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ABSTRACT: The hydrophobic effect is essential for many
biophysical phenomena and processes. It is governed by a fine-
tuned balance between enthalpy and entropy contributions from
the hydration shell. Whereas enthalpies can in principle be
calculated from an atomistic simulation trajectory, calculating
solvation entropies by sampling the extremely large configuration
space is challenging and often impossible. Furthermore, to
qualitatively understand how the balance is affected by individual
side chains, chemical groups, or the protein topology, a local
description of the hydration entropy is required. In this study, we
present and assess the new method “Per|Mut”, which uses a
permutation reduction to alleviate the sampling problem by a
factor of N! and employs a mutual information expansion to the
third order to obtain spatially resolved hydration entropies. We tested the method on an argon system, a series of solvated n-alkanes,
and solvated octanol.

1. INTRODUCTION

The thermodynamics of the hydration shell plays an important
role in many biophyiscal processes, such as phase separation,
membrane andmicelle formation,1−3 or the function and folding
of proteins.4,5 These processes are driven by the hydrophobic
effect,6−10 which results from a delicate balance between
entropic and enthalpic contributions of the first few solvent
layers but is quantitatively not yet fully understood.11 A better
understanding of the behavior of water molecules at
heterogeneous surfaces is therefore necessary.
Atomistic molecular dynamics (MD) simulations have proven

to reproduce the effects of hydrophobic interaction quantita-
tively.2,12 However, the lack of a straightforward way to quantify
the hydration entropy contributions of specific side chains or
functional groups of atoms precludes a deeper understanding of
the molecular driving forces and the energetics of solvation.
Further, the shallow energy landscape that governs the dynamics
of the solvent molecules requires sampling of an extremely large
configuration space and thus poses a severe challenge for
entropy calculation.
The solvation entropy of a simple system can be calculated

using thermodynamic integration (TI),13,14 which, however,
lacks spatial resolution, and a vast amount of sampling is needed
for more complex systems.
3D-two-phase-thermodynamics (3D-2PT)15−17 is a voxel-

based approach and thus yields spatially resolved hydration
entropies but relies on the assumption that the system can be
treated as a superposition of gas-like and solid-like components.

Likewise, the grid cell theory (GCT)18 also yields solvent
entropies but relies on a generalized Pauling’s residual ice
entropy model19,20 for the rotational entropy term.
In the grid inhomogeneous solvation theory (GIST),21−27 the

entropy is approximated by a truncated expansion of single-body
and multibody correlation functions, which are calculated on a
three-dimensional grid. Although the method also provides
spatial resolution, the GIST expansion is usually truncated at the
single-body and rarely at the two-body correlation term and
therefore does not capture most multibody effects, which, as will
be shown below, are important.
To address these issues, we developed an MD-based method

to calculate the spatially resolved hydration entropy from
atomistic simulations via permutation reduction and a mutual
information expansion (“Per|Mut”), which calculates entropies
directly by sampling the configuration space probability density
ϱ as S = −kB⟨log ϱ⟩.
As described in Section 2.2, adequate sampling of the full

configuration space is typically impossible, because in such an
approach, the solvent particles are inherently treated as
indistinguishable. The space that needs to be sampled is,
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therefore, N!-times larger than fundamentally necessary, which
results in slow convergence. Whereas other methods do not
suffer from this problem, as they compute entropies indirectly
through derived quantities (3D-2PT) or by switching to a grid-
based representation that is agnostic of the particle identities
(GCT and GIST), we here address this issue by taking
advantage of the permutation symmetry of the N identical
solvent molecules to enhance configuration space sampling by
the Gibbs factor N!. To calculate the entropy from the
permutationally reduced trajectory, we use a mutual information
expansion. The latter step is similar in spirit to GIST but here is
based on particle positions rather than voxels, and all
correlations up to three-body correlations are routinely
included.
The method yields spatially resolved entropy contributions

from translational and rotational degrees of freedom as well as
from their correlation on a per-molecule level. The distinction
between first-order entropy and contributions from many-body
correlations furthermore provides an interpretation of the
physical origins of solvent-driven free energy changes.
We have addressed the rotational part of solvent entropies in a

previous publication28 and will therefore focus the theory below
on the translational part and the mutual information term that
describes the correlation between translational and rotational
degrees of freedom. Subsequently, we will assess the accuracy
and convergence on 1728 argon atoms in Section 4.1. In
Sections 4.2 and 4.3, we will apply Per|Mut to hydrated systems,
namely to solvated alkanes and to octanol.

