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A generically observed mechanism that drives the self-organization of living systems is interaction
via chemical signals among the individual elements—which may represent cells, bacteria, or even
enzymes. Here we propose a novel mechanism for such interactions, in the context of chemotaxis,
which originates from the polarity of the particles and which generalizes the well-known Keller—
Segel interaction term. We study the resulting large-scale dynamical properties of a system of
such chemotactic particles using the exact stochastic formulation of Dean and Kawasaki along with
dynamical renormalization group analysis of the critical state of the system. At this critical point,
an emergent “Galilean” symmetry is identified, which allows us to obtain the dynamical scaling
exponents exactly; these exponents reveal superdiffusive density fluctuations and non-Poissonian
number fluctuations. We expect our results to shed light on how molecular regulation of chemotactic
circuits can determine large-scale behavior of cell colonies and tissues.

I. INTRODUCTION

Characterizing the emergence of macroscopic proper-
ties in colonies of prokaryotic [1, 2] and eukaryotic [3] cells
based on the complicated chemical interactions among
the individuals in the colony is a long-standing endeavor
in various areas of biology such as morphogenesis [4—6],
tissue growth and homeostasis [7], wound healing [8], and
cancer metastasis [9, 10]. A prevalent interaction in such
contexts is chemotazxis: the ability of bacteria and cells
to detect the changes in the concentrations of specific
chemical molecules in their surrounding media [11] and to
respond to them by adjusting their polarity or direction
of motion [12-14]. Although the detailed mechanisms
responsible for chemotaxis in cells are rather complex
[15-21], the phenomenon seems to emerge generically in
nature. Moreover, it has also been observed in smaller
and more primitive systems such as enzymes [22-24] and
synthetic catalytically active colloids [25-31]. Chemotac-
tic interactions are typically long-range as the transmit-
ting molecules decay very slowly and, therefore, it is not
surprising that these interactions share some of the fea-
tures of other long-range interactions such as the electro-
static and gravitational ones. For instance, it has been
shown that the self-organization of chemotactic species
resembles the formation of galaxies in astrophysics, as
well as the large-scale vortices in two-dimensional turbu-
lence [32, 33].

Chemotactic systems are often studied through vari-
ous formulations of the Keller—Segel (KS) model [34-36]
which are phenomenological mean-field approximations
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that model chemotaxis as a directed motion guided by
chemical gradients [35, 37, 38]. These models and their
stochastic variations [39-42] have proven useful in study-
ing the chemotactic collapse of bacteria [43, 44] and col-
lective behavior of active colloids [45, 46]. Other general-
izations of these models, which incorporate the polarity
of the active particles and their active alignment, have
been used to study collective properties of synthetic ac-
tive Janus particles [47, 48] as well as chemotaxis for
trail-following bacteria [49, 50].

Owing to the large number of degrees of freedom usu-
ally involved in a colony, coarse-grained descriptions are
particularly useful in studying these and more general ac-
tive systems [51, 52]. In cases where the correlations are
long-range and collective phenomena emerge, standard
field-theoretical approaches have been applied to a wide
range of models of biological or synthetic colonies such as
flocks of birds, schools of fish, aggregations of molecular
motors, and dividing chemotactic particles [53-57]. Sim-
ilar approaches have been used to study nonequilibrium
field theories with applications to active phase separation
and motility-induced phase separation [58-62].

In the present work, we investigate the macroscopic
properties of a collection of particles with generalized
chemotactic response taking into account both the KS
response and the polarity of the particles induced by
changes in the chemical field. We discuss the possible
microscopic origin of this polarity-induced chemotaxis
in a biological context, which is based on a simple toy
model and rigorous derivations using mean-field equa-
tions. Aiming to focus on the critical state of the sys-
tem, where the fluctuations are most relevant as their
spatial correlation length diverges, we employ the Dean—
Kawasaki (DK) approach [63, 64] to account for the sta-
tistical correlations that were neglected in the mean-
field KS equation, by introducing noise in our descrip-
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tion. The resulting stochastic field equation that gov-
erns the particle density predicts the existence of a dis-
persed phase of the system and a collapsed one, sepa-
rated by a critical state. The critical dynamics is then
analyzed using a dynamical renormalization group (RG)
treatment [65-67] to obtain the emergent macroscopic
properties of the chemotactic system based on the inter-
actions between its individuals.

In these stochastic field equations, we identify an emer-
gent symmetry, which turns out to coincide with the
“Galilean” symmetry known in the apparently unre-
lated context of the Kardar—Parisi-Zhang (KPZ) equa-
tion [66, 68, 69]. This symmetry is realized when the
diffusion of the chemical signals is considerably faster
than that of the particles, such that the chemical sig-
nals emitted by particles can diffuse efficiently across
the entire system before the particle themselves dis-
place significantly or the chemicals possibly degrade, ef-
fectively establishing long-range interactions among the
constituents. This symmetry, which we expect to be re-
alized in a wide class of long-range interacting systems,
including gravitational and electrostatic settings, boosts
our understanding of the formal structure of the field-
theoretical description of stochastic dynamics of the sys-
tem by providing nonperturbative relationships among
correlation functions (i.e., Ward identities) that yield ez-
act scaling exponents.

The analysis of the scaling properties of the stochas-
tic evolution equation is performed both with a noncon-
served noise, relevant in the case where the number of
particles is conserved only on average, and with a con-
served noise. In both cases, the exact exponents we ob-
tain predict superdiffusion at the critical state, while the
magnitude of the fluctuations of the particle number de-
pends on the nature of the noise: a conserved noise sup-
presses these fluctuations and the distribution becomes
hyperuniform, whereas a nonconserved noise enhances
the fluctuations and leads to giant number fluctuations.
These scaling properties are observed at the stable one-
loop RG fixed points.

This work highlights the crucial role of the polarity-
induced chemotactic mechanisms which are often over-
looked in theoretical models. Although these may stem
from subleading contributions at the level of the single
isolated particle, we show that one such term becomes as
relevant as the KS term in the presence of many particles.
Moreover, we show that this polarity-induced nonlinear-
ity is a purely nonequilibrium interaction, which indicates
that the system does not reach an equilibrium state in
the long-time limit. It therefore stands in contrast with
the traditional KS chemotactic drift which is essentially
an equilibrium-like interaction, as it is derived from a
potential [32].

The rest of the paper is organized as follows: In Sec. II,
we first provide a mechanistic view of the biological con-
text of our work and the phenomenology arising from the
polarity-induced chemotactic interactions we consider.

In Sec. III we use the DK approach to obtain the ex-

act equation governing the instantaneous particle density.
This is then phenomenologically extended to account for
the case where the chemotactic response of the parti-
cles can be activated or inactivated by adding a linear
growth term to the DK equation. By expanding the DK
equation around a state with uniform density, we then
obtain the Langevin equation of the fluctuating parti-
cle density at this mesoscopic scale, and we highlight its
Galilean invariance. In Sec. IV the scaling behavior of
this Langevin equation is examined, and is supported by
the RG calculations. We present the features of the re-
sulting RG flows in Sec. V and then discuss the scaling ex-
ponents, which are obtained exactly due to the Galilean
symmetry. In Sec. V C, we discuss the emergence of the
Galilean symmetry and its implication in this work. Fi-
nally, we present the conclusions and outlook of this work
in Sec. VI. There are eight appendices that contain ad-
ditional information regarding two toy models in which
the effect of the polarity is illustrated (Appendix A), the
most relevant aspects of the moment expansion support-
ing the results discussed in Sec. IT (Appendix B), the va-
lidity of detailed balance in our chemotactic field theory
(Appendix C), the gradient expansion and power count-
ing (Appendix D), the details of the RG calculations (Ap-
pendices E and F), the analysis of the RG flows in vari-
ous spatial dimensions (Appendix G), and the thorough
discussion of the moment expansion, anticipated in Ap-
pendix B, for a more general chemotactic model includ-
ing self-propulsion and nematic alignment of the particles
(Appendix H).

II. POLARITY EFFECTS IN GENERALIZED
CHEMOTAXIS

In this section, we present the phenomenology of the
polarity effects in chemotaxis within a biological context,
which leads to a generalization of the KS equation of
motion for a Brownian particle in Eq. (4).

The chemotactic response of a single cell in a medium
with a concentration field ®(x,¢) is commonly described
by a drift velocity vks = 1 V® first introduced by Keller
and Segel [34, 35]. This biased motion can be a result
of temporal sensing mechanisms [16, 17], as observed in
prokaryotes such as E. coli, or spatial sensing [3, 13, 21],
as observed in eukaryotes.

We propose an independent mechanism by which the
cell polarity can influence the chemotactic response. To
illustrate this mechanism, we consider a chemotactic cell
for which the local distribution of the chemical sensory
units determines the feedback onto the motility machin-
ery. For instance, it has been reported that the distri-
bution of the chemical sensing units on the membrane
of neutrophils changes with the chemical gradient in the
surrounding [70]. In such cases, one can assign a unit
vector n to each cell, henceforth called the cell polarity,
that characterizes the possible anisotropy in the response
of the cell to the chemical gradients. This polarity can,



FIG. 1. Schematics of a system of chemotactic particles. The
particles, shown as light green blobs, secret chemicals that are
pictured as white dots. The red arrow at each point represents
the chemotactic velocity corresponding to the wks term in

Eq. (4). The dark green arrows show velocities stemming
from the polarity-induced mechanism and correspond to the
vpi term in the same equation.

for instance, result from asymmetries in the shape of the
cells or in the distribution of the sensory units present on
the surface of the cell. The overall movement of the cell is
then influenced by the instantaneous direction of the cell
polarity, which contributes with v, = von - VV®. to the
local cell velocity. Note that this expression may be seen
as the chemotactic equivalent of the electrostatic force
acting on a dipole in an external electric potential, gen-
eralizing the KS “monopole” expression. For illustration
purposes, in Appendix A we present a minimal micro-
scopic model based on which the emergence of these two
effects can be explicitly derived by simple calculations.
The resultant of these two local responses to chemical
gradients, vks and v, determines the drift velocity of
the chemotactic particle as

dr
&:'UKS""Up_Fg

= VP +1von-VVO + 5,

(1)

where we have also included a noise term £ with vanish-
ing mean and variance (&;(t)§;(t')) = 2Dd;;0(t — t’) to
account for the Brownian motion of the particle.

