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Abstract

Inflationary perturbations are approximately Gaussian and deviations from Gaussian-

ity are usually calculated using in-in perturbation theory. This method, however, fails for

unlikely events on the tail of the probability distribution: in this regime non-Gaussianities

are important and perturbation theory breaks down for |ζ| & |fNL|−1. In this paper we

show that this regime is amenable to a semiclassical treatment, ~ → 0. In this limit

the wavefunction of the Universe can be calculated in saddle-point, corresponding to a

resummation of all the tree-level Witten diagrams. The saddle can be found by solv-

ing numerically the classical (Euclidean) non-linear equations of motion, with prescribed

boundary conditions. We apply these ideas to a model with an inflaton self-interaction

∝ λζ̇4. Numerical and analytical methods show that the tail of the probability distribution

of ζ goes as exp(−λ−1/4ζ3/2), with a clear non-perturbative dependence on the coupling.

Our results are relevant for the calculation of the abundance of primordial black holes.
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1 Introduction and main ideas

Primordial fluctuations generated during inflation are approximately Gaussian [1] and deviations from

Gaussianity are calculated in perturbation theory [2]. In this paper we point out that there are

physically interesting questions whose answer lies beyond perturbation theory and we explain how to

get non-perturbative results using semiclassical methods.

Let us focus for concreteness on a particular question: the calculation of the Primordial Black Hole

(PBH) abundance. Roughly, the probability of forming a PBH corresponds to the probability that the

primordial curvature perturbation ζ(x), smoothed with a typical scale that depends on the mass of

the PBH we are interested in, exceeds a certain threshold of order unity, ζ & 1 (for a recent discussion

see [3] and references therein). The formation of a PBH is a very unlikely event on the tail of the

probability distribution. (To get a sizeable amount of PBHs one considers models of inflation with a

power spectrum Pζ on short scales that is much larger than the one measured on CMB scales, but still

the formation of a PBH remains a very unlikely event.) Let us see what happens in the presence of

some primordial non-Gaussianity, characterised by a bispectrum 〈ζζζ〉, a trispectrum 〈ζζζζ〉 and so
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∼ −1/fNL ∼ 1/fNL

P(ζ)

ζ

Figure 1 Gaussian distribution (red curve) compared to a non-Gaussian one (blue curve). Close to the center

the two distributions are close to each other and the difference can be studied in perturbation theory. On the

tails the difference is large and one has to use non-perturbative methods.

on. These correlators imply that the probability distribution of ζ is, very schematically, of the form

P[ζ] ∼ exp

[
− ζ2

2Pζ
+
〈ζζζ〉
P 3
ζ

ζ3 +
〈ζζζζ〉
P 4
ζ

ζ4 + . . .

]
∼ exp

[
− ζ2

2Pζ

(
1 +
〈ζζζ〉
P 2
ζ

ζ +
〈ζζζζ〉
P 3
ζ

ζ2 + . . .

)]
.

(1.1)

The corrections to the Gaussian result are thus

〈ζζζ〉
P 2
ζ

ζ ∼ fNLζ ,
〈ζζζζ〉
P 3
ζ

ζ2 ∼ gNLζ
2 . (1.2)

For typical values of ζ, ζ ∼ P 1/2
ζ , these are small corrections, compatible with the experimental bounds

on non-Gaussianity [1] and amenable to a perturbative calculation. However, if we are interested in

ζ ∼ 1, corrections are large if |fNL| & 1 or |gNL| & 1 (see Figure 1). (See for example [4, 5] and

references therein.) For instance in a single-field model of inflation with reduced speed of sound cs,

fNL ∼ c−2
s − 1 and gNL ∼ (c−2

s − 1)2. Therefore, in these models the calculation of the PBH abundance

cannot be done in perturbation theory, unless cs is close to unity1. (Non-Gaussianity that cannot be

represented by a finite number of n-point functions was studied in multifield models of inflation, see

for example [9, 10, 11].)

1For a minimal slow-roll model the non-Gaussian parameters are slow-roll suppressed fNL � 1 and gNL � 1, so

that Gaussainity is a good approximation even for ζ ∼ 1. Actually, even if the statistics of the inflaton perturbations

can be taken as Gaussian, one needs to take into account the non-linear relation between inflaton perturbations and ζ

and may need to resum the out-of-the-horizon evolution with a stochastic approach a la Starobinsky [6] (for a recent

rigorous derivation see [7]), see [8] and references therein. Notice that the non-perturbative results we get in this paper

have nothing to do with the stochastic approach, which resums the classical long-wavelength effects. Here we study

non-perturbative results at horizon crossing, and these are fully quantum mechanical.
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The breaking of perturbation theory on the tails of the distribution can be studied in a simple

toy model (see Section 2): a quantum mechanical oscillator in the ground state, characterised by

a small anharmonicity. In general, one can treat the small anharmonicity in perturbation theory.

However, if one is interested in exploring the tail of the ground-state wavefunction, very far from the

origin, at a certain point the anharmonic correction to the potential will be large. This quantum-

mechanical example suggests a possible approach: the tail of the wavefunction is very suppressed

and one expects this regime to be amenable to a semiclassical treatment. Instead of using the WKB

approximation (this is done in Appendix A), one can obtain the semiclassical wavefunction using the

path integral formulation in the limit ~ → 0. This formulation can be generalized to the case of

interest of cosmological inflation.

In the limit ~ → 0, inflationary perturbations go to zero. Intuitively this limit should describe

rare events, i.e. events that exceed a given large “threshold”: sending this threshold to infinity with ~
constant is equivalent to send ~ → 0. Therefore, the rare-event limit of inflationary perturbations is

semiclassical. Let us make this more concrete. The wavefunction of the Universe (WFU) is given by

Ψ[ζ(x)] =

∫ ζ0(x)

BD
DζeiS[ζ]/~ . (1.3)

The functional integral has to be performed with Bunch-Davies boundary conditions at early times

and a given configuration ζ0(x) at late times. (For simplicity we stick to a single-field model of inflation

and neglect tensor modes.) To specify what one means with “rare event”, let us filter ζ0(x) with an

appropriate window function:

ζ̂0(x) =

∫
d3k

(2π)3
W (k)ζ0(k)eik·x . (1.4)

The window function will select a certain range ∆k, so that in real space the field ζ̂0 is convoluted with

an appropriate filter. A filtered field ζ̂0 is relevant to describe the probability of an overdensity (or

underdensity) in a certain region of the Universe, or the probability of forming a PBH of a given size.

The CMB temperature in each pixel of a map is also a filtered map ζ̂0 (but projected in 2 dimensions).

By translational invariance ζ̂0(x) has the same probability P(ζ̂0) at any point. The claim is that

P(ζ̂0 = ζ0) can be calculated semiclassically in the limit |ζ0| → ∞. Indeed in this limit we are imposing

boundary conditions on the integral of eq. (1.3) that make the action large compared to ~. In this

limit the functional integral can be calculated in saddle point approximation

Ψ[ζ0(x)] ∼ eiS[ζcl]/~ . (1.5)

The action is evaluated on-shell, i.e. on the classical trajectory ζcl that satisfies the boundary condition

ζcl = ζ0(x) at late times and the Bunch-Davies conditions at early times. Notice that we are keeping

the full non-linear action and not expanding in perturbation theory: the semiclassical expression (1.5)

resums all non-linearities that are enhanced by the large ζ0. Corrections to this result come from

looking at perturbations around this classical action and evaluating the functional integral over them.

These fluctuations are of order P
1/2
ζ and are not enhanced by ζ0. They give a subleading contribution

provided inflation is a weakly coupled EFT.
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Before getting to a more realistic scenario of inflation, in Section 3 we study a simple toy model to

appreciate the difference between the usual in-in perturbation theory and our semiclassical expansion.

The model consists of two fields, χ and σ, with a cubic interaction λHχσ2 (with H the Hubble scale

during inflation). We will be interested in the regime in which the modes of χ have a very large

amplitude (the unlikely tail of the distribution) so that the expansion in λ is not reliable. Moreover,

we are going to focus on configurations in which the modes of χ are much longer than the ones of σ.

In this regime χ acts as a background for the modes of σ and its effect can be easily calculated exactly

since it simply corresponds to a change in the σ mass.

The main point of the paper is described in Section 4, where the methods outlined above are applied

to a particular interaction in single-field inflation: ∝ λζ̇4. This is a particular limit of inflation, which is

consistent and technically natural, as we will discuss. The full evaluation of the wavefunction requires

the numerical solution of a PDE: this is done in Section 4.5, while a test of the numerical code against

perturbation theory is the subject of Appendix B. One is able to understand the qualitative behaviour

in λ reducing the PDE to an ODE, which basically corresponds to looking at a single Fourier mode,

instead of a realistic real-space profile. This ODE is numerically studied in Section 4.3, while an

analytic understanding, based on a scaling argument is presented in Section 4.4. The conclusion of

all these different approaches is that the tail of the distribution goes as exp(−λ−1/4ζ3/2), a result

which is clearly non-perturbative in the coupling λ. The numerical approach can only be performed

after an analytic continuation of time to Euclidean time, to avoid integrals with fast oscillations. The

possibility of doing this analytic continuation is studied in Section 5.

This paper is just a first step in the understanding of inflation beyond perturbation theory. Be-

sides the interest in PBHs, there are many conceptual issues in being able to calculate (potentially)

observable quantities in our Universe. Many directions remain open and some of them are listed in

Section 6 together with the conclusions.

2 Anharmonic oscillator

Let us consider an anharmonic oscillator with potential

V (x) = ~ω
[

1

2

(x
d

)2
+ λ

(x
d

)4
]
, (2.1)

and d ≡
√
~/mω. As usual, perturbation theory works provided that the dimensionless parameter λ

is much smaller than unity and that the particle remains close to the origin (x/d ∼ 1). Within the

validity of perturbation theory one can perform the standard computations e.g. determine the first

order corrections to the ground-state wavefunction and its energy level. The same thing happens in

this example when x/d � 1 (far away from the origin), while λ is kept small (and positive). Indeed,

as we shall see more in detail, the expansion parameter involves the value of the position i.e. λ(x/d)2

to which an analogy can be made with the case of inflation where the expansion parameter was given

by (1.2).
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We are now going to study the ground-state wavefunction Ψ0(x) using functional methods (see

e.g. [12] for an introduction to path-integral methods in QM). Let us consider a particle evolving under

the Hamiltonian Ĥ. The real-time (Lorentzian) action S[x(t)] is

S[x(t)] =

∫ tf

ti

dt

[
1

2
m

(
dx

dt

)2

− V (x)

]
. (2.2)

The propagator K(xf , tf ;xi, ti) for going from some initial position xi at time ti to the position xf at

time tf can be written in both operator and path-integral languages

K(xf , tf ;xi, ti) = 〈xf |e−i Ĥ(tf−ti)/~|xi〉 =

∫ x(tf)=xf

x(ti)=xi

Dx(t) eiS[x(t)]/~ . (2.3)

We can insert in the propagator a complete set of eigenstates |n〉 of Ĥ with eigenvalues En that we

assume positive:

〈xf |e−i Ĥ(tf−ti)/~|xi〉 =
∑
n

e−iEn(tf−ti)/~ Ψn(xf)Ψ
∗
n(xi) , (2.4)

where Ψn(x) ≡ 〈x|n〉 and Ψ∗n(x) is its complex conjugate.

