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Binary black holes with spins that are aligned with the orbital angular momentum do not precess.
However, post-Newtonian calculations predict that “up-down” binaries, in which the spin of the heavier
(lighter) black hole is aligned (antialigned) with the orbital angular momentum, are unstable when the
spins are slightly perturbed from perfect alignment. This instability provides a possible mechanism
for the formation of precessing binaries in environments where sources are preferentially formed with
(anti) aligned spins. In this paper, we present the first full numerical relativity simulations capturing
this instability. These simulations span ∼ 100 orbits and ∼ 3–5 precession cycles before merger,
making them some of the longest numerical relativity simulations to date. Initialized with a small
perturbation of 1◦–10◦, the instability causes a dramatic growth of the spin misalignments, which
can reach ∼ 90◦ near merger. We show that this leaves a strong imprint on the subdominant modes
of the gravitational wave signal, which can potentially be used to distinguish up-down binaries from
other sources. Finally, we show that post-Newtonian and effective-one-body approximants are able
to reproduce the unstable dynamics of up-down binaries extracted from numerical relativity.

I. INTRODUCTION

The detections of gravitational waves (GWs) emitted
by the inspiral and merger of stellar-mass black hole (BH)
binaries are now regular events for LIGO and Virgo [1, 2].
Upgrades to detector sensitivities and waveform models,
and increasing catalog size will lead to improved inference
on the parameters of individual detections as well as those
of the underlying source population [3–5]. Of particular
importance are the BH spins, which for generic binaries
are tilted with respect to the orbital angular momentum
and can cause significant modulations in the emitted GW
signal due to precession of the orbital plane [6, 7]. Spin
orientations are powerful observables for determining the
astrophysical formation channels of GW events [8–15].
Though in general the BH spins will change direction

over the inspiral, configurations in which both spins are
aligned with the orbital angular momentum of the binary
are equilibrium solutions of the spin precession problem.
Due to their regular behavior and simpler dynamics, BH
binaries with aligned spins have been used extensively
to construct waveform models, implement GW searches,
and perform numerical-relativity (NR) simulations. They
are also interesting from an astrophysical standpoint,
since stellar-mass BH binary formation via isolated stellar
evolution [14, 16] or embedment in gaseous disks [17, 18]
may lead to BH binaries with small spin tilts. On the
contrary, large misalignment are expected for binaries
formed in cluster environments [19]. For supermassive
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BHs targeted by the LISA mission, spin orientations might
help distinguishing between gas-rich and gas-poor host
galaxies [20–22].
For unequal-mass systems, there are four distinct

aligned-spin configurations. Referring to the direction
of a component BH spin that is aligned (antialigned) with
the orbital angular momentum as “up” (“down”), the four
alignments are up-up, down-down, down-up and up-down.
In this notation, the direction before (after) the hyphen
labels spin of the heavier (lighter) BH. As first pointed
out by Gerosa et al. [23], only the former three configura-
tions are stable equilibria. On the other hand, up-down
binaries, where the spin of the heavier (lighter) BH is
aligned (antialigned) with the orbital angular momentum,
can become unstable (see also Refs. [24, 25]). More specif-
ically, for a binary BH with component masses m1 ≥ m2,
total mass M = m1 + m2, mass ratio q = m2/m1 ≤ 1,
and dimensionless component spin magnitudes χ1 and χ2

[where index 1 (2) corresponds to the heavier (lighter)
BH], there exist critical orbital separations (in geometrical
units G = c = 1)

rud± =

(√
χ1 ±√qχ2

)4
(1− q)2

M , (1)

such that the up-down configuration is unstable for orbital
separations r in the range rud+ > r > rud−.