We now focus on the dynamics of the cell polarity,
n. In general, the polarity of an isolated single cell un-
dergoes a Brownian motion, and is randomized over the
time scale of D, !, where D, is an effective reorientation
rate (akin to the rotational diffusion coefficient), which
in our description represents the dominant mechanism
for reorientation of the cell. This can be due to shape
changes, cell polarity and cytoskeleton re-organization,
solid rotation, etc. In addition to this random process,
it is also expected that a cell with many chemosensory
units undergoes a polarity change in response to an ex-
ternal chemical gradient. This can be achieved through
shape changes, alignment via reorientation, or redistribu-
tion of surface receptors [12, 13]. This form of response in

polarity can be described by an effective angular velocity
w=xnx Vo, (2)

which is characterized by the polarity coupling y, as
demonstrated by the analysis of the representative toy
model presented and discussed in Appendix A.

Note that, from Eq. (2), the polarity alignment hap-
pens over a time scale ~ (xV|®|)~!. If this time scale is
shorter than the reorientation time scale D7, a net bias
in the average polarity of the cell along the direction of
the gradient emerges beyond the polarity randomization
time scale, which reads (see Appendix B for a detailed
derivation):

(n) ~ X vo. (3)

Accordingly, by averaging the equations of motion for the
position and for the polarity over time scales longer than
the reorientation time and inserting Eq. (3) in the polar
term in Eq. (1), we obtain the following expression for
the cell velocity

dr Vo X
E = V]Vq) + 6Dr

V(V®)? + ¢ (4)

We observe that the two terms in Eq. (4) depend dif-
ferently on the properties of the chemical gradient vec-
tor field, as schematically represented in Fig. 1. Note
that in this subsection we have only provided a heuristic
derivation of these terms; a more systematic analysis is
presented in Appendix B.

IIT. STOCHASTIC MODEL FOR
GENERALIZED CHEMOTAXIS

In this section, we derive a stochastic field descrip-
tion for the dynamics of a system of chemotactic par-
ticles in d spatial dimensions with both the KS and the
polarity-induced drift terms. In order to incorporate fluc-
tuations into the description, we start from Eq. (4) and
implement the Dean—Kawasaki (DK) approach to obtain
a Langevin equation for the instantaneous particle den-
sity (denoted by C) of the self-chemotactic system. We
then phenomenologically extend this equation to include
the possibility of particles switching between active (i.e,
responsive to the chemical fields) and inactive states. Fi-
nally, we expand the extended DK equation around a
uniform particle density Cy, which represents a homo-
geneous state, and obtain a Langevin equation for the
fluctuations of the particle density. We then discuss the
symmetry properties of the resulting dynamics, and the
different states of the system that it describes.



A. Stochastic conserved evolution equation for
generalized chemotaxis using the Dean—Kawasaki
approach

To obtain the dynamics of an assembly of chemotactic
cells starting from their microscopic dynamics as given
by Eq. (4), one can use the DK approach [63, 64] and
derive the exact stochastic dynamics of the instantaneous
density field defined as

C(x,t) =Y d(x—r,), (5)

where r, indicates the position of the a-th particle
of the assembly. The exact Langevin equation for C
(or a smoothed version of it obtained upon coarse-
graining [71]) is then given by the continuity equa-
tion [63]:

9,C(x,t) + V - Ipk(x,t) = 0. (6)

The instantaneous particle current Jpkx, which encom-
passes the diffusion of the particles as well as the chemo-
tactic interactions among them, is given by

Jox = —DVC(x, 1) + C(x, 1) {Vlvé + gjjx V(Vci))2}

+ 1/ C(x,1) &(x,1). (7)

Note that the microscopic noise £(¢) in Eq. (4) has led
to the Gaussian noise field £(x,t) in the particle current

(we have kept the same notation for simplicity), with
(€(x,t)) = 0 and

(&i(x, 0)&(x, 1)) = 2D6;;6%(x — x)o(t —t'), (8)

where D is the particle diffusion coefficient.

We now consider the dynamics of the chemical field ®.
In a self-chemotactic system—which is the focus of our
work and is defined as a system of particles that produce
and/or consume chemicals which they chemotactically
respond to—the instantaneous chemical field i)(x, t) is
continuously created by the diffusing chemical molecules
that the particles release. The concentration of these
chemicals is thus governed by a diffusion equation where
the instantaneous particle density C(x,t) is the time-
dependent source. Due to their size difference, the
diffusion constant of the chemical molecules is often
102 — 103 times larger than that of the particles secreting
them [72, 73]. We hence assume that the chemical field
P instantaneously reaches the steady-state profile corre-
sponding to a given C(x,t) which is therefore governed
by

(-V2 4+ &2) &(x,1) = C(x,t), (9)

where k1 sets an effective screening length. This length
scale is determined by the competition between the diffu-
sion of the chemicals and a decay rate that is either due

to the degradation of the chemical signals, in which case
the length scale is typically much larger than the sys-
tem size, or out-fluxes at the system boundary, in which
case it will be comparable to the system size. It is worth
mentioning that in addition to the effect on sensing and
motion, the polarity of the particles can influence the
production of the chemicals [47]. Such effect will, for
example, lead to a depolarization effect akin to that ob-
served in dielectric materials [74]. To a good approxima-
tion, the consequence of the anisotropic chemical release
can be taken into account via a renormalization of the
relevant parameters. Therefore, this feature is ignored in
the current study for simplicity.

Finally, we note that when the chemical field ® is
governed by Eq. (9), the KS contribution to the parti-
cle current (7) can be derived from a free energy func-
tional [32, 63], i.e.,

Ao 0FKS | U2X
J = -(CV—=
DK ¢ 6D,

OV(VE)? + VEE(x, 1),
(10)

with the functional

Fxs|C] = D/ddxélogé'— %/ddxé‘i’7 (11)

whereas the contribution from the polarity-induced
mechanism (the g3 term in Eq. (7)) cannot be derived
from such a functional (see Appendix C). This means
that the KS part of the current is an equilibrium-like con-
tribution, and, together with the corresponding noise, it
satisfies the condition of detailed-balance. On the other
hand, the contribution from the polarity-induced mecha-
nism for chemotaxis introduces a genuine nonequilibrium
interaction between the particles .

B. Extension to the nonconserved case with linear
growth term

In the DK approach, the system under consideration
has a constant number of particles and therefore the cor-
responding stochastic field equation, Eq. (6), takes the
form of a conservation law. This description, however,
does not take into account the possibility for changes in
the chemical activity of the particles. It has been ob-
served that some chemotactic particles, such as fibrob-
lasts [75], can switch between active and inactive states.
We include this possibility within our model and phe-
nomenologically extend the DK equation by introducing
terms that do not conserve the number of particles.

The microscopic processes that activate and inactivate
the chemotactic response of the particles can be repre-
sented via the stochastic process

ACTIVE &= INACTIVE, (12)
A/



where X and ) represent the corresponding rates. Here,
we have assumed that the inactive particles are abun-
dant and their concentration remains effectively con-
stant. This is a reasonable assumption for the case of
fibroblasts, for example, which are activated only in re-
sponse to local inflammation or cancerous activity [76].

Using a system size expansion approach [77, 78], we ob-
tain the stochastic field equation corresponding to these
processes. Combining this with Eq. (6), we find the re-
quired phenomenological extension as !

8C(x,t) + V- T =—\ [é(x, £) — 00}

+ \/mn(xvt)7

where we have defined Cy = X'/ and the white noise 7
is characterized by

(13)

(', ) =228 (x = x) 8 (t— 1),  (14)

and assumed to be uncorrelated with &€(x,t). Note that
for A > 0, the growth term in Eq. (13) tends to drive the
system towards a homogeneous configuration with uni-
form density Cy, which can be considered as the homeo-
static state of the system.

C. Stochastic field equation for the fluctuations of
particle density around a homogeneous state

Following the previous section, we now consider sys-
tems where the particle density can be written as fluctu-
ations around the uniform value Cj, and aim to obtain
the equations that govern the dynamics of the density
fluctuations. In particular, we assume

C(x,t) = Cy+ p(x,t), with |p(x,t)] < Cy (15)
where p represents the density fluctuations around Cj.
Note that p does not need to stay positive and the as-
sumption of small fluctuations ensures the positivity of
the total particle density C' at all times. In order to
study the dynamics of p, both Eq. (9) for the chemical
concentration field and the extended DK description of
the particle density given by Eq. (13) should be expanded
using Eq. (15).

Similarly, the chemical field is expanded as ®(x,t) =
Dy + ¢(x,t) where Py is the base value of the chemicals
maintained by the uniform part of the particle density,
and ¢(x,t) represents the chemical fluctuations caused

1 It should be noted this description is phenomenological and valid
at the level of a density field which is coarse-grained over a spa-
tial region but keeps track of the fluctuations (often denoted by
C). For detailed discussion see Refs. [32, 71]. For the sake of sim-
plicity, we have kept the same notation for both instantaneous

density of the DK approach and this coarse-grained density field.

by the fluctuations of the particle density. Substituting
this in Eq. (9) gives

(—VQ + I€2) (I)O = C() 5
(=V2+K2) ¢ = p(x,1),

(16a)
(16b)

where the first equation has a uniform solution ®y =
k~2Cy. Any gradients in the chemical concentration can
thus only be due to the chemical fluctuation field ¢. Tak-
ing the limit where the characteristic length scale for vari-
ations in the system is much smaller !, which corre-
sponds to situations where the chemical signals do not
decay considerably within the system size or observation
scale, gives the Poisson equation

~V26(x,1) = plx.1). (17)

To expand the extended DK equation (13), we first
rewrite the DK current (7) by using Eq. (15), which yields

Ik = —DVp+ Coi Vo + Co 6”;" V (Vo) + 11pVe
Vo X 2 14
1+ — .