The ground state can then be extracted by performing a Wick rotation t → −iτ and by then

taking the limit of T ≡ τf−τi large. In this way, (2.4) is dominated by the ground state and we obtain

Ψ0(xf)Ψ
∗
0(xi) e

−E0T = lim
T→∞

∫ x(τf)=xf

x(τi)=xi

Dx(τ) e−SE[x(τ)]/~ , (2.5)

where SE is the Euclidean action obtained after Wick rotation and τ is the imaginary time. Notice

that the point xi can be chosen arbitrarily if our goal is to extract Ψ0(xf) (the dependence on xi will

end up in a normalization factor).

Let y(τ) be a fluctuation around the classical path xcl: x(τ) = xcl(τ) + y(τ). xcl(τ) satisfies the

Euclidean equation of motion (without any expansion in λ). The path integral in (2.5) then becomes∫ x(τf)=xf

x(τi)=xi

Dx(τ) e−SE[x(τ)]/~ = e−SE[xcl(τ)]/~
∫ y(τf)=0

y(τi)=0
Dy(τ) e

− 1
~

(
1
2

δ2SE
δx2

y2+ 1
3!

δ3SE
δx3

y3+...

)
. (2.6)

Neglecting the higher-order terms which capture the interactions of perturbations around xcl(τ), we

obtain the semiclassical approximation for the ground-state wavefunction Ψ0(xf),

Ψ0(xf) = I(xf)e
−SE[xcl(τ)]/~ , (2.7)

where the path integral of the quadratic action of y(τ) gives rise to the prefactor I(xf). Let us

emphasize that the higher-order terms we have neglected in (2.6) correspond to higher-order corrections

in λ in perturbation theory, which are equivalent to loop diagrams, see [12]. The on-shell action in

(2.7) only captures all the tree-level diagrams with many external legs x. Moreover, following the

standard derivation in [12] one arrives to the VanVleck-Pauli-Morette formula of the prefactor I(xf),

I(xf) = N

√
m

2πi~vivf
∫ xf
xi

dx′

v3(x′)

, (2.8)
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x

−V (x)

(xi; τi)

(xf ; τf)

Figure 2 The inverted potential for the case of anharmonic oscillator.

where we defined vi and vf as the initial and final velocities on the classical trajectory and N is a

normalization factor. Notice that the expression (2.7) is correct up to corrections O(~) and will be a

good approximation in regions where SE � ~.

Now let us get back to the case of the anharmonic oscillator. From the formula (2.7) it is convenient

to write down the action (2.2) in Euclidean space. We now have

SE[x(τ)] =

∫ τf

τi

dτ

(
1

2
mẋ2 + V (x)

)
, (2.9)

where dot denotes d/dτ .

Let us first anticipate the semi-classical scaling of the wavefunction Ψ0(xf) as a function of λ and

the final position xf . From the formula (2.6), the leading exponent SE[xcl(τ)]/~ scales as2

SE[xcl(τ)]

~
∼ 1

λ
F (λx2

f/d
2) , (2.10)

where F is a function to be determined explicitly later on. Having said that, the on-shell action

resums all the tree-level diagrams. The prefactor instead goes as λ0G(λx2
f/d

2) with G being an

arbitrary function of λx2
f/d

2 and it captures all the 1-loop diagrams. The terms we have neglected in

(2.6) are associated to the higher-loop diagrams.

Let us now use the formula (2.7) to calculate the ground-state wavefunction. First notice that

from the action (2.9) it is practically convenient to think of a particle moving in an inverted potential

shown in Figure 2. Without loss of generality, we set xi = 03. Another thing one should bear in mind

is that since in eq. (2.5) τf − τi is taken to be very large, this means that the only real solution that

exists corresponds to the zero-energy configuration (with a finite energy the particle would reach xf

2This can be easily realized by performing x→ (
√

~/λ)x.
3Notice that this choice has nothing to do with the choice of the ground state of the Hamiltonian. Also, if one keeps

xi finite and non-zero, the solution that does not run to infinity is the one with zero energy (it spends an infinite amount

of time around the origin).

7



from the origin in a finite time). Exploiting the conservation of energy the classical trajectory x(τ)

satisfying the boundary conditions xcl(τi) = xi and xcl(τf) = xf is then determined by

dx

dτ
=

√
2V (x)

m
, (2.11)

which gives

τ − τ0 =

∫ x

∞

dx′√
2V (x′)/m

= − 1

ω
arcsinh

(
d√

2λ x

)
, (2.12)

where the integration constant τ0 corresponds to the lower limit of x going to infinity. Inverting the

expression above one gets

x(τ) = − d√
2λ sinh(ωτ)

, τ < 0 , (2.13)

where τ0 has been absorbed into the variable τ .

Now let us calculate the exponent of (2.7). The action evaluated on the classical path is

SE[xcl(τ)]

~
=

1

~

∫ τf

τi

dτ mẋ2

=
1

~

∫ xf

xi

dx
√

2mV (x)

=
1

6λ

[
(1 + x̄2)3/2 − 1

]
, (2.14)

where in the first line we have used the fact that the total energy vanishes, and in the second line we

have changed the integration variable from time to position. Here we define x̄2 ≡ 2λx2
f /d

2. Notice

that to evaluate the action we did not need the explicit trajectory (2.13). Eq. (2.14) agrees with the

scaling argument (2.10).

At this point, using the formula (2.8) and the classical path (2.13) one can easily compute the

prefactor. Changing the integration variable to τ we obtain

vivf

∫ τf

τi

dτ

v2
=
eωT

4ω
(1 +

√
1 + x̄2)

√
1 + x̄2 , (2.15)

where T = τf − τi which is taken to be very large. Therefore, the prefactor is

I(xf) = N
e−ωT/2

(1 + x̄2)1/4(1 +
√

1 + x̄2)1/2
, (2.16)

where we have absorbed all the xf -independent factors into the normalization factor N. Again, this

prefactor (2.16) is only a function of λx2
f /d

2 as anticipated from the scaling argument. The expressions

for the Euclidean action (2.14) and for the prefactor (2.16) can now be inserted in eq. (2.7) to obtain

the ground-state wavefunction as

Ψ0(x̄) = N
exp

{
− 1

6λ

[(
1 + x̄2

)3/2 − 1
]}

(1 + x̄2)1/4
(

1 +
√

1 + x̄2
)1/2

(
1 +O(λ)f(x̄)

)
. (2.17)
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This expression does not contain all λ corrections to the ground-state wavefunction, but it resums

all the leading corrections (λx2
f /d

2)n, the ones enhanced by x2
f /d

2 (for λ = 0 one gets back to the

harmonic ground-state ∼ exp[−x2
f /(2d

2)]). Also, from (2.16) we can read off the energy E0 = ~ω/2,

which is the ground-state energy of the harmonic oscillator. This is consistent with the fact that λ

corrections to E0 appear only at order ~2 (corresponding to a two-loop effect, which we neglected).

The wavefunction eq. (2.17) was obtained in [13] using periodic boundary condition xi = xf : the large

T limit corresponds in this case to the limit of zero temperature4.

In the limit of large x̄ keeping λ small one obtains

Ψ0(x̄) ∼ exp

(
− λ1/2x

3
f

d3

)
. (2.18)

This expression shows how the tails of the distribution for xf get modified. Moreover, it makes man-

ifest the non-perturbative nature of the semiclassical approximation, since we obtain a non-analytic

expression in the coupling λ.

This result for the ground-state wavefunction can be obtained also in the more standard WKB

approximation. As a consistency check for our procedure, in Appendix A we show that indeed the

WKB wavefunction matches with eq. (2.17).

3 Two fields in dS

We are now going to consider an inflationary toy model in which one is able to analytically calculate

the leading effect in the semiclassical expansion, effectively resumming an infinite set of diagrams of

the perturbative series. Let us consider the action for two fields σ and χ:

S =

∫
dηd3x

[
1

2η2H2
(σ′2 − (∂iσ)2) +

1

2η2H2
(χ′2 − (∂iχ)2)− λ

η4H3
χσ2

]
. (3.1)

The two fields interact through the cubic term and λ � 1 is the dimensionless parameter of the

standard perturbative expansion. We want to calculate the WFU in a particular regime: the modes

of χ have a much longer wavelength compared to the ones of σ (kχ � kσ), and χ is much larger than

its typical fluctuation, |χ| � H. Therefore, we do not want to assume that λχ/H is small, while we

are going to neglect all corrections suppressed by λ only. (Notice that we assume σ to have a typical

fluctuation: |σ| ∼ H.)

Loop corrections are suppressed by λ, so that the WFU can be calculated evaluating the classical

4An observable that is sensitive to the tail of the probability distribution is the moment 〈xN 〉 for large N . In the

Gaussian case one finds that the leading contribution to the integral comes from x ∼
√
N . In standard perturbation

theory the ground-state wavefunction gets corrections of order λx4, so that the perturbative calculation of 〈xN 〉 is reliable

for λx4 ∼ λN2 . 1. The “resummed” wavefunction eq. (2.17) allows to calculate 〈xN 〉 in saddle-point approximation

for large N . In this case one only gets corrections O(λ) due to subleading corrections to the wavefunction (2.17) and

O(1/N) due to the saddle-point approximation.
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action on-shell, as in eq. (1.5). The classical equations of motion in Fourier space read

σ′′ − 2

η
σ′ + k2

σσ +
2λ

η2H
χ ∗ σ = 0 , (3.2)

χ′′ − 2

η
χ′ + k2

χχ+
λ

η2H
σ ∗ σ = 0 , (3.3)

where ∗ indicates a convolution in Fourier space. The last term on the LHS of (3.3) is negligible

because it is of the order λ. Therefore, χ is just a free wave in de Sitter5,

χcl(k, η) = χ̄(1− ikχη)eikχη , (3.4)

with χ̄ its asymptotic value at late times. We need to keep, on the other hand, the last term on the

LHS of (3.2) since λχ̄ need not be small. Plugging χcl back into (3.2) we have

σ′′ − 2

η
σ′ + k2

σσ +
2λ

η2H
χ̄(1− ikχη)eikχησ = 0 . (3.5)

The last term becomes relevant compared to the gradient term only at late times when |η| . k−1
σ .

