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Figure 1. Our method can synthesize new views with a single network forward pass from 10 sparse and spread-out views of a novel scene.

Here we synthesize a new view with (a) NeRF [34], which requires scene-specific training for 2 days; with our method (b) which produces

the result instantaneously and (c) our improved result after fine-tuning our pre-trained model for 15 minutes on the 10 views.

Abstract
Recent neural view synthesis methods have achieved im-

pressive quality and realism, surpassing classical pipelines

which rely on multi-view reconstruction. State-of-the-Art

methods, such as NeRF [34], are designed to learn a sin-

gle scene with a neural network and require dense multi-

view inputs. Testing on a new scene requires re-training

from scratch, which takes 2-3 days. In this work, we intro-

duce Stereo Radiance Fields (SRF), a neural view synthe-

sis approach that is trained end-to-end, generalizes to new

scenes, and requires only sparse views at test time. The core

idea is a neural architecture inspired by classical multi-view

stereo methods, which estimates surface points by finding

similar image regions in stereo images. In SRF, we pre-

dict color and density for each 3D point given an encod-

ing of its stereo correspondence in the input images. The

encoding is implicitly learned by an ensemble of pair-wise

similarities – emulating classical stereo. Experiments show

that SRF learns structure instead of over-fitting on a scene.

We train on multiple scenes of the DTU dataset and gen-

eralize to new ones without re-training, requiring only 10
sparse and spread-out views as input. We show that 10-15

minutes of fine-tuning further improve the results, achiev-

ing significantly sharper, more detailed results than scene-

specific models. The code, model, and videos are available

– https://virtualhumans.mpi-inf.mpg.de/

srf/.

1. Introduction

We introduce a neural multi-view view synthesis ap-

proach which is trained end-to-end, generalizes to novel

scenes, and requires only sparse views at test time (Fig. 1-

(b)). This is in stark contrast to State-of-the-Art (SOTA)

view synthesis methods like NeRF [34], which are trained

for a specific scene and require dense multi-views to pro-

duce sharp results.

On one end of the view synthesis spectrum of meth-

ods, we have pure data-driven methods such as NeRF [34],

which have shown impressive results. NeRF takes a radical

data-driven approach by learning a mapping from a loca-

tion and direction to the emitted radiance. This mapping

is specifically trained for a scene (Fig. 2-(a)). Generaliza-

tion to a new scene requires retraining for 2 days and re-

sults are blurry when trained on sparse and spread-out views

(Fig. 1-(a)). On the other end of the spectrum, popular

classical image-based rendering techniques [46] use geom-

etry [8, 29, 44, 45]. These approaches warp pixels to the de-

sired target view via correspondences [39, 41, 49] or multi-

view 3D reconstruction [42, 43]. Consequently, these meth-

ods rely on high-quality 3D reconstruction or dense per-

pixel correspondence, which requires dense multi-views.

Recent work [5, 38] combines classical methods with data-

driven approaches by learning to correct the warped views

of classical methods. The sequential pipeline in these meth-

ods [5, 38] do not allow end-to-end learning.
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Figure 2. Pure data-driven view synthesis and SRF (ours). Existing methods achieve remarkable realism representing scenes with a

neural network. A model is trained specifically for a scene to synthesize high-quality novel views. However, this requires dense views and

2 days of training per scene. In this work, we address the more challenging task of novel view synthesis from sparse and spread-out views,

using a single forward pass through the network, to instantly obtain the result.

We take inspiration from both classical and pure data-

driven methods. Like NeRF, we also learn a neural net-

work to predict radiance (specifically color and density).

However, instead of memorizing the scene radiance at 3D

locations, we use an image-based feature encoding, which

allows the network to reason about scene geometry (Fig. 2-

(b)). In classical stereo reconstruction [41, 49], correspon-

dences across views are found by computing a similarity

score. We devise an architecture, called Stereo Radiance

Fields (SRF), which mimics the classical approach with-

out computing explicit correspondences, but can be trained

end-to-end. A 3D point is projected to each available view

to extract point-wise view features. Then view features are

processed in pairs by a bank of filters, which emulate corre-

spondence finding in classical methods (Fig. 3). The result-

ing matrix of pair-wise scores is further processed with a

Convolutional Neural Network [21] (CNN), which agglom-

erates information from the available views to predict the

desired radiance at that point.