(18)

Note that as a result of the Poisson equation (17), both
V (V¢)® and pVé have similar scaling as p2 (in the
dynamical equation), while pV (V¢)? scales as p? and,
henceforth, will be discarded as a higher order term for
small density fluctuations (for a detailed discussion of
this approximation see Sec. V C). Substituting the re-
sulting expression for Jpk into Eq. (13) and expanding
the remaining terms gives the following extension of the
stochastic KS model

(0 = DV? +0) p(x,t) = = iV - (pV)
Lo (19)
—12Vi(Ve)™ +((x,1),

where in terms of the microscopic parameters we have

Vo X
6D,

o=A—=Covi, pr=v1, p2=0C (20)
Moreover, the noise field {(x,t) is obtained by keeping
only the additive parts of the original noise fields € and 7
when expanding the density around Cj (see the remarks

below), and reads as

C(X7t) = _\/CTO V-S(X,t) +

The corresponding correlations are calculated as

2Cy n(x,t). (21)

(C(x,1)¢C(x 1)) = 2(Dy—D,V?) 6% (x—x")6(t—t'), (22)

where Dy = 2Cy A and Dy = CyD in terms of the micro-
scopic parameters.

The stochastic field equation (19) is the main result
of this section, and in the rest of the paper we will ana-
lyze its mathematical structure and scaling behavior. A



few pertinent remarks regarding this equation shall be
mentioned below.

First, for Dy # 0 the noise does not conserve the num-
ber of particles and this applies to the cases where num-
ber fluctuations are allowed (see discussion in Sec. ITIB).
When Dy = 0, on the other hand, the resulting con-
served noise induces fluctuations only in the particle cur-
rent Jpk and therefore p is locally conserved, as it hap-
pens in systems with strictly fixed number of particles,
e.g., active colloids.

Second, we note that in addition to the additive noise ¢
defined in Eq. (21), the expansion of Eq. (13) contains
also multiplicative noise terms with correlations propor-
tional to (positive) powers of p. In Sec. IV, we show
that these multiplicative terms are irrelevant in the RG
sense and can be neglected when analyzing the critical
behavior of the system. It should be emphasized that
the assumption of Cy # 0 is crucial here as it allows the
expansion around the additive noise. For Cy — 0, the ad-
ditive part of the noise vanishes and, consequently, the
multiplicative terms cannot be discarded anymore. The
investigation of this case and the possible transition to
an absorbing state of the system is left for future work.

D. Galilean symmetry

Before studying the critical regime of the stochastic
field equation (19) derived in the previous sections, we
first discuss here its relevant emerging symmetry. Con-
sider the Galilean transformation defined by

(23a)
(23b)

¢,(X’ t) = ¢(X + (lu’l - zﬂZ)twvt) —W-X,
p,(X, t) = p(X + (:ul - 2/-]’2)twvt) ’

where w is an arbitrary d-dimensional vector. Under this
transformation of the fields, and noting the Poisson equa-
tion (17), the stochastic field equation (19) remains in-
variant. This symmetry plays a crucial role in our follow-
ing analysis, since it constrains the nonlinear couplings
that can be generated by the RG flow and yields an ex-
act identity between the critical exponents, as we discuss
in the following. Although this symmetry is not present
at the microscopic level, we emphasize that it emerges
when the diffusion of the chemical signals is considerably
faster than that of the particles, and when the screening
length set by the decay rate of the chemicals is larger
than the characteristic length scales in the system, lead-
ing to Eq. (17). Note that this symmetry remains valid
since the noise is delta-correlated in time [66].

E. Dispersion, collapse, and the critical state

The competition between the KS and the polarity-
induced chemotactic interactions, and the linear growth
terms, determines the properties of the fluctuations at
long times. This competition is reflected in Eq. (19)

Collapséd Phase

FIG. 2. Phase diagram of the chemotactic model described
in Eq. (19). The control parameter o delimits two phases:
a dispersed phase for which the density fluctuations around
Cy are exponentially suppressed when o > 0, and a collapsed
phase when o < 0, in which particles are attracted to regions
of high concentration. When o = 0, the system is critical and
its long-time and large-scale behavior is described using the
renormalization group framework developed here.

through the sign of the parameter o, which within our
microscopic description is given by ¢ = A — Cyvy: when
o > 0, or equivalently v; < Cy 1)\, the density fluctua-
tions p tend to decay exponentially with time, whereas
for o < 0, or v; > Cgl)\, the fluctuations tend to
grow. Microscopically, these relationships show that
when chemotaxis is relatively weak, modulations of the
density profile around the homogeneous state are auto-
matically smoothed out and the system returns to the
uniform profile, whereas for large chemotactic interac-
tions the perturbations are amplified, resulting in a col-
lapsed state [79], see the phase diagram on Fig. 2.

When o vanishes, on the other hand, the density fluc-
tuations become long-lived, and the correlation length
of Eq. (19), which is set by \/D/o in the Gaussian ap-
proximation, diverges. Therefore, the critical state of
this system is reached by fine-tuning ¢ to zero which, in
the microscopic description, can only be done for v1 > 0
when A > 0. Note that the connection between the cou-
pling constants in the coarse-grained theory with their
microscopic values is, however, nontrivial and should be
established via a renormalization procedure. One can, in
general, consider Eq. (19) to hold at the macroscopic level
with the parameters having arbitrary values independent
of each other.

IV. RENORMALIZATION GROUP ANALYSIS

In this section we investigate the critical state of the
system (o = 0) by first analyzing the scaling properties
of the particle density and then employing RG techniques



to study the RG flow of the coupling constants due to the
coarse-graining and rescaling of the theory. This section,
together with Appendix E, contains the technical details
of the RG analysis for the interested reader. It can be
skipped if the reader wishes to focus on the important
results, which are presented in Sec. V.

The critical state with 0 = 0 lies in between the stable
dynamics with o > 0, where p decays to zero exponen-
tially in time, and the unstable region where p grows ex-
ponentially. In both cases, a mean-field treatment is suf-
ficient to understand the macroscopic physics beyond the
correlation length ~ y/D/o. On the other hand, in the
critical region the correlations are long-ranged and the
fluctuations in the particle density are long-lived, hence
the fluctuations in the particle density interacting via the
chemotactic couplings determine the macroscopic prop-
erties. This will also hold when the decay length as set by
o is considerably larger than the system size. RG tech-
niques can then be utilized to gain valuable information
about the macroscopic properties and the corresponding
phase transitions for different values of the chemotactic
couplings.

A. Scaling analysis and upper critical dimensions

At the critical point, the correlation lengths of the
solutions of the nonlinear Langevin dynamics Eq. (19)
diverge and therefore the theory becomes scale invari-
ant [67). We consider the scaling behavior of the criti-
cal solutions under a change of the spatial and temporal
scales given by

x'=x/b, and t =t/b*, (24)

where b > 1 is the scaling factor, and a corresponding
scaling of the particle density fluctuations and chemical
fluctuations as

pr=p/bx,

respectively. We have introduced three scaling expo-
nents: Y, often known as the “roughness” exponent in
the context of surface growth dynamics?, the dynamic
exponent z, and the chemical field exponent ¥. These
scaling exponents are not fully independent due to the
relationships between the physical variables of the sys-
tem: in our case, the chemical exponent 1) is related to
the roughness exponent x by the Poisson equation (17),
which yields

and ¢ = ¢/b", (25)

Y=x+2. (26)

Furthermore, the Galilean symmetry, Eq. (23), imposes
another exponent identity: ¢ scales as w - x, which yields

2 Note that one could alternatively introduce Fisher’s anomalous
exponent 7, with x = —(d + 1)/2 in the conserved case and
X = (2 —d —n)/2 in the nonconserved case.

1 = 2 — z if the the nonlinearities p; 2 are taken to be
dimensionless, which is consistent with z + x = 0, since
we have ¢ = x + 2 (see Sec. VB for more discussion).

In the absence of the nonlinear terms in Eq. (19), the
values of the exponents introduced above can be obtained
by requiring the invariance of the equation under the
change of spatial and temporal scales (24). Depending on
whether the noise is conserved (Dy = 0) or nonconserved
(Do # 0), we obtain the following Gaussian dimensions
for the density (fluctuations) field:

d
X" = —3 for conserved noise, (27a)
non __ 2—d f d .
Xo™" = —5—, for nonconserved noise, (27b)
and the dynamic exponent takes the value
zo =2, (27¢)

in both cases. Based on these engineering dimensions, a
dimensional analysis reveals that with a conserved noise,
the nonlinear terms p; 2 scale as o b2=/2 at the Gaus-
sian fixed point and hence grow upon successive applica-
tions of the rescaling procedure if d < di°" = 4. For the
nonconserved noise, on the other hand, the nonlinearities
scale as o< b3~%/2 at the Gaussian fixed point and grow in
d < dy°" = 6 spatial dimensions. Accordingly, below the
critical dimension d. the nonlinearities 11 2 are relevant
in determining the scaling behavior of the system and,
therefore, need to be examined via the RG analysis. (A
systematic discussion based on power counting is given
in Appendix D.)

As the final remark, we turn to the scaling properties of
the noise terms and note that in the presence of a noncon-
served noise (Dy # 0), the conserved noise has a scaling
dimension equal to —2, and is therefore irrelevant and
can be discarded from the analysis of the critical state.
Furthermore, because of the scaling of p determined by
Eq. (27), the multiplicative noise terms with correlations
proportional to p™ have an engineering dimension given
by —nd/2 in the conserved case, and n(1 — d/2) in the
nonconserved case. Such terms are therefore irrelevant
at the upper critical dimension in both cases and this
justifies discarding them from Eq. (19) in the analysis of
the critical regime.

B. Renormalization group flow equations

Below the upper critical dimension d., the nonlinear-
ities in Eq. (19) are relevant, and we implement a per-
turbative momentum-shell renormalization group proce-
dure [65-67] to study the critical behavior of the chemo-
tactic particles. This procedure is conveniently imple-
mented in the Fourier space, where upon performing
Fourier transformations according to

p(x,1) = /k etk ) (28)



with k = (k,w) and [; = [dwd?k/(2r)*!, and using
Eq. (17) to represent ¢ in terms of p, Eq. (19) reads as

p() = Go(R) [¢<;;)+ [ roticanti— @] 29)

Here we have introduced the bare propagator Gg:

Go(k) = (0 —iw + Dk?) ' = —]i— (30)

and the bare (chemotactic) interaction vertex Ty as:

o (k-q k- (k—q) k’q- (k- q)
FO(k’q)_Ql( & (k—q)? )_m a*(k —q)?

