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A critical set of two-loop QED corrections to the g factor of hydrogenlike ions is calculated without
expansion in the nuclear binding field. These corrections are due to the polarization of the external
magnetic field by the quantum vacuum, which is dressed by the binding field. The result obtained
for the self-energy–magnetic-loop diagrams is compared with the current state-of-the-art result,
derived through a perturbative expansion in the binding strength parameter Zα, with Z the atomic
number and α the fine-structure constant. Agreement is found in the Z → 0 limit. However, even
for very light ions, the perturbative result fails to approximate the magnitude of the corresponding
correction to the g factor. The total correction to the g factor coming from all diagrams considered
in this work is found to be highly relevant for upcoming experimental tests of fundamental physics
with highly charged ions.

Introduction.— Measurements of the g factor of heavy
hydrogenlike ions are projected at different facilities, such
as the ALPHATRAP Penning trap [1–3] and the HI-
TRAP facility [4–6]. These measurements are forecast
to match the most precise measurements of the g factor
so far [7, 8], which have an uncertainty of the order of
10−11. High-precision calculations and measurements of
the bound-electron g factor can be combined to perform
state-of-the-art determinations of fundamental constants
such as the electron mass me [8] and the fine-structure
constant α [9–11]. Furthermore, heavy ions are an ideal
testing ground for quantum electrodynamics (QED) cal-
culations in the presence of strong fields [7, 12–15], and
measurements of their g factor were recently shown to be
a promising avenue in the search for physics beyond the
Standard Model [16].

The interpretation of upcoming experiments on heavy
hydrogenlike ions demands improvements in the theory,
especially concerning the calculation of radiative correc-
tions to the g factor. The one-loop radiative corrections
have been calculated nonperturbatively [17–21] in the
electromagnetic binding parameter Zα, but the calcula-
tion of the two-loop corrections has only been completed
through orders (Zα)

4
[22, 23] and (Zα)

5
[23, 24]. Fur-

ther progress of the two-loop calculation should be sought
in the non-perturbative approach, especially for applica-
tion to heavy ions. The non-perturbative evaluation of all
twenty-nine non-equivalent two-loop diagrams contribut-
ing to the g factor of a bound electron is one of the great
challenges of present-day atomic QED theory. The re-
sults presented in this work constitute an important step
towards the completion of this project.

A few years ago, the two-loop diagrams featuring two
vacuum polarization (VP) loops, as well as those featur-
ing one VP loop and one self-energy (SE) loop, were cal-
culated [25] in the free-fermion loop-approximation. The
challenging SE-SE diagrams are currently being com-
puted [26, 27]. Several VP-VP and VP-SE diagrams were
not calculated in Ref. [25], because they vanish in the free
VP loop approximation. In this work, we go beyond this

approximation and calculate these diagrams, and show
that they must be taken into account for heavy ions at
the current level of experimental accuracy. We also show
that a perturbative calculation of the diagrams examined
here is insufficient even for very light ions.

Virtual light-by-light scattering.— In a subset of the
VP-VP and VP-SE diagrams examined in Ref. [25], the
photon from the external magnetic field is attached to
a VP loop. This is called the magnetic loop (ML), and
vanishes in the free VP loop approximation [20, 28]. All
diagrams considered in this work contain a ML and an-
other loop, corresponding to either another fermionic
pair (electric-loop–magnetic-loop (EL-ML) diagram, see
Fig. 1 (a) and magnetic-loop-after-loop (MLAL) dia-
gram, see Fig. 1 (b)) or to a virtual photon (self-
energy–magnetic-loop (SE-ML) diagrams, see Figs. 1 (c)
and (d)). To the lowest contributing order, the fermion
propagator in the ML interacts twice with the Coulomb
field of the nucleus [17], so that Delbrück scattering is
a subprocess of the overall diagram. Approximating the
contribution of the ML by this light-by-light scattering
process has been found to be satisfactory even for highly
charged ions [21] in the one-loop case. In what follows, we
will make use of the Delbrück-scattered vector potential,
which is given [20] in momentum space by

AML i (q) =
4π

q2

∫
dk

(2π)
3Mji (k,q)Aj (k) , (1)

where we sum over repeated indices. Here A is the ex-
ternal vector potential, given in momentum space by

