
B. Heim, M. Neuhauser Res. Number Theory           (2021) 7:26 
https://doi.org/10.1007/s40993-021-00246-0

RESEARCH

Polynomization of the Chern–Fu–Tang
conjecture
Bernhard Heim1* and Markus Neuhauser1,2

*Correspondence:
bernhard.heim@rwth-aachen.de
1Lehrstuhl A für Mathematik,
RWTH Aachen University,
D-52056 Aachen, Germany
Full list of author information is
available at the end of the article

Abstract

Bessenrodt and Ono’s work on additive and multiplicative properties of the partition
function and DeSalvo and Pak’s paper on the log-concavity of the partition function
have generated many beautiful theorems and conjectures. In January 2020, the first
author gave a lecture at the MPIM in Bonn on a conjecture of Chern–Fu–Tang, and
presented an extension (joint work with Neuhauser) involving polynomials. Partial
results have been announced. Bringmann, Kane, Rolen, and Tripp provided complete
proof of the Chern–Fu–Tang conjecture, following advice from Ono to utilize a recently
provided exact formula for the fractional partition functions. They also proved a large
proportion of Heim–Neuhauser’s conjecture, which is the polynomization of
Chern–Fu–Tang’s conjecture. We prove several cases, not covered by Bringmann et. al.
Finally, we lay out a general approach for proving the conjecture.
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1 Introduction andmain results
Chern et al. [5] conjectured an inequality for k-colored partition functions. A partition of
n is called k-colored if each part can appear in k colors and the number of these partitions
has been denoted by p−k (n).

Conjecture 1 ([5]) Let n > m ≥ 1 and k ≥ 2, except for (k, n,m) = (2, 6, 4), then

p−k (n − 1) p−k (m + 1) ≥ p−k (n) p−k (m). (1.1)

The conjecture has been motivated by two results. The first was the work of Nicolas [18]
and DeSalvo and Pak [7] on the log-concavity of the partition function p(n) = p−1(n),
n > 25. The second was the work of Bessenrodt and Ono [3] and Alanazi et al. [1] on
an inequality involving additive and multiplicative properties of the partition function.
The conjecture is based on numerical evidence [5, Table 1]. For b = a− 2, the conjecture
implies the log-concavity for p−k (n) with respect to n for n ≥ 3 , k ≥ 2. One has to exclude
the case k = 2 and n = 5, since (p−2(5))2 < p−2(4) p−2(6).
In [11] we proposed a polynomization of the Bessenrodt–Ono inequality. We also refer

to recent work by Beckwith and Bessenrodt [2], Dawsey and Masri [6], and Hou and
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Table1 Polynomials�a,0 (x), their sets of roots, and largest real roots

2 �2,0(x) = x(x − 3) Z2 = {0, 3} x2,0 = 3

3 �3,0(x) = x
(
x2 − 4

)
Z3 = {−2, 0, 2} x3,0 = 2

8 �4,0(x) = x
(
x3 + 6x2 − 9x − 14

)
Z4 = {−7,−1, 0, 2} x4,0 = 2

30 �5,0(x) = x
(
x4 + 15x3 + 20x2 − 60x − 36

)
Z5 = {. . . , 0, x5,0} x5,0 ≈ 1.69

Jagadeesan [14].We transferred the inequality of the discrete k-colored partition function
to an inequality between values of polynomials Pn(x), defined as the coefficients of the q-
expansion of all powers of the Euler product [19]:

∞∑

n=0
Pn (x) qn :=

∞∏

n=1
(1 − qn)−x , (q, x ∈ C, |q| < 1). (1.2)

The polynomials can easily be recorded, for example P0(x) = 1, P1(x) = x, P2(x) =
(x + 3)x/2. They have interesting properties. The k-colored partition function p−k (n) is
equal to Pn(k). Further, let for example, the root x = −3 of P2(x) be given. Then the 2nd
coefficient of the 3rd power of

∏
n(1−qn) vanishes. Let a, b ∈ Nwith a+b > 2 and x ∈ R

with x > 2. Then the inequality states:

Pa(x) · Pb(x) > Pa+b(x). (1.3)

The proof was provided in [12].
Building on Chern–Fu–Tang’s result for k = 2 and the positivity of the derivative of

Pa,b(x) := Pa(x) · Pb(x)− Pa+b(x) for x > 2, we proposed an extension of the Chern–Fu–
Tang conjecture [8].

