association. Parentage was validated for genotyped 

animals with at least one genotyped parent using the SeekParentF90 program 

[29,73]. Based on imputation accuracy, the expected rate of genotyping error, 

and the distribution of Mendelian conflicts across all parent-progeny 

comparisons, parents found to have > 0.05% SNPs in Mendelian conflict were 

set to missing in pedigree. In total, 106 sires and 130 dams were excluded for 

236 individuals. The final three-generation pedigree consisted of 13,221 un-

phenotyped relatives in addition to the 13,364 phenotyped animals, with 6,733 

unique sires and 17,954 unique dams. In order to take advantage of information 

from both genotyped and un-genotyped individuals, this pedigree was blended 

with genomic data to create the “hybrid” relationship matrix (H-1) [27]. H-1 is 

calculated as:  

$!" + &
0 0
0 (#

!" − $$$
!"*, 
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where A-1 represents the inversion of the numerator relationship matrix, A-122 

represents A-1 subset to genotyped individuals, and G-1w represents the inverse 

of the genomic relatedness matrix (GRM) calculated using the VanRaden 

method [28]. In all models including a random effect of direct genetics, this matrix 

was used to represent relationships between individuals unless specified 

otherwise. 

Estimation of breeding values and genetic parameters 

Full dataset 

Estimated breeding values (EBVs) and genetic parameters for hair shedding 

were first calculated using records from all available animals in the following 

repeated records animal model in AIREMLF90 [29].   

+ = -"O + 0"1 + 0$2 + 3 

In this model, y represents a vector of hair shedding score phenotypes. 

Contemporary group effects are represented in the vector c, where X1 is a matrix 

relating the elements of c to y. Contemporary groups were defined by the 

combination of herd ID, year, calving season (spring or fall), age group, toxic 

fescue grazing status, and score group. Based on the results of a model with 

age-in-years fit as a categorical fixed effect, age groups were defined as a) 1, b) 

2-3, c) 4-9 or d) 10+. Grazing of tall fescue grass (Lolium arundinaceum) infected 

with the endophytic fungus Epichloë coenophiala has been shown to affect hair 

coat shedding in beef cattle [22,72]. Toxic fescue grazing status, or whether 
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cattle grazed endophyte-infected fescue in spring of the recording year, was 

reported by the participant as yes or no. Score group was used to account for 

differences in scoring dates within a herd and a year. In cases where an entire 

herd was not scored on the same day in a given year, records were assigned to 

a score group using a 5-day sliding window that maximized group size. Records 

from contemporary groups with fewer than 5 records were discarded.  

We additionally tested a model which explicitly accounted for population structure 

by including the first two principal components from a PCA of all genotyped 

animals as fixed effects. Principal component analysis was conducted using all 

11,560 individuals and 747,009 SNPs using EIGENSOFT smartPCA v.7.2.1 [74].  

+ = -"O + 	2OPQ" + 2ORQ$ + 0"1 + 0$2 + 3 

Only phenotypes from genotyped animals were included in this model. 

Otherwise, it was identical to the previous model besides the inclusion of 

principal components 1 and 2 as covariates. This model was compared to a 

model also identical to the previous model, except that only phenotypes from 

genotyped animals were included.    

Breed-specific datasets 

When performing ssGBLUP in crossbred populations, inclusion of data from both 

pure- and crossbred animals yields the highest predictive accuracy, assuming 

individuals have sufficiently similar genetic structure [75]. When individuals are 

not sufficiently similar, calculation of the GRM without accounting for differences 
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in allele frequencies between populations can result in inflated estimates of 

inbreeding. In turn, this can cause inflated EBVs and associated reliabilities for 

some individuals. Further, animal models assume that all individuals in the 

pedigree derive from the same founder individuals. Violation of this assumption 

(as in the case of multi-breed and cross-bred evaluations) can result in inflated 

estimates of the additive genetic variance [76]. Thus, we chose to replicate 

analyses completed in the full dataset in four breed-specific subsets with 

sufficient sample size for independent genetic evaluation. Calculation of within-

breed EBVs also allowed us to search for differences in genetic parameters and 

architecture between breeds. The first through third datasets contained records 

from cattle registered with the American Angus Association (St. Joseph, MO; 

http://www.angus.org/), International Brangus Breeders Association (San 

Antonio, TX; https://gobrangus.com/), and American Hereford Association 

(Kansas City, MO; https://hereford.org/) respectively. The final dataset consisted 

of cattle registered with partner breed associations participating in the 

International Genetics Solutions (IGS) multi-breed evaluation (Bozeman, MT; 

https://www.internationalgeneticsolutions.com/). Further descriptions of these 

datasets can be found in Table 2.1. The three-generation pedigree and 

genotypes for associated animals were extracted for each dataset and used to 

construct the hybrid relatedness matrices H-1 (see Generation of the pedigree 

and relatedness matrices section).  
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The effects of temperature and photoperiod  

Previous work in cattle has established roles for temperature and day length in 

initiating seasonal coat shedding [9,66]. To our knowledge, the effect of their 

interaction has never been explicitly examined. Understanding the biological 

mechanisms underpinning a trait can inform recommendations for standardized 

phenotyping and genetic evaluation protocols. Further, understanding the relative 

contributions of temperature vs. photoperiod could aid in identifying genetic 

variants that contribute to an animal’s ability to respond to environmental cues. 

Latitude and longitude coordinates were determined for each herd location using 

producer-provided addresses and the R [77] package {tidygeocoder} [78]. Based 

on these coordinates, the daily apparent high temperature, the sunrise time, and 

the sunset time were retrieved for the 30 days prior to each hair shedding scoring 

date with the {darksky} R package [79], which interfaces with the Apple Dark Sky 

API to query NOAA historical weather records. For each score date and 

geographic coordinate combination, the resulting 30-day range of apparent high 

temperatures was then averaged. Apparent temperature can be thought of as a 

proxy for heat stress, as it combines the effects of real temperature, relative 

humidity, and wind speed. Similarly, day lengths were calculated by subtracting 

the time of sunrise from the time of sunset, then averaged across the 30-day 

range to act as a proxy for light exposure prior to hair scoring. Next, we fit the 

following repeated records animal model using AIREMLF90 [29]. 

+ = -"S + -$B + -?/ + -LT + 	UQ" + VQ$ + 0"1 + 0$2 + 3 
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In this model, y is a vector of hair shedding score phenotypes; s, f, a and r, 

represent vectors of calving season, toxic fescue grazing status, age group, and 

year effects with matrices X1, X2, X3, and X4 relating observations to effects; βM 

represents the regression of y on mean apparent high temperature (t) and β& 

represents the regression of y on mean day length (l). The effect of farm or herd 

is confounded with the effect of latitude and by extension, both temperature and 

day length. Therefore, no herd effect was included. 

Three additional models were also tested that were nearly identical to the base 

model above except for their inclusion of the temperature or day length variables. 

In two reduced models, only mean apparent high temperature or only mean day 

length were fit. In one expanded model, both temperature and day length were 

included plus an interaction effect, which was calculated by centering the 

individual variables then taking their product. All three of these models were 

compared to the base model using AIC and a likelihood ratio test. 

Recommendations for genetic evaluations 

In routine genetic prediction, additive and environmental variances are often 

partitioned by fitting a single contemporary group effect. For some traits, fitting an 

additional effect external to the contemporary group definition results in more 

accurate predictions despite the increased computational cost (i.e., the effect of 

age-of-dam fit for many maternally-influenced traits; [24]). For the purposes of 

large-scale genetic evaluations, it is of interest to know if the inclusion of 

additional environmental information provides a better fit than a simpler model 
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including only contemporary effect. To test this, we compared the base model 

and four repeated records animal models similar to those explored in the 

previous section. The first of these can be described as:  

+ = -"O + 	UQ" + VQ$ + 0"1 + 0$2 + 3 

In this model y represents a vector of hair shedding score phenotypes, and c 

represents contemporary groups defined in the same way as the model 

discussed in Estimation of breeding values and genetic parameters. Identical to 

the models fit in the previous section, βM represents the regression of y on mean 

apparent high temperature (t) and β& represents the regression of y on mean day 

length (l). Two other models included only temperature or only day length 

alongside the contemporary group effect. The final, expanded model included an 

interaction between day length and temperature. In all models, records from 

contemporary groups smaller than 5 animals were removed. 

Genome-wide association 

Deregression of breeding values and single-SNP regression 

EBVs are an appealing pseudo-phenotype for further association studies as they 

represent the estimated additive genetic merit of an individual with environmental 

variance removed and combine repeated records into a single value. However, 

failing to account for the heterogeneous variances between EBVs resulting from 

the influence of familial data and in the case of repeated records traits, differing 

numbers of phenotypes per individual, can result in decreased power and 
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increased false positive rate [80]. To take advantage of our repeated records, 

genome-wide association analyses (GWAA) were performed using deregressed 

breeding values (DEBVs).  

