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ABSTRACT: Polymeric vesicles are excellent building blocks of synthetic compartmen-
talized systems such as protocells and artificial organelles. In such applications, the efficient
encapsulation of materials into the vesicles is an essential requirement. However, common
encapsulation techniques can be time-consuming, demand special equipment or have
limited efficiency for large components, such as proteins and nanoparticles. Here, we
describe a simple method to create cargo-filled polymer vesicles based on bursting and
reassembly of giant double emulsion droplets (DED). Due to their large average diameter of
2 mm, DEDs eventually burst in the aqueous medium, producing polymeric film fragments.
These fragments rapidly reassemble into smaller vesicles in a process involving folding,
fusion and vesiculation. The daughter vesicles have an average diameter of 10 μm,
representing a two-order of magnitude size reduction compared to the original DED, and
can efficiently encapsulate components present in solution by entrapment of the aqueous
medium during vesicle reassembly.

Polymeric vesicles are tough and chemically versatile
compartments that can be used as basic frameworks for

supramolecular systems such as protocells, artificial organelles,
and microreactors.1−5 Similar to biological cells, the functions
of these vesicular systems are defined by the components
encapsulated in the vesicles.6−11 For that reason, it is desirable
that the methods used for vesicle formation also feature a
mechanism for efficient encapsulation of materials. Techniques
for vesicle formation include microfluidics and phase-inversion,
which offer excellent encapsulation efficiency. However, they
can be time-consuming, often requiring special equipment and
additives.12−14 Other approaches based on film hydration,
although simpler, can show limited encapsulation efficiency for
large components such as proteins and nanoparticles.15,16

Here, we introduce the bursting and reassembly (BnR) of
giant double emulsion drops (DED) as a new method that
combines vesicle formation, efficient encapsulation of large
components, and minimum equipment requirement. In
contrast to other techniques, BnR explores the inherent
instability of large DEDs and the unique reassembly properties
of amphiphilic films to create new vesicles.
BnR designates the chain of events that leads to the

formation of small vesicles through the folding and fusion of
membrane fragments created when a vesicle is ruptured. For
instance, certain cells can burst, creating membrane fragments
that reassemble into smaller vesicles.17,18 Liquid films stabilized
by amphiphilic molecules can also undergo BnR.19,20 Perhaps
the most illustrative example of this phenomenon is the
formation of small soap bubbles as result of bursting of larger
ones.21

At a first glance, the BnR of giant DEDs resembles the BnR
observed in large soap bubbles (Scheme 1). But, in contrast to
soap bubbles, which vanish once their aqueous film evaporates,
DEDs leave behind a robust polymeric membrane that grants
daughter vesicles their valuable high stability and chemical
properties.
Our first challenge was to find a convenient way to create

giant DEDs. To prevent premature bursting of the large drops,
it was critical to keep shear forces to a minimum during the
formation of the DEDs. This was achieved by using the phase-
transfer method detailed in Figure 1a.
First, a liquid interface between water and toluene was

prepared in a microcentrifuge tube. The low molecular weight
copolymer poly(butadiene)22-b-poly(ethylene oxide)14 (BD22-
EO14) was used as a macromolecular surfactant to reduce the
interfacial tension (σ) between the immiscible liquids, which
facilitated the formation of the giant DEDs (Figure 1c).22,23

Additionally, the copolymer formed the membrane of the
vesicles after toluene removal. The formation of each giant
DED started with the addition of single drops of heavy water
(D2O) containing sucrose on top of the toluene layer. Due to
their higher density, the drops rapidly sank and crossed the low
σ liquid interfaces. This process created giant DEDs (Figure
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1b) with an average diameter of 1.9 ± 0.6 mm. Micrographs
taken immediately after DED formation revealed drops at an
advanced state of dewetting, as indicated by the clear
separation between the polymer-rich film (F) and the
toluene-rich phase (OP) on top of the drops.
Next, a series of (BD)x-(EO)y copolymers with different

block lengths (x, y) were tested to determine the effect of
copolymer molecular weight and concentration on giant DED
formation. Figure 2a shows the results for each copolymer.