Our experiments demonstrate that incorporating

multi-view reconstruction ideas within the architecture

significantly boosts generalization ability. When training

on a single scene and testing on a new scene, SRF can

produce reasonable results. This indicates that the network

does not memorize the scene, but learns to reason about

structure. When trained on multiple scenes (100 or more),

SRF can generalize to novel scenes, even when only 10
sparse and spread-out views are available as input. Further

improvements can be obtained by fine-tuning on the 10
views (Fig. 1-(c)), which typically takes about 15 minutes,

which is much less than the 2− 3 days required by methods

that re-train from scratch [34, 47]. SRF results are sharper,

validating that multi-view reconstruction structure not

only helps to generalize but also constrains the learning

problem. We encourage the reader to view our results as

videos available on our project page. To summarize, our

contributions are:

• We introduce Stereo Radiance Fields (SRF), an end-to-

end, self-supervised architecture for multi-view view

synthesis. We bring together insights from classical

multi-view reconstruction pipelines and neural render-

ing approaches.

• Experiments demonstrate that SRF generalize to novel

scenes given sparse and spread-out views as input.

Further, fine-tuning a pre-trained SRF for a few min-

utes on test distribution improve results.

• We show how to combine recent paradigms into one

model, often treated in isolation in novel view synthe-

sis: SRF builds on classical multi-view 3D reconstruc-

tion and learning from multiple scenes.

• In the sparse and spread-out view setting, SRF pro-

duces much sharper results than SOTA baselines like

NeRF [34]. We achieve even better results when we

fine-tune for only 15 minutes in contrast to NeRF

trained on the 10 test views for 2 days.

2. Multi-View View Synthesis

Given N camera views, our goal is to synthesize a view

for a new virtual camera. This is a long-standing prob-

lem [17, 50]. Historically [46], the problem has been stud-

ied under three possible directions depending on the ge-

ometric information used: (1) rendering without geome-

try [2, 16, 22, 30, 35] by modelling a plenoptic function to

compute intensity of light rays for a given camera at every

possible angle; (2) rendering using correspondences [8, 44]

which requires knowledge of positional correspondences

across multi-views; and (3) rendering with explicit geom-

etry [29, 45] which requires explicit 3D information in the

form of depth or point clouds. In this work, we bring to-

gether insights from neural rendering with classical recon-

struction pipelines. We encourage our network to reason

about correspondences across pairs of views by computing
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an ensemble of pair-wise scores within the network. Al-

though we never explicitly compute correspondences, this

geometric reasoning, allow us to generalize to new scenes.

Correspondences across multi-views: Classic ap-

proaches [8, 13, 17, 44, 51] in multi-view stereo rely on

correspondences across views. In this work, we bring to-

gether the insights from classical multi-view stereo [17, 46]

and contemporary learning-based approaches [10, 34, 40].

We use an encoder network that inputs 10 multi-views and

extracts multi-scale features [4, 40]. We replace classi-

cal block or feature matching with a multi-layer perceptron

(MLP) which outputs an ensemble of similarity scores. Like

us, recent work can do view synthesis from sparse views [5]

incorporating explicit correspondences. However, explic-

itly computing correspondences is hard due to differences in

illumination, zoom, scale, and occlusion. A scene-specific

model is trained to correct artifacts. In our method, the

network reasons about correspondences driven by the view

synthesis loss, but they are never explicitly computed. Im-

portantly, our model is not specific to a scene.