Conjecture 2 (Heim, Neuhauser) Let a > b ≥ 0 be integers. Then for all x ≥ 2:

�a,b(x) := Pa−1(x)Pb+1(x) − Pa(x)Pb(x) ≥ 0, (1.4)

except for b = 0 and (a, b) = (6, 4). The inequality (1.4) is still true for x ≥ 3 for b = 0 and
for x ≥ x6,4 for (a, b) = (6, 4). Here xa,b is the largest real root of �a,b(x).

Remarks (1) Conjecture 2 implies Conjecture 1.
(2) We have �a,b(0) = 0 and �a,a−1(x) = 0. The leading coefficient of the polynomial

�a,b(x) is equal to a−b−1
a! (b+1)! for a > b + 1. Thus, we have

lim
x→∞ �a,b(x) = ∞.

(3) We have �a,0(2) > 0 and �a,1(2) > 0 for a > 4. This follows from [12].
(4) The case b = 0 follows from (1.3) using properties of Pa−1,1(x) [12].
(5) In [8] the case b = 1 was already announced (proof is given in the present paper).
(6) The conjecture as stated in [8] for (a, b) = (6, 4) is refined. Note that �6,4(2) < 0,

which does not allow �6,4 (x) ≥ 0 for all x > 2. This was also observed during the
presentation (see also [4], remark related to Conjecture 2).
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Expanding on an exact formula for the fractional partition function (in terms of Kloost-
erman sums and Bessel functions) by Iskander et al. [15], recently, Bringmann et al. [4]
proved that for all positive real numbers x1, x2, x3, x4 and n1, n2, n3, n4 ∈ N:

Pn1 (x1)Pn2 (x2) ≥ Pn3 (x3)Pn4 (x4), (1.5)

with respect to some general assumptions. They also obtained an explicit version. We
recall their result. Let f (x) = O≤ (g(x)) mean that |f (x)| ≤ g(x) in the relevant domain.

Theorem 1.1 ([4]) Fix x ∈ R with x ≥ 2, and let a, b ∈ N≥2 with a > b + 1. Set
A := a − 1 − (x/24) and B := b − (x/24), we suppose B ≥ max

{
2 x11, (100/(x − 24))

}
.

Then

�a,b(x) = Pa−1(x)Pb+1(x) − Pa(x)Pb(x)

= π
( x
24

) x
2+1

(AB)−
x
4− 5

4 eπ
√

2x
3

(√
A+√

B
) (√

A − √
B
) (

1 + O≤
(
2
3

))
.

This leads to proof of the Chern–Fu–Tang conjecture and to a large proportion of the
Heim–Neuhauser conjecture. We provide more details in the final section of this paper.

Corollary 1.2 ([4]) For any real number x ≥ 2 and positive integers

b ≥ B0 := max
{
2 x11 + x

24
,

100
x − 24

+ x
24

}
, (1.6)

Conjecture 2 is true.

Corollary 1.3 ([4])The conjecture of Chern–Fu–Tang (Conjecture 1) is true. In particular
p−2(n) is log-concave for n ≥ 6, and p−k (n) is log-concave for all n and k ∈ N≥3.

In this paper we show that Conjecture 1 and Conjecture 2 are closely related to
the Bessenrodt–Ono inequality: x Pa−1(x) ≥ Pa(x). The appearing rational function
(Pb+1(x)/Pb(x)) will be approximated by a linear factor, depending on b.
We prove Conjecture 2 for b ∈ {0, 1, 2, 3}, and all integers a > b and all real numbers

x ≥ x0 = 2. Further, in the odd cases b = 1 and b = 3, Conjecture 2 is already true for
x ≥ 1. To prove that �a,b(x) ≥ 0, we study �a,b(x0) ≥ 0 and prove that �′

a,b(x) > 0 for all
x > x0. We believe that this approach is the most direct method to prove Conjecture 2.
The positivity of the derivative is expected, since �a,b(x) > 0 for x ≥ x0 is a statement

on the largest real root xa,b of �a,b(x) and the observed property, that the real parts of the
complex roots seem to be smaller than xa,b (see Fig. 1).
As already mentioned, the case b = 0 has been almost proved in [12]. The complete

statement and proof is given in Section 2. In Section 3 we prove the following results.

Theorem 1.4 Let a ∈ N, b ∈ {1, 2, 3} and x ∈ R. For b odd we put x0 := 1 and for b even
we put x0 := 2. Let a0 = a0(b) := b + 2. Then

�a,b(x) = Pa−1(x)Pb+1(x) − Pa(x)Pb(x) > 0 (1.7)

for all a ≥ a0 and x > x0.
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Fig. 1 Roots of �a,2(x) with a positive real part. Blue = real root, red = complex root

The cases x = x0 will be stated in Proposition 2.4 and Corollary 3.2. There the strict
inequality does not hold in general. It fails for example for (a, b, x0) = (4, 2, 2). Further,
we obtain:

Corollary 1.5 Let b ∈ {1, 2, 3} be given. Then �′
a,b(x) > 0 for all a ≥ a0 and x > x0.