In this regime, since kχ � kσ, one can treat χ as a constant, equal to its asymptotic value χ̄. The

calculation reduces to the one of a massive scalar field in dS with the mass that depends on χ̄:

Sσ =

∫
dηd3x

[
1

2η2H2
(σ′2 − (∂iσ)2)− αH2

2η4
σ2

]
, (3.6)

where the dimensionless coupling α is defined by α ≡ 2λχ̄/H. Of course, one is able to solve exactly in

α and there is no need of a perturbative expansion in this parameter. This corresponds to resumming

the tree-level Witten diagrams shown in Figure 3a. The tree-level diagrams of Figure 3b are not

enhanced by χ̄ (or less enhanced than the ones of Figure 3a) and are thus neglected, together with

all loop diagrams, Figure 3c. The power spectrum of σ for α < 9/4 reads at late times (prime means

(2π)3δ(k + k′) was dropped)

〈σkσ−k〉′ '
H2

2k3− 2
3
α

=
H2

2k3− 4
3
λχ̄/H

. (3.7)

This shows we have resummed all powers of λχ̄.

As an aside, one may wonder whether the exact power spectrum as a function of α coincides

with the result of summing the perturbative series, or there are non-perturbative effects one cannot

capture in perturbation theory. It turns out that the power spectrum as a function of the complex

variable α is an entire function, without singularities at any finite point. Therefore, it coincides with

the perturbative series for any α. Let us verify this. Following the standard calculation for a massive

field in dS (see e.g [14]), the mode function σcl(k, η) that multiplies the operator â†, with the correct

behaviour at early times reads

σcl(k, η) = H

√
π

2
e−iνπ/2(−η)3/2H(2)

ν (−kη) , ν ≡
√

9

4
− α . (3.8)

5For simplicity, we assume that there is a single Fourier mode of χ, but the results would not change considering

many modes, all much longer than the ones of σ, and giving χ̄ as the late-time value in the region of interest.
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σ0σ0

+

σ0σ0 χ̄

λ
+

σ0σ0 χ̄χ̄

λ
λ + . . .

(a)

σ0σ0 σ0σ0

λ λ

+

χ̄ σ0σ0 σ0σ0

λ

λ λ

+ . . .

(b)

σ0σ0

λ λ
+

σ0σ0

λ λ

λλ
+ . . .

(c)

Figure 3 In the first row (Figure 3a) tree-level Witten diagrams that are enhanced by χ̄ and resummed. In the

second (Figure 3b) tree-level diagrams with fewer powers of χ̄. In the third row (Figure 3c) loop-level diagrams,

which are subleading in λ and not captured in the semiclassical limit.

This expression is even in ν so that there is no ambiguity when the square root becomes imaginary.

To calculate the power spectrum one needs the complex conjugate of this. Using the properties of the

Hankel function this can be written as

σcl(k, η)∗ = H

√
π

2
eiνπ/2(−η)3/2H(1)

ν (−kη) , (3.9)

where the equality holds for any real α. Therefore, for any real α one has

〈σkσ−k〉′ = |σcl(k, η)|2 = H2π

4
(−η)3H(1)

ν (−kη)H(2)
ν (−kη) . (3.10)

Using the properties of the Hankel functions, one can see that the RHS is an entire function of ν on

the complex plane and moreover it is even in ν. Therefore, it is an entire function of the complex

variable α. The analytic extension of the power spectrum as a function of α is entire and this implies

that it coincides with its series expansion calculated around any point. (For a related discussion about

analyticity of de Sitter propagators see [15].)

In general, one cannot hope to find an analytical solution as in the simple case above. One has to

approach the problem numerically and in this case it is necessary to analytically continue the problem

to Euclidean time τ defined as η = −iτ . The Bunch-Davies condition is that fields decay in the limit

η → −∞+ iε and after analytic continuation to τ , this condition becomes the requirement of decay for

τ → −∞. The advantage is that free fields exponentially decay for τ → −∞, while in Lorentzian one
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has to deal with oscillating solutions. In order to perform the rotation, one has to assume (or prove)

analyticity of the solution in the upper-left quadrant of the complex η plane. We are going to come

back to this issue in Section 5. For the time being, let us notice that the solution (3.8) is analytic in

the required quadrant and this holds for any value of α. This can also be seen as a consequence of

the analyticity of the differential equation from the action (3.6). Another advantage of the Euclidean

rotation is that solutions are real, since both the differential equation and the boundary conditions

are real. On the other hand, in the Lorentzian case, the Bunch-Davies boundary condition can only

be satisfied by complex solutions.

4 Single-field inflation with ζ̇4 interaction

Let us now apply our methods to a realistic scenario. We focus on a specific model of single-field

inflation with a large quartic interaction ζ̇4 [16]. With a single interaction it will be easier and more

transparent to explore the semiclassical limit and derive analytical estimates. We leave to future

work the generalization to other interactions. In the next Subsection we will review this model in the

context of the Effective Field Theory of Inflation (EFTI). We will explain why it is consistent to focus

on the non-linearities induced by the single operator ζ̇4 and treat the geometry as an unperturbed de

Sitter space. After that, we will concentrate on the calculations of the ζ probability distribution for

large values of ζ, using both analytical and numerical methods.

4.1 Single-field inflation with large 4-point function

The model we would like to discuss is naturally described within the EFTI [17], which we briefly

review below. In single-field inflation, the rolling of the inflaton φ(t) in a quasi-dS background leads

to the spontaneous breaking of time diffeomorphisms. In unitary gauge, δφ(x) = 0, the scalar mode

is hidden inside the metric and the effective action for perturbations can be written as (see [17])

S =

∫
d4x
√
−g
[

1

2
M2

PlR+M2
PlḢg

00 −M2
Pl(3H

2 + Ḣ) +

+
1

2
M2(t)4(δg00)2 +

1

3!
M3(t)4(δg00)3 +

1

4!
M4(t)4(δg00)4 + . . .

]
,

(4.1)

where gµν is the metric, R is the Ricci scalar, δg00 ≡ g00 + 1 and Mi(t) are functions of time with

dimensions of a mass. The operators in the first line, expanded around the inflationary background,

start linear in perturbations while those in the second line start at second and higher order. The dots

stand for operators starting at even higher order in perturbations or containing more derivatives.

The scalar mode π can be reintroduced by performing a broken time diffeomorphism t→ t+ ξ0(x)

and then promoting ξ0 to a field, −π, that transforms non-linearly under the broken time diffs.

π(x)→ π̃(x̃(x)) = π(x)− ξ0(x). In this way the resulting action is fully diff-invariant. As an example,

under this Stueckelberg procedure the g00 component of the metric transforms (neglecting the mixing

with metric perturbations) as

g00 → −1− 2π̇ + (∂µπ)2 . (4.2)
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This will be the only transformation we will need in our discussion. If one further assumes an ap-

proximate shift symmetry for π, then operators without at least one derivative acting on π will be

suppressed. This assumption allows us to neglect terms coming, for instance, from the time depen-

dence of the functions Mi(t) in the action (4.1). Notice that the Goldstone boson π is related to the

curvature perturbation ζ through the relation ζ = −Hπ.

We want to explore a region of parameters where the π non-linearities are dominated by a single

quartic operator. Following [16] let us start with M4 6= 0 while all the other Mi’s in the action (4.1)

are zero. We are going to come back to discuss the radiative stability of this choice momentarily. The

Stueckelberg procedure eq. (4.2) then gives

Sπ =

∫
d4x
√
−g
[
− ḢM2

Pl

(
π̇2 − (∂iπ)2

a2

)
+

+
M4

4

4!

(
16π̇4 − 32π̇3 (∂µπ)2 + 24π̇2 (∂µπ)4 − 8π̇ (∂µπ)6 + (∂µπ)8

)]
.

(4.3)

The operator M4 contains a whole slew of non-linearities, but we want to argue that there is a regime

in which only the first term, π̇4, is relevant. In perturbation theory this operator contributes to the

4-point function as

gNL ∼
〈ζ4〉
〈ζ2〉3

∼ L4

L2

1

Pζ
∼ M4

4

|Ḣ|M2
Pl

, (4.4)

where, in estimating the quadratic and quartic Lagrangians L2 and L4, derivatives are taken to be of

order H. In the following we will focus on the limit gNL � 1. (The Planck experimental constraint on

this parameter is |gNL| < 2 · 106 at 1σ [1].)

After going to canonical normalization, πc ≡
√
−2ḢM2

Pl π, the interactions in eq. (4.3) read

L4 '
1

Λ4
U

π̇4
c , L5 '

1

g
1/2
NL Λ6

U

π̇3
c (∂iπc)

2 , . . . (4.5)

where we defined the scale Λ4
U ≡ (ḢM2

Pl)
2/M4

4 and dropped factors of order unity. The quantum

mechanical expansion parameter is λ ≡ H4/Λ4
U, the analogue of the quartic coupling in the anharmonic

oscillator example discussed above. We always assume λ � 1, since this is the regime of validity of

the EFT: powers of λ weight higher loops in calculating observables and in this paper we only look

at the leading semiclassical approximation. Notice that λ ' gNLPζ , so that the regime gNL � 1 is

compatible with λ� 1. For large gNL eq. (4.5) shows that the additional operators inside (δg00)4 are

suppressed by a higher scale compared to π̇4
c . This separation of scales implies, as we are going to

show, that there is a regime of large values of ζ when the non-linearities associated with π̇4 are large,

while the additional operators can be neglected.

Written in terms of ζ = −Hπ the Lagrangian is schematically of the form

Sζ =

∫
d4x
√
−g
|Ḣ|M2

Pl

H2

[
(∂µζ)2 + gNL

1

H2
ζ̇4 + gNL

1

H3
ζ̇3(∂µζ)2 + . . .

]
. (4.6)

Since all derivatives are of order H, classical non-linearities associated with the quartic operator are

of the same order as the kinetic term for gNLζ
2 ∼ 1. In this regime, since gNL � 1, the quintic term
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gives a contribution gNLζ
3 � 1. Of course, the additional terms will become relevant if gNLζ

2 becomes

even larger, of order g
1/3
NL . In our Universe the experimental constraints impose g

1/3
NL . 102; however,

since in this paper we are mostly interested in presenting the general method and not in applying

to phenomenology, in the following we are going to disregard this upper limit and explore the effect

of the quartic term for arbitrarily large gNLζ
2, neglecting the other operators. (Notice that if one

is interested in the PBH abundance, ζ ∼ 1, one is actually sensitive to all the terms inside a given

operator (δg00)n.)

Let us now come back to the issue of whether the choice of setting to zero all operators except

M4 is stable under radiative corrections. We start with the operators M2 and M3, following [16],

and show that these operators are automatically suppressed by an approximate symmetry in the

setup we are studying. Since the quintic operator in eq. (4.5) is suppressed for large gNL, the action

(4.3) acquires an approximate Z2 symmetry π → −π: odd operators are suppressed by g
1/2
NL . This

observation guarantees that loop corrections to (δg00)2 and (δg00)3 are not sizeable. To see this notice,

using eq. (4.2), that the leading interactions arising from these operators are odd in π. Thus, they

are generated radiatively by loops with insertions of terms odd in π hence suppressed by gNL. As an

example, we can estimate the scale at which the operator π̇c(∂iπc)
2, contained in (δg00)2, is generated.