Neural Rendering and Plenoptic Modeling: State-of-

the-art neural rendering [52] approaches have enabled cre-

ation of photo-realistic visual content using deep neural net-

works [21]. There are three popular directions for multi-

view view synthesis: (1) using plane-sweep stereo [13, 15]

or multi-plane image (MPI) representation [61]. MPI-based

approaches [7, 14, 15, 20, 33, 48] have shown remark-

able results on continuous view synthesis for small base-

line shifts, but fail for large ones as it assumes accurate

multi-plane imaging; (2) explicitly incorporating 3D recon-

struction using SfM [42, 43] or multi-view stereo [19] for

view synthesis [3, 12, 18, 32, 38]. These approaches as-

sume a reasonably dense 3D point cloud used in conjunc-

tion with a neural network for view synthesis. The role

of the neural network is to correct the imperfections in

the 3D reconstruction. However, these approaches strug-

gle when the views are sparse with small overlap be-

cause explicit 3D reconstruction fails; and (3) recent ap-

proaches [23, 24, 27, 34, 37, 47, 57, 58] learn a 3D represen-

tation that can be combined with differentiable-ray march-

ing operations to synthesize a new view. These approaches

by design require scene-specific modeling. This restricts:

(1) an instant and online visualization of a new capture be-

cause it requires 2 − 3 days to train a model; and (2) uti-

lizing large amounts of diverse visual data, which has been

the driving force for progress in other areas of vision such

as recognition, semantic segmentation, and detection.

Our work is deeply inspired by recent neural rendering

approaches. Like NeRF [34], we predict radiance at con-

tinuous locations and use volume rendering to generate the

target image. Instead of predicting based on point coordi-

nates and radiance, we predict based on point image fea-

tures and an ensemble of similarity functions that emulate

≈

≠

Figure 3. Intuition of our Method: We structure our model in-

spired by a geometric observation: 3D points in a scene that are

on a surface will project to similar-looking regions when viewed

from different perspectives (blue). We call this a photo-consistent

point. A point in free space, however, will not be photo consistent

(red). This holds for opaque, non-occluded surface points.

classical stereo matching. Hence, our work brings together

contemporary neural rendering with classical computer vi-

sion within an end-to-end architecture. SRF is similar in

spirit to previous work on 3D implicit shape reconstruc-

tion, Implicit Feature Networks (IF-Nets) [6, 10] and Neural

Distance Fields (NDF) [11], where we decode occupancy

or unsigned distances based on volumetric deep features

computed from the input, instead of the originally proposed

point coordinates [9, 31, 36]. Our work also shares insights

with contemporary approaches [55, 56, 59]. Finally, our

work is inspired by lifelong learning [53, 54] that aims to

learn a generic representation that can be easily adapted to

a new task with a few examples. We learn a generic view

synthesis network that readily generalizes to new scenes.

Our results further improve when we adapt it to the new

scene with simple fine-tuning on test examples.

3. Method

In this section, we present our method Stereo Radiance

Fields (SRF) for novel view synthesis given sparse and

spread-out input views of objects unseen during training.

We first give a background in Section 3.1 and then build

SRF on these insights in Section 3.2.

3.1. Background

3.1.1 Generalizing Neural Radiance Fields (NeRF)

To produce color at a pixel of the target view, we shoot a ray

from the camera position through the pixel into the scene.

We binarize the ray into equal length bins and randomly
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Figure 4. Our Approach: For a target view (left camera) we predict RGB color for each pixel. For a pixel, we project a ray into the scene

and sample points along it. For a point, p ∈ R
3, our goal is to estimate its color, c, and density, σ, where density encodes surface regions.

(a) First, to encode the location of point p, we project it into each reference view, Ii and extract features, Ii(p), generated by a 2D CNN

at the location of projection. (b) If p is on a surface and photo-consistent, I1(p), . . . , IN (p) will match (see Fig. 3). We emulate the

process of finding photo-consistency by applying a learned similarity function sk(·, ·) on all possible combinations. We learn an ensemble

of similarity K functions, and obtain a Stereo Features matrix. (c) To aggregate multi-view information beyond pairs, we apply a 2D

convolutional CNN to obtain a Multi-view Feature matrix. The matrix is Max Pooled to obtain a compact encoding of correspondence and

color, which is decoded by an MLP into color and density (d). Weighted by the density, the color values along the target camera ray are

fused into the final pixel color by volume rendering. We train the model end-to-end with image supervision alone.

sample one 3D point within each bin. At each point p ∈
R

3 we predict color c ∈ {0, . . . , 255}3 and density σ ∈
R. Density encodes regions of surface (high where there is

surface, low elsewhere). Weighted by the density, the color

values along the ray are fused into the final pixel color by

volume rendering, following NeRF [34].