In Sect. 4 we provide the proofs of our theorems and in Sect. 5 we outline a program to
attack all cases ofConjecture 2.We recommend to read these two sections simultaneously.
Finally, in Sect. 6, we provide some numerical data. All computations have been done

using PARI/GP or Julia.

2 The polynomials�a,b(x) and Pa,b(x)
We first recall from [9] some basic properties of the polynomials Pn(x) introduced (1.2)
in the introduction.
These polynomials are unique solutions of the recursion formula Pn(x) =

(x/n)
∑n

k=1 σ (k)Pn−k (x) with P0(x) := 1. Here σ (n) = ∑
d|n d. Then Pn(x) =

(x/n!)
∑n−1

k=0 an,k x
k for all n ∈ N with an,k ∈ N0. We have

an,n−1 = 1 and an,0 = (n − 1)! σ (n). (2.1)

There is a direct connection between the polynomialized Chern–Fu–Tang inequality
(1.4) and the Bessenrodt–Ono inequality (1.3). Let a ≥ 1, then

�a,0(x) = Pa−1(x)P1(x) − Pa(x)P0(x) = Pa−1,1(x). (2.2)

In the following we assume that a ≥ 2, since �1,0(x) = 0. From Remark (2) after Conjec-
ture 2 we have that �a,0(0) = 0 and that limx→∞ �a,0(x) = ∞. Deriving (2.2) we obtain
�′

a,0(0) = P′
a−1 (0)P1 (0)+Pa−1 (0)P′

1 (0)−P′
a (0)P0 (0) = −P′

a (0) = −(σ (a)/a) < 0. Let
us record the first polynomials and several properties in Table 1 where we let Zn be the
set of roots of �a,0 and xa,0 be the largest real root.
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Theorem 2.1 ([12]) Let a > 2. Then for all x > 2 we have the property

�a,0(x) = Pa−1,1(x) > 0. (2.3)

Let a = 2. Then �2,0(3) = 0 and for all x > 3 we have the strict inequality �2,0(x) > 0.
We further have �3,0(2) = �4,0(2) = 0. Let a > 4 and x ≥ 2, then we have �a,0(x) > 0.

We deduce from ([12], proof of Proposition 5.1) the following result.

Corollary 2.2 Let a ≥ 2 and x ≥ 2. Then �′
a,0(x) > 0.

We have that �a,0 (x) > 0 for all a ≥ 5 and x ≥ 2. Since �a,0(1) = p (a − 1) − p (a) we
obtain with Theorem 2.1:

Lemma 2.3 Let a ≥ 5. Then there exists a real number α, 1 < α < 2, such that �a,0(α) =
0. Let xa,0 be the largest real root of �a,0(x). Then 1 < xa,0 < 2 and �a,0(x) > 0 for all
x > xa,0.

For b ∈ {0, 1, 2} we have the following useful property.
Proposition 2.4 Let x0 = 2 and let b ∈ {0, 1, 2}. Then �a,b(x0) > 0 for a ≥ 5. Let b = 1,
then this is already true for a ≥ 3. The bounds for b = 0 and b = 2 are sharp.

Proof The following quotients are all larger or equal to x0. Let b ∈ {0, 1, 2}. Then
(Pb+1(x0)/Pb(x0)) ≥ x0:

P1(x0)
P0(x0)

= x0,
P2(x0)
P1(x0)

= 5
2

> x0, and
P3(x0)
P2(x0)

= 2 = x0.

Thus,�a,b(x0) ≥ Pb(x0)�a,0(x0) and�a,b(x0) > 0 for a ≥ 5. The explicit shape and values
of the involved polynomials for a ≤ 4 complete the proof:

�3,1(x) = x2

12
(
x2 + 11

)
,

�4,1(x) = x2

24
(
x3 + 6x2 + 11x + 6

)
.