An up-down binary BH that forms at a large separation
r > rud+ with (infinitesimally small) perturbations to the
spin directions remains near its initial configuration until
reaching r = rud+. Upon inspiraling past this threshold,
the binary becomes unstable and begins to precess, leading
to large tilts between the BH spins and the orbital angular
momentum. Alternatively, a perturbed up-down binary
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ID q χ1,2 θpert Config. Mωorb Norb tmerger/M

2313 0.9 0.8 1◦ up-up 0.0058 106 68044

2314 0.9 0.8 1◦ down-down 0.0055 94 67681

2315 0.9 0.8 1◦ down-up 0.0057 100 67965

2316 0.9 0.8 1◦ up-down 0.0057 100 67973

2317 0.9 0.8 5◦ up-up 0.0058 106 68005

2318 0.9 0.8 5◦ down-down 0.0055 94 67679

2319 0.9 0.8 5◦ down-up 0.0057 100 67978

2320 0.9 0.8 5◦ up-down 0.0058 96 63924

2321 0.9 0.8 10◦ up-up 0.0058 106 67970

2322 0.9 0.8 10◦ down-down 0.0055 94 67685

2323 0.9 0.8 10◦ down-up 0.0057 100 67943

2324 0.9 0.8 10◦ up-down 0.0058 96 63926

TABLE I. The parameters of the 12 NR simulations performed
in this study. We provide the identifier for each simulation
within the SXS catalog [33]. Each simulation has mass ratio
q = 0.9 and spin magnitudes χ1 = χ2 = 0.8. For each of
the four spin configurations (up-up, down-down, down-up
and up-down) we perform three simulations with initial spin
misalignments θpert = 1◦, 5◦, 10◦ with respect to the perfectly
aligned-spin configuration. The initial orbital frequency ωorb

is chosen such that the initial separation is r = 30M . We also
report the merger time tmerger and number of orbits Norb.

initialized within the range rud+ > r > rud− will be
immediately unstable, while one initialized at r < rud−
will be stable (note, however, that rud− . M for most
binary parameters).

This effect was further investigated in Ref. [25], which
showed that up-down binaries inspiraling from large sepa-
ration evolve toward specific, predictable spin configura-
tions after hitting the instability onset. The up-down in-
stability therefore provides the means by which binary BH
spins initially (anti) aligned by astrophysical formation
can become misaligned and precessing in the sensitivity
window of ground- and space-based GW interferometers.
This may be the case, e.g., for stellar-mass BHs which are
captured by and subsequently merge within the accretion
disk of an active supermassive BH [17, 18, 26–30].
But this is only true if such unstable behavior per-

sists until merger. Both the occurrence [23] and the end
point [25] of the up-down instability were derived using
the multitimescale post-Newtonian (PN) framework of
Refs. [31, 32]. While PN techniques accurately describe
the binary dynamics during the earlier inspiral, they in-
evitably fail to capture strong-field effects near merger.
The only accurate solutions to the full general relativistic
two-body problem are currently provided by NR simula-
tions.

NR simulations of the up-down instability have so far
been elusive because of their high computational cost.

The instability is a precessional effect, and its observation
thus requires a binary to complete at least one, and ide-
ally several, precession cycles. This results in very long
simulations because spin precession happens on a longer
timescale, tpre/M ∼ (r/M)5/2(1 + q)2/q, compared to
the orbital period, torb/M ∼ (r/M)3/2. Sampling Npre

precession cycles requires simulating a number of orbits
Norb = Npretpre/torb ∼ Npre(r/M)(1 + q)2/q. In Ref. [25]
it was observed that the precessional instability appre-
ciably develops over a typical decrease ∼ 25M in the
orbital separation, resulting in simulations with O(100)
orbits. For context, typical NR simulations cover . 20 or-
bits [34], while the longest numerical relativity simulation
performed to date covers 175 orbits [35]. While the astro-
physically relevant scenario, in which an up-down binary
is initialized in the stability regime (r > rud+) and be-
comes unstable, remains prohibitive, simulations instead
initialized within the instability regime (rud+ > r > rud−)
are still challenging but possible with current capabilities.
In this paper, we present the first NR simulations of

unstable up-down binaries and confirm that earlier PN
predictions hold in the highly dynamical, strong-field
regime of general relativity (GR). The rest of the paper
proceeds as follows. In Sec. II, we describe our NR runs.
In Sec. III, we present our results. In particular, we (i)
observe the precessional instability in the up-down simula-
tions, (ii) compare the stable and unstable configurations,
and (iii) compare NR results against PN and effective-
one-body (EOB) predictions. In Sec. IV, we present our
conclusions.