- . (31)

Note that the vertex is symmetric with respect to the two
in-coming legs: T'o(k,q) = Tg(k,k—q). In addition, we
also define the bare dynamic correlation function as

No(k) = 2(Dy + k2Dy)|Go(k)|? = —<e—0——. (32)

In the standard procedure [66, 67], the scale-invariant
behavior of the system when the nonlinearities are rele-
vant (i.e., below d..) is captured by using perturbative RG
techniques. A series expansion of Eq. (29) in terms of the

k,w
— - +4—4-£l-<-

y 3

k,w -k,-w
< — = <o +2
k/2+q
X - —<-<+4 +4 +4
k/2—-q

FIG. 3. One-loop Feynman diagrams describing the renor-
malization of the propagator G (top), the dynamic correlation
function A (centre), and the vertex function T' (bottom) to
the leading order.

couplings (17 2 is constructed according to the Feynman
diagrams in Fig. 3. In the first step, the loop integrals
that appear in the perturbation series are computed by
integrating out the fluctuations whose wavevector k lies
within the momentum shell |k| € [A/b, A], where A is
the cutoff set by the microscopic length-scale of the par-
ticles. This step corresponds to coarse-graining of the
short-distance fluctuations. In the second step, the vari-
ables are rescaled in a similar fashion to the mean-field
case, so that the original cut-off A is restored and the
same Langevin equation (29) with renormalized (i.e., ef-
fective) coupling constants holds. Choosing an infinitesi-
mal scaling parameter b = e’ with £ — 0 casts the coarse-
graining procedure into a differential form, which, in the
case of the conserved noise, gives the following one-loop
RG flow equations (see Appendix E for details)

Opo = [24+ d + 2x] o,
Oppin,2 = [z + x] p,2,

(33a)
(33b)

oD — {z —2— (a11Uf + a12Uh Uz + a22U22)}D7
(33¢)

851)2 = [72 —d +z— Z)d DQ, (33d)
with coefficients a1; = 3/4 — 3/(2d), a12 = 2+ 3/d —
6/(d + 2), aza = 1 —4/d. Here, we have defined the
combined dimensionless chemotactic couplings U12’2 =
1135 Dy KgA=* /D3 with Kg = 2/[(4m)¥/2T(d/2)].

We emphasize that the noise strength D, and the
chemotactic couplings pi2 are not renormalized in
Eq. (33) and only the diffusion coefficient D has a non-
trivial RG flow. For the noise term, one observes that
the diagrams contributing to its renormalization include,
at least, two bare vertices with external momenta k and
—k. In the limit (k/q) — 0 taken for the shell integra-
tion, each of these bare vertices has the expansion

k@?®  m k2 kY
FO(k7q)__u1 q4 + ( 2 +,u2> q2 +0 q )

(34)

which, upon multiplication, result in (k/q)* corrections
to the noise term. However, since the noise term scales
as (k/q)° in the nonconserved case and as (k/q)? in the
conserved case, we conclude that the corrections are sub-
leading and, hence, the noise is not renormalized in ei-
ther case. For the chemotactic couplings (2, on the
other hand, the Galilean symmetry (23) directly imposes
that (u1 — 2p2) is not renormalized as it is the combina-
tion that appears in the symmetry transformation (see
Appendix E4 for a discussion of the associated Ward
identity). In principle, the flows of u; and ps need not
be vanishing separately and the fact that they both do
not renormalize according to Egs. (33b) may only be a
one-loop result.

Rewriting Eq. (33c) in terms of the combined couplings



FIG. 4. RG flows in the U;-U; plane in d = 2 for conserved (left) and nonconserved (right) noise. The arrows represent RG
flows along rays passing through the origin, while the red solid lines are the hyperbolas of fixed points. Note that the U; axis
has runaway flows for conserved noise but it has stable fixed-points for the nonconserved noise. The U, axis shows stable fixed

points in both cases.

Ui 2, we obtain

0eU d 3
& =2— -+ *(aHUl? + CL12U1U2 + (7,221']22)7 (35)
Uy o 22

the solution of which traces rays with fixed Us/U; in the
U;-Us plane, as shown in Fig. 4. A similar analysis for
the nonconserved noise, as outlined in Appendix F, leads
to RG flows analogous to Eq. (33) and, upon introducing
the suitable dimensionless chemotactic couplings U7 5 =

113 5 Do K4A9=5/D3 ] they imply the flows

o U d 3
T2 3 D (00U + bioUiUs + booU2),  (36)
Ui 2 2

with coefficients b1y = 3/4 — 1/d — 3/[d(d + 2)], b1z =
24+6/d—9/(d+2), and baz = 1 — 6/d, which has the
same structure as Eq. (35).

V. RESULTS

This section addresses the outcome of the RG analysis
of the Langevin equation (19) by, first, describing the RG
flow diagrams that are obtained within our one-loop com-
putation and, then, discussing the exact exponents that
characterize the scaling laws of the critical system. The
role of the Galilean symmetry in obtaining the scaling
exponents is reviewed, with some final remarks regard-
ing possible symmetry-breaking terms in systems with
self-propulsion and nematic anisotropy.

A. Flow diagrams

The RG flows at one-loop order for the effective cou-
plings U 2, given by Egs. (35) and (36), are plotted in

Fig. 4 for d = 2. At this order of perturbation, the fixed
points of the RG equations for both conserved and non-
conserved noise take the shape of hyperbolas (red curves)
whose asymptotes (blue lines) mark transitions between
two different behaviors. The red arrows indicate RG
flows toward the stable fixed-point curves and, hence,
show regions in the parameter space whose macroscopic
behavior at criticality is described by the scaling expo-
nents that we discuss in the next section (see Appendix G
for the stability analysis of the fixed-point curves). The
blue arrows, on the other hand, show runaway flows away
from the Gaussian fixed point (red central dot). This run-
away behavior may be the indication of the existence of
a strong-coupling regime that cannot be captured by the
one-loop perturbative approach, the signature of an in-
adequate starting point for the RG analysis where Gaus-
sian power counting no longer applies, or, alternatively,
the existence of a first-order phase transition [67].

We have also analysed the RG flows in various spa-
tial dimensions, with the results summarized in Fig. 5.
Examining these flow equations (see Appendix G) shows
that there are stable fixed points located along the Us-
axis (i.e. with U; = 0) for all d. On the contrary, fixed
points on the Uj-axis (i.e. with Uz = 0) only exist in
d =1 in the case of conserved noise, and in d < 2.27 in
the case of a nonconserved noise (such that fixed-point
solutions for Eq. (36) with Us = 0 are available). The
existence of the stable fixed-points on the U;-axis with fi-
nite values of pp refers to macroscopic states with scaling
behavior that are not usually considered in the context
of KS systems, since the KS chemotactic interaction on
its own is observed to lead to the formation of singular
solutions [36, 80]. This highlights the role of the noise in
determining the macroscopic properties of an interact-
ing system. In d = 1, one finds that the hyperbolas
become fully attractive parallel straight lines and hence
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dimension d<1 d=1 d=d, d>d.
h ) Ny N BRI
shape g Z S
ellipse straight lines hyperbola straight lines hyperbola
FP li . . . .
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stability
Gaussian FP )
i i i i- i attractive
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phase - - es es es
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FIG. 5. The structure of the RG fixed points (FP) in various dimensions (for d = 2, see Fig. 4). Note that in d < 1, the basin
of attraction for the red curves is the whole plane while for 1 < d < d. the blue shaded regions show runaway flows. For d > d.,
the lines of nontrivial RG fixed points become repulsive (see Appendix G for the linear stability analysis).

generic scaling behavior is expected throughout the U;-
U, space. Note that d = 1 is a special case as the KS and
polarity-induced chemotactic interactions (p1 and pe in
Eq. (19)) become proportional to each other. Further-
more, the two hyperbolas of fixed points become straight
lines—coinciding with their asymptotes—at the upper
critical dimension d.. For d > d., the Gaussian fixed-
point is stable, with the hyperbolas of fixed-point mark-
ing possible phase-transitions to strong coupling regimes.
It should be stressed that in contrast to the exact scaling
exponents, the RG flows discussed here are only valid
up to one-loop in a perturbative expansion around the
upper critical dimension, while higher-order terms may
be needed in order to complete the picture of the flow
diagram.

B. Exact scaling exponents

We now focus on systems whose microscopic values of
Uiz lie in the basin of attraction of the lines of fixed
points described in the previous section. The scaling be-
havior of these systems is characterized by the critical
exponents x and z. For instance, for the long-time and
large-scale particle density correlations one has the scal-
ing form [66, 67)

(s ol )~ xR ) )

where F' is the scaling function, and exponents y and z
correspond to their (critical) values on the lines of fixed

points.

The first exponent identity, which follows from the
Galilean symmetry and the non-renormalization of (u; —
2u5) and is valid at all orders of the perturbative expan-
sion, reads:

24 x=0. (38)

This exact identity can also be checked at one-loop and
directly follows from Eq. (33b) (or Eq. (F1b) in the non-
conserved noise case). The second exponent identity is a
result of the nonrenormalization of the noise, as was dis-
cussed in Sec. IV B. In the case of a conserved noise, the
identity reads as z°°" — 2x°°™ = 2 4 d, which is obtained
by setting 9yDs = 0 in Eq. (33d). These relationships
yield the exact exponents for d < di°" = 4:

2O = X = (d+2)/3 (39)

in the case of conserved noise. A similar analysis for the
nonconserved noise shows that for d < d2°" = 6, the
exact values of scaling exponents are

Znon — 7Xnon — d/3 (40)

As a consequence of the Galilean symmetry and the non-
renormalization of the noise term, these critical expo-
nents are exact. Note that in both conserved and non-
conserved noise cases, the exact exponents obtained are
considerably different from their mean-field values, an in-
dication of the importance of the fluctuations, especially
close to a critical state.