A loop with the interaction L5 of eq. (4.5) generates the cubic operator

L3 ∼
1

Λ2
Ug

1/2
NL

π̇c(∂iπc)
2 , (4.7)

where the loop integral was cut off at the highest possible scale ΛU. A similar estimate for the operator

π̇3
c , contained in (δg00)3, gives the same suppression scale. This corresponds to M4

2 , M4
3 ∼ |Ḣ|M2

Pl �
M4

4 : this model features fNL . 1 while gNL can be arbitrarily large [16]. These radiatively generated

operators would contribute terms of order (∂iζ)2ζ̇/H and ζ̇3/H inside the brackets of eq. (4.6) and

they are thus negligible for large gNL.

Let us now come to the operators (δg00)n with n ≥ 5. The radiative generation of the odd ones

will be suppressed by the aforementioned approximate symmetry. For the even ones, however, there is

no suppression, so that if the loop integral is pushed up to the unitarity cut-off ΛU, the first operator

inside each (δg00)n will read in canonical normalization

(δg00)n → π̇nc
Λ2n−4

U

n even . (4.8)

It is easy to see that all terms in these expressions will become relevant exactly when the operator

M4 becomes of the same order as the kinetic term. Going to even larger values of ζ, the terms with

larger n will dominate the lower ones. The estimate however may be pessimistic, since in general

the loop integral will be cut at a scale much lower than the unitarity cutoff ΛU. For instance, if one

considers the spontaneous breaking of a global U(1) via a Higgs mechanism, the resulting EFT for the

Goldstone boson is of the form −1
2(∂π)2 + (∂π)4/Λ4, with all additional operators (∂π)2n suppressed

in the limit the Higgs field is weakly coupled. See, for instance, the discussion in Section 4 of [18] and

references therein. In the following we are going to assume that these extra operators are sufficiently

suppressed to be negligible in the regime of interest.
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This discussion leads us to an important general point. The questions we are addressing are

sensitive to the full non-linear structure of the EFT, including in principle the whole series of operators.

One may worry that this does not make sense and goes beyond the regime of validity of the EFT

itself. First of all, notice we are always in a regime of small energy: derivatives are of order H and

are suppressed with respect to the cut-off of the theory. Indeed, the quantum mechanical expansion

parameter λ is small. What is getting large is ζ, i.e. we are in the regime of large number of particles,

or large occupation number. In general, there is nothing wrong in exploring an EFT for large values

of the fields: for instance we do it in General Relativity all the times, when we study the full Einstein

equations to obtain for example the Schwartzschild solution. Of course, there is no guarantee that the

solution remains healthy: perturbations around the solution may become pathological signalling that

the EFT is actually breaking down (see Section 4 of [18]). Thus one should always check that the

non-linear solution remains healthy. Another point of concern is the knowledge of the EFT: to find

a reliable solution one should have control of all the terms in the EFT with the minimum number of

derivatives, but this looks challenging. In some cases the symmetries of the problem are such that the

whole non-linear structure of the theory is fixed. Again GR is the prototypical example: the Ricci

scalar contains an infinite series of non-linearities of the graviton, all terms with two derivatives. In the

case of scalars, one can consider symmetries that enforce a complete non-linear structure. For instance

the scalars that describe the embedding of a brane in an extra dimensional space have an action fixed

by the (non-linear realization of) geometrical symmetries: the DBI action [19]. Another example is

the one of Galileons [20]: at leading order in derivatives there are only three possible interaction terms

(in 3+1 dimensions). Even in cases in which symmetries are not powerful enough, some assumptions

about the UV completion may fix the full non-linear structure of the EFT. We already gave above

the example of the Abelian Higgs model, while another example is the Euler-Heisenberg Lagrangian

obtained integrating out the electron from QED. The necessity to know the whole non-linear action

is therefore a feature more than a pathology, not that different from the necessity of knowing the full

scalar potential V (φ) to describe inflation from observable scales to reheating.

Before moving to the actual calculation with the ζ̇4 interaction, let us comment on another ap-

proximation: we are going to neglect metric perturbations, considering a scalar field in exact de Sitter

space. This corresponds to the usual “decoupling limit”: the effect of π perturbations on the metric

is suppressed by the slow-roll parameter ε ≡ −Ḣ/H2, which also describes the deviation of the un-

perturbed background from de Sitter. This is not changed by the fact that we are taking large values

of ζ; the leading interaction can be read by looking at π only and treating the metric as unperturbed.

4.2 ζ̇4 beyond perturbation theory

We can now apply the main ideas of this paper to the model introduced in the previous Section, with

the discussed approximations. The action for ζ using conformal time is

S =

∫
d3xdη

{
1

2η2Pζ

[
ζ ′2 − (∂iζ)2

]
+
λζ ′4

4!P 2
ζ

}
, (4.9)
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where Pζ ≡ H2/(2εM2
Pl) and λ ≡ (H/ΛU)4 � 1. The standard in-in perturbation theory for ζ

corresponds to an expansion of the various correlators in powers of λ. From now on we call ζ0 the

asymptotic late-time value of ζ. Comparing the free action with the quartic interaction, one sees

that the relevant expansion parameter is λζ2
0/Pζ . The semiclassical expansion corresponds to an

expansion in λ� 1 keeping λζ2
0/Pζ finite and not necessarily small. The wavefunction of the Universe

is calculated evaluating the action on-shell

Ψ[ζ0(x)] ∼ eiS[ζcl] . (4.10)

From the expression of the action eq. (4.9) one can see that the on-shell action scales as

S[ζcl] =
1

λ
F
(
λζ2

0/Pζ
)
, (4.11)

where F is a function to be determined (in analogy with the case of the anharmonic oscillator in

eq. (2.10)).

The field ζcl is a solution of the equation of motion one can derive from the action (4.9). For

analytical and numerical purposes it is better to consider the system in Euclidean time τ defined as

η = −iτ . The equation of motion reads

−ζ ′′ + 2

τ
ζ ′ − ∂2

i ζ −
λ

2Pζ
τ2ζ ′2ζ ′′ = 0 . (4.12)

(With an abuse of notation we indicate with primes both derivatives with respect to the conformal

time η and the Euclidean time τ . The appearance of η or τ in the equation should help not creating

confusion.) We are going to solve the PDE above with boundary conditions at early and late times.

At early times ζ must go to zero, while at late times if must give the profile ζ0(x) we are interested

in. The action in Euclidean time is given by

SE ≡ −
∫
d3xdτ

{
1

2τ2Pζ

[
ζ ′2 + (∂iζ)2

]
+
λζ ′4

4!P 2
ζ

}
, (4.13)

with

Ψ[ζ0(x)] ∼ e−SE[ζcl] . (4.14)

Notice that we started with an integral in η slightly deformed above the real axis to project in the

vacuum. Now we are effectively integrating η along the positive imaginary axis. The two procedures

give the same result assuming analyticity of the Lagrangian as a function of complex η, in the quadrant

of interest. For the time being, we assume this property and we will come back to this point in Section 5.

Let us go through the calculation in the case of the free theory λ = 0, following [2]. This is useful

to understand the dependence of the WFU on time: indeed we have been sloppy so far and we should

have written the WFU as Ψ[ζ0(x), ηf ], where ηf is the (late) time of interest. In Fourier space, the

solution with prescribed boundary conditions at ηf that decays to zero when η acquires a small positive

imaginary part in the far past is

ζcl(k, η) = ζ0(k)
(1− ikη)eikη

(1− ikηf)eikηf
. (4.15)
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One has then to evaluate the free action on these solutions. Integrating by parts the free action gives

a term proportional to the equation of motion, which is zero on-shell, and a boundary term:

iS =
i

2Pζ

∫
d3k

(2π)3

1

η2
f

ζcl(−k, η)∂ηζcl(k, η)

∣∣∣∣
η=ηf

'
∫

d3k

(2π)3

1

2Pζ

(
i
k2

ηf
− k3 + . . .

)
ζ0(−k)ζ0(k) ,

(4.16)

where we dropped terms subleading for ηf → 0−. The time-dependence of the WFU is a pure phase

that does not affect the probability of ζ0, which is time-independent at late times (this justifies our

sloppy notation).

It is useful to also do the same calculation in Euclidean time τ since this is what we are going to

use for the interacting theory. One has

ζcl(k, τ) = ζ0(k)
(1− kτ)ekτ

(1− kτf)ekτf
, (4.17)

SE = − 1

2Pζ

∫
d3k

(2π)3

1

τ2
f

ζcl(−k, τ)∂τζcl(k, τ)

∣∣∣∣
τ=τf

'
∫

d3k

(2π)3

1

2Pζ

(
k2

τf
+ k3 + . . .

)
ζ0(−k)ζ0(k) .

(4.18)

This is the same as the Lorentzian result after the analytic continuation of τf . Notice that in the

Euclidean calculation both the divergent part and the finite part are real. Notice also that since

τf → 0−, SE < 0 and indeed there is an overall minus sign in front of eq. (4.13). However, after

analytic continuation 1/τf becomes purely imaginary and the remaining piece is positive as it should.

In the interacting case, one has to deal with this divergence to make the problem numerically tractable.

The crucial simplification is that the divergence, which in Lorentzian describes the phase of the

wavefunction is a late-time effect and at late times the interaction is negligible, since it contains more

derivatives than the free action. Therefore, as we will see, one can extract a finite result comparing

the interacting case with the free one.

The semiclassical approach effectively resums a subset of diagrams of the standard in-in pertur-

bation theory. In dS space, Ψ[ζ0(x)] is defined by the path integral of eq. (1.3) where one imposes

Dirichlet boundary conditions for ζ at late times. This path integral can be conveniently computed

in perturbation theory as a sum of Witten diagrams (see for example [21]). The tree-level Witten

diagrams of Figure 4a have the same scaling as the lowest-order term in the semiclassical expansion,

which corresponds to the on-shell action (4.11). This is immediate to realize since for any additional

vertex we add we increase the number of boundary legs by two. Thus, a tree-level diagram with V

vertices scales as ∼ 1
λ(λζ2

0 )V+1. The subleading order in λ in the semiclassical expansion is instead

obtained through a one-loop calculation around a non-trivial background for ζ (this corresponds to the

calculation of the prefactor in eq. (2.8) in our quantum mechanical example). The scaling of this factor

is λ0G(λζ2
0 ), which corresponds to the scaling of the one-loop Witten diagrams of Figure 4b, while

the diagrams of Figure 4c are computed by two- or higher- loop calculations around the semiclassical

solution for ζ.