II. NUMERICAL RELATIVITY SIMULATIONS

NR simulations for this work are performed using the
Spectral Einstein Code (SpEC) [34] developed by the Sim-
ulating eXtreme Spacetimes (SXS) Collaboration [33]. We
perform 12 new NR simulations that have been assigned
the identifiers SXS:BBH:2313–2324 and are made publicly
available through the SXS catalog. The parameters of
our runs are summarized in Table I. For each simula-
tion, we take mass ratio q = 0.9 and dimensionless spins
χ1 = χ2 = 0.8. This is because the up-down instability
effect is most prominent for binaries with close to (but
not identically) equal masses and large spin magnitudes.

The initial binary separation is chosen to be r = 30M ,
which is much smaller than the instability threshold PN
prediction rud+ ' 900M (note also that rud−∼ 10−4M).
Ideally, we would like to initialize the binary at a sepa-
ration r > 900M so we can observe an initially stable bi-
nary develop the instability as it passes through r = rud+.
While this would be more astrophysically realistic, unfor-
tunately, r∼ 900M would lead to ∼ 5×105 orbits before
merger, which is well outside the capability of current
NR codes. Choosing r = 30M as the initial separation
ensures that the instability has sufficient time to develop:
these up-down binaries should already be unstable at
their initial separation while at the same time undergoing
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FIG. 1. The up-down instability is demonstrated in NR. We consider binaries with mass ratios q = 0.9 and spin magnitudes
χ1 = χ2 = 0.8, while the component spin vectors are initially perturbed from a perfectly aligned-spin configuration by an angle
θpert = 10◦. The purple (orange) arrows represent the spin χ1 (χ2) of the heavier (lighter) BH near merger. The colored curves
trace the evolution of χ1,2(t) as the binary precesses. Colors darken linearly in time as indicated on the color bars. The spins
of the up-up (top-left), down-down (top-right), and down-up (bottom-left) configurations precess stably about ẑ, while those
of the up-down (bottom-right) configuration are unstable and become largely misaligned. Smaller modulations occur on the
shorter orbital timescale. An animated version of this figure is available at www.davidegerosa.com/spinprecession.

https://davidegerosa.com/spinprecession
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several precession cycles before merger (cf. Fig. 1). Our
simulations include ' 100 orbits, ' 3–5 precession cycles,
and cover a time tmerger ' 65×103M , making them some
of the longest simulations in the SXS catalog [34], with
each simulation requiring about 105 CPU hours.

Besides the up-down cases, we perform control simula-
tions in the other three aligned-spin configurations (up-up,
down-down, and down-up), which are predicted to be sta-
ble. We introduce an initial perturbation to the perfectly
aligned configuration to seed the instability. In particu-
lar, we consider three initial values θpert = 1◦, 5◦, 10◦ of
the angles between the BH spins and the orbital angular
momentum direction. The angle between the in-plane
spin components and the separation vector going from
the lighter to the heavier BH are arbitrarily set to Φ1 = 0
and Φ2 = π/2. The precise values of Φ1 and Φ2 have a
negligible impact because these simulations span several
precession cycles.

The waveform is extracted at several extraction spheres
at varying finite radii from the origin and then extrap-
olated to future null infinity [34, 36]. The extrapolated
waveforms are then corrected to account for the initial
drift of the center of mass [37]. We denote the waveform
modes at future null infinity, scaled to unit mass and unit
distance, as h`m(t). These enter the complex strain

h(t, ι, ϕ) =

∞∑
`=2

l∑
m=−l

h`m(t) −2Y`m(ι, ϕ) , (2)

where −2Y`m are the spin=−2 weighted spherical har-
monics, and ι and ϕ are the polar and azimuthal angles,
respectively, on the sky in the source frame.

