Optics EXPRESS

Improved active fiber-based retroreflector with intensity stabilization and a polarization monitor for the near UV: erratum

VITALY WIRTHL, 1,* D LOTHAR MAISENBACHER, 1 JOHANNES WEITENBERG, 1,2 D ALEXANDER HERTLEIN, 1 D ALEXEY GRININ, 1 ARTHUR MATVEEV, 1,3 RANDOLF POHL, 4 THEODOR W. HÄNSCH, 1,3 D AND THOMAS UDEM 1,3

Abstract: In Sec. 6 (polarization monitor) of our recent publication [Opt. Express 29(5), 7024 (2021)], we assumed a small value of δ . This is however incorrect. The correct approximation for small β leads to the updated Eqs. (10)–(11), resulting in a corrected Fig. 12.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

In Sec. 6 on the polarization monitor of [1], we assumed a small value of δ , which is incorrect. The correct approximation $\beta \ll 1$ can be derived from a general treatment of the problem with the condition $|(S_3/S_0)_{atom}| \lesssim 0.3$, and leads to the following corrected Eq. (10):

$$|(S_3/S_0)_{\text{atom}}| \simeq \frac{1}{2} \sqrt{((S_3/S_0)_{\text{back}} - (S_3/S_0)_{\text{in}})^2 + ((S_2/S_0)_{\text{back}} + (S_2/S_0)_{\text{in}})^2},$$
 (1)

where we assumed for the incoming polarization $(S_3/S_0)_{in} \ll 1$ and $(S_2/S_0)_{in} \ll 1$. Note that the above equation gives the absolute value of $(S_3/S_0)_{atom}$ only.

The corrected Eq. (11) then reads:

$$\Delta \psi_{\text{back}} \simeq -2 \, \Delta \psi_{\text{atom}} \left(1 + \cos \delta \right).$$
 (2)

Since δ is in general not small (but can be on the order of $10^3\pi$), even small relative fluctuations in δ will prevent the determination of $\Delta \psi_{\text{atom}}$ with our method. Furthermore, a single linear retarder is not a sufficient model for a combination of linear birefringent elements, but a circular

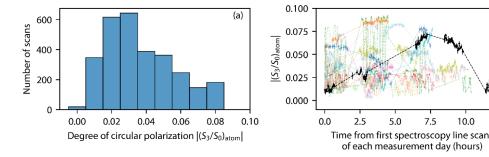


Fig. 1. Corrected Fig. 12 of [1] using the corrected model of polarization monitor, showing only the absolute value of circularly polarized fraction $|(S_3/S_0)_{atom}|$.

7.5

10.0

(b)

¹Max Planck Institute of Quantum Optics (MPQ), 85748 Garching, Germany

²RWTH Aachen University, 52062 Aachen, Germany

³Ludwig Maximilian University (LMU), 80539 Munich, Germany

⁴Johannes Gutenberg University, 55128 Mainz, Germany

^{*}vitaly.wirthl@mpq.mpg.de

Optics EXPRESS

birefringence term (rotator) must also be included [2]. The latter can be non-zero even when cascading multiple linear retarders only, nor can it be assumed to be constant. This additionally prevents the determination of $\Delta\psi_{\text{atom}}$ from $\Delta\psi_{\text{back}}$. However, from the polarization-maintaining properties of our fiber we know that the variations of this angle are always below $\Delta\psi_{\text{atom}}\lesssim 3^{\circ}$, which is sufficient for our experiment.

In contrast to δ , the beam splitter retardance δ_{BS} can be small, such that Eqs. (12) remain unchanged as long as polarizing effects of the beam splitter can be neglected.

The corrected Fig. 12 of [1] resulting from the above corrections is presented in Fig. 1.

Funding. Deutsche Forschungsgemeinschaft (EXC-2111-390814868, MA 7826/1-1); Max-Planck-Gesellschaft.

Disclosures. The authors declare no conflicts of interest.

References

- V. Wirthl, L. Maisenbacher, J. Weitenberg, A. Hertlein, A. Grinin, A. Matveev, R. Pohl, T. W. Hänsch, and T. Udem, "Improved active fiber-based retroreflector with intensity stabilization and a polarization monitor for the near UV," Opt. Express 29(5), 7024 (2021).
- H. Hurwitz and R. C. Jones, "A New Calculus for the Treatment of Optical Systems. II. Proof of Three General Equivalence Theorems," J. Opt. Soc. Am. 31(7), 493–499 (1941).