Before moving to the actual calculation of the action, it is useful to comment on the choice of the

asymptotic value ζ0(x). To answer a concrete question, like the probability of producing a PBH, one
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Figure 4 In the first row (Figure 4a) tree-level Witten diagrams; these are captured by the semi-classical method.

In the second row (Figure 4b) one-loop diagrams; these would be captured by the (one-loop) prefactor in the

semi-classical method. In the third row (Figure 4c) higher-loop diagrams; these are only captured at subleading

order in the semi-classical calculation.

would be interested in evaluating the WFU for all functions that are above a certain threshold6. More

specifically, as we discussed in the introduction, one would consider a filtered field ζ̂0(x) and require

that this field exceeds a certain numerical threshold at a point of interest. In the limit of a very high

threshold all configurations ζ0(x) that are above threshold have a “large ζ0” and as such the WFU

can be calculated semiclassically. Of course, to get to the final answer one should eventually sum over

all ζ0(x) that are above threshold. This final integral can also be done in saddle-point approximation:

since the probability of all interesting configurations is small, the integral will be dominated by the

least unlikely. In this paper we do not want to commit to a very specific question, which would require

the details of the window function and the threshold. We are going simply to choose a given ζ0(x)

and take it large enough for our approach to be applicable. Since the question we are addressing is

not completely specified, we will be mostly interested in the behaviour of the probability as a function

of the parameter λζ2
0/Pζ , especially once this becomes large. We leave the actual implementation of

these techniques to the calculation of the PBH abundance to future work.

6The threshold is of course an approximate concept: one should know the precise boundary in the functional space

ζ0(x) that separates the configurations giving rise to a PBH from the ones that do not.
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4.3 ODE approximation

The qualitative behaviour of the action as a function of the boundary values of ζ can be understood

focussing on a single Fourier mode and thus reducing the problem to an ordinary differential equation

(ODE). In perturbation theory the interaction ζ ′4 induces coupling mainly among modes with com-

parable wavelength: this is the reason why one gets non-Gaussianities of “equilateral” kind [22]. For

the same reason one expects that if the boundary condition at late times ζ0(x) has Fourier transform

concentrated on a typical value k (7) then only modes with similar wavelength will be relevant in the

full solution ζcl(x, τ). Therefore, one can concentrate on a single Fourier mode and eq. (4.12) reduces

to the following ODE

−ζ ′′ + 2

τ
ζ ′ +H2ζ − λ

2Pζ
τ2ζ ′2ζ ′′ = 0 , (4.19)

where we have set k/H = 1, using scale-invariance. The boundary conditions we need to impose are

ζ(τ → −∞) = 0 , ζ(τf) = ζ0 , (4.20)

where τf is the final conformal time.8 This approximation, as we are going to argue, is useful in order

to obtain an analytic understanding of the scaling of S as a function of λ and ζ0. In Section 4.5 we

will instead solve the full PDE and we will compare with the results of the ODE approximation.

In order to solve eq. (4.19) numerically and compare different solutions, it is convenient to rescale

ζ → ζ0ζ so that one has ζ(τf) = 1. Moreover, one can define

λ̃ ≡ λζ2
0/Pζ , (4.22)

this is the parameter that quantifies the classical non-linearities, the analogue of x̄ in the quantum

mechanical example of Section 2. In this way the EoM (4.19) keeps the same form with λ replaced

by λ̃ and Pζ set to 1, while the action rescales as S → (ζ2
0/Pζ)S. Our analysis will be exact in λ̃, but

perturbative in λ� 1: this separation requires ζ2
0/Pζ � 1, corresponding to λ̃� λ. (For instance at

first order in λ we are keeping the first graph of Figure 4a, but we are dropping the first diagram of

Figure 4b. The first is larger than the second by a factor ζ2
0/Pζ .)

The numerical solutions are shown in Figure 5a (we set ζ(τf) = 1 and Hτf = −0.001). Notice

that the non-linear interaction acts as a sort of non-linear friction so that the solution varies more

slowly as λ̃ increases. (Thus one has to correspondingly adjust the value of Hτi to earlier and earlier

values.) We notice that the solutions approach a universal behaviour for large λ̃ that can be obtained

7For instance PBH with a certain mass will typically form at a given time and the modes of interest will be the ones

with wavelength comparable with the Hubble radius at that moment.
8Since the field goes to zero at early times, the free theory becomes a good approximation. Numerically we implement

the boundary condition at an early time τi as

ζ′(τi) =
Hτi

Hτi − 1
ζ(τi) , (4.21)

which is the relation between the field and the derivative in the free theory.
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(a) (b)

Figure 5 Left panel (Figure 5a): the numerical solutions for λ̃ = {0, 100, 200, 500} and ζ0 = 1. Right panel

(Figure 5b): the same solutions after τ →
√
λ̃τ (the solution for λ̃ = 0 is copied for comparison).

by rescaling τ →
√
λ̃τ . The rescaled solutions are illustrated in Figure 5b. We will come back to this

point in the next Section.

Now let us evaluate the on-shell action. First we note that, as in the case of a free field in dS

discussed above, the action (in particular the free gradient energy) gives a singularity for τ → 0. This

can be completely removed since its contribution to the wavefunction is purely imaginary:

∆SODE = − ζ
2
0

Pζ

∫ τf

τi

dτ

{
1

2τ2

[
ζ ′2 +H2(ζ2 − 1)

]
+
λ̃

4!
ζ ′4

}
=

1

λ
F (λ̃) . (4.23)

We have subtracted 1, the asymptotic value of ζ, inside the innermost parentheses. This additional

term gives a term proportional to 1/τf after integration and this becomes purely imaginary after

rotation to η. Therefore, the extra term does not contribute to the probability of ζ. The advantage is

that, after this subtraction, the action is finite and can be treated numerically.

The behaviour of the on-shell action evaluated on the numerical solutions is given in Figure 6.

It shows that the on-shell action ∆SODE ∼ 1
λ λ̃

3/4 for large λ̃. The real part of the WFU therefore

behaves as

Ψ[ζ0] ∼ exp

[
− 1

λ
λ̃3/4

]
, (4.24)

with some unspecified order one coefficient in front of the exponent. The WFU is multiplied by a

time-dependent phase, the same as in the free theory eq. (4.16), which does enter in the calculation

of the correlation functions of ζ.

4.4 Analytic understanding of the ODE result

In this Section we show that the behaviour of the ODE for large λ̃ that we found numerically can

also be understood analytically. First we notice that there are three regimes for the ODE solution,
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Figure 6 The on-shell action as a function of the expansion parameter λ̃ = λζ20/Pζ . The blue curve is the best

fit curve proportional to λ̃3/4. The red points indicate the numerical values of λ ·∆SODE.

I: Free III: FreeII: Non-linear

Hτ1 Hτ2 ∼ −1/λ̃1/4 τ = 0

τ

Figure 7: Three regimes of the solution.

summarized in Figure 7. At very early times τ → −∞, the field must approach the BD vacuum, so

its amplitude is exponentially small. Therefore, in this regime the interaction term becomes negligible

and we approach a free solution. We define τ1 as the earliest time at which the interaction term is

comparable with the free time kinetic term. For τ < τ1 the solution is approximatively free (region I

of the Figure), while for τ > τ1 we enter the non-linear regime (region II).

At very late times, τ → 0−, the interaction term becomes subdominant once again since it contains

more derivatives than the kinetic term. Thus the solution becomes free (region III) for times τ > τ2.

In region III the solution is approximatively given by

ζIII ' (1−Hτ)eHτ , (4.25)

since our boundary condition, after rescaling, is ζ(τf) = 1. From this we can estimate τ2 as the time

when ζ ′′ and the non-linear term in eq. (4.19) are of the same order

λ̃τ2
2 ζ
′
III(τ2)2 ∼ 1 . (4.26)

Since this happens after horizon crossing, we can expand this equation at lowest order in τ2. We

obtain

−Hτ2 ∼
1

λ̃1/4
, (4.27)
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which for large λ̃ is consistent with the expansion we performed. In this approximation we can take

ζIII ∼ 1 at τ2.

Now we can focus on region II. In this regime one expects the non-linear term to dominate over

the kinetic term and Hubble friction, and to be compensated in the equation of motion by the spacial

kinetic term. To see this let us consider eq. (4.19) and rescale τ =
√
λ̃τ̃ . We obtain

1

λ̃

(
− ζ̈ +

2

τ̃
ζ̇

)
+H2ζ − 1

2
τ̃2ζ̇2ζ̈ = 0 , (4.28)

where ζ̇ ≡ dζ/dτ̃ . We see that, when λ̃ is large, the first and the second terms can be neglected

compared to the rest (one can check this in the numerical solutions). Therefore, in this regime one

has

H2ζII −
λ̃

2
τ2ζ ′

2
IIζ
′′
II = 0 . (4.29)

This explains why in the previous Section we found a universal solution as a function of τ/
√
λ̃. This

equation does not have an analytic solution. However, let us now assume that ζ ∼ 1 for small τ (as

we argued from the behaviour in region III). Then, from (4.29) ζII, ζ
′
II and ζ ′′II can be approximated,

neglecting factors of order one, as

ζII ∼ 1− H2/3|τ |2/3

λ̃1/3
, ζ ′II ∼

H2/3

(λ̃|τ |)1/3
, ζ ′′II ∼

H2/3

λ̃1/3|τ |4/3
. (4.30)

As we increase λ̃, the time dependence of the solution becomes milder. In comparison, the free solution

decays exponentially when moving to earlier times. This analytic behaviour is in agreement with the

numerical results of Figure 5a. Physically this is expected: for the model at hand the non-linearities

have the effect of increasing the time kinetic term, hence reducing the forcing term. In Euclidean time

this induces a slower decay at early times, and in the limit λ̃→∞ one recovers ζ ∼ 1 at any τ .

The solution in region I is again free, proportional to eq. (4.25), but with a different normalization.

Time τ1 is approximately given by

λ̃τ2
1 ζ
′
II(τ1)2 ∼ 1 . (4.31)

We do not know how to estimate τ1, since we do not have an analytic expression of ζII. However, since

for large enough λ̃, ζII is a function of τ/
√
λ̃, one can argue that |τ1| grows at least as fast as

√
λ̃, and

this is sufficient to estimate the action. (Numerically one finds actually |τ1| ∼
√
λ̃.)

With these observations at hand we are now ready to estimate the on-shell action. We note that

in the limit λ̃ → ∞ the regularized action (4.23) approaches zero (since we have ζ ∼ 1 and ζ ′ ∼ 0).

On the other hand, for small λ̃ we need to recover the free result ∆Sfree
ODE = ζ2

0/(2Pζ). Therefore, one

expects ∆SODE to be a decreasing function of λ̃.