A (k) =
i

2
(2π)

3
[B×∇k δ (k)] (2)

and by A (x) = (1/2) (B× x) in configuration space,
with B the homogeneous external magnetic field. Also,
M is the (tensor) Delbrück scattering amplitude, which
is known in closed form in the partial low-energy limit
|k| → 0 corresponding to a static, homogeneous mag-
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FIG. 1. The diagrams corresponding to the electric-loop–magnetic-loop (a), magnetic-loop-after-loop (b) contributions, and
to the wave function-type (c) and vertex-type (d) self-energy–magnetic-loop contributions to the g factor of a bound electron.
The double line represents the bound electron, internal wavy lines are intermediate photons, while the wavy line terminated
by a triangle denotes a photon from the external magnetic field. The SE-in-ML diagrams (α) and (β) vanish together with the
MLAL diagram (b), in the free-loop approximation, due to the properties of the Källén-Sabry potential. Diagrams (a), (c) and
(α) each have an equivalent diagram, therefore, their contributions should be counted twice.

netic field [20, 21], and reads

Mji (k,q) = αλ3e [δji (k · q)− qjki] (Zα)
2
FD (λe |q|) ,

(3)
with the reduced Compton wavelength λe = ~/mec. The
explicit expression for the Delbrück scattering function
FD is given in Ref. [21]. It is also helpful to write the
expression of the configuration-space Delbrück-scattered
vector potential:

AML (x) =
1

2
(B× x) ΠML

(
|x|
λe

)
, (4)

with the polarization function given by a Bessel trans-
form of the scattering amplitude:

ΠML (u) = 4
α

π
(Zα)

2 1

u2

∫ +∞

0

dz zu j1 (zu)FD (z) . (5)

The Delbrück-scattered vector potential (4) thus has the
same angular structure as the external vector potential.
Calculations.— The contribution from the electric-loop–
magnetic-loop diagram of Fig. 1(a) to the g factor of the
bound electron can be deduced from the simpler ML dia-
gram studied in Refs. [20, 21, 28]. For the ML diagram, it
can be shown, for instance by using the two-time Green’s
function formalism [29], that the correction to the energy
Ea of level a is given by

∆EML
a =

∫
dk

(2π)
3 AML (k) · j∗a (k) , (6)

where ja is the Dirac current in the reference state a
(taken to be the ground state 1s throughout this work)
of the bound electron. The inclusion of the EL is then
performed by amending the electronic current in Eq. (6).
The EL does not modify the angular structure of the wave
functions. Accordingly, we write the EL-ML correction

to the g factor as [20, 21]

∆gEL−ML
a = −8

3

1

λe

∫ +∞

0

dr r3 ΠML

(
r

λe

)
× [ga (r) δVPfa (r) + δVPga (r) fa (r)] , (7)

where ga and fa are the radial parts of the Dirac-
Coulomb spinor ψa [30]. The EL potential is approx-
imated [17] by the Uehling potential and the Uehling-
corrected radial wave functions are δVPga and δVPfa. For
this diagram, the radial wave functions are computed
numerically for finite-size nuclei. To achieve this, the
electron is confined in a radial cavity and the dual ki-
netic balance approach [31] is used to generate numerical
spectra and radial wave functions. In our calculations,
the nucleus is considered to be a homogeneously charged
sphere and the resulting Uehling potential is computed
using analytical expressions given in Ref. [32].

The contribution from the magnetic-loop-after-loop di-
agram of Fig. 1(b) is computed by another modification
to the ML diagram. At the free-loop level, the MLAL di-
agram vanishes, along with the SE-in-ML diagrams (see
Fig. 1(α) and (β)) [25]. This is due to the low-momentum
properties of the (Källén-Sabry) fourth-order VP ten-
sor [33], in the same way that the vanishing of the sim-