NeRF memorizes a scene with a neural function f , by

learning to output (c, σ) given spatial location p and view-

ing direction d

fNeRF : (p,d) 7→ (c, σ). (1)

This works well for a single scene with dense views. How-

ever, it fails to generalize to novel scenes as point coordi-

nates do not carry scene-specific information. The neural

network itself becomes the scene representation (Fig. 2-

(a)). Instead, we aim to learn a neural model which emu-

lates multi-view stereo reconstruction and synthesis inter-

nally and is conditioned on the scene itself at test time (Fig.

2-(b)). For this, we use a completely different point encod-

ing architecture, which is not scene-specific

f : (I,p) 7→ (c, σ), (2)

where I = {Ii}
N
i=1 is the set of N reference images, Ii,

with known camera parameters. The design of f is inspired

by classical stereo and is explained in Sec. 3.2. Note that

we do not consider view dependent effects and leave it for

future work. This allows us to focus on generalization to

novel scenes and sparse inputs.

3.1.2 Classical Multi-View Stereo

Key to classical stereo imaging approaches (Structure-from-

Motion, Multi-View Stereo) and our method is the follow-

ing observation: In absence of occlusion, surface 3D points

of an object project to corresponding photo-metrically con-

sistent image regions in the multiple-views, whereas non-

surface 3D points land on non-corresponding different re-

gions (Fig. 3). We can invert this observation to find sur-

faces from images: we can find corresponding regions

across views and triangulate them to find a 3D surface point.

In classical works, this is done in non-differentiable, multi-

step engineered pipelines. First, informative, distinctive re-

gions of interest are found. Subsequently, a feature descrip-

tor at the interest point is created from local image fea-

tures, c.f. SIFT [26]. The descriptors from multiple images

are matched based on a similarity measure. SRF internally

mimics correspondence matching in an end-to-end unsuper-

vised manner (based only on the rendering loss). Our point

feature descriptors are learned by a 2D CNN image encoder
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network. Classical correspondence finding is emulated in

SRF by processing point descriptors in pairs.

3.2. Stereo Radiance Fields (SRF)

SRF predicts color and density at a point, p, in 3D space

given, I = {Ii}
N
i=1, a set of N reference images, Ii, with

known camera parameters. We structure SRF, f , in anal-

ogy to classical multi-view stereo approaches: (1) To en-

code the location of point p, we project it into each refer-

ence view, Ii, and build a local feature descriptor, Ii(p),
(Sec. 3.2.1); (2) If p is on a surface and photo-consistent,

I1(p), . . . , IN (p) should match (Fig. 3); Feature match-

ing is emulated with a learned function, gstereo, encoding

the features from all reference views (Sec. 3.2.2); (3) The

encoding is decoded by a learned decoder, dec, into the

NeRF [34] representation (Sec. 3.2.3). Formally, this de-

composes SRF to:

f(I,p) = dec(gstereo(I1(p), . . . , IN (p))) 7→ (c, σ). (3)

Figure 4 gives an overview of our method.

3.2.1 Image Encoder Network

In contrast to NeRF, where the input are point coordinates

without scene-specific information, we condition our pre-

diction on the reference images. We achieve this by project-

ing p into each reference view, Ii, and build a local feature

descriptor, Ii(p). For this, we first encode each complete

reference image with a shared 2D CNN. We build Ii(p) by

extracting the deep features from each CNN layer at the lo-

cation of the points p projection. This makes Ii(p) a multi-

scale feature descriptor, as 2D CNNs naturally encode local

information in their first layers up to global information in

later layers with a high receptive field (Fig. 4-(a) “Image

Encoder Network”). Because the point projection is in con-

tinuous space, whereas the features are in a discrete grid, we

use bilinear interpolation for extraction. When p projects

outside of an image we use zero padding. See appendix for

further details.