2. THEORY
2.1. Absolute Entropy. We separate the total entropy Stot

into the sum of contributions from the translational degrees of
freedom Strans, the rotational degrees of freedom Srot, and a
mutual information (MI) term −Itrans−rot, which quantifies the
correlation between translational and rotational motions. Note
that rotational entropy is also defined as a conditional entropy by
some authors,25,27,29 in which case, it includes the MI term
−Itrans−rot.
The translational entropy is

p x
S k

h
d d

log
N N

Ntrans B 3∫= − ϱ ϱ
(1)

with the Boltzmann constant kB, Planck’s constant h, momenta
{pi}, and positions {xi} for N solvent molecules, the normalized

and dimensionless phase space density Z exp
k T

1
B

ϱ = −−
Ä
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the Hamiltonian , and the partiton function Z. The
translational entropy, in turn, separates into a kinetic part,
which can be calculated analytically, and the configurational
contribution is
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where m is the mass of a water molecule, h h h/= with
arbitrary h 0> , and ϱ is the probability density in 3N-
dimensional configuration space. Here, we present a method to
calculate the total solvent entropy Skin + Sconf. Since Skin is
available analytically, we will here mainly focus on Sconf.
We calculate Sconf by first carrying out an atomistic molecular

dynamics (MD) simulation of solvent and solute. We then

employ a permutation reduction of the identical solvent
molecules as described in Section 2.2 to increase sampling by
a factor ofN!. Finally, we calculate entropies from the permuted
trajectory via a third-order mutual information expansion (MIE)
with a k-nearest-neighbor probability density estimator, as
described in Section 2.3.
A MIE is also used in the same manner to estimate the

correlation term −Itrans−rot.
2.2. Permutation Reduction. The sampling of Sconf, and

thus the direct calculation of solvent entropy from computer
simulations, generally suffers from slow convergence. Contrary
to the collective motion of macromolecules, which is usually
highly coupled, the diffusive motion of solvent molecules leaves
almost the entire configuration space accessible, thus rendering
sufficient sampling practically impossible.
The volume of the full 3N-dimensional translational

configuration space of N water molecules with a constant
density scales as NN, which renders it impossible to numerically
sample the configuration space even for a small system of ∼100
water molecules. This problem arises because the concept of
phase space (or configuration space) inherently assigns unique
labels to physically identical water molecules. Therefore, each
microstate is counted redundantly N! times, where the
physically identical microstates only differ by a permutation of
the indistinguishable water molecules, leading to a configuration
space volume N!-times larger than physically necessary.
In an analytical treatment, this problem is, of course, solved by

the Gibbs factor N!.30 For a numerical approach, however, the
Gibbs factor cannot be straightforwardly applied. Permutation
reduction31,32 solves this problem by relabeling (i.e., permuting)
the solvent molecules in each frame of an atomistic trajectory
such that the trajectory is mapped into a configurational
subspace with a volume reduced by the Gibbs factor N!. Here,
we summarize the aspects of permutation reduction that are
relevant for the entropy estimate; an in-depth derivation is
provided elsewhere.31,32

The alleviation of the sampling problem is achieved by
choosing a permutation π for each frame of the trajectory {xi(t)}
that minimizes the distance

x rt( )
i

N

i i
1

( )
2∑ ∥ − ∥π

= (3)

with respect to an arbitrary but fixed set of reference positions
{ri}.
Figure 1A demonstrates this approach for the simplest case of

two water molecules. In the right panel, the water molecules
have moved away from their reference positions (shown on the
left), such that the deviation from the reference is minimized if
the labels are swapped. Figure 1B visualizes the effect on the
accessible configuration space for two one-dimensional
molecules. Before permutation reduction, the system is either
in a regime of x1 < x2 or x1 > x2, with the accessible configuration
space marked in blue. After permutation reduction, the
molecules are relabeled such that, depending on the reference
configuration, the system remains in one of the two regimes.
Thereby, the configuration space volume is reduced by a factor
of 2!. Although this factor seems small, note that it is N! for N
molecules and hence represents an enormous alleviation of the
sampling problem for larger N.
Figure 1C shows the effect of permutation reduction on 3D

space for a box of 200 molecules. Now, each molecule is
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localized to a small region centered at the reference position.
Importantly, the physics of the system is unchanged.
2.3. Entropy Estimation. Even after permutation reduc-

tion, Sconf cannot be computed directly, because it still requires
sampling of a 3N-dimensional space. Instead, we use a mutual
information expansion33−36 and calculate its terms with a k-
nearest-neighbor estimator (kNN),37−42 as previously described
for rotational entropies.28