Giant DEDs only formed with (BD)22-(EO)14, the shortest
copolymer in the series, and only at concentrations of 10 and
20 g·L−1. At 5 g·L−1, the D2O drops only crossed the water−
toluene interface as clusters and at 1 g·L−1 the drops could not
cross. These results were expected since the presence of the
surfactant at the interface depends on the initial copolymer
concentration and how fast the copolymer can diffuse in
solution. Therefore, concentrations below 5 g·L−1 were just too
low to provide the required drop in σ. In addition, copolymers
with chains longer than (BD)22-(EO)14 could not rapidly
adsorb at the interface due to their relatively limited diffusion
in solution, and giant DEDs could not be formed
independently of concentration.24 The minimum σ required
for the successful formation of giant DEDs was determined for
(BD)22-(EO)14. As shown in Figure 2b, giant DEDs were only
observed for σ < 1 mN m−1.
The giant DEDs were stable only for a short time, inevitably

bursting within 5 min from the moment they were formed.
Our hypothesis was that bursting of the giant DEDs would
result in the production of large membrane fragments, which
could fold to form new and smaller vesicles. Indeed, we
observed new vesicles by optical microscopy after bursting of
giant DEDs prepared with (BD)22-(EO)14. The daughter
vesicles had an average diameter of 10 μm, corresponding to a
two-orders of magnitude size reduction compared to the
original giant DEDs (Figure 2c,d). On average, each giant
DED produced 37 daughter vesicles.
Next, we showed that the daughter vesicles formed by a BnR

type mechanism. This was demonstrated through a sequence
of images covering the time span from bursting until vesicle
formation. The images were obtained at a rate of one per
second. Figure 3a shows selected frames from one sequence.
The first frame shows two giant DEDs that were about 5 min

old when the image was taken. After 55 s, the DEDs burst in
response to the instabilities caused by solvent separation.25,26

Scheme 1. Polymer Vesicles by Bursting and Reassembly
(BnR)a

aA giant DED bursts, producing fragments that rapidly fold to form
daughter vesicles. In the process, materials (purple dot) present in the
aqueous phase (AP) can be encapsulated. Continuous removal of the
organic phase (OP) results in thin vesicle membranes.

Figure 1. Formation of giant DEDs by the phase-transfer method. (a)
Photograph of the experimental setup showing a single giant DED.
(b) Top view of a bright field micrograph with three giant DEDs. F:
polymer film; OP: copolymer/toluene solution. Scale bar: 500 μm.
(c) Scheme of the cross-section of a giant DED and the composition
of the corresponding copolymer film. BD: 1,2-polybutadiene; EO:
poly(ethylene oxide).

Figure 2. Effect of BD-EO type on giant DED formation and vesicle
yield. (a) Copolymer type and concentrations required for giant DED
formation. (b) Change on interfacial tension (toluene/water) as a
function of (BD)22-(EO)14 concentration. Method: spinning drop
tensiometry. (c) Size distribution of daughter vesicles and average
vesicle yield per giant DED. Average represents the combined results
of 15 giant DEDs in triplicate. (d) Phase contrast micrographs of
daughter vesicles. Scale bar: 50 μm.
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Bursting occurs because the membrane could not efficiently
relax the surface tension gradients that arose during
dewetting.20,27 Toluene being less dense than water was
pushed toward the top of the DED and created an upward
force that strained the membrane, which eventually ruptured.
As shown in Figure 3a, the DED burst produced fragments that
rapidly folded in order to eliminate their hydrophobic and
highly curved edges.28,29