To make a comparison with the case of simple diffusion,
it is convenient to introduce the exponent « that charac-
terizes how the mean-squared displacement depends on
time, namely, AL? = (x(t)?) ~ t* where

(41)

2
a=—.
z

Note that a« = 1 for diffusion. With the chemotactic
interactions, on the other hand, we have:

Y {6/(d+ 2)

6/d for nonconserved noise.

for conserved noise,

(42)

For both conserved and nonconserved noise, one has
a > oy = 1 as shown in Fig. 6, indicating that the
chemotactic interactions result in superdiffusion of the
density fluctuations in the colony. In fact, in the case
of nonconserved noise in d < 3 we have a > 2, indi-
cating an accelerated propagation of the density fluc-
tuations. This accelerated propagation can be under-
stood as a consequence of the long-range nature of the
chemotactic interaction: fluctuations in the density due
to the nonconserved noise influence the dynamics of the
whole system and can lead to such a rapid propagation.
This is not allowed in the conserved case where a noise-
driven fluctuation is suppressed locally due to particle
conservation. Note that the chemical field of each parti-
cle (governed by Eq. (17)) decreases faster with distance
in higher dimensions, resulting in a reduction in the ex-
ponent « with dimension. As Eq. (37) implies, one can
obtain this dynamic exponent in practice by measuring
the spatial spreading of the density correlations in time.
We can also probe the statistics of the fluctuations in
the number N of particles within a subregion of volume
V. While on average we have N = C,V, the scale of
fluctuations in N defined via AN? = ((N — N)?) is in-
fluenced by the anomalous dimension of the density fluc-
tuations as AN ~ pV. This yields AN ~ N” where

X

=1
y=1+7

(43)

Note that v = 1/2 corresponds to Poissonian fluctua-

tions. In the presence of chemotaxis, this exponent is
given by
(2/3)(1 —1/d) for conserved noise,
V= . (44)
2/3 for nonconserved noise.

For the conserved noise, v < 7§°™ = 1/2 denotes a hy-
peruniform density distribution. For the nonconserved
noise, one has y = 4"" = 2/3 < 4§°* = 1/2 + 1/d indi-
cating giant number fluctuations since y*°™ > 1/2. Note
that in both cases of conserved and nonconserved noise,
the chemotactic interactions have resulted in a reduced
value of the exponent v compared to its Gaussian value.
Notably, the number fluctuations in the nonconserved
case appear to be superuniversal, as the exponent v does
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FIG. 6. Exact exponents a (top) and v (bottom), which

characterize the anomalous diffusion and number fluctuations
(Egs. (42) and (44)) as functions of the dimension d, in the
case of conserved (green circles) and nonconserved (blue tri-
angles) noise.

not depend on the dimensionality of space. As the defini-
tion suggests, in experimental setups or simulations the
exponent y can be calculated by measuring the extent of
population fluctuations in subregions of the system.

C. Emergence of the Galilean symmetry

The RG analysis and the exact critical exponents that
we have derived in this section are a direct consequence of
the Galilean symmetry of Eq. (19) governing the dynam-
ics of the density fluctuations. However, note that neither
the microscopic dynamics in Eq (4) nor the full DK equa-
tion (6) is actually invariant under the symmetry trans-
formations (23) and the Galilean symmetry only emerges
at the macroscopic scale upon expanding the density in
the DK equation (see Section. ITTC). By assuming that
the density fluctuations p are sufficiently small compared
to the average density Cy (i.e., p < Cjy), one discards
the symmetry-breaking term V - (,ung(V¢)2) from the
expansion (which would appear in the Langevin dynam-
ics (19) if the full particle current (18) is kept) since this
term scales as p® and its coupling ps is also irrelevant
under RG (its engineering dimension is [us]o = —2 at
the upper critical dimension; see Appendix D). We note
that this is a common practice in constructing hydrody-
namic equations using a gradient expansion approach to
coarse-grain the microscopic dynamics.



From an RG perspective, the presence of the
symmetry-breaking term oc pg—albeit irrelevant—has
the potential to change the structure of the RG flows, as
it may generate relevant terms that break the Galilean
symmetry, if such terms exist. In the case of the
Langevin equation (19), a power-counting analysis shows
that the only relevant symmetry-breaking term is V -
(u4(V¢)2V¢) (see Appendix D). Accordingly, this o g
term cannot be safely discarded from the macroscopic
theory unless an additional symmetry shared by the
Galilean-invariant pq, po, and ps terms prevents its gen-
eration along the RG flow. We have been able to identify
such a symmetry which can be characterized by the fol-
lowing transformation of the chemical gradient:

V¢ = Vo +eVf(p) x Vo, (45)

where € is the transformation parameter, f is an arbitrary
function of p with Vf(p) = f'(p)Vp # 0, and X represent
the vectorial cross product. We note that the Poisson
equation (17) is invariant under this transformation since
V- (Vf(p)xVo)=V-(V x (f(p)V¢)) = 0. On the other
hand, the full DK current (18) (which includes also the
us contribution), from which the r.h.s of the Langevin
equations (19) is derived, transforms as

V-Jpk — V-Jpk + O(e?), (46)

while the possible additional current J;, = p4(V9)2Ve
due to the relevant term o u4 changes as

Vs = V-Ji+eV- (1a(Ve)’VF(p) x V) + O(?),
(47)

Equations (46) and (47) show that in the limit ¢ — 0,
the transformation (45) is an infinitesimal symmetry of
the Langevin dynamics with pq, pe, and ps couplings,
whereas the p4 term breaks this symmetry.

We note that this additional symmetry is related to the
fact that in the microscopic dynamics (4), both vy and
Vo terms are gradients of the corresponding chemical po-
tentials v ® and %(V@)% and therefore they represent
the effects of irrotational force fields. On the contrary,
the microscopic force V®(V®)? which eventually gives
rise to the py term (see Appendix H) is not the gradient
of any function and therefore has nonzero vorticity. In
principle, the transformation (45) excludes the possibility
of generating rotational force fields from coarse-graining
irrotational forces. We further corroborated this argu-
ment based on the additional symmetry by computing
explicitly the one-loop RG flows of the couplings in the
presence of the irrelevant pug term, which does not turn
out to generate the relevant py coupling at this order.

The identification of emergent macroscopic symmetries
is of crucial importance: in high-energy physics for in-
stance, it has led to the modern understanding of symme-
tries which were presumed to be fundamental [81], such
as baryon and lepton number conservation [82]. These
symmetries, rather than being fundamental, can in fact
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be seen as low-energy accidents, emerging as a conse-
quence of gauge symmetries. They emerge because the
only gauge-invariant operators that one can construct
within the standard model yield negligible contributions
at classical energy levels, although they are important at
higher energy. In our case, the irrelevant non-Galilean in-
variant p3 term, despite being present at the microscopic
level, flows towards vanishing values upon iterations of
the RG transformation. Since it cannot generate the rel-
evant 4 term, the Galilean symmetry emerges at the
macroscopic level and leads to the exact scaling expo-
nents obtained in this section.

VI. CONCLUDING REMARKS

In this work, we have introduced a novel mechanism
for chemotaxis induced by the polarity response of the
particles and have investigated how it affects the collec-
tive macroscopic dynamical properties of the system.

At the microscopic level, the polarity-induced mech-
anism that we have studied is expected to arise when
the cell can undergo a polarity change—achieved through
shape changes or redistribution of surface receptors—
in response to an external chemical gradient [12, 13].
This type of response is known to be prevalent in eu-
karyotic cells [3, 13], and reported in the context of
chemotactic response of chemically active colloids [47]
and enzymes [83]. A manifestation of this response can
arise in bacteria as well due to a coupling between the
asymmetric geometry and the spatial distribution of sen-
sors [49, 50].

Starting from the microscopic equations, we have de-
rived a mesoscopic mean-field description of these parti-
cles by averaging over the fast, orientational, degrees of
freedom, which upon implementing the noise term gives
the DK equation (6) for the full particle density. Focusing
on the limit of fast diffusion and slow degradation of the
chemical signals, which means the chemical field fluctu-
ations adapt immediately to the fluctuations of the par-
ticle density and obey a Poisson equation (17), we then
obtain the Langevin equation (19) for the particle den-
sity fluctuations by expanding the DK equation around
a uniform density Cy. In the resulting coarse-grained de-
scription, the polarity-induced chemotactic mechanism
u2V2(Vg)? appears to be equally relevant as the KS
term p1V - (pV@). Since ug, as opposed to i, is pro-
portional to the mean particle density Cy, we understand
that this relevant interaction becomes stronger in systems
with dense populations. We also show that, contrary to
the KS term, the polarity-induced interaction cannot be
derived from a functional, and hence represents a genuine
nonequilibrium term.

We demonstrate that the Langevin equation (19) is
invariant under the Galilean transformation given by
Eq. (23). Although broken at the microscopic level by
the presence of an irrelevant symmetry-breaking term,
this symmetry emerges at larger scales (see discussion



in Sec. VC).It is worth mentioning that equipped with
this symmetry, Eq. (19) could also be directly derived
from a systematic expansion in p and ¢ by including all
the relevant Galilean-symmetric terms, and can thus be
seen as the natural extension of the KS model preserving
Galilean symmetry.

As a result of this emergent Galilean symmetry, the
chemotactic couplings ;2 are not affected by the RG
flow, providing an exact exponent identity (see Eq. (38)).
With the nonrenormalization of the noise strength, these
findings enable us to obtain the dynamical scaling expo-
nents exactly whose values indicate superdiffusive propa-
gation of density fluctuations with non-Poissonian distri-
butions, either in the form of hyperuniform populations
(conserved noise) or exhibiting giant number fluctuations
(nonconserved noise), see Eqgs. (39) and (40) as well as
Fig. 6. The fixed points of the RG flows for the effec-
tive chemotactic couplings Uy o that (unlike the exact
exponents) are only one-loop results, represent a pair of
hyperbolas with identical scaling exponents throughout
(see Fig. 4 and Appendix G for details). The scaling
behavior described here is particularly relevant for po-
larizable particles and can be searched for by measuring
the scaling exponents, as outlined by Eqgs. (42) and (44)
and the discussion thereof.