FIG. 2. The “scarecrow” diagram represents the lowest non-
vanishing term that contributes to the magnetic loop-after-
loop diagram given in Fig. 1(b).
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pler one-loop ML diagram at the free-loop level [17, 20]
is due to the low-momentum properties of the (Uehling)
second-order VP tensor. Hence, the lowest nonvanishing
contribution from the SE-in-ML diagrams features a six-
photon light-by-light scattering process, and is out of the
scope of the present work. The first nonvanishing con-
tribution from the MLAL diagram comes from adding
two interactions with the Coulomb field of the nucleus,
on the outermost free loop, while keeping the innermost
loop free (we call this the scarecrow diagram, see Fig. 2).
The diagram wherein the Coulomb photons interact with
the innermost loop and the outermost loop is free, has a
vanishing contribution. Hence at the lowest nonvanish-
ing order in the VP loops, the contribution of the MLAL
diagram is given by

∆gMLAL
a = −8

3

1

λe

∫ +∞

0

dr r3 ΠMLAL

(
r

λe

)
fa (r) ga (r) ,

(8)
where the photon interacting with the bound electron
has gone through two VP loops and is described by the
MLAL polarization function

ΠMLAL (u) = 4
(α
π

)2
(Zα)

2 1

u2

×
∫ +∞

0

dz zu j1 (zu)FD (z) IVP (z) . (9)

Here the one-loop photon VP function is given by [25]

IVP (z) = z2
∫ 1

0

dτ
τ2
(

1− τ2

3

)
4 + (1− τ2) z2

. (10)

The MLAL contribution (8) to the g factor is then com-
puted for pointlike nuclei.

The contribution from the wave function-type self-
energy–magnetic-loop diagram of Fig. 1(c) can be split
into a reducible contribution, wherein the intermediate
state in the bound electron propagator between the SE
loop and the ML is the ground state a = 1s, and an
irreducible contribution, wherein a sum over all interme-
diate states, excluding the ground state, is performed in
that propagator. The irreducible contribution ∆gSE−ML

a(irr)

is computed in the same way as the EL-ML diagram: as
is the case of the EL, the SE loop does not modify the
angular dependence of the wave function of the bound
electron, so that, if in Eq. (7), the VP-corrected wave
functions are replaced with the SE-corrected wave func-
tions δSEfa and δSEga, we straightforwardly obtain the ir-
reducible correction to the g factor due to the SE-ML di-
agram. The irreducible contribution was computed with
SE-corrected wave functions obtained with the method
presented in Ref. [34]. The reducible contribution, on
the other hand, is given by

∆gSE−ML
a(red) =

∆gML
a

ga(D)
∆gSEa(red) (11)

where ga(D) is simply the Breit-Dirac value for the bound-
electron g factor [35]. Both the reducible contribution
to the one-loop SE correction ∆gSEa(red) [19] and the ML

correction ∆gML
a [20] to the g factor have been investi-

gated previously, therefore, we can directly compute the
reducible contribution (11) to the two-loop correction for
pointlike nuclei. There is a potential further reducible
contribution to the SE-ML diagram, coming from the
energy derivative of the electron propagators in the ML,
which vanishes because these free propagators do not de-
pend on the energy of the bound electron.

Let us finally turn to the contribution from the ver-
tex SE-ML diagram of Fig. 1(d). As was the case for
the simpler vertex SE one-loop correction [19], we need,
for renormalization purposes, to split this diagram into a
zero-potential part (whereby the propagator of the elec-
tron under the SE loop is taken to be that of the free
electron) and a many-potential part (whereby the elec-
tron interacts any nonzero number of times with the
Coulomb field of the nucleus under the SE loop). The
zero-potential term can be treated analytically to a large
extent. After renormalization, its general expression is
given by

∆g
SE−ML(0)
a(ver) =

2

µa λeB

∫
dp

(2π)
3

∫
dp′

(2π)
3 ψ̄a (p)

× ΓR (p, p′) ·AML (p− p′)ψa (p′) , (12)

with µa the magnetic projection quantum number, and
the Delbrück-scattered vector potential AML given by
Eq. (1). The four-vectors p and p′ share the same time
component fixed by the energy εa of the reference state:
p = (εa/c,p), p′ = (εa/c,p