Let us assume momentarily that the contribution to the action of region I is negligible. Using the
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approximate solutions for regions II and III, eq. (4.25) and (4.30), we obtain

∆SODE = − ζ
2
0

Pζ

∫ 0

−∞
dτ

{
1

2τ2

[
ζ ′2 +H2(ζ2 − 1)

]
+
λ̃

4!
ζ ′4

}

∼ − ζ
2
0

Pζ

{∫ τ2

τ1

dτ

[
1

2τ2

(
ζ ′2II +H2(ζ2

II − 1)

)
+
λ̃

4!
ζ ′4II

]
+

∫ 0

τ2

dτ

[
1

2τ2

(
ζ ′2III +H2(ζ2

III − 1)

)
+
λ̃

4!
ζ ′4III

]}

∼ ζ2
0

Pζ

1

λ̃1/4
=

1

λ
(λζ2

0/Pζ)
3/4 . (4.32)

Both integrals are dominated by the region around τ2. One can check that each single term in the

action, ζ ′2, (ζ2 − 1) and λ̃ζ ′4 contributes, both in region II and III, to a term of order λ̃−1/4. This

result confirms the numerical behaviour found in the previous Section.

To conclude, let us check that the contribution of region I is actually negligible. In this region

we can use free modes (whose normalization, however, we do not know) to integrate the action. The

integral of the free action can be written as

− ζ2
0

Pζ

∫ τ1

−∞
dτ

{
1

2τ2

[
ζ ′2I +H2ζ2

I

]}
∼ − ζ

2
0

Pζ

Hζ ′2I (τ1)

τ2
1

. (4.33)

Using eq. (4.31) and that |τ1| increases at least as fast as
√
λ̃, one sees that this term goes as λ̃−3, and

it is thus subleading compared with eq. (4.32). One gets the same estimate for the contribution of the

term λ̃ζ ′4. The integral of the ζ-independent term in the action, −H2/(2τ2), gives a contribution of

order 1/τ1 ∼ λ̃−1/2, which is also subleading.

4.5 PDE analysis

In the last two Sections we have seen how the tail of the WFU can be estimated (as a function of

the parameter λ̃) assuming that all the modes have comparable wavelength: the PDE was reduced

to an ODE. The ODE is easy to treat numerically (Section 4.3) and one can also provide an analytic

understanding of the numerical result (Section 4.4). However, in this way one can only capture the

qualitative dependence on λ̃ and not the constants of order unity: if one wants to use our semi-

classical method to answer some specific questions, e.g. compute the PBH abundance, the full PDE

analysis is required. We are now going to study the PDE and check that the ODE treatment correctly

captured the qualitative behaviour in λ̃ and that this result holds quite generally as we change the

space dependence of the boundary condition ζ0(x) (9). In particular we are going to make two choices

for ζ0(x): a sinusoidal wave and a spherically symmetric Gaussian profile.

Let us first start with the sinusoidal case. For simplicity, we impose the conditions

ζ(τf , x) = ζ0 sin(kx) , (4.34)

9In the model we are studying there is a neat separation: the Euclidean action has an overall dependence on the

amplitude of ζ0(x), i.e. ∝ ζ
3/2
0 , and a subleading dependence on the precise shape of ζ0(x). It is not obvious a priori

that the same will hold for any possible interaction.
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(a) (b)

Figure 8 Numerical solutions with sinusoidal boundary condition at late times with λ̃ = 0 (left panel, Figure 8a)

and λ̃ = 200 (right panel, Figure 8b).

with kx ∈ [0, 2π]. Notice that the action we are considering is even in ζ so that it is consistent to

impose that ζ vanishes at 0 and 2π for any τ . Also in the PDE case we implement the initial condition

(4.21) and take k = H using scale-invariance. Like the ODE Section, we redefine ζ → ζ0ζ so that the

condition (4.34) becomes ζ(τf , x) = sin(kx).

The problem does not depend on y and z, thus the PDE (4.12) simplifies to a 1 + 1-dimensional

problem:

−ζ ′′ + 2

τ
ζ ′ − ∂2ζ

∂x2
− λ̃

2
τ2ζ ′2ζ ′′ = 0 , (4.35)

where λ̃ was previously defined in Section 4.3. The numerical solutions for λ̃ = 0 and λ̃ = 200 are

given by Figures 8a and 8b. (We took Hτf = −0.001 and Hτi = −80. As in the ODE case the value of

|τi| must be taken larger and larger as λ̃ increases. We used Mathematica for all numerical analysis.)

The plots show that the solution remains smooth going to large λ̃, without generating large higher

harmonics: this justifies the use of the ODE as an approximation to the full problem.

Let us now compute the Euclidean action evaluated on the numerical solutions. Following the

same procedure of the ODE Section, the finite part of the action ∆SPDE is given by

∆SPDE = − ζ
2
0

Pζ

∫ τf

τi

dτ

∫ xf

xi

dx

{
1

2τ2

[
ζ ′2 + (∂xζ)2 − k2 cos2(kx)

]
+
λ̃

4!
ζ ′4
}

=
1

λ
F (λ̃) . (4.36)

The k2 cos2(kx) term is added to remove the divergence of the free action at late times (at τ = τf

one has (∂xζ)2 = k2 cos2(kx)). We now evaluate the integral in (4.36) numerically on the solutions

ζ(τ, x) for different values of λ̃, starting from λ̃ = 0 up to λ̃ = 105. We then plot in Figure 9 the

function F (λ̃) = λ ·∆SPDE against the parameter λ̃. For large λ̃ the function F (λ̃) approaches λ̃3/4 in

agreement with the ODE result (4.24).

The advantage of considering a single Fourier mode is that it is easy to check the numerical result

with perturbation theory in the limit of small λ̃: we leave this check to Appendix B.
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Figure 9 The function F (λ̃) = λ ·∆SPDE for the sinusoidal case. The blue curve shows the best fit of λ ·∆SPDE

(red points), proportional to λ̃3/4.

Let us now come to the study of the PDE with a Gaussian, spherically symmetric profile of ζ at

late times. This is similar to what one should do for a proper calculation of PBH formation, where the

assumption of spherical symmetry should be reasonably accurate. Notice that one should eventually

sum over all the radial profiles exceeding a certain threshold. Here we simply choose a certain profile,

leaving a proper investigation about PBH formation to future work.

We simply impose the conditions

ζ(τf , r) = ζ0 exp(−k2r2) , (4.37)

and ∂rζ(η, ri) = 0 = ζ(η, rf) where r ∈ [ri, rf ]. As usual the condition (4.21) at early times has been

imposed. Following the same rescaling procedure as before, we have ζ → ζ0ζ, so that the condition

above becomes ζ(τf , r) = exp(−k2r2).

Now let us proceed with the PDE. Given spherical symmetry eq. (4.12) takes the form,

−ζ ′′ + 2

τ
ζ ′ − 1

r2

∂

∂r

(
r2∂ζ

∂r

)
− λ̃

2
τ2ζ ′2ζ ′′ = 0 . (4.38)

The numerical solutions are shown in Figures 10a and 10b for λ̃ = 0 and λ̃ = 200, respectively. (We

chose Hτi = −80, Hτf = −0.001. The value of rf has to be sufficiently large to capture the decay of

the Gaussian far from the center.)

Like in the previous case, the finite part of the action ∆SPDE reads

∆SPDE = − ζ
2
0

Pζ

∫ τf

τi

dτ

∫ rf

ri

dr r2

{
1

2τ2

[
ζ ′2 + (∂rζ)2 − 4k4r2e−2k2r2

]
+
λ̃

4!
ζ ′4
}

=
1

λ
F (λ̃) . (4.39)

As before, we subtracted the late-time value of (∂rζ)2, i.e. 4k4r2e−2k2r2 , from the full action to get rid

of the divergent piece at late times. We now perform the integral in (4.39) numerically on the solutions
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(a) (b)

Figure 10 Numerical solutions with Gaussian boundary condition at late times for λ̃ = 0 (left panel, figure 10a)

and λ̃ = 200 (right panel, figure 10b).

Figure 11 The function F (λ̃) = λ ·∆SPDE for the Gaussian case. The blue curve shows the best fit of λ ·∆SPDE

(red points), proportional to λ̃3/4.

for λ̃ = 0 up to λ̃ = 105. We then again plot in Figure 11 the numerical value of F (λ̃) = λ ·∆SPDE as

a function of λ̃. As expected, the asymptotic behaviour of F (λ̃) fits very well with λ̃3/4, in agreement

with the ODE result (4.24).

5 Analytic continuation to Euclidean time

The analysis of the previous Sections relies on the analytic continuation of the action in η. This

continuation corresponds to a rotation of the contour of integration as in Figure 12. After this
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Re η

Im η

Γε

Γ∞

ΓE

ΓL

Figure 12 Complex contour for the evaluation of the action. The Lorentzian action (dS4) is obtained integrating

along ΓL (notice the iε prescription) while the Euclidean action (−EAdS4) along −ΓE. The large semicircle

Γ∞ goes to zero for large radii because of the Bunch-Davies vacuum condition. The small circle Γε contains a

singularity as ηf → 0.

rotation one has a negative-definite metric

ds2 = − 1

H2τ2
(dτ2 + dx2) , (5.1)

which we dub −EAdS4 (for a related discussion see [23, 24]). (We will only comment at the end about

the possibility of further continuing this to Euclidean AdS, EAdS4, with an analytic continuation of

the Hubble radius H → −i/L, where L is the EAdS4 radius.)

In this Section we would like to justify this analytic continuation by proving that the classical

trajectory, and thus the Lagrangian, are analytic in the upper-left quadrant of the complex-η plane.

The proof holds at any order of tree-level perturbation theory, i.e. for the diagrams we are resumming

in the semiclassical expansion. As in the previous Sections we consider the geometry as unperturbed.

This implies that the integral that gives the action and then the WFU can indeed be rotated from dS4

to its Euclidean version, −EAdS4, without encountering singularities. Towards the end of the Section

we give a plausible non-perturbative argument for analyticity.

As already emphasized, the Lagrangian has a pole at η = 0 so that there is a contribution of Γε

in Figure 12. This pole is due to the quadratic part of L and gives a divergent contribution to the

integral ∝ 1/τf = −i/ηf , see the discussion below eq. (4.18). This is only a phase in the WFU and it

does not affect the statistical properties of ζ. From now we assume that this divergent part is removed

(see the discussion below eq. (4.23)) and the integral can be extended to the origin. Provided that

ζ is analytic for Re η < ηf < 0, Im η > 0, the Lagrangian is also analytic in the same domain (we

assume it is an analytic function of derivatives of ζ). Hence, our goal is to show that, at any order

in perturbation theory in some coupling λ, the classical solution with fixed boundary conditions at

η = ηf for ζ remains analytic.