First, reliabilities for EBVs were calculated as 1− DEF

(1JN)G&2
 [81], where PEV 

represents the approximated prediction error variance and F represents the 

pedigree-based inbreeding coefficient for the animal of interest calculated using 

the R package {optiSel} [82]. Next, EBVs for genotyped animals were 

deregressed and parent averages were removed using the method proposed by 

[83], implemented in the {DRP} R package [84]. EBVs from animals with 

unknown parentage were excluded. The resulting 9,865 DEBVs were used as 

pseudo-phenotypes in SNP1101 single-SNP regression [33]. DEBVs were 

weighted by (1/rel)-1, where rel is the DEBV’s associated reliability with parent 

information removed as calculated using the Garrick et al., 2009 [83] method. 

These weights were used to construct the R-1 matrix of the mixed-model 

equations. Covariance between records due to relatedness was accounted for 

with a GRM constructed using the VanRaden method [28]. Five separate GWAA 

were performed: one using DEBVs computed in the full dataset and the other 

four using DEBVs computed in the breed-specific datasets.  

Annotation and enrichment 

 P-values for single-SNP associations in the full dataset were adjusted for false 

discovery rate using the R package {qvalue} [85] and variants with -log10(q) > 1 

were retained for downstream analysis. In the breed-specific datasets, observed 
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p-values tracked closely with expected p-values, suggesting less power than in 

the full dataset. Therefore, we chose to determine significance in the breed-

specific datasets using p- rather than q-values, and variants with -log10(p) > 5 

were retained. 

Within each dataset, genes and annotated QTLs within 10 kb of significant 

variants were identified using the {GALLO} package [86], ARS-UCD1.2 bovine 

genome coordinates [87], and Animal QTLdb QTL annotations [88]. Enrichment 

analysis for annotated QTL within 10 kb of significant variants was also 

performed using the {GALLO} R package, and significant enrichments were 

determined using a Benjamini-Hochberg adjusted p-value threshold of 0.05. 

Gene ontology enrichment analysis was performed for identified genes using the 

`gost` function provided in the {gprofiler2} package [89], which interfaces with the 

g:Profiler toolkit to query publicly available functional annotation databases. 

Significance values for functional enrichment results were corrected for multiple 

testing using the g:SCS algorithm, which is designed for hierarchically related, 

non-independent tests. Pathway enrichment analysis of significantly enriched 

functional terms was also performed using {gprofiler2}, then visualized using 

EnrichmentMap [90]. All pathways significant in the full dataset and any of the 

breed-specific datasets, plus unconnected terms significant in the full dataset 

were retained for visualization.  
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Results 

Estimation of breeding values and genetic parameters 

Principal component analysis showed that 60% of genetic variation was 

explained by differences between Hereford from Angus individuals (PC 1, 35%) 

and differences in Bos taurus versus Bos indicus ancestry (PC2, 25%; Figure 

S2.2). The remaining principal components explained much less variation, and 

therefore we chose to fit a model including eigenvectors for the first two principal 

components as covariates to evaluate the impact of explicitly accounting for 

population structure. A likelihood ratio comparing the models with and without 

principal components fit as fixed effects indicated that including PCs 1 and 2 

provided a moderately better fit (-log10(p) = 3.04). However, this model required 

the exclusion of phenotypes from un-genotyped animals. To utilize all available 

information, we chose to consider results from the more basic model for 

downstream analyses.  

Across the full and breed-specific datasets, narrow-sense heritability (h2) and 

repeatability (r) were similar to parameters reported for American Angus cattle by 

Durbin et al., 2020 [72] and by Gray et al., 2011 [22] (Table 2.2). Estimated h2 

ranged from 0.32 (Hereford) to 0.41 (IGS) and estimated r ranged from 0.40 

(Brangus, Hereford) to 0.48 (IGS). The additive genetic variance (σ2A) estimate in 

the full dataset fell within the range of estimates of σ2A in the breed-specific 

datasets, suggesting that this value was not inflated by inclusion of crossbred 

animals. The permanent environmental variance (σ2PE) accounted for 5-7% of 
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total variance with the exception of the Brangus dataset, for which σ2PE was 

essentially zero. The International Brangus Breeders Association did not begin 

participating in the project until 2018, and so 96% of Brangus animals had only 

one or two years of data. This might explain why no permanent environmental 

effect was estimated in the Brangus dataset. 

In the full dataset, the median EBV was -0.02, ranging from -2.32 to 1.92. 

Though variation in EBVs largely overlapped between breeds, breeds recently 

selected for performance in the “show ring” (Shorthorn and Maine-Anjou) tended 

to have higher (i.e., less desirable) EBVs (Figure S2.3). Further, breeds with 

known Bos indicus ancestry (Brangus and Charolais; [91]) tended to have lower 

EBVs.  

The effects of temperature and photoperiod  

Mean hours of sunlight per day ranged from 10.89 to 15.41 hours, averaging 

13.88 hours with a standard deviation of 0.74 while mean apparent temperature 

ranged from 4.23 to 39.33°C with a mean of 25.87 and standard deviation of 

5.37. The base model including apparent temperature and day length provided a 

better fit over both the model with only apparent temperature (-log10(p) = 92.35) 

or day length (-log10(p) = 156.52), while the model including the interaction effect 

provided a better fit than the base model (-log10(p) = 3.42). The interaction model 

also had a lower AIC value than the base model and both of the reduced models 

(Table 2.3). The day length BLUE (best linear unbiased estimate or fixed effect 

solution) from this expanded model suggested that, on average, hair shedding 
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score decreases by 0.45 units for each hour increase in the mean hours of 

sunlight in the 30 days prior to scoring hair shedding. Further, hair shedding 

score was predicted to decrease by 0.07 units with every 1°C increase in the 

mean apparent high temperature for the 30 days prior to scoring.  

Calving season, toxic fescue grazing status, and age group BLUEs from all four 

models are in Table S2.1. In general, BLUEs for grazing toxic fescue tended to 

be higher than BLUEs for not grazing toxic fescue and BLUEs for spring calving 

tended to be higher than BLUEs for fall calving. These results are congruent with 

trends reported by Durbin et al., 2020 [72]. Surprisingly, BLUEs for the oldest age 

group (cows aged 10 and up) were considerably more negative than BLUEs for 

mature cows (aged 4-9). In other mammals, patterns of seasonal coat shedding 

are typically “U-shaped” with age, with senescing animals in the last stage of 

their life typically shedding later than their younger counterparts (i.e. [8]). Since 

beef cows are typically culled from the herd or die between ages 11 and 12 [42], 

it’s likely that the advantage predicted here for very old cows is reflective of 

selection allowing well-adapted individuals to remain productive later into their 

lives.  

Recommendations for genetic evaluations 

Based on a series of likelihood ratio tests and AIC comparisons, the base model 

including temperature and day length without an interaction effect provided the 

best fit to the data. However, the direction of the signs changed from negative to 

positive for all temperature and day length BLUEs relative to the models without 
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a contemporary group effect. Besides being incongruent with biological 

expectation, this is likely a sign of collinearity and suggests that including 

temperature or day length is redundant when contemporary groups are properly 

constructed. The combination of score group and farm ID captures these 

environmental conditions, and therefore we recommend that producers hair 

shedding score their entire herd on the same day in adequately sized score 

groups as are represented in our analyzed data.  

Genome-wide association 

Five-hundred fifty-seven variants in 24 peaks had -log10(q) values greater than 1 

(Figure 2.2a) in the full dataset. Although twenty chromosomes contained at least 

one significant variant, over half were found on chromosome 5 as in Durbin et al., 

2020 [72]. Peaks on chromosome five were also observed in the analyses of the 

Angus and IGS datasets, but not in the Hereford or Brangus datasets (Figure 

2.3). 

In the breed-specific datasets, 822, 20, 55, and 115 variants passed the 

significance threshold of -log10(p) > 5 in the Angus, Brangus, Hereford, and IGS 

datasets, respectively. Five hundred fifty-three of the 1,522 total SNPs significant 

in at least 1 of the 5 GWAA resided within genes. Considering the GGP-F250 

genotyping assay was designed to be enriched for genic and putatively functional 

variants [26], this is not surprising. However, variants within genes could also be 

tagging nearby regulatory elements. Most enriched gene ontologies and 

pathways were dataset-specific (Figure S2.4; Table S2.2; Table S2.3).  
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QTL enrichment analysis returned 6 significant terms with more than one 

associated QTL in the full dataset (Table S2.2). An additional 48 QTL terms in 

the full dataset had adjusted enrichment p-values > 0.05, including 6 terms 

associated with growth or gain (Body weight (yearling), p-value = 0.133; Body 

weight (birth), p-value = 0.207; Body weight (weaning), p-value = 0.606; Body 

weight gain, p-value = 0.630; Body depth, p-value = 0.635; Average daily gain, p-

value = 0.650). “White spotting” was the most significantly enriched QTL term in 

the full dataset (p-value = 3.8 x 10-27) and the second most significantly enriched 

term in the Angus dataset (p-value = 5.1 x 10-40). Upon further examination, this 

signal in the full dataset appeared to be driven by 51 SNPs within and near to the 

MITF (microphthalmia-associated transcription factor) gene on chromosome 22, 

a master regulator of melanocyte production that is highly conserved across 

vertebrates [92–94]. Although American Angus cattle are required to be solid 

black in order to qualify for registration (with the exception of a small allowances 

for white spotting behind the navel; https://www.angus.org/Pub/brg.pdf), the QTL 

term for “coat color” was significantly enriched in the dataset (Table S2.1).  