The mutual information expansion

S S i I j k I l m n( ) ( , ) ( , , )
i

N

j k l m n
conf

1
1

( , ) pairs
2

( , , ) triples
3∑ ∑ ∑≈ − +

= ∈ ∈ (4)

is truncated after the three-molecule correlation term, where the
indices 1≤ i, j, k, l,m, n≤N label individual molecules. The first
term is the sum of all single-molecule entropies, i.e., the
entropies of the marginal distributions of individual molecules,
and therefore does not take correlations between molecules into
account. Pairwise and triplewise correlations are described by
the second and third terms, respectively, for which the mutual
information terms read

I j k S j S k S j k( , ) ( ) ( ) ( , )2 1 1 2= + − (5a)

I l m n S l S m S n S l m S l n

S m n S l m n

( , , ) ( ) ( ) ( ) ( , ) ( , )

( , ) ( , , )
3 1 1 1 2 2

2 3

= + + − −

− + (5b)

Similar to the mutual information terms, also the entropy terms
denote the entropies of the configuration space probability
densities of one, two, and three water molecules, respectively.
These are the entropies of the three-, six-, and nine-dimensional
marginal distributions, respectively, where all degrees of
freedom, except the ones of the molecules specified by the
indices, are projected out. Because for a third-order expansion a
nine-dimensional space needs to be sampled, the expansion
converges for∼105 samples. Higher-order terms are increasingly
harder to sample and were therefore neglected. While these may
contribute to absolute entropies, we find for our examples that
they tend to cancel out when calculating entropy differences.
The individual entropies of eqs 5a and 5b are calculated using

a kNN estimator.28 The entropy of a given trajectory of nf
configurations {x1, ..., xnf} with xi

p3∈ , p = 1 (single-molecule
term), p = 2 (pair term), or p = 3 (triple term) is given by

S

k n
n V r k

1
log(( 1) ( )) ( )p

f i

n

f
p

i k
B 1

(3 )
,

f

∑ ψ≈ − −
= (6)

where k is a fixed positive integer, ψ is the digamma function, ri,k
is the distance from the configuration xi to its kth neighbor in the
3p-dimensional configuration space using the Euclidean metric,
and

( )
V r

r
( )

1
p

i k
i k

p

p
(3 )

,
,
3

3
2

p3
2π

=
Γ + (7)

is the volume of the (3p − 1)-sphere with radius ri,k.
The correlation term Itrans−rot is calculated as

I I j k( , )
j k

trans rot
( , ) pairs

2∑≈ ̃
−

̃ ∈ (8)

where the index j denotes the translational degrees of freedom of
molecule j, and k̃ denotes the rotational degrees of freedom of
molecule k.
To apply a kNN entropy estimator in the product space of 3

and the group of orientations SO(3), we use the composite
metric

x q x q x x q qd d d(( , ), ( , )) ( , ) ( , )1 1 2 2 eucl 1 2
2

quat 1 2
2ξ= [ ] +
(9)

where the quaternions q1 and q2 describemolecular orientations,
deucl is the Euclidean metric, and dquat(q1, q2) = min{∥q1 − q2∥2,
∥q1 + q2∥2} is the quaternion metric.28,43 The scaling factor ξ
ensures equal units under the square root, where the distance in
Euclidean space is measured in nanometers, and the distance in
quaternion space is unitless. Its numerical value is chosen such
that the typical distances in 3 and SO(3) are of the same
magnitude, as discussed in greater detail in the Supporting
Information. For liquid water, a value of ξ = 10 nm−1 is used, but
tests with 20 and 30 nm−1 did not yield significantly different
results.
The volume of the ball, induced by the metric d in  SO(3)3*

reads

Figure 1. Concept of permutation reduction on (A) two water
molecules, (B) two one-dimensional molecules, and (C) a super-
imposed trajectory of 200 molecules. In the last case, each color
represents a single molecule.
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V r R R

R r
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( ) 128 sin d d

2(1 cos )

0
2
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2 2
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∫ξ π ϕ ϕ