The interplay between chemical signals and generic
growth processes of the particles, which in many cases
are asymmetrical processes accompanied by the polar-
ity of the cells [84, 85], adds another level of complexity
to the collective properties of growing colonies [57, 86—
88] which we plan to investigate in future works. Al-
though the growth of individuals is known to be limited
by conditions such as the availability of nutrients in an
environment [89] and cell homeostatic regulations [7], the
complex internal machinery determining the size and dy-
namic structure of the colony remains largely unknown.
Such self-regulations are crucial in the development of
different organs in the body and show signs of failure
when, for instance, tumor cells acquire increased prolifer-
ation by breaking away from these self-regulations [9, 90].
Input from powerful physical considerations such as scal-
ing properties and symmetry transformations are crucial
for choosing the most relevant interactions from a large
number of possibilities that could be included in theo-
retical models. An understanding of different phases of
the system in the presence of both chemical signals and
growth processes will help us to identify such regulatory
mechanisms.
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Appendix A: Toy models

In this section, we discuss two simple yet represen-
tative toy models: the first one considers a chemotac-
tic particle with an arbitrary distribution of gradient-
sensing units on its surface and is a natural extension
of a similar earlier work [49, 50]. The second one, in-
stead, considers a basic cell composed of two chemotac-
tic force-generating units that can be spatially separated
by the presence of a chemical gradient. Both models
illustrate how, within these simplified descriptions, the
polarity-induced chemotaxis emerges, in addition to the
usual gradient-sensing KS chemotaxis. It should be em-
phasized that these models are not meant to capture all
possible biological or chemical mechanisms that lead to
the generalized chemotaxis studied in this paper. They
are introduced to show how this novel mechanism for
chemotaxis may naturally result from relatively basic ex-
tensions of what leads to the KS term, and provide a
conceptual framework for similar derivations in other sys-
tems.

1. Polar particles

Consider a set of M gradient-sensing units, distributed
on the surface of a cell (see Fig. 7). A single unit, located
at position r;, is assumed to exert a force



where the chemotactic coupling strength Y; may de-
pend on the unit. We note that this gradient-sensing
mechanism can, for instance, stem from a spatial
coarse-graining of smaller subunits sensing the (abso-
lute) value of the chemical concentration ® or, alter-
natively, can originate from a temporal coarse-graining
where each unit locally estimates and responds to
D (r;(t + dt)) — ®(r;(¢)) during the time scale of dt.

Let us define Ry = % Zf\il r; as the centroid of the
cell, and dr; = r; — Ry. The total force exerted by all
the units can be expanded around Rg as:

M
F=) fi=) T.V®(Rg+ir;)

(A2)
=1 7
M

-3 [W(RO) + o1 - VV®(Re) + O(6r2)] .
- (A3)

Balancing this force against a frictional force —=v due to
motion of the whole particle with velocity v and where
= is an effective translational friction coefficient, we can
find an expression for the translational velocity of the
form given in Eq. (1), namely

v=11V®Ry) +1on-VVE(Rg) + -, (A4)
where
| M
vy = E Z Tz 5 (A5)
T =1
and
1
vo == ||>_ Tior||, (A6)
=1
define the effective coupling constants, and
M
—1 Lior;
n= = Xiori (A7)

defines the polarity of the cell.

The forces f; also exert a net torque 7 on the particle
which tends to rotate the polarity n and can be calculated
as

M M
= 0rixfi=) Tidr; x VO(Re +0r;)  (A8)
i=1

1\:/[1
=3 Tior; x [w»(Ro) + O(éri)} : (A9)

Balancing this torque in the overdamped regime against
a frictional torque —Z,w due to rotation with angular
frequency w, where =, is an effective rotational friction
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FIG. 8. Schematic of an extensible particle in uniform chemi-
cal background (upper row) and in the presence of a chemical
gradient (lower row).

coefficient, we can find an expression for the rotational
velocity of the form given in Eq. (2), namely

w=xnx VP(Ry)+---, (A10)
where we have introduced
11
X== Z T;or; (A11)
—rili=1

2. Extensible particles

For this second toy model, more basic than the first
one, we consider a scenario where a particle consists of
two force-generating units, as sketched in Fig. 8. In pres-
ence of a chemical gradient, we assume that these two
units can get separated in space, such that the cell is po-
larized and its equation of motion can be cast in the form
of Eq. (4), as we show below.

The units are assumed to generate forces which are
proportional to the chemical gradient at their location.
The total force F generated by the two units located at
positions r; o can be obtained as

F=TV®(r;) + TVY(ry),
= 2YV®(ry) + Tl - VVB(ry) + O(51?)

(A12)
(A13)

where T is the chemotactic couplings determining the
strength of the forces generated by the two units. In
writing the second line, we have Taylor expanded the
force generated by unit 2 by defining 6l = ry —r; and we
have discarded the second-order terms in the expansion,
which is justified as far as the chemical gradient does not
change appreciably across the length of a particle.



We further assume that 1 = kV®, meaning that the
force-generating units are actually separated in space due
to the chemical gradient. This indicates that the ar-
rangement of the units on the particle or, alternatively,
the particle’s shape, is affected by the chemical gradient
and we have retained the linear approximation of such
an effect. Eventually, we note that in the overdamped
regime for the motion of the particle in the surrounding
medium, the frictional force due to the velocity v of the
whole particle in the form of —=v, where = is the fric-
tion coefficient, balances the total force generated by the
units which compose it. We can therefore obtain an ex-
pression for the translational velocity similar to Eq. (4)
which reads

27 T
dr _ = —=Vo+ k—v (VD).

Al4
T - = (A14)

We note that in thls more primitive model, the coefficient
in front of V (V®)? stems from the 1nduced polarity of
the particle in response to the chemical gradient, as op-
posed to the averaging of the polarity dynamics in the
previous toy model.

Appendix B: Derivation of Equation (3) for average
polarity

In this section we detail the averaging over the polarity
degrees of freedom that was outlined above. For simplic-
ity, we consider a 3-dimensional system in this section, as
the generalization to other dimensions is straightforward.

Consider a collection of N polar particles with posi-
tions r,(t) and polarity unit vectors n,(t). Building on
the microscopic equations that govern the individual par-
ticle dynamics, we derive a Fokker—Planck equation for
the probability distribution P of position x and polarity
n of the particles, defined by

(x,n;t) <Z(5 X —ro(t (5(n—na(t))>7 (B1)

where the average is over all different realizations of the
system. The Langevin equations for the position and
polarity of the individual particles read as

%ra(t) = vks(Ta) + Vp(Ta, ng) + &4 (1), (B2)
%na(t) = xng X VO(ry) + va(t) X ng, (B3)

where we have used Egs. (1) and (2) for the deterministic
parts of the translational and angular velocities experi-
enced by particles. Here, &, and =, are Gaussian white
noise terms acting on the ath particle, characterized by

<£a(t)> =0, and

(€a1(t)Ebm (t/)> = 2D0ap01m0(t — t/), (B4)
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as well as, (v,(t)) =0, and

Yat () Yom () = 2D 8ap01md(t — t').

Here [ and m represent different components, D is the
translational diffusion coefficient, and D, is the effective
re-orientation rate as biased by the gradient (see Sec. II
and Ref. [91]). Note that we assume the stochastic forces
acting on different particles to be uncorrelated.

The time evolution of P(x,n;t) can be obtained in the
form of a Fokker—Planck equation

(B5)

P =—V-|(vks +vp,) P — DVP] B6
—R-[(xnx V®)P — D, RP], (B6)
where R = n x V, is the rotational gradient opera-
tor [92]. We note that this Fokker—Planck equation is at
the mean-field level and neglects the statistical correla-
tions between the particles (which are taken into account
in Sec. III).

A hierarchy of equations can now be constructed start-
ing from Eq. (B6) by considering various moments of the
distribution P with respect to n. For instance, the par-
ticle density is defined as

C’(x,t):/ (x,n;1) <Z§x—ra > (B7)

while the polarization field is given by

px.0) = [ nPlxnst) <Zna

The equation governing the density can be obtained by
integrating Eq. (B6) with respect to the polarity n which
leads to the continuity equation

rg t))>~ (B8)

0:C(x,t) + V- J(x,t) =0, (B9)
where the particle current is given by
J(x,t) = —DVC 4+ v1CVP + 15p - VV O, (B10)

which depends on C but also on the polarization field
p- The interdependence among the equations governing
different moments is, in fact, a general feature of these
hierarchical equations at all orders [74]. The dynamics of
the polarization field can be obtained in similar fashion,
by multiplying both sides of Eq. (B6) by n and perform-
ing an integration over n resulting in

0
Op; + 0y | — DOyp; + v1p; Oy + 12 (Qik + ;C) 5k51‘1>}

+2D,p; — %Caﬂ’ +xQu0® =

(B11)

where @;; represents the nematic order parameter tensor
and is defined as Q(x,t) = [ [nn — +I] P(x,n;t). The



dynamics of the nematic order parameter field is then
obtained as

1
0uQi; + 50CBi5 + 6D, Qu; + 2x Q501
1 1
+ 0 [1/15'1‘I> (Qij + C5¢j> - Do, (Qij + 3C5ij>

+ 13 0,0, P (Qz(?l) = (pidjr + pjdir + pk%)) ]

— ?(3 (pl@j@ +pj8i<I>) — 2(5@'])[81@) =0,

(B12)

where Qg’l) is the third-order moment and its expression
is given in Eq. (H9) of Appendix H. At long time and
for large length scale, one can take the hydrodynamic
limit and only keep the lowest order in gradients. One
observes from the previous equation that Q;; = O(V) in
this limit, such that it can be discarded from Eq. (B11),
as well as all the derivatives of p;. We thus obtain, in the
hydrodynamic limit:

p~ (B13)

3D
in agreement with Eq. (3). Substituting Eq. (B13) into
Eq. (B10), we get for the particle current

Vo X

Se== 3D,

$0,0;9.

(B14)

Finally, we recover Eq. (4) from this particle current,
which concludes the moment expansion analysis.

Appendix C: Detailed balance

The aim of this appendix is to demonstrate that the
novel polarity-induced chemotactic term cannot be de-
rived from a free energy and is a purely nonequilibrium
interaction, which breaks detailed balance. We establish
the validity of this point using a proof-by-contradiction
approach, where assuming the existence of a free energy
whose functional derivative gives the g5* term leads to a
contradiction in that the second order cierlvatlves of the
assumed free energy do not commute.