“Non-return rate”, or the proportion of females that conceive after artificial 

insemination, was the top QTL enrichment term in the Angus dataset (Table 

S2.1). “Interval from first to last insemination” was also significantly enriched in 

the Brangus dataset (p-value = 0.018), though the signal was driven by a single 

QTL.  
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Discussion 

Results from the models quantifying the effects of external environmental 

variables on hair shedding score clearly point to roles for day length and 

temperature in regulating seasonal molt. However, the BLUEs for day length and 

temperature in the “base” model were nearly half the estimates from their 

respective reduced models, suggesting that the two variables are confounded. 

This makes it difficult to interpret the interaction effect estimate in the expanded 

model and to statistically disentangle the biological roles of photoperiod and 

temperature using the available data.  

Gene ontology and QTL enrichment also support the role of light sensing and 

photoperiod in hair shedding score variation. For example, we found significant 

associations with the gene ontology term “long day photoperiodism” in the full 

and Angus GWAA results (Table S2.2). Further, variants associated with 

“negative regulation of testosterone secretion” and “positive regulation of 

testosterone secretion” were significantly enriched in the full and Angus datasets 

respectively (Table S2.2). Testosterone is part of the hormonal feedback loop 

that regulates seasonal coat change through its interaction with prolactin [95–97]. 

Additionally, significant variants on chromosome 23 in the full, Angus, and IGS 

datasets were within 10 kb of the PRL (prolactin) gene. Mutations in this gene 

have well-documented associations with abnormal milk production, hair coat, and 

thermoregulation [48]. 
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QTL associated with “white spotting” were significantly enriched in the full and 

Angus datasets, driven by SNPs near and within MITF on BTA22. Perturbations 

to MITF are responsible for several auditory-pigmentary disorders across taxa, 

including Waardenburg syndrome [98] and Tietzs syndrome [99] in humans. In 

cattle, a family of German Fleckvieh cattle with bilateral deafness, incomplete 

albinism, and abnormal optical disks were found to harbor a missense mutation 

affecting the DNA binding domain of MITF [100]. Of particular interest, MITF is 

also essential for regulating the production of retinal pigment epithelial cells, 

which support the parts of the eye responsible for light sensing and color vision 

[101–103]. In cattle and other mammals, light stimulation in the eye activates the 

pineal gland, which is the main regulator of photoperiodic responses including 

coat molting [104]. “Coat color” was also enriched in the Angus dataset, despite 

the black coat color phenotype being fixed in American Angus cattle. The 

enrichment was determined to be driven by SNPs near 3 annotated QTL on 

chromosome 5 at ~ 15 Mb. The closest gene to these annotations was ALX1, a 

transcription factor that affects craniofacial development in which mutations 

cause severe facial dysplasias, including microphthalmia or abnormally small 

eyes [105]. ALX1 has also previously been associated with facial markings in 

Fleckvieh cattle, but without an obvious mechanism [106]. These authors 

postulated that the association could have been caused by linkage with KITLG, a 

known modulator of coat color ~ 3 Mb away.  

QTL associated with conception rate and other fertility phenotypes were 

significantly enriched in multiple datasets (Table S2.2). In wild populations, the 
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photoperiodic mechanisms regulating seasonal reproductive behavior and coat 

molting are closely intertwined (ferret [2]; badger [95]; mountain goat [8,96]; mink 

[97]). The same can be said for many livestock species [96]. Though cattle aren’t 

strictly seasonal breeders, days with many hours of sunlight do result in earlier 

puberty in heifers and affect reproduction in other ways by increasing circulating 

prolactin [107–109]. In the future, investigation of the relationship between hair 

shedding and fertility could provide an interesting avenue of research. If variation 

in hair score and variation in fertility are both in part affected by variation in the 

ability to sense and respond to photoperiodic cues, it is possible that hair 

shedding score could inform breeding and management decisions as an indicator 

of fertility. Estimates of the genetic correlation between hair shedding score and 

fertility would help clarify this possibility. 

Photoperiodic response is also associated with increased growth across taxa. 

When resources are more seasonally dependent, seasonal growth and nutrient 

partitioning is more extreme with higher adiposity during days with few hours of 

sunlight. Domestic animals are less dependent upon seasonal resources, but 

there is still evidence that growth, nutrient partitioning, and milk production 

respond to changing day length in livestock species [107,109–112]. We identified 

QTL associated with 18-month weight and mature weight in both the full and 

Angus datasets (Table S2.1). Independent of these associations, gene ontology 

terms were enriched for “growth hormone signaling” (Table S2.3), driven in part 

by variants on BTA19 near the GH1 gene. Growth hormone acts directly on 

adipose tissue and forms a negative feedback loop with prolactin to regulate 
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photoperiodic response. During days with few hours of sunlight growth hormone 

signaling increases, while serum prolactin is elevated in response to days with 

many hours of sunlight. To our knowledge, an explicit relationship between 

photoperiod, growth hormone signaling, and seasonal coat shedding has not 

previously been demonstrated. However, our results suggest that they may be 

connected in cattle.  

Multi-population datasets allow for the exploitation of heterogeneous patterns of 

LD and thus the mapping of association signals to more precise genomic 

intervals [113]. Here, we refined a previously published association with hair 

shedding score through the use of the full, multi-breed dataset. Fifty-nine percent 

(n = 306) of all significant variants in the full dataset were located on 

chromosome 5 (Figure 2.2a). Durbin et al. [72] found a similarly large association 

on chromosome 5 in American Angus cattle, but was unable to narrow down 

candidate genes. They theorized that the strength of the association, likely 

caused by extensive long-range linkage disequilibrium (LD), could contain 

multiple causal mutations affecting multiple genes [62]. In the full dataset, we find 

evidence for two separate associations between 14 and 24 Mb on chromosome 5 

(Figure 2.2b). SNPs in the first peak fall within or near previously reported genes, 

including LRRIQ1, TSPAN19, and CEP290, whose action is involved in the 

biogenesis of the photoreceptor sensory cilia [114]. The lead SNP in this first 

peak and the SNP with the largest  overall is located at BTA5:18,767,155. The 

closest genes to this SNP are an unannotated lncRNA and KITLG, ~ 320 kb 

downstream and ~ 414 kb upstream, respectively. KITLG and its receptor, KIT 
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have a multitude of roles across tissues, including in the retina. Recently, KITLG 

was shown to protect against retinal degenerative diseases by preventing 

photoreceptor death in a mouse model [115]. Also of interest, KIT and KITLG 

regulate the activity of MITF, although the mechanism by which this happens is 

unclear [94]. In the second association on this chromosome, the lead SNP and 

14 flanking SNPs reside within the CRADD gene. CRADD was previously 

associated with male pattern baldness in humans [116] but is more often 

associated with height, body size, and morphology 

(https://www.ebi.ac.uk/gwas/genes/CRADD). 

Only 47 SNPs were significant in more than one dataset, which is similar to 

results observed in other studies examining GWAA overlap between cattle 

breeds [117,118]. Though most variants found in domestic cattle are not breed-

private, haplotype conservation is not consistent [119]. This means that even if 

causative QTL are shared between cattle populations, they may not be tagged by 

the same SNP in multiple populations. However, one might expect to find 

similarly enriched functional terms in pathways even in the absence of shared 

SNPs (i.e., [19] in studies of environmental adaptation) given a shared underlying 

mechanism between populations. We also found very few QTL, functional terms, 

or pathways enriched in more than one dataset (Table S2.1, Table S2.2, Figure 

S2.3). These results seem most likely to be a function of sampling and reduced 

power. Unfortunately, sub-setting the full dataset to “purebred” populations (with 

the exception of the IGS dataset) came at the cost of power in sample size, as 

nearly half of all records were derived from recently admixed animals with less 
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than ⅝ ancestry assigned to one breed based on pedigree estimates (Figure 

2.1). As an extension, signal was only shared between datasets containing 

animals with common Angus ancestry; among the breed-specific datasets, 

Hereford was the only dataset free of introgression from the Angus breed. 

Surprisingly, the large association on chromosome 5 was not identified in 

Brangus, a Bos indicus-Angus advanced generation composite breed. Again, this 

is likely a function of power. In the future, more extensive hair shedding scoring 

of non-Angus animals would provide a more comprehensive picture of the 

genetic mechanisms influencing variation in hair shedding. 

Estimated genetic parameters were generally in agreement across datasets 

(Table 2.2), with h2 averaging ~ 0.37 and r averaging ~ 0.43 across all datasets. 

The estimated σ2A was much lower in Brangus and Hereford than any other 

dataset, which was also likely a function of sampling but might reflect smaller 

effective populations in these breeds.  

In the future, several strategies could help to expand upon the results here. First, 

analyses aimed at clarifying the relationships between hair shedding score and 

temperature/day length would be helpful when creating recommendations for the 

implementation of national cattle evaluations for hair shedding. Based on 

evidence from other traits, it seems unlikely that the extent of hair shedding 

changes linearly with increased day length or temperature [52]. It is more likely 

that at some threshold, increased day length or temperature ceases to impact 

shedding or at least begins to have a reduced effect. Second, imputation of 
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genotypes to sequence level would enable further functional annotation and 

exploration of significantly associated regions. At the genotype density used 

here, causal variants are unlikely to have been directly assayed. Sequence-level 

data in combination with our multi-breed dataset could enable the refinement of 

causal variants to the base-pair level. 