′), while ΓR is the UV-
finite part of the free vertex function, studied in detail
in Ref. [30]. Performing three of the four angular inte-
grals in Eq. (12) analytically, the zero-potential term in
the vertex diagram can be cast as a quadruple integral
(a double radial integral, one remaining angular integral,
and an integral over a Feynman parameter present from
the outset in ΓR), to be performed numerically for point-
like nuclei. The many-potential term, on the other hand,
is computed in configuration space, and is treated in a
very similar way to the corresponding term in the one-
loop SE correction [19, 26]: the bound and free electronic
Green’s function are expanded in partial waves according
to the absolute value |κ| of the Dirac angular momen-
tum. As can be seen from Eq. (4), the angular structure
of the Delbrück-scattered vector potential (1) is identi-
cal, in configuration space, to that of the external vector
potential (2), meaning that the only modification to the
calculation concerns the radial integrals. As was the case
for the one-loop SE correction, the many-potential term
in the vertex diagram features an infrared divergence,
that is rigorously cancelled by a divergence in the many-
potential, reducible contribution [19] (in contrast to the
approach of Ref. [19], we do not separate the (finite) one-
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potential term here). We computed the sum of the many-
potential terms of the reducible and vertex contributions
to the SE-ML correction, which is readily finite because of
that cancellation. The partial wave summation is trun-
cated at |κ| = 20, with the remaining terms estimated
through least-squares inverse polynomial fitting.

Results.— We present numerical results for seven spe-
cific hydrogen-like ions, with the nuclear charges Z =
1, 2, 14, 20, 54, 82, 92. The contributions from all dia-
grams are summarized in Table I.

The EL-ML and irreducible SE-ML corrections were
computed for finite-size nuclei, with the nuclear radii [36]
taken from Ref. [37]. The MLAL correction, as well as
the reducible and vertex SE-ML corrections, were com-
puted for pointlike nuclei. The uncertainty of the EL-ML
correction is dominated by that on the nuclear radii. The
uncertainty of the MLAL correction is given by the esti-
mated finite-nuclear-size correction. The uncertainty of
the SE-ML correction is dominated by numerical conver-
gence and, for high Z (Z = 54, Z = 82 and Z = 92, see
Table I), by nuclear size corrections.

As anticipated for instance in Ref. [25], and as was
confirmed in Ref. [24] in the perturbative approach, all
corrections obtained here are reliably smaller than the
SE-VP [25] and VP-VP [27] corrections from which the
ML is absent, especially at low and intermediate Z. Nev-
ertheless, for high Z, the calculated corrections are large
enough to be above the experimental uncertainties of
state-of-the-art measurements of the g factor of bound

FIG. 3. Numerical values (red dots) of the SE-ML contri-
bution to the g factor of hydrogenlike ions for low nuclear
charges, as parametrized through Eq. (13). The error bars
(orange) have been artificially magnified by a factor of 4 in
order to be visible, except for Z = 1 where the actual er-
ror bar is shown. Our results are fitted (black line) accord-
ing to Eq. (14), with the shaded gray region around the line
corresponding to the uncertainty on the fit parameters. The
agreement with the perturbative result (green line) of Ref. [24]
is manifest. However, it is seen that the SE-ML contribution
markedly departs from the prediction of Ref. [24] even at very
low Z.

electrons. Indeed the uncertainty reported in the most
precise measurements of the g factor [7, 8] is of the or-
der of 10−11. Although these measurements were only
performed on lighter ions such as carbon (Z = 6) and
silicon (Z = 14), it is expected that, in the framework
of the ALPHATRAP project [2], g-factor measurements
on heavier ions will be performed at comparable levels of
accuracy, meaning that the contributions computed here
should be taken into account in an accurate interpreta-
tion of these experiments.