We start by writing the formal classical solution for ζ in dS4, with Bunch-Davies vacuum conditions

for η → −∞ and Dirichlet boundary conditions at late times: ζ(ηf ,k) = ζ0(k). Given a generic
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interaction term in the action Sint, ζ(η,k) reads

ζ(η,k) = K(η,k)ζ0(k) +

∫ ηf

−∞(1−iε)
G(η, η′;k)

δSint

δζ(η′,k)
dη′ , (5.2)

where K(η,k) is the bulk-to-boundary propagator and G(η, η′;k) is the bulk-to-bulk propagator (see

for instance [21]). For a massless scalar in dS4 they read

K(η,k) =
(1− ikη)

(1− ikηf)
eik(η−ηf) , (5.3)

and

G(η, η′;k) =
−iH2

2k3

[
θ(|η′| − |η|)φ+(η′)φ−(η) + θ(|η| − |η′|)φ+(η)φ−(η′)− φ−(ηf)

φ+(ηf)
φ+(η′)φ+(η)

]
,

(5.4)

where θ is the step function and φ−(η), φ+(η) are the wave-modes solving the free equation of motion

φ−(η) ≡ (1 + ikη)e−ikη , φ+(η) ≡ (1− ikη)eikη . (5.5)

Expression (5.2) is a formal solution that can be used iteratively to obtain corrections to ζ as a power

series in the coupling λ. Indeed, by evaluating the source S(η′,k) ≡ δSint/δζ(η′,k) at order n in λ,

we can obtain the solution for ζ at order n + 1 by evaluating the right-hand side of eq. (5.2). Such

perturbative iteration corresponds to an expansion in tree-level Witten diagrams (with an increasing

number of legs connected to the boundary).

We can proceed by induction. We will start by assuming that the source term S(η′,k) is analytic

at order n in the perturbative expansion in λ. Then, we will argue that the solution for ζ at order

n + 1 is also analytic. Since the zeroth-order solution for ζ, given by ζ(0)(η,k) = K(η,k)ζ0(k), is

manifestly analytic this will prove that ζ remains analytic at any order.

In order to show analyticity, we need to properly extend eq. (5.2) to complex-η values. Assuming

analyticity for the source S(η′,k), the only difficulty resides in the propagator G(η, η′;k), which

displays a discontinuity in the complex-η′ plane when |η| = |η′| with arg η 6= arg η′. Note however

that G(k; η, η′) is analytic in η and η′ in the two regions |η| > |η′| and |η| < |η′|.
Because of these properties, we can extend eq. (5.2) to complex η by choosing a proper contour

of integration in η′ for the integral on the right-hand side. As shown in Figure 13, we pick a path C1

going from infinity (in the upper-left quadrant) to η, and then a second path C2 from η to 0. The

explicit expression for ζ for complex η, in terms of the wave-modes, is then

ζ(η,k) = K(η,k)ζ0(k)− iH2

2k3

[
φ−(η)

∫
C1
φ+(η′)S(η′,k)dη′ + φ+(η)

∫
C2
φ−(η′)S(η′,k)dη′

− φ+(η)

∫
C1∪C2

φ+(η′)S(η′,k)dη′
]
.

(5.6)

Because of the decaying properties of the Green functions in eqs. (5.3) and (5.4), the integrals are

convergent and the solution is overall exponentially decaying at infinity, as expected. Due to Cauchy’s

theorem, the paths C1 and C2 can be chosen arbitrarily (as long as they do not cross the |η′| = |η| and
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η

Re η′

Im η′

C2

C1

Figure 13 In orange, the complex contour for the integral in eq. (5.2). The red line indicates the points where

G(η, η′;k) is discontinuous.

they remain in the upper-left quadrant) and therefore the integral over η′ will depend on η but not on

its complex conjugate η∗, as a consequence of the fundamental theorem of calculus. This means that

the result is holomorphic (∂η∗ζ = 0). Finally, in order to prove analyticity, we only need to show that

∂ηζ exists everywhere. This is the case, as we can see by direct inspection

∂ηζ(η,k) = ∂ηK(η,k)ζ0(k)− iH2

2k3

[
∂ηφ−(η)

∫
C1
φ+(η′)S(η′,k)dη′

+ ∂ηφ+(η)

∫
C2
φ−(η′)S(η′,k)dη′ − ∂ηφ+(η)

∫
C1∪C2

φ+(η′)S(η′,k)dη′
]
.

(5.7)

This shows that indeed ζ is analytic, as claimed.

Additionally, it is easy to realize that this choice of the contour is the correct one since ζ then

satisfies its classical equation of motion, even for η complex. Therefore, when η is purely imagi-

nary (with positive imaginary part), ζ reduces to the correct −EAdS4 classical solution. This can

be checked by noticing that, in this case, one can take the two paths C1 and C2 to belong to the

imaginary η′ axis. Hence, in eq. (5.6) we can simply replace η → iz, η′ → iw, with z, w ∈ R+. The

bulk-to-boundary propagator and the two wave-modes of eqs. (5.3) and (5.5) map to their −EAdS4

counterparts (KdS(iz,k) = K−EAdS(z,k), φ+(iz) = φ−EAdS
+ (z) and φ−(iz) = φ−EAdS

− (z)), whereas

the bulk-to-bulk propagator picks up a phase (GdS(iz, iw;k) = iG−EAdS(z, w;k)), as we see from

its expression eq. (5.4). This factor of i then combines with the measure of integration in eq. (5.6)

so to obtain the correct formal solution for ζ in −EAdS4.10 (Notice also that, by further rotating

H → −i/L, our expressions in −EAdS4 maps to the expressions to EAdS4. See [21] for a dictionary

between dS4 and EAdS4. We will comment more about this point below.)

This concludes the proof of why we can analytically rotate to −EAdS. At this point we want to

give an argument about analyticity when we treat interactions non-perturbatively in the couplings.

10When going to Euclidean one should also consider the rotation of the background solution, which is time dependent.

This will induce some extra phases in the coefficient of some of the π interactions.
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In particular, we focus on the case where the EoM can be approximated by an ODE. Formally

speaking, our discussion only applies to QM but, as we saw for the model λζ̇4, an ODE can be a good

approximation for the behaviour of ζ. It looks quite challenging to have a rigorous proof in the case

of the PDE. Further, we assume that a solution to the boundary-value problem for our ODE exists.

Given this solution, we can think of our problem as an initial-value problem by computing the value

of ζ̇ at early times and using it as an initial condition. By doing so, we are now allowed to apply

standard results in the theory of ODEs.

This ODE can be written as a first-order system of equations that we study in the full complex

plane, schematically of the form ẋ(τ) = f(x, τ ;λ)11, where τ is a complex-time variable and λ is a

generic coupling of the theory. Let us assume in the following that f(x, τ ;λ) is an analytic function

on all its three variables.12 If this is the case, then it follows that around any point τ0, x(τ) can be

written as an analytic series in τ − τ0, with radius of convergence determined by |f | (see e.g. [25]).

This fact implies that the solution will be analytic at every point where |f | is bounded. From this

observation we conclude that x(τ) is also analytic, except in the cases where this solution probes

regions of the potential infinitely far away, where |f | is expected to diverge. (Given that f is analytic

by assumption, it must be unbounded in some direction, otherwise it would be a constant.) By gluing

together these local solutions we expect that the overall solution is also analytic, with no obstacle for

analytic continuation. In the case of the anharmonic oscillator the non-linear solution eq. (2.13) is

indeed analytic in the quadrant of interest, since the function 1/ sinh has poles only for imaginary τ ,

i.e. for real time t and these are avoided in the Lorentzian calculation by the iε prescription. Notice

also that the solution decays for large radius in the quadrant of interest.

Let us finally comment on the rotation to EAdS4. This continuation involves, on top of the rotation

of η, also a rotation of Hubble H → −i/L. It seems difficult that this rotation can be done at full

non-perturbative level. Indeed many couplings of the theory depend on H so that analyticity in this

parameter is similar to analyticity in the couplings λ of the theory. A standard result in ODEs shows

that x(τ) is an entire function of λ for any fixed τ , provided that the initial conditions for x and ẋ are

λ-independent. However we have here a boundary value problem and this may create non-analyticity.

This happens for instance in the case of the anharmonic oscillator discussed above. Let us choose the

origin of τ in eq. (2.13) in such a way that the solution sits at xf at τ = 0 (we remind the definition

x̄2 ≡ 2λx2
f /d

2):

x(τ) = − d√
2λ

1

sinh(ωτ − arcsinh(1/x̄))
=

xf

cosh(ωτ)

1

1−
√

1 + x̄2 tanh(ωτ)
. (5.8)

(Notice that for x̄ � 1 the solution reduces to xfe
ωτ .) We see that one can rotate the solution from

positive to negative λ only if |λ| is small enough. When 2λx2
f /d

2 < −1 the square root becomes

11In QM, the EoM ẍ = −V ′(x) can be converted to a first order form by defining y ≡ ẋ. The equation then takes the

form of a 2-dimensional system ẋ = y, ẏ = −V ′(x). For simplicity we schematically write the system as a single equation

since our conclusions would not change.
12In the case of the ODE of Section 4.3, the function f has a singularity around a time η0 where 1 + λ̃η20ζ

′2(η0) = 0.

We do not think however this is an obstacle to rotation: one can readily check that around η0, ζ(η) admits a series

expansions without singularities.
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imaginary and indeed it is easy to realize one cannot find a solution in this regime. The point of

transition corresponds to x̄ = −1, which is the point where the action eq. (2.14) reaches a branch

point. This shows that in general one cannot expect analyticity in λ. Actually the full series in λ

has zero radius of convergence, following Dyson’s argument [26], while the series we are resumming,

(λx2
f /d

2)n, has a finite radius.

The rotation to EAdS4 surely works at tree-level [27]: this can be seen using the perturbative

argument we gave in the first part of this Section upon continuation of H. However it is probably not

correct at the non-perturbative level as already suggested in [27].13

6 Conclusions and future directions

The standard perturbation-theory approach to inflationary non-Gaussianity fails when one is interested

in very unlikely events, on the tail of the probability distribution, like for instance in the case of PBHs.

We showed that in this case one has to resort to semiclassical methods, approximating the wavefunction

of the Universe with a non-linear saddle point, i.e. a non-linear solution of the (Euclidean) classical

equations of motion. In this paper we explained the general logic of the approach and we applied it

to a specific interaction of single-field inflation, ∝ λζ̇4. One is able to make predictions for arbitrarily

large values of ζ and in particular, with a combination of analytic and numerical analyses, one is able

to show that the tail of the probability distribution behaves as exp(−λ−1/4ζ3/2). The non-analytic

dependence on λ makes clear that this result cannot be reproduced by perturbation theory.

This paper represents a first step in understanding inflation beyond perturbation theory and many

directions remain open. Let us list some of them.