3.2.2 Unsupervised Stereo Module

We build on the intuition of Multi-View Stereo: when a 3D

point p is projected to photo-metrically consistent regions,

p is likely to lie on a surface, and hence a high density σ

should be predicted. In order, to process an arbitrary num-

ber of views, the stereo module processes feature descrip-

tors of views in pairs. Specifically, we aim at learning map-

pings of feature pairs Ii(p), Ij(p):

s : (Ii(p), Ij(p)) 7→ x ∈ R
+
0 , (4)

that allow the network to learn image scores useful for cor-

respondence finding or propagate image color. Note, al-

though our formulation is based on pairwise processing ana-

log to similarity computation, correspondences are not ex-

plicitly computed. We represent each mapping s in the net-

work using a single neuron. In practice, each possible pair

(Ii(p), Ij(p)) with i, j ∈ 1, . . . , N, i 6= j is input to a neu-

ron with ReLU non-linearity to ensure non-negative outputs

(Fig. 4-(b)). This yields a vector x of size S = N2 − N

with one entry per pair. Instead of relying on only a single

neuron, we apply a bank of neurons, sk(·, ·), k = 1 . . .K
in the same fashion. Each neuron might learn different sim-

ilarities, or specialize in propagating color. We concatenate

the output vector xk of each neuron in the bank into a Stereo

Feature matrix X = [x1 . . .xK ] ∈ R
S×K whose height is

the number of pairs S and the width is the number of neu-

rons K used (Fig. 4-(b) “Stereo Features”). The Stereo Fea-

ture matrix can be efficiently computed by arranging feature

pairs in a matrix and convolving it with the neuron bank.

Pairwise photo-consistency is, however, not a sufficient

condition to identify surface points. 3D points might project

to photo-consistent image regions in a stereo pair when ref-

erence views are captured nearby but not on a third view.

We aggregate information from multi views by convolv-

ing the Stereo Feature matrix along the direction of pairs

of views. Specifically, we aggregate 4 pairs in the height di-

rection and all similarity measures along the width direction

(Fig. 4-(c) “Multi-view Feature Extraction”).

To merge view-pair information into a single vector y ∈
R

K , we run Max Pooling in the direction of views. Note

that the complete stereo module by design, is flexible for

varying number of input views during training and testing:

the Max Pooling step is computing a vector y of fixed di-

mension K given varying number of input views. This con-

stitutes the unsupervised Stereo Module, denoted by

gstereo : (I1(p), . . . , IN (p)) 7→ y ∈ R
K . (5)

3.2.3 Radiance Field Decoder

The last stage of our network is to decode the stereo encod-

ing y = gstereo(I1(p), . . . , IN (p)) of point p into the final

color c and density σ. For this, we rely on a simple MLP

network denoted by

dec : y 7→ (c, σ). (6)

Sampled colors along a ray are fused based on their den-

sity following volume rendering [28, 34]. The training of

the network is done fully end-to-end using only multi-view

images without 3D data or supervision on the stereo module

(Fig. 4-(d)). We use the L2 loss for comparing the rendered

prediction with the target image. Please consider the ap-

pendix for further architectural details.
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Figure 5. Comparisons: We compare our method on test views of scenes of DTU. Given 10 reference view images of a novel scene at

test time. Our method infers sharp and detailed objects in both appearance and geometry, such as the feathers and eyes of birds, the letters

and small benches in buildings, the texture of the rabbit, and the logo of a detergent. Rabbit and detergent scenes benefit most from

fine-tuning. NeRF finds approximate, smooth geometry and yields blurry textures for birds, buildings and rabbit. For the detergent scene, it

struggles to generate consistent geometry or appearance. LLFF creates some sharp image regions at the letters of buildings and the texture

of the rabbit but results are usually overlaid with strong blending and ghosting effects.