Before vesicles could form, the folded fragments first
produced short-lived tubular structures. These tubes rapidly
collapsed due to a “pearling” instability, which resulted in the
formation of the daughter vesicles.30 Overall, the formation of
daughter vesicles occurred through a BnR mechanism that
took less than 30 s. The main events are illustrated in Figure
3b. Full movies and images of selected frames are also available
(Movies 1−3, Figures S5−S27). BnR of giant DEDs produced,
on average, 22 daughter vesicles per DED immediately after
burst (first generation). The mean diameter of the first
generation was about 50 μm. However, measurements made
after 3 h showed a reduction in average diameter, which
stabilized at about 10 μm. This size reduction is consistent
with vesicle budding, which is induced by the excess of
copolymer in the membrane of the first generation of daughter
vesicles.31 Micrographs taken several hours after BnR clearly
showed that vesicle replication continued through vesicle
budding (Figure S1). All vesicles featured the expected hollow
structure surrounded by a thin polymer membrane (Figure
S2). GC-MS measurements showed that less than 10% of the
toluene remained in the system after 2 h of solvent separation,
falling below 4% after 4 h (Figure S3).
One essential characteristic of BnR, as illustrated in Figure

3b, is that its mechanism allows substances to be captured by
the daughter vesicles during the reassembly step. BnR is not
limited by the typical low water permeability of polymer
membranes (ca. 2.5 μm s−1).4 That contrasts with hydration-
based methods, where encapsulation of materials into vesicles
requires an efficient transport of the aqueous solution through
the polymer membrane.32 To demonstrate the encapsulation

properties offered by BnR, we performed the dye-entrapment
experiment illustrated in Figure 4.

The experiment consisted of determining by confocal laser
scanning microscopy the relative amount of a bulky macro-
molecular fluorescent tracer (BSA-AF 647) that was entrapped
in the vesicles formed by BnR. To quantify the encapsulation
efficiency, the relative mean fluorescence intensity of the tracer
(RMF) was calculated, as shown in Figure 4. Our results
showed that only a small fraction (2%) of the vesicles were
essentially empty (RMF < 5%), while most of them (over
75%) were able to encapsulate the tracer in high amounts as
indicated by RMFs values greater than 50%.

Figure 3. Bursting and reassembly of giant DEDs. (a) Bright field images of selected frames from the time-lapse acquisition during BnR of giant
DEDs. Scale bars: 250 μm. (b) Schematic depiction of distinct events that occurred during BnR. (c) Vesicle diameters of the first generation of
daughter vesicles. Statistical and experimental details are in the Supporting Information.

Figure 4. Encapsulation of a macromolecule by BnR. (a) Scheme of
the dye-entrapment experiment. Giant DEDs were formed in a
medium containing a fluorescent macromolecular tracer (in red). I0,E:
tracer emission intensity of the external medium. IE: tracer emission
intensity inside the daughter vesicles. (b) Relative mean fluorescence
intensity (RMF, IE/IE,0) inside the daughter vesicles. Scale bars: 20
μm. Tracer: bovine serum albumin Alexa Fluor 647 conjugate (BSA-
AF 647). Vesicle membrane stained with Nile Red. Data acquired by
confocal laser scanning microscopy.
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The fact that a few vesicles were empty or contained only
small amounts of the tracer is consistent with the low
encapsulation efficiency of vesicles formed through budding.
Vesicles formed by BnR, on the other hand, were much more
efficient at encapsulating the tracer, because the encapsulation
mechanism involved the entrapment of the surrounding
aqueous medium inside the new vesicles. If the tracer was
initially present in the giant DED, most of it was lost after burst
(Figure S4). Therefore, the encapsulation efficiency highly
depended on the location of the materials (inside or outside
the DEDs) before BnR took place.
In summary, we have shown that polymer vesicles can be

formed by bursting and reassembly of giant DEDs. We
explored its remarkable mechanism as new way to encapsulate
materials present in an aqueous medium. Moments before the
vesicular structure was restored, the daughter vesicles were able
to capture and entrap the macromolecular tracer present in
solution. Our results demonstrate that BnR methods, such as
the one described here, could be developed into a completely
new way to create vesicular compartments.
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