ϕ

ϕ π

=

= { + − ≤ }

∩ ≤ ≤ ∩ { ≤ ≤ ∞}
(10)

and was calculated numerically using the software Mathematica
10.0.28,44

3. METHODS
MD simulations were carried out using the software package
Gromacs 201845−49 with a leapfrog integrator (2 fs time step)
and the CHARMM36m force field.50−52 Bonds were con-
strained using SETTLE53 (water molecules) and LINCS54

(other bonds to hydrogen atoms). The V-rescale thermostat55

with a time constant of 0.1 ps at 300 K was used in all
simulations, and NPT runs were performed using the
Parrinello−Rahman barostat56,57 with a time constant of 1.0
ps and 1 bar of pressure. Lennard-Jones potentials58 were cut off
at 1.2 nm. The same value was used as the real-space cutoff of
electrostatic interactions in the particle-mesh Ewald (PME)
method.59

All production trajectories used for the entropy estimates
were 1 μs long; configurations were recorded every 10 ps.
3.1. Argon. To mimic the number density of liquid water,

1728 argon atoms were placed in a (4 nm)3 cubic box
(equivalent to ∼10 000 bar pressure) and simulated under
constant-temperature, constant-volume (NVT) conditions at a
temperature of 300 K. Despite the large pressure, no
crystallization occurred, and the system remained diffusive.
Translational entropies were calculated using permutation
reduction and a mutual information expansion (Per|Mut), and
its accuracy was assessed using reference entropies obtained via
the more expensive thermodynamic integration (TI).13,14,28,31

The TI was performed using 200 steps, during which the
interactions were switched linearly from an ideal gas state (λ =
0), for which the entropy is known analytically, to full argon−
argon interactions (λ = 1). The simulation runs for each step
lasted 100 ns and were carried out with soft-core60 parameters α
= 0.5 and p = 1. Errors were estimated as the difference to a
second TI with only 50 ns per step.
Per|Mut entropies were calculated as described in Section 2.

Permutation reduction of the 1 μs trajectory was carried out
using a 12 × 12 × 12 simple cubic reference configuration {ri}.
Pairwise MI terms were calculated for atoms with an average
distance of less than 1.0 nm after permutation reduction.
Similarly, a 0.45 nm cutoff was used for third-order MI terms. A
kNN value of k = 1 was used for all MI terms. Error bars were
estimated from the standard deviation of the entropies of the
individual atoms.
To compare the Per|Mut results for intermediate values of the

TI switching coordinate, Per|Mut was also applied to 1 μs
trajectories with λ-values of 0.8, 0.6, 0.4, 0.2, and 0.0 (ideal gas),
as shown in Figure 2.
3.2. Alkanes and Octanol. Per|Mut entropies were

calculated for the n-alkanes between ethane and decane as
well as for octanol. Each solute molecule was solvated by 1728
water molecules in a cubic box and simulated as described above.
To prevent the solutes from deviating from their initial linear
configurations, the positions of all atoms were fixed, such that
only the water molecules remained mobile. Permutation
reduction was carried out using a 12 × 12 × 12 simple cubic

reference configuration, and the MI terms were calculated using
k = 1 as well as 1.0 and 0.33 nm cutoffs for second-order and
third-order terms, respectively. Errors were estimated from the
standard deviation of entropies of bulk-phase water molecules,
assuming that molecules close to the solute are subject to the
same spread.
For alkanes, reference entropies were again obtained using TI

for ethane, propane, pentane, octane, and decane, where the
solutes were grown in a water box during 200 steps for the
Lennard-Jones interactions and an additional 50 steps for the
Coulomb interactions. Each step lasted 50 ns, and soft-core
parameters identical to that of the argon TI were used.
For the spatially resolved entropy map of octanol (Figure 4),

the entropy per permutation-localized water molecule (see
Figure 1C) was calculated by splitting the contributions from
pair (second MI order) and triple correlations (third MI order)
equally between the involvedmolecules. The simulation box was
divided into 128× 128× 128 voxels, and for each voxel, the local
entropy was given by the average of the entropies per water
molecule, weighted according to the simulation trajectory.