4. Experiments

We, first, study the generalization ability of SRF when

trained on a variety of generic objects and scenes. In

Sec. 4.1, we observe that our model indeed learns gener-

alizing structure applicable on novel scenes, given only a

sparse number of views that are arbitrarily spread-out. Fur-

thermore, we find that our model can produce 3D colored

meshes from only 10 views, despite being trained for a view

synthesis task as shown in Sec. 4.2. These observations

suggest that incorporating geometry and data helps gener-

alization. Finally, in Sec. 4.3, we show that the multi-view
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Birds Buildings Rabbit Detergent

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

LLFF 18.65 0.51 0.44 15.13 0.39 0.40 17.59 0.41 0.49 14.73 0.49 0.48

NeRF 15.09 0.29 0.71 17.68 0.51 0.33 18.24 0.40 0.59 9.73 0.32 0.64

Ours 23.36 0.65 0.35 17.22 0.57 0.29 18.79 0.48 0.49 16.75 0.48 0.48

Ours(ft) 24.97 0.72 0.27 19.71 0.70 0.18 18.06 0.55 0.40 16.97 0.60 0.37

Table 1. Quantitative Results: Quantitative results on DTU dataset, reported in PSNR, SSIM (higher is better) and LPIPS [60] (lower is

better). Ours(ft) indicates fine-tuning. We outperform all baselines consistently. SRF without fine-tuning already outperforms baselines,

fine-tuned SRF produces even sharper geometry, appearance, and far fewer artifacts than all baselines.

Figure 6. Meshing Predictions. Given only 10 images of a scene,

SRF can produce colored meshes from the resulting density. We

posit that SRF implicitly learns 3D reconstruction and view syn-

thesis jointly from only 10 views even when no 3D supervision

was provided during training.

structure of SRF naturally generalizes, even when learned

on a single object for a limited time.

Data. We conduct our experiments on the publicly avail-

able DTU Multi-View Stereopsis Dataset [1]. It consists of

124 different scenes, including very diverse objects (E.g.,

buildings, statues, groceries, fruits, bricks, etc.). We split

the scenes into test, validation, and training splits (see ap-

pendix for more details). We randomly sample 10 images

of a scene as input to SRF. For evaluation and training pur-

poses, we sample a different view as the target view.

Baselines We contrast our approach with NeRF [34].

NeRF requires scene-specific optimization. We use publicly

available code to train NeRF models for each scene using 10
input images. Training a scene-specific model took 2 days.

Once trained, novel views can be synthesized. We also

compare to an off-the-shelf publicly available LLFF [33]

model. Like ours, LLFF allows for generalization to test

scenes1. Instead of a continuous 3D representation, refer-

ence images are sliced into multiple depth layers. For syn-

1We did not have access to the training code of LLFF. Therefore, we use

an off-the-shelf model provided by the authors. It is possible that results

may improve by fine-tuning the LLFF model on DTU dataset.

thesis of a target view, neighboring reference images are

warped into the target view and blended together.

4.1. Unconstrained Generalization

In this experiment, we target to learn a model that is

able to perform novel view synthesis on any unseen test

scene. For this, we sample a random train (109 scenes),

test (10 scenes), and validation (5 scenes) split of the full

DTU dataset (see appendix). We train our method until val-

idation minimum is reached for around 3 days on a single

NVIDIA Quadro RTX 8000.

Given only 10 views of a novel scene at test time, our

method is able to create sharp objects in the rendered novel

views and outperforms baselines. We show qualitative anal-

ysis in Figure 5 and quantitative analysis in Table 1. Our

approach generalizes to new scenes instantly and can oper-

ate on sparse and arbitrarily spread-out multi-views. Each

NeRF model takes 2 days for the scene-specific optimiza-

tion. Instead, our SRF can be learned from many scenes,

thanks to the architecture which emulates geometric stereo

matching. We find this to be key for novel view synthesis

from sparse data. Moreover, we can enrich the geometric

and learning concept by the idea of optimized scene rep-

resentations. For this, we fine-tune our model for a short

period of time. Not only does this result in sharper results

as compared to the baselines, but the optimization time is

also reduced from multiple days to a few minutes. We show

the effect of fine-tuning our method in Fig. 7 (b)-(d) and

also in Fig. 5. We observe that a NeRF model trained on

the sparse and spread-out views may also lead to degener-

ate results as shown in Fig. 7-(f). We refer the reader to the

appendix for more details.