Data collected and maintained by non-professionals are often under-utilized, as 

they can introduce certain errors and biases. However, it can afford researchers 

an increased analytical power via vastly increased sample size when treated 

correctly. In a similar effort, Nowak et al. (2020) [120] recently quantified the 

effects of temperature and day length on molting in mountain goats using data 

and photographs collected by non-professionals. Similarly, we were able to 

explore the functional biology of a complex trait using farmer-sourced data. This 

work reinforces the utility of “citizen-science” type data collected by non-

professionals as a powerful tool for studying complex trait biology. 

Conclusions 

We confirm once again that hair shedding is moderately heritable with consistent 

estimates of heritability and repeatability between datasets. Using a crossbred 

and multi-breed dataset, we were able to show that a previously published 

association found in American Angus cattle is likely driven by variants in multiple 

regions. However, collecting more data from non-Angus influenced cattle might 

provide a more comprehensive picture of the causal mutations driving variation in 

hair shedding across populations. 
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Together, these results point towards important roles of daylight sensing and 

temperature in regulating bovine seasonal hair coat shedding and provide 

compelling candidate regions for functional analyses. Particularly, there appears 

to be a clear relationship between variation in hair shedding and ocular function. 

Despite a vast body of research exploring the biological mechanisms regulating 

seasonal molting across the tree of life, to our knowledge there have been no 

previous studies of how genetic loci contribute to individual variation in seasonal 

molting. Additionally, the photoperiodic and light-sensing mechanisms regulating 

most seasonal phenotypes, including coat shedding, is largely shared (see Helm 

et al., 2013 [65] and references therein). Therefore, this work also provides an 

important stepping off point for research in other species. 
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Figures 

 

 
Figure 2.1. Counts of hair shedding score records by reported breed. Most 
phenotypes came from three breeds and were recorded in the Midwest or South. For the 
purposes of this map, Angus, Hereford, Red Angus, Simmental, and Gelbvieh animals with at 
least ⅝ ancestry assigned to the given breed based on pedigree estimates were included in that 
breed. Animals with unknown ancestry, less than ⅝ ancestry assigned to one breed, or of a breed 
not listed above were called “Crossbred or other”. 
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Figure 2.2. Manhattan plot of -log10(q) values in the full dataset (a) genome-
wide and (b) on chromosome 5, truncated to 50 Mb. Red lines represent 
significance threshold of -log10(q) = 1.  
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Figure 2.3. Manhattan plots of -log10(p) values in the breed-specific 
datasets. Red lines represent a significance threshold of -log10(p) = 5 and black points 
represent variants significant in more than one dataset.   
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Tables 
 
Table 2.1. Descriptions of the breed-specific datasets. 

Dataset Description N genotyped animals N total phenotypes 

Angus 

Purebred Angus cattle 
registered in the American 

Angus Association and 
commercial Angus cattle 

enrolled in the Breed 
Improvement Record Program 

3,286 8,674 

Brangus 
Brangus and Ultrablack cattle 
registered in the International 
Brangus Breeders Association 

883 1,829 

Hereford 
Purebred Hereford cattle 

registered with the American 
Hereford Association 

1,005 2,857 

IGS 

Purebred and crossbred cattle 
registered in one or more of the 
breed associations participating 

in the International Genetics 
Solutions multi-breed 

evaluation: American Simmental 
Association, Red Angus 
Association of America, 

American Shorthorn 
Association, American Gelbvieh 

Association 

4,722 10,996 
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Table 2.2. Additive genetic, permanent environmental, and residual 
variance estimates as well as narrow-sense heritability and repeatability 
within the full dataset and each of the four breed-specific datasets.  

Dataset "+*  ")/*  "/*  h2 r 

Angus 0.358 0.052 0.557 0.370 (0.022) 0.424 (0.014) 

Brangus 0.267 0.000 0.403 0.400 (0.031) 0.400 (0.031) 

Hereford 0.215 0.054 0.400 0.321 (0.044) 0.402 (0.024) 

IGS 0.390 0.070 0.500 0.407 (0.020) 0.480 (0.012) 

Full dataset 0.331 0.072 0.500 0.368 (0.012) 0.448 (0.008) 

Approximated standard errors for heritability and repeatability estimates are in parentheses. 
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Table 2.3. BLUEs and AIC values from four increasingly complex models 
quantifying the effects of day length and temperature on hair shedding. 

Model Day length 
BLUE 

Temperature 
BLUE 

Day length*temperature 
BLUE AIC 

Day length + 
covariates 

-0.830 
(0.008) - - 94972.420 

Temperature + 
covariates - -0.121 

(0.001) - 94380.790 

Day length + 
temperature + 

covariates (base 
model) 

-0.394 
(0.013) 

-0.074 
(0.002) - 93537.380 

Day length + 
temperature + day 
length*temperature 

+ covariates 

-0.446 
(0.016) 

-0.072 
(0.002) -0.006 (0.001) 93509.710 
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CHAPTER 3 

IDENTIFICATION OF GENOTYPE-BY-ENVIRONMENT 

INTERACTIONS ACROSS DISCRETE ECOREGIONS IN 

AMERICAN ANGUS CATTLE 

Background 

Compared to other major livestock species in the United States, beef cattle are 

raised in highly heterogeneous environments both in terms of management and 

in natural climatic conditions [121]. Often, selection occurs in breeding herds that 

are subject to more intensive management and less stressful environments than 

their descendants, perhaps especially descendants resulting from artificial 

insemination (AI). This can create the potential for genotype-by-environment 

interactions (GxE), whereby a genotype results in varying phenotypes depending 

on the environment in which it’s expressed. GxE can arise via a multitude of 

avenues and creates the substrate upon which local adaptation acts.  

Maternal effects occur when a dam’s genotype influences the phenotype of her 

offspring beyond her additive contribution to the offspring’s genotype [122], often 

through the environmental conditions she creates. However, the environment a 

dam creates for her offspring is usually a function of the environment in which 

she lives. In addition to direct GxE, “Maternal by environment interactions” can 



 72 

arise when dams have differing responses to the environment they are subject 

to, thus creating differing environments for their offspring.  

In cattle, GxE interactions have primarily been explored using random regression 

reaction norm models, in which each subject is regressed on a continuous 

environmental variable [18,123,124]. Subjects can be individuals or genotypes, 

but in studies of livestock species have typically been individuals. An intercept 

and slope are estimated for each subject, and the resulting line is interpreted as 

the degree of change in genetic potential across the environmental gradient. A 

slope of zero indicates robustness or no change in progeny performance across 

environments. Alternatively, GxE can be estimated using multivariate models, 

where observations on a trait made in multiple environments are fit 

simultaneously as potentially correlated traits. The genetic correlations between 

the trait expressed in different environments can then be estimated, which 

provides a measure of the extent of re-ranking of subjects for their additive 

genetic merit across environments. A genetic correlation of 1.00 indicates no 

GxE effect, whereas genetic correlations below 0.80 are typically thought of as 

indicating “very different” traits across environments [45,125]. Sometimes the 

environment of interest is best described by a continuous variable, in which case 

reaction norm models are more appropriate. However, environmental stress is 

often a function of many interacting variables. Discrete parameterization of 

environments can capture unmeasured stressors (i.e., local forages and 

pathogens) as well as their interactions. 
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Current large-scale national genetic evaluations provide predictions of genetic 

merit as the mean of an animal's progeny's performance across all environments 

in which they were generated. However, there is an increasing interest in 

augmenting current evaluations with predictions based on environmental 

suitability [18,20,72]. Though a large body of research surrounding GxE in animal 

agriculture has recently emerged, the magnitude of GxE effects have not been 

clearly elucidated and used to determine whether environmental specific national 

genetic evaluations are warranted. Here, we explore the extent to which GxE 

affects the direct and maternal components of weaning weight in American 

Angus cattle across discrete United States ecoregions. 

Methods 

National Cattle Evaluation phenotypes, breeding values, and contemporary 

group solutions 

Weaning weight phenotypes recorded on registered and commercial Angus 

cattle between 1990 and May, 2019 were extracted from the May 13th weekly 

growth trait run of the American Angus Association (AAA) National Cattle 

Evaluation (NCE). Prior to entering the NCE, these phenotypes were adjusted in 

accordance with BIF guidelines for age-of-dam and actual age to 205-days. 

These pre-adjusted phenotypes were used in all downstream analyses and will 

hereafter be referred to as simply “weaning weights” or “phenotypes”.  For all 

phenotypes recorded within the continental United States, the weigh date, 

breeder zip code, and herd state (the state in which the phenotype was recorded) 
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were extracted from the AAA database. Phenotypes were then assigned to one 

of nine discrete ecoregions based on breeder zip code. Ecoregions were 

delineated by k-means clustering of 30-year normals for mean temperature, 

mean precipitation, and elevation recorded by the PRISM Climate Group [126] as 

in Rowan et al., 2020 [19]. To ensure accurate ecoregion assignment, 

phenotypes were discarded if the breeder zip code did not reside in the herd 

state. While our ecoregion assignments are helpful for characterizing ecoregion-

specific stressors, some assignments were not useful for the goals of this project. 