The component BH masses m1 and m2 and dimension-
less spins χ1(t) and χ2(t) are evaluated on the apparent
horizons [34] of the BHs. Here, t is the simulation time
at which the spins are measured in the near zone [34].
Following previous studies [38, 39], we identify time t
with t. While this identification is gauge dependent, the
spin directions are already gauge dependent. However, we
note that the spin and orbital angular momentum vectors
in the damped harmonic gauge used by SpEC are in good
agreement with the corresponding PN vectors [40].
Following Refs. [38, 39], the orbital frequency ωorb is

computed as the time derivative of the orbital phase ob-
tained from the coprecessing-frame waveform at future
null infinity. The separation is then defined as a proxy
for the orbital frequency by adopting the Newtonian ex-
pression

r ≡M (Mωorb)
−2/3

. (3)

We discard the initial t < t0 = 5000M of data as this
is contaminated by spurious initial transients caused by
imperfect initial data, also known as junk radiation [34].
This is more stringent than the typical choice of discard-
ing 200–500M [34] of data, but we find that this is
necessary to eliminate transient features in ωorb. In addi-
tion, these long simulations adopt a larger outer bound-
ary (Rmax ∼ 2000M) [35] compared to typical NR runs

(Rmax ∼ 600M) [34], implying that junk radiation takes
longer to exit the simulation domain. We report the
spin vectors χ1,2 and the gravitational waveform h`m in a
frame where the z direction lies along the orbital angular
momentum direction L̂ at t0, the x direction is given by
the separation vector from the lighter to the heavier BH
at t0, and the y direction completes the orthonormal triad.
Note that both L̂ and the separation vector are estimated
using the gravitational waveform h`m as in Refs. [38, 39].

We compute the tilt angles θi for the BH spins (i = 1, 2)
as

cos θi(t) = χ̂i(t) · L̂(t) . (4)

Their offsets from alignment are given by

∆θi(t) ≡ |θi(t)− θaligni | , (5)

where θaligni = 0◦ (180◦) for an unperturbed up (down)
spin component. Finally, we define the instantaneous tilt
angle of the orbital plane, θL, as

cos θL(t) ≡ L̂(t) · ẑ . (6)

Strictly speaking, one has ∆θ1 = ∆θ2 = θpert only at the
start of the simulation, but this remains approximately
true at t = t0 past the junk-radiation stage. Similarly,
θL ' 0 at t0. In the following sections, we use ∆θ1,2
and θL to track, respectively, the spin and orbital plane
precession as the binary evolves. The component BH
apparent horizons are tracked until a common apparent
horizon is formed at merger [34]. The variables ∆θ1,2 are
only available until this point, which typically corresponds
to a separation r ' 3M .

Because our simulations are much longer than the typ-
ical simulations performed with SpEC, their accuracy
needs to be investigated separately. We repeat each simu-
lation with two resolutions, which we refer to as the low-
and high-resolution runs. The grids for these simulations
are determined using adaptive mesh refinement (AMR) as
described in Ref. [34] and references within. The grid res-
olution varies dynamically during a simulation to satisfy
an AMR tolerance parameter for constraint violation [34].
For these simulations, the AMR tolerance is chosen to be
a factor of 4 smaller for the high-resolution runs compared
to the low-resolution ones. Sections III A and III B present
results using the high-resolution runs; the accuracy of the
simulations is then evaluated in Sec. III C.

III. RESULTS

A. Unstable precession dynamics in NR

Figure 1 presents our main result: the up-down pre-
cessional instability, which is a 2PN prediction [32], is
verified with full NR. We show the BH spin evolution for
each of the four configurations with initial perturbation
θpert = 10◦. As the binary inspirals, the BH spins precess
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FIG. 2. Precessional dynamics and its effect on the gravitational waveform. Each subplot shows the four configurations we
consider: up-up (blue), down-down (orange), down-up (green) and up-down (red). Each column corresponds to a different
initial perturbation (θpert, indicated at the top) of the spin directions with respect to a perfectly aligned-spin system. The first
(second) row shows the evolution of the spin perturbation angles [∆θ1,2; cf. Eq. (5)] of the heavier (lighter) BH. The third row
shows the evolution of the orbital plane tilt angle [θL; cf. Eq. (6)]. The fourth and fifth rows show the real part of the (2, 2)
and (2, 1) GW modes, respectively. All quantities are shown as a function of the Newtonian separation r [cf. Eq. (3)] and are
terminated at the separation where the common horizon is found. The instability development is reflected in a rapid growth of
the angles ∆θ1,2 and θL for binaries near the up-down configuration. This in turn impacts the observed GW signal, in particular
the subdominant modes like (2, 1) as the orbital precession causes power leakage from the dominant (2, 2) mode.
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around the z direction, as seen by the purple (orange)
curves which trace the instantaneous values of χ1 (χ2).
The spins of the stable configurations (up-up, down-down
and down-up) remain close to their initial configuration
and trace regular precession cones about alignment. On
the other hand, the up-down configuration is very clearly
unstable: the BH spins outspiral dramatically, leading to
large misalignments with respect to L̂.