Finally, we find that challenging BRDFs and reflective

regions can pose problems for our method based on stereo

matching. We observe that fine-tuning helps mitigate some

issues (Fig. 9). Introducing view-dependent modeling into

SRF, which we dropped in Eq. 2, may likely solve this issue

and is an interesting future work direction.

4.2. Meshing Predictions

In order to mesh the prediction, we evaluate SRF con-

ditioned on 10 images in a dense grid of points enclosing

the objects. SRF predicts color and density for each point.

We then threshold the density at the grid and run Marching
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Figure 7. Effect of Fine-Tuning our Method. Our method can reconstruct geometry and appearance on challenging scenarios as it builds

on classical stereo structure and is learned on many scenes. While pure NeRF struggles here (f), SRF generates reasonable result (e). We

further improve the results by fine-tuning with the test images. We observe that around 15 minutes to be a good trade-off between quality

and speed. Not only it results in sharper results as compared to the baselines, but it also reduces optimization time from 2 days to a minutes.

Figure 8. Natural Generalization Capability. We train SRF only

on a single object, a tractor, for as little as 30 min, and apply it

without fine-tuning to a microphone. It is apparent that geometry

and some color generalize even in this extreme setting, despite the

large differences in geometry and appearance between the tractor

and the microphone. We attribute this to the classical stereo geom-

etry build into our network by design.

Cubes [25] to obtain a mesh. For each vertex we find on the

mesh, we take its coordinates and input them to the SRF to

predict color and add it to the mesh. See Fig. 6 for a result.

4.3. Natural Generalization Capability

Previously, we found that incorporating geometry and

data helps generalization. Next, we validate that our ar-

chitecture naturally generalizes by design. We take a rad-

ical setup for this: we train on a single object (a synthetic

tractor [34]) for as little as 30 minutes and inspect novel

view synthesis of a very different object (a microphone from

NeRF data). We observe generalization despite large differ-

ences in appearance and geometry as shown in Fig. 8.

5. Discussion and Conclusion

We introduced Stereo Radiance Fields, a neural view

synthesis model designed to emulate components of clas-

sical multi-view stereo. Instead of predicting radiance and

color based on point-direction coordinates, we project each

3D point to multiple views, extract features, and process

them in pairs. This learns an ensemble of scores driven only

by a self-supervised rendering loss, that allow for computa-

tion of implicit correspondences. The process emulates fea-

ture matching in classical stereo within an end-to-end learn-

Figure 9. Limitation Our neural architecture of SRF is strongly

inspired by classical stereo matching. Modeling reflections and

texture-less regions is challenging. Fine-tuning SRF ameliorate

this issue, though does not totally overcome it.

able network for view synthesis.

Experiments demonstrate that SRF learns common

structure across multiple scenes. We train a SRF model

on multiple scenes from the DTU dataset, and show that

SRF generalizes, producing realistic images. Furthermore,

in contrast to prior work which requires dense views, we

use arbitrarily sparse spread-out 10 views as input. We

show that results further improve after 10-15 minutes of

fine-tuning on these target 10 views. Remarkably, in the

sparse view setting (10 views), our approach significantly

outperforms the SOTA methods, even when we train them

on the new scene for 2 days. Finally, we show that SRF im-

plicitly compute an interpretable 3D representation allow-

ing for colored meshing – without using 3D supervision.

In summary, SRF builds on classical multi-view stereo

and recent neural rendering ideas but combines them in a

unified end-to-end learnable architecture. We think the in-

terplay of classical geometric computer vision with neural

rendering is an exciting avenue, which deserves further ex-

ploration. Future work may extend them to model challeng-

ing BRDFs, and 4D space-time view synthesis of dynamic

scenes from in-the-wild samples that are inherently sparse.
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