In particular, some records assigned to the Fescue Belt ecoregion originated 

from locales where Kentucky-31 endophyte-infected tall fescue cannot be 

propagated (the western & eastern coasts and central plains). Records from 

California, Washington, Oregon, New York, New Jersey, Massachusetts, 

Maryland, Delaware, Connecticut, Rhode Island, Pennsylvania, Wisconsin, 

Michigan, and Nebraska assigned to the Fescue Belt were removed. Due to 

sample size disparity, records assigned to the Rainforest and Cold Desert 

ecoregions proposed by Rowan et al., 2020 [19] were also excluded. Finally, 

phenotypes from animals in contemporary groups with fewer than 5 animals were 

removed.  

Some downstream analyses used estimated breeding values and contemporary 

group solutions produced by the weekly growth run of the AAA NCE. This 

dataset included 5,717,333 weaning weight measurements and associated 

breeding values for animals in 291,864 contemporary groups (Table 3.1; Figure 

3.1). 
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Exploratory analyses 

Contemporary group BLUEs 

Contemporary group is often fit as a fixed effect during genetic evaluation to 

partition additive genetic from management and environmental effects. In the 

AAA NCE, weaning weight contemporary group members must have been born 

within 90 days of one another and must be of the same sex and birth type 

(natural service, artificial insemination, or embryo transfer). Further, they must be 

managed similarly at the same location and have been in the same birth weight 

contemporary group 

(https://www.angus.org/Performance/AHIR/PerfContempGrouping.aspx). Best 

linear unbiased estimates (BLUEs) of contemporary group effects can sometimes 

be used as a proxy metric to quantify the effects of the environment on a 

phenotype (i.e., [52,127]). We extracted contemporary groups BLUEs from the 

AAA NCE and then stratified and summarized them by ecoregion.  

Artificial insemination sire inter-region variance 

Wide-spread use of AI creates large half-sibling families distributed across a wide 

range of environments, which provides the opportunity to quantify sire 

performance across ecoregions. To explore the phenotypic variation of AI-sired 

progeny between discrete ecoregions, we asked: 
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1. For AI sires with calves born in multiple ecoregions, how much does the 

median weight of their calves vary from ecoregion to ecoregion?  

2. Is the difference in the median weight of calves consistent between sires 

or are some sires less "robust", showing more variability in progeny 

phenotypes across ecoregions? 

Sires with at least 50 calves in at least two unique contemporary groups in two or 

more ecoregions were retained for analysis (n = 1,710).  The median number of 

ecoregions in which sires met these criteria was 3. One hundred ninety-seven of 

the sires had at least 50 recorded progeny in all seven ecoregions. For each sire-

region combination, we compared the median weaning weight of the sire’s 

progeny within each ecoregion to the median weaning weight of all of the sire’s 

progeny in the dataset. We also compared the median weaning weight of calves 

in the High Plains to the median weaning weight of calves in other ecoregions for 

a subset of the AI sires (n = 1,522).  

Calving season distribution 

Bradford et al. [121] demonstrated that the weaning weight distributions of 

progeny of fall versus spring calved cows and the calving season that is most 

advantageous to growth varies across the United States. To verify that these 

findings were recapitulated in our data, we summarized the weaning weight 

distributions of fall versus spring born calves. Proxy birth dates for members of 

each contemporary group were calculated by subtracting 205 days from the 
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recorded weaning date. June 30th was used as the threshold between spring 

and fall calving seasons.  

Genetic correlations between the High Plains and other ecoregions 

Data and sampling 

The genetic correlation between observations made upon the same trait in 

different environments provides an estimate of the degree of re-ranking of 

breeding values between environments and can be interpreted as the magnitude 

of GxE [45]. We chose to use the High Plains (Figure 3.1) as the constant in a 

series of bivariate variance components estimation analyses with one of the 

other six ecoregions. 

For the High Plains and each of the six other comparison ecoregions, we 

sampled zip codes with at least 10 years of recorded data until a total of 100,000 

+/- 500 animal records were sampled per ecoregion. This strategy increased the 

likelihood of sampling multiple offspring per dam, in turn increasing the accuracy 

of estimates of maternal genetic and maternal permanent environment effect 

estimates. Variance components were estimated over 10 iterations per ecoregion 

comparison (i.e., 60 total iterations). 
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Variance component estimation 

The bivariate model used across all iterations and ecoregion pairs can be 

expressed as: 
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In this model, y, b, u, m, mpe, and e represent vectors of adjusted weaning 

weight phenotypes, fixed effects, random direct genetic effects, random maternal 

genetic effects, random maternal permanent environmental effects, and random 

environmental effects for ecoregions i (High Plains) and j (compared ecoregion). 

The incidence matrices X, Z1, Z2, and Z3 related records to their respective 

vectors of effects Variance components for this model were estimated using 

AIREMLF90 [29]. Within each iteration, the 3-generation pedigree was extracted 

for the ~ 200,000 sampled animals in the High Plains and the compared 

ecoregion. This pedigree was used to construct the inverse of the pedigree 

relationship matrix A-1, where A contains the covariances between phenotypes 

that are expected due to pedigree relatedness.  

Calculation of breeding values and single-step GWAS 

Based on results of the variance component estimation analyses, we chose to 

further explore genetic variation driving the direct and maternal effects of 

weaning weight in the High Plains, Southeast, and Fescue Belt. 
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First, phenotypes for 100,000 +/- 500 animals were sampled within each of the 

High Plains, Southeast, and Fescue Belt using the zip code-based strategy 

described in Genetic correlations between the High Plains and other ecoregions. 

Three-generation pedigrees were then calculated within each ecoregion and 

genotype data were extracted for all phenotyped animals with available 

genotypes. The resulting High Plains, Southeast, and Fescue Belt datasets 

contained 9,973, 9,872, and 9,906 genotyped animals respectively. We then 

calculated breeding values using single-step genomic BLUP (ssGBLUP) [27] as 

implemented in BLUPF90 [27] using the univariate model: 

+ = -. + 0"1 + 0$F+ 0?F23 + 3 

Vectors and matrices represent the same effects as in the previously described 

bivariate model. ssGBLUP combines information from genotyped animals and 

non-genotyped animals by replacing the inverse of the pedigree relationship 

matrix A-1 with the inverse of a hybrid relationship matrix H-1, which is formed by 

blending the portion of A-1 that corresponds to animals with genotypes with the 

inverse genomic relationship matrix (GRM), calculated using the VanRaden 

method [28]. The markers used to calculate the inverse GRM were those used in 

the AAA weekly NCE and originated from commercial genotyping assays of 

varying density that can be imputed to ~ 54 K with sufficient accuracy. Prior to 

calculation of the inverse GRM, SNPs with a minor allele frequency lower than 

1% and SNPs with > 10% missing data were excluded. Then, individuals with call 

rates below 90% were excluded. Finally, we used the single-step GWAS method 
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(ssGWAS) described in Aguilar et al., 2019 [128] and implemented in 

POSTGSF90 [29] to back-solve for marker effects and their associated p-values. 

Annotation and enrichment 

First, we identified genes and annotated QTL [88] within 50 kb of variants with 

associated −WXYMQ(Z) > 5 using the {GALLO} R package [86] and UMD3.1 bovine 

assembly coordinates [34]. We next used the resulting QTL lists to perform QTL 

enrichment within ecoregions for the direct and maternal effects of weaning 

weight. QTL enrichment was also conducted using the {GALLO} package, and 

QTL terms with Benjamini-Hochberg adjusted enrichment p-values < 0.05 were 

retained for downstream analysis. 

Results 

Exploratory analyses 

Season of calving was bimodal in the Desert, Southeast, Arid Prairie, and 

Fescue Belt but skewed towards spring calving in the High Plains, Forested 

Mountains, and Upper Midwest & Northeast (Figure 3.2). Largely, variation 

between ecoregions for both adjusted weaning weight and contemporary group 

BLUEs overlapped (Figure 3.2), but we found an 18.18 kg difference between the 

median adjusted weaning weight in the highest-ranked ecoregion (Upper 

Midwest & Northeast; 279.90 kg) and the lowest-ranked ecoregion (Southeast; 

261.72 kg) (Figure 3.3a). The Southeast also ranked lowest in terms of 

contemporary group BLUEs, with a median solution (219.37 kg) 18.08 kg below 
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the median solution in the highest ranked ecoregion (High Plains; 237.35 kg) 

(Figure 3.3b).  

Of 1,710 sires with at least 50 calves in multiple ecoregions, 311 had at least one 

ecoregion in which the median weaning weight of calves in that ecoregion was at 

least 20.00 kg lower than the median weaning weight of their calves across all 

ecoregions. Most frequently, this ecoregion was the Fescue Belt, occurring 40% 

more often than the second most frequently occurring ecoregion (Southeast). 

The median inter-region spread of weaning weights was 20.87 kg, though this 

varied considerably (SD = 15.17 kg) and 27 sires had inter-region spreads at 

least 3 SD above the median. Over 40% (n = 637) of the sires with at least 50 

calves in both the High Plains and a comparison ecoregion had at least one 

comparison ecoregion in which the median weight of their calves was at least 20 

kg lighter than the median weight of their High Plains calves. Again, this region 

was most often the Fescue Belt (n = 260) followed by the Southeast (n = 154; 

Figure 3.4). 