As mentioned in the main text, the dynamics for the
density field Eq. (6) can be expressed as:

A 5-7:KS Vo X
8C=-v.|-C
' v Ve Ten,

A SRRV I
(C1)

where the KS functional Fks has been introduced in
Eq. (11). In order to verify this form through functional
differentiation, we take into account the fact that the
particles are sources of the chemicals, and hence one can
write the chemical field ® as

B(x) = / dy K (x — y)C(y) (€2)
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where the screened Coulomb kernel K satisfies the con-
dition (—V? + k?) K(x—y) = §%(x —y) imposed by the
screened Poisson equation, Eq. (9). Note that in analogy
to electrostatics, K (x —y) is the potential at point x due
to a unit source at point y and —VK(x —y) gives the
corresponding chemotactic drift at position x, which is
parallel to x —y. The functional derivative of Fxg can
then be computed as

0FKsS -
- = D(logC(x) + 1 C3
56 () (logC(x) +1) (C3)

V1| 2 d ~
- d(x dyK(x-y)C(y) |,
d(x)
yielding

cv 5? gs = DVC — 1OV, (C4)

as required for the KS current. We conclude that the
KS contribution to the particle current, taken separately,
results from an equilibrium interaction thereby satisfying
the detailed balance condition.

On the contrary, the v term in the DK equation (C1),
which gives rise to the uo interaction in Eq. (19), can-
not be derived from a free energy functional. In order to
show this, consider a (hypothetical) free energy F» whose
functlonal derivative is assumed to give the 2X - interac-

tion term, i.e. 6.F5/0C(x) = (VtI)(x)
that the second derivatives of F5 do not commute, which
amounts to the breakdown of the Onsager relations for
equilibrium interactions. To demonstrate this, let us take
a derivative from the above expression, and obtain

2
) . Below we show

82F o (x 6V d(x)
5C(x')6C (x) _2(W( )) sC(x)

Making use of Eq. (C2) and interchanging x and x’ then
yields

(C5)

§2F, < '
———— =2VP(x) - VK(x — x'), (C6)
0C(x7)0C (x)

2
0 2V'P(x') - V'K (x' —x). (C7)
0C(x)0C(x")
Now using the fact that V'K (x' —x) = —VK(x—x'), we

obtain an expression for the commutation of the second
derivatives of the presumed free energy:

§2F, PR _
5C(x")6C(x)  dC(x)C(x')

2VK(x —x) - /ddyVC'(y) [K(x —

y)+ K(x' —y)].
(C8)



For an arbitrary particle density C(y), the r.h.s. can-
not be identically zero for any given x # x’. We there-
fore conclude that since the difference between the second
derivatives of the presumed free energy F» does not van-
ish, this free energy is not well-defined. This means that,
in contrast to the vy term in Eq. (7), the 3¢ term can-
not be derived from an underlying functional form and
hence breaks the condition of detailed balance.

Appendix D: Power counting for a generic
interaction term

Based on the engineering dimensions of the fields de-
rived in Sec. IV A (see Eq. (27)), here we determine the
relevance of all possible interaction terms that may be
generated by the RG flow of the Langevin equation (19)
by considering their scaling behavior.

The most general form of an interaction term can be
written symbolically as

Jimn vl (v¢)m pn7

where ¢ only appears together with a gradient operator
to ensure the symmetry ¢ — ¢ + const, as the absolute
value of the chemical field does not affect the dynamics
of the particles. For this general coupling we assume that
m and n are nonnegative integers (such that the result-
ing equation is local in space in terms of these fields) and
m +n > 0 (in order to have at least one field involved
in the coupling). In addition, considering the conserved
dynamics of the density fluctuations, we have [ > 1 to
ensure that the interaction terms come as the divergence
of a vector field. Finally, the interaction terms appear-
ing in Eq. (19) should be a scalar density and therefore
the sum [ + m must be even, which also guarantees the
invariance of the resulting term under spatial inversion
(due to their physical meaning, p and ¢ are expected to
be invariant under inversion).

The engineering dimension of the coupling g, added
to the Langevin equation (19) can be computed by using
Egs. (27). In the case of conserved noise, we obtain

(D1)

d
[glmn}gon:2+m_l_§(m+n_1)7 (DQ)
whereas with a nonconserved noise, the engineering di-
mension reads as

d

[gomnlo™ =14+ 2m+n 1= S(m+n—1). (D3)
The expressions in Egs. (D2) and (D3) allow us to iden-
tify all the terms that are marginal or relevant at the up-
per critical dimension. The relevant or marginal terms
are the same in both of the conserved and nonconserved
cases and are displayed and commented on in Table I.
By examining the possible interaction term gy, we find
that in addition to the p; 2 couplings included in Eq. (19),
which are both equally relevant and also Galilean sym-
metric, there exists another independent and relevant
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term, namely 1,V - (V¢)3. Using Egs. (D2) and (D3),
one can show that this coupling has an engineering di-
mension:

et =4—d,  and [t =6-d  (D4)
in the conserved noise and nonconserved noise cases, re-
spectively, and is therefore relevant in both cases. How-
ever, this coupling is not Galilean invariant and we dis-
cuss the implications of this symmetry breaking term at
the end of Sec. V.

Note finally that the term u3V - (pV(V)?) that has
been discarded to obtain the Langevin equation (19)
scales as [u3]g™ = 2 — d and [us]§®™ = 4 — d and is
therefore irrelevant for both noises close to (and below)

their corresponding upper critical dimension, di°* = 4
and d2°" = 6.

Appendix E: Details of the RG calculations

In this appendix, the details of the RG calculations
of the propagator, noise, and vertex are provided. The
Ward identity, which is the result of the Galilean sym-
metry of the Langevin equation (19), is discussed at the
end. In this appendix we focus on the case of a conserved
noise (Dy = 0), as the same procedure applies to noncon-
served noise with the resulting flow equations reported in
Appendix F.

1. Renormalization of the propagator

We recall the diagrammatic representation of the prop-
agator renormalization at one-loop:

O

G = Go + Go Y1 Gy

¢:

The loop integral 3, shown above is an integral over the
“fast” modes that reads:

2= o / “No(h/2 4 )To(k. k/2 + q)x )
Lo(k/2 —aq,k)Go(k/2 —§),

where Nj is defined in Eq. (32) and we have defined

=l e
i Jooo 2™ Jasp<iqia (2m)T

To compute the renormalization of o and D, it is more
convenient to consider the renormalization of the inverse
propagator G—! which is given by the Dyson expansion
[67]): G-1(k) = G5t (k) — 21 (k). The renormalized cou-
pling constants or and Dg of the propagator are then

(E2)
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Galilean

n m | Form of the coupling . . Comments
invariant
1 1 V2% yes Equivalent to the linear term p.
0 1 3 V3V¢ yes Equivalent to the diffusion term V?p (marginal in all dimensions).
2 2 V3(V¢)? yes polarity-induced chemotactic term.
3 1 V(Vo)? no Single-particle self-propulsion/nematic order
1 0 2 V% yes Diffusion term (marginal in all dimensions).
1 1 V(pVe) yes KS chemotactic term.

TABLE I. Marginal and relevant couplings at the upper critical dimension (d¢*® = 4 and d¢°* =

6). We consider coupling of

the form V! (Vo)™ p™ with nonnegative m and n and with m+mn > 0,1 > 1, and [ + m even.

computed as:
or =G (R, (E3)

Dy = 0,2G7 (k)
k=0

(E4)

The explicit computation of the loop integral ¥ is done
by first computing the integral over the frequencies us-
ing residues. The d-dimensional integral over the in-
ternal momentum q is then reduced to a one dimen-
sional integral over its norm |q| = ¢ by making use
of the angular symmetry around k. Finally, the inte-
gration over the norm itself is performed in the limit
where b = €% is infinitesimally close to 1 and, thus,
fq> flq) = f(A)ASL + O(6€%). In the conserved case

(Dp = 0), this gives at one-loop:

OR =0, (E5)

K 60A4D,

Dp =D~ ="F;

(an/ﬁ + aiappr2 + a22ﬂg) )
(E6)

where Ky = 2/[(47)%?T'(d/2)] and the coefficients a;; =
3/4—-3/(2d), a12 =24+3/d—6/(d+2), ase = 1 —4/d
are the same as those introduced in the main text below

Performing the integration over the “fast” modes gives
the renormalized coupling constants with A/b as the mo-
mentum cutoff. To restore the original cutoff A, we
rescale space, time and the fluctuation field according
to Eq. (24). This rescaling completes the RG calcula-
tion, with the new coupling constants expressed in terms
of the old ones. In the limit where the change of scale is
infinitesimal (that is b = e’ with §¢ < 1), the change of
the coupling constants ¢ and D under the RG step can
be cast into a set of coupled differential equations, which
are the RG flow equations displayed in the main text,
Egs. (33a) and (33c).

2. Renormalization of the noise

The renormalization of the dynamic correlation func-
tion NV is performed using the diagrammatic representa-

tion shown in Fig. 3. Calling A the one-loop contribu-
tion, we have:

4

lea

/ T Nolh/2 4+ N (/2 — )

x To(k, k/2 + q)To(-k,—k/2 —q),

(E7)

from which we can extract the renormalized noncon-
served and conserved noise terms Dy, and Ds, following
the same procedure as for the propagator.

In particular, one can check that the lowest term in
the series expansion in k of ] goes as k%, as discussed
in the main text. Indeed, the series read:

Do + A2D5)2 K ;A4—1065¢
Nl — k4( 0 23 d %
11 3 2 2 2 6
[<4+2¢i 2(2+d))ﬂ1+(1 d>M1N2+M2}+O(k’ ),

(E8)

and there is no contribution in &° or k2 that could renor-
malize the nonconserved or conserved noise, respectively.
The second part of the RG step (rescaling) can then be
performed as described in the case of the propagator, and
we obtain Eq. (33d) in the conserved noise case.

3. Renormalization of the vertex

The diagrammatic representation of the vertex renor-
malization is shown in Fig. 3. In addition to the bare
diagram, there are three diagrams that contributes at
one-loop, whose contributions are denoted from left to



right by T(®, T and T{” and read:

P2 4 p) = 4 " Nolh/2 + DTo(k K/2 + ) x

To(p —q,k/2+p)To(k/2—q,p — q)x

Go(p— §)Go(k/2 - q)
(E9)

" (k,k/2 + p) = 4[> No(k/2 = @)To(k,k/2 + a)x

Lo(k/2+q,k/2+p)l'o(q — p,k/2 — p)x

Go(k/2+ @)Go(G— D),
(E10)

>
P2 4p) =4 [ Ablp - ol k/2 + @)
q

Go(k/2+ §)Go(k/2 - q) .
(E11)

In order to compute the renormalization of the chemotac-
tic terms ji1 5, the dependency of T'y = T'{*) + T'{?) 4 ()
on the external momenta k and p has to be kept. We
first compute the frequency integral appearing in I'y us-
ing residues. Then, we focus on the ultraviolet diver-
gence (when A — o0) of I'y and compute the residue of
the pole in 1/¢%, which gives rise to the renormalization
of the coupling constants f; 2 at the critical point. At
one-loop, this residue vanishes, which yields 1 r = w1
and po g = po. The second part of the RG step (rescal-
ing) can then be performed as described in the case of
the propagator, and we obtain Eq. (33b) in the conserved
noise case.