While the dominant modulations in the spin directions
are the polar oscillations due to spin precession, much
smaller variations, sometimes referred to as nutations,
occur due to the binary orbital motion on the shorter
timescale torb � tpre [40]. Nutations are negligible near
the beginning of the simulations and they become more
pronounced near merger.

In Fig. 2 we dissect the unstable dynamics illustrated in
Fig. 1 and exhibit their effect on the resulting gravitational
waveforms. For all 12 simulations, we plot various quanti-
ties characterizing the binary dynamics and GW emission
as a function of the binary separation r [cf. Eq. (3)].

The top two rows of Fig. 2 show the spin perturbation
angles ∆θ1,2 [cf. Eq. (5)] for the component BHs, indi-
cating the amount of spin precession. First, considering
the stable configurations (up-up, down-down and down-
up), as θpert is increased from 1◦ (left) to 10◦ (right),
the amplitudes of the oscillations in ∆θ1,2 increase but
remain close to the initial perturbations. In particular,
the maximum perturbations across all stable configura-
tions are maxt ∆θ1,2 ' 2◦, 10◦, 21◦ for θpert = 1◦, 5◦, 10◦,
respectively.
For the up-down binaries, the instability takes a de-

crease ∼ 10M in separation to develop appreciably. Start-
ing from r ' 20M , we observe the presence of an un-
stable growth in ∆θ1,2. This growth becomes more
rapid with larger initial perturbations θpert. The max-
imum perturbations for the up-down configuration are
maxt ∆θ1,2 ' 11◦, 51◦, 94◦ for θpert = 1◦, 5◦, 10◦, respec-
tively. In general, the deviations from the initial per-
turbations increase roughly tenfold by the end of each
simulation (compared to a factor of ∼ 2 for the stable
binaries).
These observations are in qualitative agreement with

the results presented in Ref. [25], which showed with
orbit-averaged evolutions at 3.5PN order that, over a pop-
ulation of up-down binaries, the precessional instability
develops over a typical decrease ' 25M in the PN orbital
separation. The study also suggested that the end point
of the instability is independent of the initial perturba-
tion, in contrast to the findings presented here. This is
due to the short nature of NR simulations (though the
simulations we performed are very long by NR standards)
and the “astrophysically unrealistic” initialization we em-
ployed and discussed in Sec. II. The end point derivation
of Ref. [25] intrinsically relies on binaries initially close to
the up-down configuration at large separations r > rud+
inspiraling through the critical separation before becom-
ing unstable.
In the third row of Fig. 2, we show the angle θL [cf.

Eq. (6)], which indicates the amount of orbital-plane pre-
cession. The presence of the instability is less apparent
in θL up to at least r ∼ 10M . Even then, the maxi-
mum value reached by θL for the up-down configuration
is maxt θL ' 1◦, 7◦, 12◦ for θpert = 1◦, 5◦, 10◦, respec-
tively [though in each case θL(t0) = 0◦]. The smaller
deviation in θL compared to ∆θ1,2 is due to the vastly
different magnitudes of the spin and orbital angular mo-
menta. The binaries simulated here have an initial orbital
frequency ωorb ∼ 0.006 rad/M (cf. Table I) which corre-
sponds to L = m1m2(Mωorb)−1/3 ' 1.4M2. For q = 0.9
and χ1 = χ2 = 0.8, the magnitude of the spin angu-
lar momenta are given by S1 = m2