3.3. Nearest-Neighbor Search.Nearest-neighbor searches
for the kNN estimator in Euclidean space were performed using
a k-d tree and the Python module scikit-learn 0.20.3.61 Nearest-
neighbor searches in quaternion space and the composite space
were carried out using the Non-Metric Space Library
1.7.3.6.28,62

4. RESULTS AND DISCUSSION
4.1. Argon. To assess the accuracy of the translational

entropies, we used a test system of 1728 argon atoms and
compared entropies calculated with Per|Mut to entropies from
thermodynamic integration (TI), as described in Section 3.1. TI
is computationally more expensive than Per|Mut, does not yield
spatial resolution, and is unsuitable for more complex systems
but can serve as a reference for the test system. During TI, we
changed the interactions between the argon atoms from a
noninteracting ideal gas state (λ = 0) to their normal interatom
interactions at λ = 1 and calculated the entropy change along the
switching coordinate λ. We subsequently used Per|Mut to
calculate translational entropies along the switching coordinate
for λ = 0 (ideal gas), 0.2, 0.4, 0.6, 0.8, and 1.0 (full argon atoms)
to compare with the respective reference values. As shown in

Figure 2. Entropy per particle of the argon system from TI (red) and
Per|Mut (blue) along the switch from an ideal gas state (left) to full
argon atoms (right). The MI expansions up to the first, second, and
third order are shown with increasing opacity. The contribution by the
second order, i.e., the difference between the first- and second-order
expansion, is shaded in green. The contribution by the third order is
shaded in magenta. Error bars are too small to be shown.
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Figure 2, Per|Mut closely follows the reference TI values for all λ-
values with a maximum deviation of 5.7%.
For the ideal gas state, the third-order Per|Mut expansion

yields a quite accurate entropy of 95.6 J·mol−1·K−1 and thus
deviates by only 1% from the reference value 96.6 J·mol−1·K−1.
In this state, the first order of Per|Mut contributes 100.4 J·mol−1·
K−1, the second-order term reduces the entropy by 5.4 J·mol−1·
K−1, and the third order contributes a further 0.5 J·mol−1·K−1.
As the atomic interactions are switched on, the reference TI

entropy decreases by 29.8 to 66.7 J·mol−1·K−1 for λ = 1. The Per|
Mut entropies follow the same trend; for full argon atoms, the
third-order Per|Mut yields an entropy of 63.0 J·mol−1·K−1,
which is within 5.7% from the reference value. The reduction of
the first-order term (light blue in Figure 2) reflects the effect of
the decreased accessible volume due to the excluded volumes of
the interacting particles and amounts to just 6.9 J·mol−1·K−1,
which is 21.1% of the total entropy loss. Significantly more
entropy is lost due to correlated particle movement, as reflected
by the second- and third-order contributions. Here, the pair
correlations (second order) dominate by accounting for 21.2 J·
mol−1·K−1, 65.0% of the overall entropy loss, whereas the three-
particle correlations (third order) contribute 4.5 J·mol−1·K−1

(13.9%).
Since the particles in an ideal gas are by definition

uncorrelated, it might seem surprising that for λ = 0, the
second- and third-order contributions of Per|Mut are nonzero,
due to the permutation reduction. As shown in Figure 1B, even
an uncorrelated input distribution (left) may become correlated
once the trajectory is mapped into a permutation subspace
(right). The argon test system demonstrates that an MI
expansion to the third order is sufficient to compensate the
effect within 1% and that higher-order “pseudocorrelations”
induced by permutation reduction are small. Furthermore, the
second- and third-order “pseudocorrelations” for the ideal gas
(5.4 and 0.5 J·mol−1·K−1, respectively) are small compared to
the second- and third-order contributions for the full argon
atoms (21.2 and 4.5 J·mol−1·K−1, respectively). Interpreting the
contributions by the second and third order as measures of
physical two- and three-body correlations is therefore still
warranted for sufficiently interacting systems.
The significant but small third-order contribution of 4.5 J·

mol−1·K−1 to the overall entropy loss shows that neglecting
higher-order terms, which are expected to yield decreasing
contributions, is justified.
As the interactions become stronger, the entropy is

increasingly underestimated by up to 5.7%, likely because
higher-order expansion terms become more important at high
pressures.
Argon at ∼10 000 bar of pressure loses approximately 30 J·

mol−1·K−1 of entropy compared to its ideal gas state, which is
significantly more than the ∼18 J·mol−1·K−1 entropy loss of
water compared to interactionsless water. Since kNN MI
estimators are known to increasingly underestimate correlations
the more correlated a system is,28,63 argon at high pressure poses
a harder benchmark than water at 1 bar. We therefore expect the
considered two- and three-body correlation terms to be more
accurate for water than for argon.
Overall, Per|Mut yields accurate solvation entropies for the