• On the more phenomenological side, it will be interesting to explore the effects on PBH produc-

tion. One should first of all understand the impact of the various inflaton operators on the tail of

the ζ distribution. In general the tail will fall slower or faster than in the Gaussian case, but one

can also envisage a scenario in which the combination of various operators produces a “bump”

in the distribution for large values of ζ, boosting the PBH abundance. Besides affecting the rate,

one expects that going beyond perturbation theory will also change the clustering properties of

PBH and therefore their merger rate [28].

• In a minimal scenario of slow-roll inflation, non-Gaussianities are slow-roll suppressed fNL ∼
O(ε, η) and the non-perturbative effects we studied are only relevant for ζ & O(ε−1, η−1). This

is not relevant for PBHs. However, it would still be interesting to explore the unlikely tail of

the wavefunction of the Universe in this minimal scenario. It is important conceptually, since

we should learn how to make predictions about the initial conditions of our Universe and it

also may have some impact in the study of eternal inflation [29, 30, 31]. It is not obvious what

is the best strategy to approach the problem, since in this case one has to take into account

the modification of the geometry. It looks challenging to derive the full non-linear action of ζ

13We thank V. Gorbenko and L. Di Pietro for discussions about this point.
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solving for the constraint variables, like one does in the standard perturbation theory approach,

so one may have to resort to a direct solution of Einstein equation with prescribed boundary

conditions. The same logic applies to tensor modes: the exploration of the tail of the distribution

is clearly not interesting phenomenologically, but it is appealing theoretically since it is fixed by

the non-linearities of General Relativity and it is intrinsic of de Sitter space. Exact solutions of

gravitational waves in de Sitter [32] may be a good starting point for this problem.

• For the operator we studied in this paper, ζ̇4, the Euclidean non-linear solution exists for arbi-

trarily large values of the ζ. This does not happen for all possible operators (for instance with

the interaction −(∂iζ)4). It is not clear what happens after the solution stops existing. One

possibility is that one finds complex saddle solutions that dominate the path integral. In general,

starting from the Lorentzian path integral it is a challenging problem to understand which sad-

dles contribute. The scenario at hand, in which one can neglect perturbations of the geometry,

may be a good place to understand how to make a more precise sense of the wavefunction of the

Universe (for a recent discussion see [33]).

• Scattering amplitudes and correlation functions in the limit of large number of external legs have

been studied using semiclassical methods. (See [34] for recent studies in flat space and [10, 11]

in the case of inflation.) Naively, one expects that correlation functions with many legs 〈ζN 〉 are

related to the behaviour of the probability distribution on the tail. It would be nice to make

this connection explicit and relate our approach with the existing literature on the subject.

• In this paper we studied solutions of the scalar equations of motion in dS with prescribed

boundary conditions, without resorting to perturbation theory. The same kind of approach

should be possible also in AdS in the context of AdS/CFT. This would correspond to study the

dual CFT in the presence of a finite external source, without treating the source perturbatively.

Work is needed in all directions.
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A Comparison with the WKB approximation

The result we obtained for Ψ0(x) in eq. (2.17) matches with the standard WKB approximation in

both the large distance (x̄ � 1) and small coupling (λ � 1) limit, as we are going to show. From

the calculation of the WKB wavefunction we can also appreciate how the prefactor of Ψ0 induces a

subleading x-dependence with respect to the exponential factor.
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In the WKB approximation, the wavefunction is given by

ΨWKB(x) =
N√
p(x)

exp

(
±i
∫ x

x0

p(x′)

~
dx′
)
, (A.1)

where N is again a normalization, x0 is an arbitrary point, p(x) =
√

2m(E − V (x)) is the momentum

of the classical trajectory with energy E and the sign at the exponent is fixed by requiring appropriate

boundary conditions at infinity. For the WKB approximation to be valid one requires that ~|p′(x)| �
p2(x). Note that in the case of the anharmonic oscillator with potential (2.1), this condition is satisfied

even for the ground state in the classically-forbidden region V (x) � E. For small λ, this point is

parametrically smaller than the point where the quartic term starts to dominate the potential (x̄ ∼ 1).

This means that the WKB should match eq. (2.17) even for small x̄.

Let us start from the prefactor. For fixed x̄ and small λ we obtain

N√
p(x)

' N′
√
x̄ (1 + x̄2)1/4

. (A.2)

Notice that this expression matches with the prefactor obtained in the semiclassical expansion for

x̄� 1, but for general values differs. Therefore, in order to have a match with the full wavefunction,

we expect some correction to come from the exponent.

The exponent can be rewritten as the following integral∫ x

x0

p(x′)

~
dx′ = i

√
2m

~

∫ x

x0

√
V (x′)− E dx′

=
i

2λ

∫ x̄

x̄0

√
y2(1 + y2)− ε dy , (A.3)

where in the second line we defined y2 ≡ 2λx2/d2 and ε ≡ 4λE/(~ω). To perform the integration above,

one can either expand the integrand for small α ≡ ε/(y2(1 + y2)) first and perform the integral after,

or evaluate the integral first and expand it for small α after. The latter method is more complicated

than the former since the integral will involve Elliptic functions of the first and second kind, so one

needs proper care in taking the small α limit. In any case the two ways of performing that calculation

must coincide. Let us now proceed with the first method. Expanding the integrand for small α and

performing the integral afterwards yields∫ x

x0

p(x′)

~
dx′ =

i

6λ

{[(
1 + x̄2

)3/2 − 1
]

+
6λE

~ω
log

(
1 +
√

1 + x̄2

x̄

)
+ const

}
+O(α2) , (A.4)

where the constant terms only depend on x̄0 and can be absorbed into a redefinition of the normal-

ization. Notice that the term −i/(6λ) is needed in order to match our result with the wavefunction

of the harmonic oscillator when λ is taken to be zero. We notice that at order ∼ 1/λ the exponent

matches with the one found from the Euclidean action eq. (2.14). Moreover, we have corrections at

order ∼ λ0. The logarithmic term can be important for small x̄ and in fact affects the prefactor of

eq. (A.2).
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By putting both the prefactor (A.2) and the exponent (A.3) together (and choosing the appropriate

sign) we obtain

ΨWKB(x) ' N√
x̄(1 + x̄2)1/4

[
1 +
√

1 + x̄2

x̄

]−E/(~ω)

exp

{
− 1

6λ

[(
1 + x̄2

)3/2 − 1
]}

. (A.5)

Clearly, by choosing the ground-state energy at leading order E = ~ω/2 we recover the result from

semiclassics eq. (2.17), as expected.

B Perturbative check of the PDE

As a check, one expects that the numerical result found in Section 4.5 is reduced to the one obtained

using perturbation theory when the coupling λ̃ is small. More precisely, the check we are going to do

will be a comparison between the 4-point coefficient of the WFU derived from perturbation theory

and its numerical value evaluated on the classical solutions with the sinusoidal profile. It is more

complicated to do a similar check for the Gaussian profile, since one would have to integrate over

Fourier space in the perturbative calculation.

Let us start with the perturbative calculation. For simplicity, we only focus on the first order

correction in λ̃ which corresponds to the first graph in Figure 4a. To compute such a diagram one just

needs to know the bulk-to-boundary propagator (5.3). Then the 4-point coefficient ψ(4) of the WFU

is given by

ψ(4)(k1, k2, k3, k4) =
iλ

P 2
ζ

∫ ηf

−∞(1−iε)
dη K ′(η,k1)K ′(η,k2)K ′(η,k3)K ′(η,k4) , (B.1)

where as usual the iε prescription has been imposed for the integral to converge. The integral above

can be performed analytically so we get

ψ(4)(k1, k2, k3, k4) =
24λk2

1k
2
2k

2
3k

2
4

P 2
ζ (k1 + k2 + k3 + k4)5

. (B.2)

Note that there is no divergence one has to worry about at late times. We now want to compare this

perturbative result and the numerical one done in Section 4.5.

Before that, it is instructive to put the coefficient ψ(4) back in the on-shell action:

iSint =
1

4!

∫ ( 4∏
i=1

d3ki
(2π)3

)
(2π)3δ(

4∑
i=1

ki) ψ
(4)(k1, k2, k3, k4) ζ0(k1)ζ0(k2)ζ0(k3)ζ0(k4) . (B.3)

This on-shell action, as we have said before, does not capture the loop diagrams shown in Figures 4b

and 4c. Apparently, the formula (B.3) depends on the late-times boundary condition ζ0(k). One can

generally apply this formula to a generic boundary condition at late times, but here we are going to

choose a single Fourier mode which is exactly what we considered in Section 4.5.

Let us now focus on the single Fourier mode namely, ζ(ηf, x) = ζ0 sin(kx). Trivially, the mode

sin(kx) will be converted into the Dirac delta function in k-space,

ζ0(k) = −ζ0
i

2
(2π)3δ(kz)δ(ky)

[
δ(kx − k)− δ(kx + k)

]
. (B.4)
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Figure 14 The blue curve shows the perturbative result (B.5) as a function of λ̃. The red points indicate the

numerical values of (B.6). As expected, for small λ̃ the two approaches coincide, whereas the departure happens

around λ̃ ∼ O(1).

This form of ζ0(k) greatly simplifies the interacting action (B.3) into

iS′int =
3λk3ζ4

0

8192P 2
ζ

=
ζ2

0

Pζ

3λ̃k3

8192
, (B.5)

where iS′ denotes the action divided by the factor (2π)3δ(kx − k)δ(ky)δ(kz), and we have written

in terms of λ̃ for the second equality. Again, this is the first order correction in λ̃ obtained using

perturbation theory.

Let us turn to the numerical calculation. Let ∆Sλ̃PDE be the corrections of order λ̃ or higher. Then,

one way to extract ∆Sλ̃PDE from (4.36) is to subtract the finite part of the free on-shell action, denoted

by ∆S0
PDE:

∆Sλ̃PDE = −(∆SPDE −∆S0
PDE) . (B.6)

The minus sign in front is to make ∆Sλ̃PDE positive definite. Note that in general this ∆Sλ̃PDE contains

all orders in λ̃, but we will show below that for small λ̃ it is dominated by the first order corrections

(it fits almost perfectly with (B.5)). We then numerically evaluate the ∆Sλ̃PDE, divided by the spatial

volume 2π, on the classical solution for small λ̃ (λ, ζ0 � 1). Omitting the common factor ζ2
0/Pζ , we

find that ∆Sλ̃PDE/2π matches with the analytic calculation (B.5) for small values of λ̃, setting k = 1.

Finally, it is also worth checking that for small λ̃ (B.6) is dominated by the first order corrections

in λ̃, as expected in perturbation theory. This result is confirmed in Figure 14, where the blue line

represents the perturbative result (B.5) and the red points denote the numerical value of ∆Sλ̃PDE/2π

for λ̃ ∈ {0.2, 0.4, . . . , 4}. Notice that as λ̃ increases, one expects that (B.6) no longer coincides with

(B.5) and, indeed, from Figure 4a this departure happens when λ̃ is of order unity.
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