1 χ1 ' 0.22M2 and
S2 = m2

2 χ2 ' 0.18M2. It is natural to expect that the
orbital angular momentum has more “inertia” to modu-
lations from the instability and thus θL < ∆θ1,2. The
angle θL completes ∼ 3–5 cycles compared to only ∼ 1
full period for θ1,2. This is in qualitative agreement with
previous PN predictions1 [41].
Notably, orbital precession leads to amplitude modu-

lations of the emitted GW signal [6]. In the bottom two
rows of Fig. 2, we investigate the influence of the up-down
precessional instability on the gravitational waveforms;
we focus in particular on the dominant (2, 2) mode and a
subdominant mode (2, 1) of the GW strain decomposition
given in Eq. (2).
The (2, 2) mode is largely unaffected by the sensitive

details of precession –the simulations of all four configura-
tions and three initial perturbations present qualitatively
similar results in this mode. The dominant morphological
features of the (2, 2) mode waveform are the GW cycles
at approximately twice the orbital frequency and the typ-
ical “chirp” as the binary merges. However, we find that
even the modest growth of θL mentioned above leaves a
notable imprint on the subdominant modes like the (2, 1)
mode. This is apparent by comparing the third (θL) and
fifth (h21) rows of Fig. 2. Starting from r∼ 10M , as θL
experiences a growth for the up-down binary (indicating
precession of the orbital plane), so does the amplitude
of the (2, 1) mode. This arises because orbital preces-
sion induces a transfer of power from the (2, 2) mode to
the subdominant modes (see, e.g., [38]). This transfer
of power to subdominant modes is a feature of generic
precessing binaries, not just the peculiar up-down config-
uration. The growth in θL becomes more pronounced as
we increase the initial perturbation θpert from 1◦ to 10◦.
For θpert = 10◦, the amplitude of the (2, 1) mode near
merger is about twice as large for the up-down configura-
tion compared to the three stable binaries. We note that,
for astrophysically realistic binaries, as they undergo the
instability at much larger separations, we expect an even
larger imprint on the waveform.

1 See Fig. 7 in Ref. [41] for binaries at r∼ 10M . In their notation,
the ratio between the number of L̂ cycles and spin-nutation cycles
is given by α/2π.
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FIG. 3. Comparison of the spin dynamics predicted by PN and EOB approximants against NR. We show the spin perturbation
angles ∆θ1,2 as a function of the Newtonian separation r for each of the four configurations: up-up (top-row), down-down
(second-row), down-up (third-row) and up-down (bottom-row), with an initial perturbation θpert = 5◦. The left (right) column
shows ∆θ1 (∆θ2). For the stable configurations, the inset shows an enlarged version of the same panel. The Schwarzschild ISCO
radius (r = 6M) is indicated by a gray marker. Both approximants are able to track the precession modulations in ∆θ1,2 found
in NR, including the unstable growth of the up-down instability, but fail to match the smaller spin oscillations occurring on the
orbital timescale.
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(2, 1) mode, as a function of the Newtonian separation r.

B. Comparison with approximate evolutions

We now test how well approximate PN and EOB meth-
ods capture the full NR dynamics for stable and unstable
aligned-spin binaries. The PN dynamics is evaluated
using the SpinTaylorT1 [42, 43] approximant at 3.5PN
as implemented in the LIGO Algorithm Library (LAL)
Suite [44]. We find that SpinTaylorT1 is marginally
more accurate than the other available approximants,
SpinTaylorT4 [45] and SpinTaylorT5 [46]. The EOB
dynamics is evaluated using the SEOBNRv4PHM model [47].
The evolutions are initialized using spins and orbital fre-
quency extracted from the NR simulations at t0. PN
evolutions are terminated near the Schwarzschild inner-
most stable circular orbit (ISCO), which is located at
r = 6M . Although the EOB model includes merger and
ringdown, we evaluate it only until the NR frequency at
which a common horizon forms.