Taken together, these results point to significant phenotypic variation in growth 

across discrete ecoregions, even between temperate ecoregions. Further, the 

environment of the High Plains appears to be more favorable than other 

ecoregions for growth, be it via management or natural phenomena.  
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Evidence for GxE based on estimated genetic correlations and heritabilities 

For all compared ecoregion pairs, the mean direct genetic correlation between 

the High Plains and the comparison ecoregion (hereafter rD) across iterations 

was between 0.85 and 0.87. Genetic correlations for the maternal effect of 

weaning weight (hereafter rM) were much more variable between ecoregions. 

The mean of the 10 iteration rM ranged from 0.77 (Southeast) to 0.86 (Desert and 

Arid Prairie). Further, rM was much more variable across iterations within an 

ecoregion comparison. For example, the difference between the minimum rM  and 

maximum rM were 0.29, 0.23, and 0.22 in the Fescue Belt, Southeast, and Upper 

Midwest & Northeast respectively. In the other 3 ecoregions, the range of rM 

estimates across iterations were between 0.13 and 0.15, while the range of 

estimates averaged 0.15 across all ecoregion comparisons for rD. The American 

Angus Association does not report a genetic correlation between the direct and 

maternal effects of weaning weight (rDM), but estimates for the High Plains-

comparison region rDM (hereafter rDiMj) fell near previously reported values ([37]; 

Table S3.1). However, within-region rDM (hereafter rDiMi) tended to be more 

negative (Table S3.1). 

Heritabilities and estimates of the relative contribution of maternal permanent 

environmental effects to phenotype (c2; 
G'234
G'3

), were much more consistent than 

genetic correlations between iterations within a comparison. The mean estimated 

maternal effect heritability was similar to the estimate reported by the American 

Angus Association (h2M = 0.12; https://www.angus.org/Nce/Heritabilities.aspx) for 
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all ecoregions, with a slightly higher estimate in the Southeast (Table 3.3). The 

same was true for c2, with again a slightly larger contribution estimated in the 

Southeast. Across all regions, direct effect heritability estimates tended to be 

slightly higher than but still near to the national estimate (h2D = 0.28).  

Single-step GWAS 

For the direct effect of weaning weight, associations were mostly shared across 

all 3 ssGWAS (Figure 3.5). Most significantly associated loci were located on 

chromosomes 7 and 20 with additional associations on chromosomes 14 and 15 

in the Southeast and chromosomes 3 and 6 in the Fescue Belt. All these 

additional region-specific associations fell near known candidate genes for 

growth and body size in multiple species (OR6N1, OR6K2, OR6K3, OR6K6, and 

SPTA1 on BTA3 (Table S3.2); KCNIP4 and SLIT2 on BTA6 [17,129]; FBXO32 

and ATAD2 on BTA14 [130,131]; METTL15 on BTA15 [132]). In all 3 regions, 

QTL enrichment analyses identified known large-effect growth QTL including 

those near ARRDC3, ERGIC1 and BNIP1 ([133,134]; Table S3.2).  

Association signal was more heterogeneous between ecoregions for the 

maternal effect of weaning weight (Figure 3.6). Only one variant on BTA6 passed 

the significance threshold in the High Plains, while 18 and 20 variants had -

log10(p) > 5 in the Southeast and the Fescue Belt respectively. The variant with 

the largest log10(p) for the Southeast maternal effect ssGWAS resided in a peak 

at the distal end of BTA23, ~ 30 kb upstream of TFAP2A (transcription factor AP-

2[). In the ssGWAS of maternal effects in the Fescue Belt, the closest gene to 
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the lead SNP was TIAM1. Three QTL associated with milk composition were 

significantly enriched in the Fescue Belt but no QTL were significantly enriched in 

the Southeast. 

Discussion 

Overall, GxE interactions were predicted to have a larger effect on the maternal 

component of weaning weight than the direct component of weaning weight. 

Since a calf’s plane of nutrition is almost entirely dependent upon its dam prior to 

weaning, this was expected. In most beef cattle genetic evaluations, the breeding 

value associated with the maternal effect of weaning weight is referred to as 

“maternal milk”. However, maternal effects can shape weaning weight phenotype 

in a multitude of ways beyond milk production, including via prenatal environment 

and dam behavior [122]. Recent single-cell RNA sequencing analyses 

demonstrated the preferential expression of TFAP2A, the gene nearest the lead 

SNP in the Southeast maternal effect ssGWAS, in the trophectoderm of pre-

implantation bovine blastocysts [135]. Additionally, TIAM1 was previously 

associated with tropical adaptation in Senepol cattle [136]. Each of these results 

could be suggestive of GxE in the maternal effect of weaning weight for factors 

other than milk production. 

Much of the U.S. cowherd is at risk for fescue toxicosis, caused by grazing tall 

fescue forage (Lolium arundinaceum) infected with the endophytic fungus 

Epichloë coenophiala. Both fescue toxicosis and heat stress reduce calf weaning 

weight via reduced dam milk production [12,31]. The low rM we often found 
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between the High Plains and the Fescue Belt is likely reflective of the effects of 

fescue toxicosis on dam health.  

“Cryptic genetic variation” is standing genetic variation that is typically not 

expressed or observed because it only modifies the expression of a phenotype in 

certain environments. Sometimes, environmental stress can result in higher 

estimates of additive genetic variance by exposing cryptic genetic variation [137–

139]. For example, there are likely segregating variants that affect milk 

production when a dam is exposed to a low plane of nutrition, but not when her 

nutritional needs are met. Within the same ecoregion, it could be possible to 

sample many animals on a high plane of nutrition in one iteration then many 

animals on a low plane of nutrition in the next iteration. The iteration containing 

many animals on a low plane of nutrition would likely have a higher estimated 

additive genetic variance (and thus, likely a higher rM) due to the expression of 

typically “cryptic” standing variation. In the absence of herd IDs, zip codes are an 

appropriate proxy for family cohorts. On the other hand, sampling animals by zip 

code could result in large breeding operations that may manage animals more or 

less intensively than other producers in their ecoregion having a 

disproportionately large influence on within iterate genetic correlation estimates. 

The example of cryptic genetic variation presented above could be expanded to 

include any number of within-region stressors to explain the high variation in rD 

and rM estimates observed across iterates within some ecoregions. For example, 

Bradford et al. 2016 [121] showed that fall-born calves tend to be heavier than 

spring-born calves in some parts of the United States. There may be cryptic 
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genetic variation that affects growth and milk production in one calving season 

but not the other (i.e., higher temperatures in spring in the Southeast or presence 

of toxic fescue in spring in the Fescue Belt). Thus, sampling of spring vs. fall 

calving herds would result in varying estimates across iterates in ecoregions 

where calving season is bimodal (Figure 3.2). Using the methods presented 

here, it is not possible to disentangle the impact of GxE from genotype-by-

management (GxM) interactions or genotype-by-environment-by-management 

interactions (GxExM). In the future, more explicit modelling of GxM and GxExM 

will be helpful for assessing the relative roles of management and the broader 

environment in exposing cryptic genetic variation. 

Recently, Aldridge et al. 2020 [140] showed that (co)variances estimated using 

the inverses of the traditional numerator relationship matrix A and the hybrid 

relationship matrix H are very similar, suggesting that the less computationally 

intensive method of variance component estimation using A-1 is appropriate. 

However, this finding may not extend to estimates of (co)variances between 

environments. Multivariate GxE models like those used here rely on half-sibling 

relationships between each of the separate environments when A-1 is used to 

capture pedigree relationships. When relationships are instead represented using 

H-1 or the inverse of the genomic relatedness matrix G-1, a lesser degree of 

relatedness is required to gain accurate estimates because genotype sharing 

between animals unrelated by pedigree is more accurately represented. The 

largest proportion of American Angus breeding operations reside in the High 

Plains, evidenced by the number of registrations and the number of pedigree 
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connections of animals in the High Plains to animals in other ecoregions; most of 

the American Angus population can trace at least part of its recent ancestry to 

the High Plains. However, we made no explicit effort to screen for relatedness 

between the High Plains and the comparison ecoregion sample in our sampling 

scheme. This is another likely contributor to the large variation in (co)variance 

estimates across iterations within a comparison. 

The consistently negative covariance between the direct and maternal genetic 

effects of weaning weight in beef cattle hints at an antagonism between selection 

for growth and selection for milk production [53]. In practice, this means that 

response to selection for growth can be hindered by maternal genetic effects 

[141]. Others have suggested that negative rDM estimates are in part caused by 

multi-generational maternal effects [142]. In the classic example of multi-

generational maternal effects, grand-dams with superior milking ability overfeed 

their daughters, causing “fatty udder syndrome”. The daughter’s milking ability is 

then inferior when she becomes a dam herself, introducing a genetic antagonism 

between growth and milking ability [143,144]. A similar balancing selective 

pressure could be imagined for dams experiencing environmental stress. In a 

study of American Angus cattle, Durbin et al. 2020 [72] found rDM was lower 

when data were subset to dams who grazed endophyte-infected fescue and their 

calves compared to dams who grazed other forages and their calves. They 

suggested this result could indicate the influence of fescue toxicosis on nutrient 

partitioning in the dam. Variation in the magnitude of rDM  across ecoregions was 
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less dramatic here than in Durbin et al. 2020, but we similarly found more 

negative estimates in some ecoregions than others.  