argon test system. To test the accuracy and the ability to provide
spatially resolved entropies, we applied Per|Mut to more
complex systems, which will be discussed in Sections 4.2 and 4.3.
4.2. Alkanes. Experimental and theoretical studies show that

the solvation entropy of alkanes decreases approximately linearly

with increasing alkane length.64−66 To see if Per|Mut captures
this linear relationship qualitatively and quantitatively, we
calculated hydration entropies for the n-alkanes from ethane
to decane. Here, we defined the hydration shell as the 100 closest
water molecules to the solute after permutation reduction. The
number was chosen such that even for the largest solute
(decane), all water molecules that were affected by its presence
were still included (see Figure S3 in the Supporting
Information). Reference values were obtained by TI, as
described in Section 3.2.
As shown in Figure 3, Per|Mut indeed yields linear trends for

the translational (blue symbols) and rotational (green symbols)

entropies as well as for the translation−rotation correlation term
−ΔItrans−rot (purple symbols), which reduce the entropy by (5.6
± 1.0), (4.6 ± 1.7), and (11.6 ± 0.6) J·mol−1·K−1, respectively,
for each additional carbon atom. Combined, this results in a loss
of (21.8 ± 1.2) J·mol−1·K−1 per C atom (orange symbols). The
result is in good agreement with the TI reference value of (21.0
± 0.7) J·mol−1·K−1 per C atom (red symbols) andmore than the
experimental64 entropy loss of (13.3 ± 0.7) J·mol−1·K−1.
Since the difference between TI and experimental values is

most likely due to force field errors, which equally affect Per|
Mut, we consider TI to be the proper benchmark.
Notably, increased correlations between translational and

rotational water motions for longer alkanes reduce the entropy
by as much as the combination of translational and rotational
modes. The correlation of translational and rotational modes of
motion increases for molecules close to the solute. In this
regime, the molecules likely experience an increased orienta-
tional bias by predominately forming hydrogen bonds facing

Figure 3.Hydration shell entropy loss relative to ethane with increasing
alkane length. Translational and rotational entropies are illustrated with
blue and green symbols, respectively. Entropy loss due to translation−
rotation correlation is shown in purple. The total entropy change is
shown in orange, and the TI reference entropies are shown in red. For
easier visibility, the translational, rotational, and translation−rotation
correlation data is offset by 75, 50, and 25 units, respectively. Dotted
lines are from linear regression.
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away from the solute. By this reasoning, larger solutes result in a
larger entropy loss from the correlation term.
Overall, Per|Mut accurately calculates the solvation entropy

change for alkanes between ethane and decane. Furthermore,
the method precisely captures the entropy change, induced by
the addition of a chemical group as small as amethyl group to the
solute for a hydration shell of 100 molecules.
4.3. Octanol. Our approach allows closer analysis of the

molecular origin of entropy changes. To assess the spatial
resolution yielded by Per|Mut, we calculated the hydration shell
entropy of octanol. To this end, we simulated a fixed octanol
molecule with 1728 water molecules in a similar manner as
described in Section 3, carried out the Per|Mut analysis, and
calculated local entropies as described in Section 3.2.
As shown in Figure 4, the spatial distribution of entropy differs

significantly between the apolar tail and in the vicinity of the OH
group of octanol.
The translational entropy (Figure 4A) is reduced by 15.2 J·

mol−1·K−1 per water molecule where the hydroxyl group acts as a
proton donor (white arrow) and by 3.7 J·mol−1·K−1 where it acts
as a proton acceptor (cyan arrow). Close to the hydrophobic tail,
the entropy reduction varies between 3.7 and 1.5 J·mol−1·K−1.