Figure 3 compares the spin perturbation angles ∆θ1,2
of the PN, EOB, and NR evolutions for each of the four
aligned-spin configurations with θpert = 5◦. Notably, we
find that both the PN and EOB evolutions reproduce
the unstable growth of up-down binaries (bottom row
of Fig. 3). As expected, the faithfulness of approximate
evolutions decreases at smaller separations, where the
gravitational interaction is strongest and highly nonlin-
ear. The Schwarzschild ISCO provides a simple proxy to
characterize this transition (gray markers in Fig. 3).
Overall, we report discrepancies in ∆θ1,2 between NR

and PN/EOB of ' 5◦ for up-down and ' 1◦ for the three
stable configurations (up-up, down-down, and down-up).
EOB evolutions appear to reproduce the full NR dynam-
ics more accurately. This is perhaps expected since the
EOB framework receives NR information, although it is
important to point out that its calibration does not make
use of simulations with precessing spins. More specifically,
in the up-down case, while the EOB curve follows the
orbit-averaged value of the NR evolution, the PN curve
tracks the minimum of each orbital cycle. Neither method

matches the orbital timescale modulations present in the
NR simulations (cf. Refs. [40, 48] for related work).

C. Impact of NR resolution error

The results presented so far were based on our high-
resolution NR simulations. We now investigate the impact
of the numerical resolution error on our results by compar-
ing the output of our low- and high-resolution simulations
(cf. Sec. II). Figure 4 compares two of the main quantities
of interest in this work: the spin perturbation angle ∆θ1
(∆θ2 is qualitatively similar) and the (2, 1) GW mode,
for the up-down case with θpert = 10◦. The agreement
between the two resolutions slowly degrades as the binary
approaches merger, accumulating a dephasing of ∼ 0.9
rad over a phase evolution of ∼ 290 rad in the (2, 1)
mode. This suggests that even higher resolution simula-
tions might be necessary to fully capture the fine details
of the instability. However, all the key features such as
the growth of the instability in ∆θ1,2, magnitude of the
orbital timescale oscillations in ∆θ1,2, and the growth of
the (2,1) mode, are well captured and qualitatively similar
between the two sets of runs.

IV. CONCLUSIONS

We presented the first NR simulations of aligned-spin
binary BHs undergoing a precessional instability, verifying
that previous PN predictions [23] hold in the strong-field
regime of GR. The instability occurs for binary BHs in
the up-down configuration, where the spin of the heavier
(lighter) BH is aligned (antialigned) with the orbital angu-
lar momentum. Initialized with a small spin misalignment,
as the binary evolves, the instability causes the spins to
tilt dramatically from their initial configuration, achieving
misalignments up to ∼ 90◦ at merger. In order to observe
this precessional effect, the simulations we perform are
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necessarily long. Each consists of ∼ 100 orbits and lasts
for a time ∼ 65× 103M , putting them among the longest
simulations in the SXS catalog [33, 34], which previously
had just 12 simulations with > 90 orbits.

We perform three simulations of up-down binaries, each
with mass ratio q = 0.9, dimensionless spins χ1 = χ2 =
0.8, and increasing initial misalignment θpert = 1◦, 5◦, 10◦.
All three exhibit the unstable precession behavior, while
the rate of growth of the instability increases with the
initial misalignment. We show that the instability leaves
a strong imprint on the subdominant modes of the GW
signal in the up-down binaries, which can potentially
be used to distinguish them from other sources. We
repeat these simulations for the other three aligned-spin
configurations (up-up, down-down, and down-up) with
the same parameters and show that they all remain stable,
undergoing only small-angle precession oscillations.

We compare the results of our NR simulations against
both PN [42] and EOB [47] evolutions. We find that both
frameworks capture the occurrence and growth of the
up-down instability. While the EOB dynamics is more ac-
curate in predicting the precession-timescale oscillations,
both methods fail to match the orbital-timescale modula-
tions seen in NR. Current NR surrogate models [38, 39]
are unable to reproduce the up-down instability because
they are trained on NR simulations that last only ∼ 20
orbits, during which the instability does not have time to
develop. It would be interesting to see if current surrogate
techniques can indeed capture this instability if applied
to hybridized EOB-NR waveforms (cf. Ref. [49] for work
in this direction).

Through the up-down instability, binary BHs whose
astrophysical formation leads to spins that are initially

(anti) aligned with the orbital angular momentum can
become misaligned and strongly precessing near merger.
Whether current LIGO/Virgo parameter-estimation tech-
niques can confidently identify unstable up-down binaries
as such remains an open point of investigation.
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