Conclusion 

In agreement with previous research [18], we find little evidence for GxE in the 

direct effect of weaning weight between U.S. ecoregions using the 0.80 threshold 

suggested for “very different” environments by Falconer, 1952 [45]. However, 

even when considering temperate regions, we find genetic correlations 

consistently below 0.90. In the context of large-scale national genetic 

evaluations, this represents dramatic re-ranking and could have serious impacts 

on the selection decisions made by producers across ecoregions. We find strong 

support for GxE in the maternal effect of weaning weight, particularly in the 

Southeast and Fescue Belt ecoregions. Based on contemporary group BLUEs, 

local stressors in these two ecoregions also appear to have the most negative 

impact on weaning weight. The efficiency of selection in achieving the optimum 

value for a trait in all environments is determined by its across-environments 

genetic correlations, with progress slowing as genetic correlations approach one 

[145]. Therefore, the lower than expected genetic correlations presented here 

between some ecoregions should not be viewed as a deficit. Rather, they should 

be viewed as an opportunity for animal breeders to improve the sustainability of 

beef production through environmentally-aware genetic predictions. 
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Figures 

 
Figure 3.1. Geographic distribution of 5,717,333 weaning weight 
measurements in 291,864 contemporary groups samples across 7 U.S. 
ecoregions, recorded between 1990 and 2019. Points are scaled by the number of 
records. 
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Figure 3.2. Distribution of approximate birth date within the seven 
ecoregions based on weaning weight weigh-dates in 291,864 contemporary 
groups from 1990-2019. Percentages on the X-axis represent the percentage of calves 
born on a given day relative to the total number of calves born within ecoregions. 
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Figure 3.3. Distributions of (a) phenotypic weaning weights and (b) weaning 
weight contemporary group BLUEs. Hinges of box plots represent the first quartile, 
median, and third quartile while whiskers represent 1.5*IQR. 
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Figure 3.4. Difference between the median progeny weaning weight of 
calves born in the High Plains to the median progeny weaning weight of 
calves born in one of 6 comparison ecoregions for 1,522 AI sires. Each point 
represents an AI sire with at least 50 progeny in at least 2 contemporary groups in each of the 
High Plains and the comparison region. Most sires fall on or near the diagonal, indicating no 
difference between progeny performance in the High Plains and progeny performance in the 
comparison region. However, many AI sires have poor performance in the Fescue Belt compared 
to performance in the High Plains (many points below the diagonal line). 
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Figure 3.5. Manhattan plot of -log10(p) values associated with the direct 
genetic effect of weaning weight in each of the High Plains, Southeast, and 
Fescue Belt. Red lines indicate significance thresholds of -log10(p) = 5. 
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Figure 3.6. Manhattan plot of -log10(p) values associated with the maternal 
genetic effect of weaning weight in each of the High Plains, Southeast, and 
Fescue Belt. Red lines indicate significance thresholds of -log10(p) = 5. 
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Tables 

Table 3.1. Number of records and contemporary groups, stratified by 
ecoregion. 

Region Number of records Number of contemporary groups 

Desert 165,057 8,908 

Southeast 508,565 39,026 

High Plains 2,075,979 69,002 

Arid Prairie 208,689 13,180 

Forested Mountains 696,033 26,184 

Fescue Belt 1,462,959 101,806 

Upper Midwest & 
Northeast 600,051 33,758 
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Table 3.2. Minimum, mean, and maximum genetic correlations for the direct 
and maternal effects of weaning weight between the High Plains and each 
of 6 comparison ecoregions across 10 iterations. 

Direct effect 

Comparison ecoregion Minimum rD Mean rD Maximum rD 

Desert 0.80 0.86 0.91 

Southeast 0.76 0.87 0.92 

Arid Prairie 0.80 0.87 0.96 

Forested Mountains 0.75 0.85 0.89 

Fescue Belt 0.82 0.87 0.96 

Upper Midwest & Northeast 0.71 0.85 0.95 

Maternal effect 

Comparison ecoregion Minimum rM Mean rM Maximum rM 

Desert 0.80 0.86 0.95 

Southeast 0.67 0.77 0.89 

Arid Prairie 0.78 0.86 0.91 

Forested Mountains 0.78 0.85 0.93 

Fescue Belt 0.66 0.82 0.95 

Upper Midwest & Northeast 0.72 0.84 0.95 
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Table 3.3. Minimum, mean, and maximum heritabilities for the direct and 
maternal effects of weaning weight within ecoregions.  

Direct effect h2D 

Comparison ecoregion Minimum h2D Mean h2D Maximum h2D 

Desert 0.32 0.34 0.35 

Southeast 0.27 0.31 0.35 

High Plains 0.24 0.30 0.41 

Arid Prairie 0.31 0.33 0.35 

Forested Mountains 0.22 0.27 0.33 

Fescue Belt 0.27 0.30 0.33 

Upper Midwest & 
Northeast 0.30 0.34 0.41 

Maternal effect h2M 

Comparison ecoregion Minimum h2M Mean h2M Maximum h2M 

Desert 0.11 0.12 0.13 

Southeast 0.13 0.15 0.18 

High Plains 0.10 0.12 0.15 

Arid Prairie 0.11 0.12 0.13 

Forested Mountains 0.09 0.12 0.15 

Fescue Belt 0.10 0.12 0.14 

Upper Midwest & 
Northeast 0.10 0.12 0.13 

Maternal permanent environmental effect c2 

Comparison ecoregion Minimum c2 Mean c2 Maximum c2 

Desert 0.11 0.11 0.12 

Southeast 0.13 0.15 0.17 

High Plains 0.07 0.10 0.11 

Arid Prairie 0.12 0.12 0.13 

Forested Mountains 0.10 0.11 0.13 

Fescue Belt 0.12 0.13 0.15 
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Upper Midwest & 
Northeast 0.09 0.10 0.11 

Estimates for the High Plains are across all 60 iterations while estimates in the other ecoregions 
are across 10 iterations. 
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SUPPLEMENTARY MATERIALS 
Chapter 2 Supplementary Figures 
 

 
Figure S2.1. Counts of (a) hair shedding scores per year and (b) scores per 
animal across all years.  
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Figure S2.2. Principal components 1 and 2. For the purposes of this visualization, 
Angus, Hereford, Red Angus, Simmental, and Gelbvieh animals with at least ⅝ ancestry 
assigned to the given breed based on pedigree estimates were included in that breed. Animals 
with unknown ancestry, less than ⅝ ancestry assigned to one breed, or of a breed not listed 
above were called “Crossbred or other”.  
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Figure S3.3. Comparison of EBVs from the full dataset by breed. For the 
purposes of this summarization, Angus, Hereford, Red Angus, Simmental, and Gelbvieh animals 
with at least ⅝ ancestry assigned to the given breed based on pedigree estimates were included 
in that breed. Animals with unknown ancestry, less than ⅝ ancestry assigned to one breed, or of 
a breed not listed above were called “Crossbred or other



 

  

 

 
Figure S2.4. Pathway enrichment results visualized using EnrichmentMapper show that most identifiable 
pathways are dataset specific. Nodes represent gene sets corresponding to functional terms with adjusted p-values < 0.05 and 
edges represent overlap between gene sets. Edge width is determined by the degree of overlap between gene sets. Node and edge 
colors represent datasets where tan = full, blue = Angus, orange = Hereford, and green = IGS. No pathways were significantly enriched in 
the Brangus dataset. Unconnected nodes significant in only one breed-specific dataset were removed. 
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Chapter 2 Supplementary Tables 
Table S2.1. BLUEs for toxic fescue grazing status and four increasingly 
complex models quantifying the effects of daily sunlight duration and 
temperature on hair shedding with approximated standard errors in 
parentheses.  

Model Fall calving Not grazing 
toxic fescue 

Age: 2-3 
year olds 

Age: 4-9 
year olds 

Age: 
10+ 

Day length + covariates -0.122 
(0.020) 

-0.222 
(0.022) 

0.091 
(0.019) 

-0.057 
(0.021) 

-0.206 
(0.028) 

Temperature + covariates 0.001 
(0.019) 

-0.055 
(0.022) 

0.106 
(0.019) 

-0.077 
(0.021) 

-0.231 
(0.027) 

Day length + temperature 
+ covariates 

-0.056 
(0.019) 

-0.124 
(0.022) 

0.100 
(0.018) 

-0.067 
(0.021) 

-0.215 
(0.027) 

Day length + temperature 
+ day length*temperature 

+ covariates 

-0.061 
(0.019) 

-0.136 
(0.022) 

0.102 
(0.018) 

-0.061 
(0.021) 

-0.208 
(0.027) 

“Fall calving” BLUEs are relative to “spring calving” BLUE = 0, “not grazing toxic fescue” BLUEs 
are relative to “grazing toxic fescue” BLUE = 0, and age group BLUEs are relative to “age: 
yearling” BLUE = 0. 
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Table S2.2. Significantly enriched QTL terms in the full and breed-specific 
datasets.  