The MI expansion allows for the entropy decomposition into
contributions from the individual water molecules (first order)
and their entropy loss due to pair correlations (second order).
The first-order contribution (Figure 4A, center) shows that an
entropy loss of 19.2 J·mol−1·K−1 at the donor side of the
hydroxyl group is due to the reduced mobility of a hydrogen-
bonded water molecule. At the acceptor side, only 3.4 J·mol−1·
K−1 is lost. The entropy loss around the tail is mainly from the
first-order contribution, where the presence of the apolar
hydrocarbon chain causes an entropy loss up to 3.5 J·mol−1·K−1

due to the restricted mobility of individual water molecules.
As seen for the second-order contribution (Figure 4A, right),

the entropy loss due to pair correlations of the water molecule
that forms a hydrogen bond to the hydroxyl group is less than in
bulk phase. The molecule therefore gains 2.4 J·mol−1·K−1

relative to bulk (white arrow). A likely explanation is that the
hydroxyl group replaces another water molecule as a hydrogen
bond partner, which leaves the chemical environment almost
unchanged but reduces the number of possible water−water
correlation pairs in the vicinity. Furthermore, increased pairwise
correlations decrease the entropy in a shell around the
hydrophobic chain by additional 1.9 J·mol−1·K−1 per molecule

Figure 4. Spatially resolved octanol hydration shell entropy change per molecule relative to bulk quantities. (A) shows translational entropy values, and
(B) shows rotational entropies. In both, (A) and (B), the three columns show total entropy change, first-order MI change, and second-order MI
change, respectively. (C) shows the translation−rotation correlation, and (D) shows the total entropy change. Values at selected regions are
highlighted with arrows.
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(black arrow). This result is unexpected, as water molecules
close to the octanol molecule have fewer neighbors, thus
showing that correlations with the remaining neighbors
disproportionally increase at the hydrophobic tail.
The third-order correlation does not show significant spatial

heterogeneity and, therefore, is not included in Figure 4.
The rotational entropy (Figure 4B) behaves similarly, albeit

its contributions are smaller. 5.6 J·mol−1·K−1 is lost by the water
molecule for which the OH group of octanol acts as the proton
donor (white arrow), to which the first order contributes 5.0 J·
mol−1·K−1. On the acceptor side, 2.0 J·mol−1·K−1 is lost, to
which the first order contributes 1.2 J·mol−1·K−1 (cyan arrows).
Near the hydrocarbon chain, the rotational entropy is reduced
by ∼1.6 J·mol−1·K−1 per molecule, of which ∼1.0 J·mol−1·K−1 is
due to a hindered rotational motion of the individual water
molecules (first order). Again, there is a shell of more correlated
water molecules around the hydrophobic part of octanol
(second order), which is less pronounced than that for the
translational entropy.
The mutual information on translational and rotational

degrees of freedom (Figure 4C) shows strong correlations,
equivalent to an entropy loss of 7.7 J·mol−1·K−1 at the donor site
(white arrow) and 6.2 J·mol−1·K−1 at the acceptor site (cyan
arrow). Furthermore, the translation−rotation correlations
reduce the entropy of each molecule close to the apolar chain
by 1.0 to 3.5 J·mol−1·K−1.
As shown in Figure 4D, the total hydration entropy of octanol

is mainly affected by the polar hydroxyl group, where entropy is
reduced by 28.5 J·mol−1·K−1 (white arrow) and 11.9 J·mol−1·
K−1 (cyan arrow) at the donor and acceptor sites, respectively.
The discrepancy between the two hydrogen binding sites is

most likely caused by different bond strengths. Whereas
hydrogen atoms of the hydroxyl group and of a water molecule
carry almost identical partial charges, the oxygen atom of the
hydroxyl group carries a partial charge of −0.65 elementary
charges, significantly less than a water oxygen atom (−0.834
elementary charges).
In addition, the entropy of each water molecule close to the

hydrocarbon chain is reduced by 9 J·mol−1·K−1, which results
from both a loss of mobility of individual molecules (first order)
and increased correlations at the surface of the solute.
A quantitative comparison between the hydrophilic hydroxyl

group and the apolar tail (or, equivalently, between octanol and
octane) yields a solvent entropy difference of (36 ± 3) J·mol−1·
K−1, which was determined using eight-molecule shells around
the OH group and its hydrophobic counterpart, following the
same rationale as for the alkanes. The result is significantly larger
but comparable in magnitude to the TI reference estimate of
(25.1 ± 0.1) J·mol−1·K−1 (see the Supporting Information).
Aside from possible sampling issues, the deviation is likely the
result of omitted higher-order correlations, which are affected
differently by the polar hydroxyl group and the apolar chain.