At the opposite end of the nuclear charge landscape,
we note that our results for the SE-ML contribution ap-
proach the prediction of the perturbative approach on
Ref. [24] for Z → 0, but that these perturbative re-
sults have limited relevance due to large higher-order
contributions, which are not captured by the approach
of Ref. [24]. This is shown in Fig. 3, where our results
for low Z for the SE-ML diagrams (Figs. 1 (c) and (d))
are parametrized according to

∆gSE−ML =
(α
π

)2
(Zα)

5
FSE−ML (Z) . (13)

In Ref. [24] the leading term in the function FSE−ML (Z)
is given by FSE−ML (Z) = (7/432)π ' 0.0509. However,
we find that a linear term is necessary to capture the
behavior of the SE-ML correction to the g factor, even
at very low Z:

FSE−ML (Z) = a5 + a6 (Zα) , (14)

with the values of the coefficients a5 = 0.0505(3) and
a6 = −0.769(4) obtained through a least-squares numer-
ical fit. This confirms the result of Ref. [24]. However, the
large value of the a6 coefficient causes the corresponding
term, which brings a correction to the g factor propor-
tional to (Zα)

6
, to be important already for Z < 5. At

Z = 8–10, a sign flip occurs.
Discussion.— The corrections computed here are sev-

eral orders of magnitude smaller than the leading nu-
clear corrections to the g factor, namely, the leading-
order nuclear recoil (finite mass) correction [38] and the
leading-order finite nuclear size correction [39]. They are
broadly comparable to subdominant nuclear corrections:
a higher-order contribution to the finite nuclear size cor-
rection [40], the nuclear polarizability [41, 42] and defor-
mation corrections [43], and the higher-order mass cor-
rection [44]. Importantly, the two-loop corrections com-
puted here are of the same order of magnitude as the
uncertainty in the finite nuclear size correction, as can
be checked from Refs. [37] and [39]. As a result, they are
arguably mostly relevant within the framework of the
‘specific’ weighted difference between the g-factor of H-
like and Li-like ions, which allows for the approximate
cancellation of nuclear size corrections [9, 10, 45].
Conclusion.— Two-loop QED corrections to the bound

electron g factor involving the magnetic loop were calcu-
lated for the first time in a nonperturbative approach.
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TABLE I. Numerical values of the two-loop magnetic-loop correction ∆g
(2L−ML)
a to the g factor of hydrogenlike ions (a = 1s)

for several nuclear charges Z. We give separately the contribution ∆gEL−ML
a from the electric-loop–magnetic-loop diagram, the

contribution ∆gMLAL
a from the magnetic-loop-after-loop diagram, and the irreducible ∆gSE−ML

a(irr) , zero-potential vertex+reducible

∆g
SE−ML(0)

a(ver+red) and many-potential vertex+reducible ∆g
SE−ML(1+)

a(ver+red) contributions from the SE-ML diagrams. The total correction

is given in the last column. Results are given in units of 10−6, and powers of 10 are given between square brackets.

Z ∆gEL−ML
a ∆gMLAL

a ∆gSE−ML
a(irr) ∆g

SE−ML(0)

a(ver+red) ∆g
SE−ML(1+)

a(ver+red) ∆g
(2L−ML)
a

1 3.9(1) [−14] 3.7 [−14] −8.6(8) [−14] 3.0928(1) [−11] −2.600(250) [−11] 4.92(2.50) [−12]

2 2.58(1) [−12] 2.34 [−12] −8.9(5) [−12] 9.4430(8) [−10] −7.926(6) [−10] 1.477(8) [−10]

14 3.60(1) [−7] 2.42 [−7] −1.920(8) [−6] 9.2140(1) [−6] −8.856(6) [−6] −9.60(10) [−7]

20 3.189(3) [−6] 1.941 [−6] −1.662(3) [−5] 4.2219(1) [−5] −4.457(3) [−5] −1.384(4) [−5]

54 1.4344(26) [−3] 6.019(1) [−4] −5.3135(50) [−3] 1.0331(1) [−3] −3.3842(24) [−3] −5.628(6) [−3]

82 2.0982(8) [−2] 6.845(3) [−3] −5.5379(20) [−2] −4.0125(94) [−3] −2.0833(22) [−2] −8.851(3) [−2]

92 4.5676(38) [−2] 1.3648(11) [−2] −1.0570(5) [−1] −1.1957(43) [−2] −3.4565(31) [−2] −9.290(8) [−2]

The calculated corrections deviate significantly from the
perturbative results [24] and are substantially larger than
projected experimental uncertainties for heavy hydro-
genlike ions, of relevance for tests of QED, searches for
New Physics, and the determination of fundamental con-
stants.
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