Dataset QTL Adjusted p-value N QTL in 
dataset 

N QTL in 
database 

Full White spotting 3.84x10-27 15 98 

Full Body weight (mature) 6.18x10-04 4 161 

Full Body weight (18 months) 3.72x10-03 2 21 

Full Milk tricosanoic acid 
content 3.97x10-03 2 25 

Full Hoof and leg disorders 7.78x10-03 2 39 

Full Eye area pigmentation 1.12x10-02 2 51 

AN Non-return rate 2.63x10-67 74 2213 

AN White spotting 5.10x10-40 23 98 

AN Body weight (mature) 1.97x10-05 6 161 

AN Coat color 7.31x10-04 3 34 

AN Body weight (18 months) 1.10x10-02 2 21 

AN Milk tricosanoic acid content 1.30x10-02 2 25 

AN Hoof and leg disorders 2.71x10-02 2 39 

AN Eye area pigmentation 3.21x10-02 2 51 

AN Milk stearic acid content 3.21x10-02 3 168 

AN Palmitoleic acid content 3.21x10-02 2 46 

AN Myristoleic acid content 3.75x10-02 2 68 

AN Residual feed intake 3.96x10-02 4 414 

HFD Bovine respiratory disease 
susceptibility 3.64x10-02 2 504 

HFD Gestation length 3.64x10-02 2 591 

IGS Myristic acid content 2.05x10-02 2 117 

“N QTL in dataset” represents the number of independent QTL annotations present in Animal 
QTLdb within 10 kb of one or more significant SNPs. 
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Table S2.3. Significantly enriched functional terms based on genes within 
10 kb of variants with -log10(q) > 1 in the full dataset.  

Term name Adjusted p-value Source Significance in 
other datasets 

UBC13-UEV1A complex 1.25E-02 GO cellular 
components AN 

tRNA (N(6)-L-
threonylcarbamoyladenosine(37)-C(2))- 

methylthiotransferase 
2.48E-02 GO molecular 

function AN, IGS 

N6-threonylcarbomyladenosine 
methylthiotransferase activity 2.48E-02 GO molecular 

function AN, IGS 

urotensin II receptor activity 2.48E-02 GO molecular 
function AN 

Metastatic brain tumor 2.49E-02 WikiPathways AN, IGS 

Growth Hormone (GH) Signaling 2.99E-02 WikiPathways - 

glutamyl-tRNA(Gln) amidotransferase 
complex 3.74E-02 GO cellular 

components - 

succinate-CoA ligase complex 3.74E-02 GO cellular 
components HFD 

ATF6 (ATF6-alpha) activates 
chaperones 3.75E-02 Reactome - 

negative regulation of brain-derived 
neurotrophic factor receptor signaling 

pathway 
4.92E-02 GO biological 

processes - 

regulation of brain-derived neurotrophic 
factor receptor signaling pathway 4.92E-02 GO biological 

processes - 

negative regulation of testosterone 
secretion 4.92E-02 GO biological 

processes - 

positive regulation of diacylglycerol 
biosynthetic process 4.92E-02 GO biological 

processes - 

long-day photoperiodism 4.92E-02 GO biological 
processes AN 

regulation of DNA damage response, 
signal transduction by p53 class 

mediator resulting in transcription of 
p21 class mediator 

4.92E-02 GO biological 
processes AN 

positive regulation of DNA damage 
response, signal transduction by p53 

class mediator resulting in transcription 
of p21 class mediator 

4.92E-02 GO biological 
processes AN 

enterobactin binding 4.96E-02 GO molecular 
function - 

methylthiotransferase activity 4.96E-02 GO molecular 
function - 
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transferase activity, transferring 
alkylthio groups 4.96E-02 GO molecular 

function - 

brain-derived neurotrophic factor 
binding 4.96E-02 GO molecular 

function - 

B cell receptor complex 4.98E-02 GO cellular 
components - 

CDC6 association with the ORC:origin 
complex 4.99E-02 Reactome - 

CREB3 factors activate genes 4.99E-02 Reactome - 

Breed-specific datasets in which the term also had an adjusted p-value < 0.05 are indicated in the 
last column. 
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Chapter 3 Supplementary Tables 
Table S3.1. Minimum, mean, and maximum genetic correlations for the 
direct and maternal effects of weaning weight between the High Plains and 
the comparison ecoregion as well as within ecoregion.  
Weaning weight genetic correlation between direct effects in one ecoregion and maternal 
effects in a different ecoregion (rDiMj), High Plains versus comparison ecoregion 

Comparison 
ecoregion Minimum rDiMj Mean rDiMj Maximum rDiMj 

Desert -0.45 -0.31 -0.25 

Southeast -0.50 -0.38 -0.27 

Arid Prairie -0.33 -0.27 -0.14 

Forested Mountains -0.36 -0.21 -0.08 

Fescue Belt -0.47 -0.32 -0.21 

Upper Midwest & 
Northeast -0.40 -0.26 -0.08 

Genetic correlation between direct and maternal effects of weaning weight (rDiMi), within 
ecoregion 

Comparison 
ecoregion Minimum rDiMi Mean rDiMi Maximum rDiMi 

Desert -0.41 -0.38 -0.35 

Southeast -0.50 -0.42 -0.38 

High Plains -0.47 -0.30 -0.14 

Arid Prairie -0.43 -0.39 -0.33 

Forested Mountains -0.38 -0.26 -0.17 

Fescue Belt -0.47 -0.38 -0.31 

Upper Midwest & 
Northeast -0.42 -0.36 -0.26 

Estimates for the High Plains are across all 60 iterations while estimates in the other ecoregions 
are across 10 iterations. 
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Table S3.2. QTL terms significantly enriched within ecoregions and 
associated genes for the direct and maternal effects of weaning weight.  

QTL term Adjusted p-value Ecoregion Associated genes 

Direct effect 

Birth index 0.000401 Fescue Belt 
ACTN4, ARRDC3, CAPN12, KPTN, MEIS3, 
NAPA, OR6K2, OR6K3, OR6K6, OR6N1, 

RF00100, SLC8A2, SPTA1 

Body weight 
(birth) 2.99E-05 Fescue Belt 

ARRDC3, ATP6V0E1, BNIP1, CREBRF, 
ENC1, ERGIC1, FAM184B, KCNIP4, LAP3, 

MED28, NEURL1B, NKX2-5, RF00001, 
RF00100, RPL26L1, SLIT2, STC2 

Body weight 
(weaning) 0.027859 Southeast 

ARRDC3, ATP6V0E1, BNIP1, bta-mir-584-
6, CREBRF, ERGIC1, GFM2, HEXB, MSX2, 

NKX2-5, RF00001, RPL26L1, STC2 

Body weight 
(weaning) 0.021709 High Plains 

ARRDC3, ASNS, ATP6V0E1, BNIP1, bta-
mir-584-6, CREBRF, ENC1, ERGIC1, 

GFM2, HEXB, HIST3H2A, HIST3H2BB, 
MSX2, NEURL1B, NKX2-5, RF00001, 
RF00322, RNF187, RPL26L1, STC2 

Body weight 
(weaning) 1.9E-09 Fescue Belt 

ARHGEF2, ARRDC3, ATP6V0E1, BNIP1, 
bta-mir-584-6, CREBRF, DYNC1I1, ENC1, 
ERGIC1, FAM184B, KCNIP4, LAMTOR2, 

LAP3, MED28, NEURL1B, NKX2-5, OR6K2, 
OR6K3, OR6K6, OR6N1, RAB25, RF00001, 

RPL26L1, SLIT2, SPTA1, SSR2, STC2, 
UBQLN4 

Body weight 
(yearling) 0.008516 Fescue Belt 

ARRDC3, ATP6V0E1, BNIP1, CREBRF, 
ERGIC1, FAM184B, KCNIP4, LAP3, MED28, 

NEURL1B, NKX2-5, RF00001, RPL26L1, 
SLIT2, STC2 

C22:1 fatty acid 
content 0.008885 Fescue Belt MPP7 

Carcass weight 6.53E-05 Fescue Belt 

ARRDC3, ATP6V0E1, BNIP1, BOD1, 
CREBRF, ERGIC1, FAM184B, LAP3, 

MED28, NEURL1B, NKX2-5, RF00001, 
RPL26L1, STC2 

Lignoceric acid 
content 0.013241 Fescue Belt VWA5B1 

Longissimus 
muscle area 0.041984 Fescue Belt ACTN4, ARRDC3, CAPN12, FAM184B, 

LAP3, MED28 

Yield grade 0.024483 High Plains 
ATP6V0E1, BNIP1, BOD1, CREBRF, 

ERGIC1, NEURL1B, NKX2-5, RF00001, 
RF00100, RPL26L1, STC2 

Yield grade 0.008516 Fescue Belt 
ATP6V0E1, BNIP1, BOD1, CREBRF, 

ERGIC1, NEURL1B, NKX2-5, RF00001, 
RF00100, RPL26L1, STC2 
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Maternal effect 

Bovine viral 
diarrhea virus 
susceptibility 0.001161 High Plains LIN54, SEC31A, THAP9 

Calving index 0.014075 Fescue Belt HUNK, VIP 

Long-chain fatty 
acid content 0.03898 Fescue Belt MYO9A 

Medium-chain 
fatty acid content 0.03898 Fescue Belt MYO9A 

Shear force 0.005342 High Plains LIN54, SEC31A, THAP9 

Bolded gene names are shared across multiple ecoregions within a QTL term.    
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