5. CONCLUSIONS
We developed Per|Mut, a new method to calculate hydration
entropies of water, and assessed its accuracy on argon, alkanes,
and octanol test systems.
Our method rests on a permutation reduction31,32 (Section

2.2), which alleviates the sampling problem by N! and localizes
the water molecules (Figure 1C), leaving the physics of the
system unchanged. Due to the localization of the molecules,
spatially resolved entropies can be calculated at the level of single
water molecules. Further, a MIE is employed, which allows the

absolute entropy to be decomposed into contributions from
individual molecules, pair correlations, and triple correlations.
The MIE reduces the dimensionality of the spaces that need to
be sampled. By distinguishing between entropy contributions of
individual molecules as well as pairwise and triple correlations,
additional insight into the physical origin of entropy changes is
provided.
We used the small argon test system to assess the accuracy of

the translational entropy algorithm by comparing the obtained
values with TI. Per|Mut yielded accurate entropy values for the
full range of the switching coordinate within a maximum
deviation of 5.7% from the TI reference value.
To test the accuracy of Per|Mut as a whole, including the

translation−rotation correlation term, we calculated the
hydration entropies of n-alkanes from ethane to decane.
Indeed, we identified a linear entropy loss66 of (21.8 ± 1.2) J·

mol−1·K−1 per additional carbon atom, as shown in Figure 3,
which is in quantitative agreement with the reference entropy
loss of (21.0 ± 0.7) J·mol−1·K−1 per C atom, calculated by TI.
Here, the increased correlation between the translational and
rotational degrees of freedom for larger solutes was identified as
the largest contribution to the entropy loss.
Because of its hydrophobic tail and its hydrophilic headgroup,

we chose octanol as a test system to demonstrate how Per|Mut
can characterize solvation entropies with a spatial resolution.
Hydrogen bonding strongly reduces the local entropy by 11.9
and 28.5 J·mol−1·K−1 for the water molecules to which the
hydroxyl group of octanol acts as a proton acceptor or donor,
respectively. The entropy loss at the donor site yields an entropic
free energy contribution of 8.55 kJ·mol−1 at a temperature of 300
K, which is significantly less than the∼20 kJ·mol−1 enthalpy loss
due to the hydrogen bond.67 The result shows that the solvation
free energy difference of octanol and octane is enthalpy-driven.
Near the hydrophobic tail of octanol, the entropy is reduced

for both the first- and second-order MI term. The losses of up to
1.9 J·mol−1·K−1 due to translational correlations and up to 3.5 J·
mol−1·K−1 due to correlations between translation and rotation
show that the lack of strong interactions with the apolar octanol
tail causes stronger interactions within the remaining water, an
effect that is similarly discussed in previous publications.68,69

The finding does not necessarily imply an increased structural
order in the hydration shell, as predicted by the controversial
iceberg model,70 but identifies a reduced single-molecule
mobility (first order) and increased water correlations (second
order) as main causes for the entropy loss.
For both the alkane and octanol systems, the solutes were

immobilized to obtain an unblurred spatial resolution and to
eliminate solute−solvent correlations, which are not captured by
the method but would contribute to the solvent-related entropy.
In scenarios where flexible-solute effects need to be included, an
ensemble-averaged entropy can be obtained by carrying out
multiple entropy calculations for a representative sample of the
ensemble of solute configurations (e.g., taken from a seeding
trajectory).
As seen in Section 4.3, Per|Mut overestimates the entropy loss

of octanol compared to octane. Likewise, Per|Mut yields
absolute water entropies of around 106 J·mol−1·K−1 per
molecule, which is higher than the known absolute water
entropy71 of∼70 J·mol−1·K−1. Since the TIP3P water model has
proven to reproduce this value,16 we tentatively attribute this
deviation to higher-order correlations, which we neglected. This
is not a fundamental limitation of the method; however, higher
than 3-body correlation terms are hard to converge with realistic
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sample sizes. As our results for octanol indicate, entropy
differences appear to be more accurate. For hydrophobic
surfaces like alkanes, accurate entropy differences were obtained.
Importantly, due to the decomposition into one-, two-, and

three-body correlation terms, Per|Mut provides an intuitive and
spatially resolved picture of entropy changes, which allows the
solvent effects of individual chemical groups or protein side
chains to be identified and assessed. Due to the locality of the
water molecules after permutation reduction, entropies of small
subsystems, like the solvation shells of alkanes orpoten-
tiallya ligand binding site, can be calculated without having to
consider the entire system, which reduces statistical errors.
Our implementation of Per|Mut is available for download as a

Python package (https://gitlab.gwdg.de/lheinz/hydration_
entropy).
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