4. Galilean symmetry and Ward identity

The Galilean symmetry (23) discussed in the main text
implies that the term p; — 2us remains constant along
the RG flow, and yields the exponent identity (38). The
invariance of the term gy — 2u9 along the RG flow can
be made more formal by looking at the Ward identity
associated to this symmetry [67, 69]. The Ward iden-
tity expresses a relation between the three-point vertex
function I' and the two-point vertex function (or inverse
propagator) G—1 that reads:

i (1 —202) Q0,GH(G) = O T(k19)];,

(B12)

We thus conclude, similarly to the KPZ case [69, 93],
that p; — 22 is not renormalized and remains equal to
its bare value.
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Appendix F: RG flow equations for the
nonconserved noise

Following the procedure described in Appendix E, one
can also treat the nonconserved noise case (Dy # 0). As
discussed in the main text, the conserved part of the noise
is irrelevant in this case and will be discarded from the
analysis. The final RG equations for the nonconserved
noise case read as

850- = [d + 2X] g,
Oppir2 = [z + x] 1,2,

(Fla)
(F1b)

(%D = {Z -2 (611U12 + b12U Uz + b22U22)]Da
(Fle)

Dy = [—d +z— 2)(] Do, (Fld)
where we have defined U7, = pf , Do K4A4™5/D? and
the coefficients b;; = 3/4 — 1/d — 3/[d(d + 2)], bia =
24+ 6/d—9/(d+2), and bas = 1 — 6/d.

Appendix G: Analysis of the renormalization group
flows in various dimensions

In this section, we look into the structure of the renor-
malization group flows in various spatial dimensions d.
We remind the reader that despite the scaling exponents
that are obtained exactly, the RG flow equations and the
corresponding analysis are only valid to one-loop order
and a higher order calculation will be required to form a
more conclusive picture of different phases of the system
in the parameter space.

1. Structure of the fixed-point solutions

The RG flows for the effective couplings Uy 2 in the
presence of conserved and nonconserved noise are given
by Eq. (35) and Eq. (36), respectively. In both cases,
the r.h.s is the same for both 9,U; and 9,Us, indicat-
ing that the flows occur along the rays with a fixed
ratio of Us/Uy. The fixed points are obtained by set-
ting 0,U1,2 = 0 which, besides the trivial Gaussian fixed
point Uy = Us = 0, results in a quadratic equation
AU? + BU1Uy + CUZ + E = 0 where the coefficients
A,B,C, and E are defined below Egs. (35) and (36) in
each case. This quadratic equation defines conic sections
in the U;1-U, plane whose shape can be determined based
on the sign of its discriminant A defined as

A = B? - 4AC. (G1)

The fixed points in various dimensions and their shape

are shown in Fig. 5.



2. Linear stability analysis of the fixed-point curves

To analyze the stability of the lines of (nontrivial)
fixed-point, we consider a small displacement from a
fixed-point (U5,UJ) to the neighbouring point (U; +
0U1,Us + 6Us). Since the flows are along the rays pass-
ing through the origin, we assume the displacement is
also along the ray passing through the initial point, i.e.
UL /US = §Us /Uy, so that if the fixed point is attractive
the RG flow will return to the same state. Expanding
the flow equations (35) and (36) to the leading order in
0U; and 6Us, we get in both cases

0 (U1 2

—2E (U1 2), (G2)

)|(U1*7U2*) -

where E = (d. — d)/2 in both cases of conserved and
nonconserved noise with d. = di°® =4 and d. = d;°" =
6, respectively. It is therefore clear that for d < d., the
flows are attractive and the nontrivial fixed points are
stable, whereas for d > d. the flows are repulsive and
the nontrivial fixed points become unstable. Exactly at
the upper critical dimension d. the nontrivial fixed points
form straight lines and they become neutral (in the sense
of stability that is considered here).

Appendix H: Details of moment expansion for more
general chemotactic mechanisms

In this appendix we extend the calculation that was
presented in Appendix B to take into account the self-
propulsion and nematic alignment of the particles. To
this end, consider the more general case of Egs. (B2) and
(B3) as

d
ara(t) =V (ra,n4) + &alt), (H1)
dna(t) = w (rq,ng) + Yalt) X ng. (H2)

dt

One can formulate expressions for v and w based on a
general gradient expansion [45, 47], which read

v=vgn+ VP +ron-VV®P + vznn - VO, (H3)
and Eq. (B3) for the polarity. To obtain these expres-
sions, one has to assume that the particles have a linear
measurement mechanism to sense the chemical gradient.
Note that in comparison with Eq. (B2), we have added
the vy term to the translational Langevin equation to in-
clude the case of self-propelling particles, and the v3 term
in order to include the cases where a nonvanishing local

where we have used the definition

1
Qifk) = / P(x,n;t) |:ninlnk-_5 (nidue + b + nydil) |
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nematic order exists, which could arise, for instance, from
geometric asymmetries of the particles [47]. Note that we
have assumed for simplicity that the polarity vector n
also defines the self-propulsion direction, although these
two directions need not be parallel in general. As before,
the noise terms &, and -, are Gaussian white noises act-
ing on the ath particle, characterized by Eq. (B4) while
we now modify the polarity part as

<’7al (t)’ybm (tl)>

2(Dy — guong - V®)3ap0imd(t — 1),
(1)

which generalizes Eq. (B5) to the case of run-and-tumble
particles by modulating the tumble rate due to the chem-
ical gradient (see Ref. [91]).

The Fokker—Planck equation in this case reads as

P =—V-[vP— DVP]

—R - [wP —R((D, — gvon - V®)P)], (H5)
The noise corresponding to the polarity has been im-
plemented here using the Ito convention, which is the
appropriate choice given the discrete nature of the run-
and-tumble process.

The hierarchy of equations governing the moments of
the distribution P with respect to n can now be con-
structed. Performing the integration of Eq. (H5) with
respect to the polarity n leads to the continuity equation
(B9) where the particle current is now given by

J(x,t) = —~DVC + vop + (m +%) Cve
4+ vop-VVO 4+ 13Q -V,

(H6)

where the density and polarization fields are defined in
Egs. (B7) and (B8), and the nematic order field is given
by

Q(x,t) = / [nn — ;I} P(x,n;t). (HT7)
The dynamics of p(x,t) is given by
1
Opi + 0 [ — DIyp; + o <Qu + 305il>
1
+ 11piO® + 1o (Qik + 306ik> 0x0,®
1
+ 3 <Q§?,28k(1) + g (pialfb + p0;® + 5ilpk8k<1>)> ]

2
+2D,p; — 3 (x + gvo) CO;® + (x — 29v0) Qu0® = 0,
(H8)
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By continuing this procedure, the equation for the nematic order parameter field is obtained as
1 1
0:Qij + 50:Cdi; +6D:Qij — 7 (x + 2gvo) (3 (pi0;® + p;0;®) — 25z‘jp135<1>> +2(x — 3gv0) Q1) 1@

1 1 1
+ 0 [Uo <Q§?l) + 3 (pidji + pjda +pl5z‘j)> + 110, (Qij + 305ij) + 12 0,01 P <Q”l) + 3 (Pidjr + pjdik +pk6ij>>

1 C
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where we have defined
1
lef,)cl = /P(x, n;t) {ninjnknl — % (ninér + ningdy; + ningdjx + njneda + nynidix + ngngdiy)
1
35 (0ij0k1 + Gikdji + 6udjk) |- (H11)

This procedure will generate a hierarchy of equations involving higher order moments of the distribution function.
As in the case of the celebrated Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy in liquid state theory
[94, 95], the hierarchy can be truncated by using a closure scheme. Here, we close the hierarchy by assuming that
Q®, QW and all higher order moments vanish. Since we are interested in the macroscopic properties of the system,
we employ a hydrodynamic approximation and focus on time scales much longer than D! and length scales much

larger than /D/D,.. This allows us to further simplify Eqs. (H8) and (H10) to obtain expressions for the polarization
field and the nematic tensor [74]. In this limit, we obtain

pi_< )ac+ (X;g”())cai@

L (o (v1 +v3/5) ((X+9U0) (v1 +v3/5)

< 12D? 6D2
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)5’sz ( 7 >alpi8l‘1)_ (1(;/1) ) [5’11?181‘1)+5zp13‘1’+2p135’1‘1’+81p151 }

) Qi — (X;;fvo) Qu @ + O(V°), (H12)

and

Qij = — (” )[8@80+2080<I>+808<I>]+5”<

90D, > [8;08@—#081 ]

135D,

% + 2gv + 2gv
a (30% ) [0ip; + Ojpi] + 0 (45D ) Apr + <X10Dgo> [pi 0;® + p; 0;®] — i <X15Dgo> po® + O(Vh).
(H13)

We can now use the above expressions to solve for p; and @;; in terms of the scalar fields only. This calculation yields

2 e
Qij = ( >880 (Uo(5X+8gvo)+ U3 )[81-03]-(1)—1—8]-081-(1)}—(UO(X+ng)+ Vs )Caaq)
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(H14)
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and
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(H15)
Finally, we can derive the following expression for current in terms of the scalar fields only
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Note that at this (mean-field) level, we have not made the results remain general. The above expression can be
any assumptions about the chemical field ® and therefore used as a basis for constructing the appropriate stochas-



tic field theory description of the system. When treating
® as the self-generated chemical field, the calculation re-
veals that there are new chemotactic terms that can play
a significant role in determining the collective behavior
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of such a system.

Note that by setting v = 0 and v3 = 0, the particle
current reduces to the simple form given by Eq. (B14).
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