We have �3,0(x0) = �4,0(x0) = 0 and �4,2(x0) = 0. 
�

3 Log-concavity of partition numbers
Nicolas [18] and DeSalvo and Pak [7] proved the log-concavity of the partition function
p(n) for n ≥ 26:

p(n)2 − p(n − 1)p(n + 1) ≥ 0. (3.1)

Note that (3.1) fails for all 1 ≤ n ≤ 25 odd, but is still true for n even. Explicit study of
the small cases (Table 2) leads to the following refined result:

Proposition 3.1 Let q(n) := p(n)/p(n − 1). Then q(n + 2) ≤ q(n) for all n ≥ 2 and
q(27) ≥ q(n) for all n ≥ 27. For n ≤ 27 we have the following chain:

q(2) > q(4) > q(6) > q(3) > q(8) > q(5) = q(10) > q(12) > q(7) = q(9)

> q(14) > q(11) > q(16) > q(13) > q(15) > q(18) > q(17) > q(20)

> q(19) > q(22) > q(21) > q(24) > q(23) > q(26) > q(25) > q(27).
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Table 2 Approximate values of q (n) for 1 ≤ n ≤ 30

n q (n) ≈ n q (n) ≈
1 1.00000000 16 1.31250000

2 2.00000000 17 1.28571429

3 1.50000000 18 1.29629630

4 1.66666667 19 1.27272727

5 1.40000000 20 1.27959184

6 1.57142857 21 1.26315789

7 1.36363636 22 1.26515152

8 1.46666667 23 1.25249501

9 1.36363636 24 1.25498008

10 1.40000000 25 1.24317460

11 1.33333333 26 1.24412666

12 1.37500000 27 1.23563218

13 1.31168831 28 1.23521595

14 1.33663366 29 1.22781065

15 1.30370370 30 1.22760131

Table 3 Data when inequality (3.2) is satisfied

b 2 4 6 8 10 12 14 16 18 20 22 24 26

A0
(
b
) {5} {7} {9, 11} {11} {13} {15} ∅ ∅ ∅ ∅ ∅ ∅ ∅

a1
(
b
)

7 9 13 13 15 17 17 19 21 23 25 27 28

Corollary 3.2 Let a and b be positive integers. Let a > b + 1. Then

�a,b(1) ≥ 0 (3.2)

is true for all b odd and for all b ≥ 26. For 1 < b ≤ 26 even we have the following result.
Inequality (3.2) is satisfied for a ∈ A0 (b) ∪ {

a ∈ N : a ≥ a1 (b)
}
from Table 3.

Proof The proof follows from Proposition 3.1 and

�a,b(1) ≥ 0 ⇐⇒ q(a) ≤ q(b + 1). (3.3)


�

4 Proof of Theorem 1.4
Let us first recall a formula [17] for the coefficients of Pn(x). Let Pn(x) = ∑n

m=1 An,m xm.
Then

An,m = 1
m!

∑

k1 ,...,km∈N
k1+...+km=n

m∏

i=1

σ (ki)
ki

. (4.1)

4.1 Case b = 1 and Theorem 1.4 for x0 = 1.

We prove here that �a,1(x) > 0 for all a ≥ 3 and x > x0 = 1.

Proof Corollary 3.2 implies �a,1(x0) ≥ 0 for all a ≥ 3. Note that �a,1(x) has degree a+ 1
and has non-negative coefficients for 2 < a < 6. This implies that the theorem is already
true for x > 0. We have �6,1 (x) > 0 for x ≥ x0. Let Fa (x) = Pa−1 (x) ((x + 3)/2)− Pa (x).
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Then �a,1 (x) = xFa (x). Therefore to show that �a,1 (x) > 0 it is sufficient to show that
Fa (x) > 0.
This we prove by induction on a ≥ 3 for x > x0. Note that Fa (x) > 0 for x > x0 and

3 ≤ a ≤ 6. Therefore in the induction step we assume a ≥ 7 and that Fm (x) > 0 is true
for all 3 ≤ m < a and x > x0. Now we will show F ′

a (x) > 0 for all x > x0. The derivative
F ′
a (x) is equal to

P′
a−1(x)

x + 3
2

+ Pa−1(x)
1
2

− P′
a(x)

=
a−1∑

k=1

σ (k)
k

Pa−1−k (x)
x + 3
2

−
a∑

k=1

σ (k)
k

Pa−k (x) + Pa−1(x)
1
2
.

This follows from [9]:

P′
n(x) =

n∑

k=1

σ (k)
k

Pn−k (x). (4.2)

By the induction hypothesis we obtain

a−1∑

k=1

σ (k)
k

Pa−1−k (x)
x + 3
2

>
σ (a − 1)
a − 1

x + 3
2

+
a−2∑

k=1

σ (k)
k

Pa−k (x)

and

F ′
a (x) >

σ (a − 1)
a − 1

x + 3
2

−
a∑

k=a−1

σ (k)
k

Pa−k (x) + Pa−1(x)
1
2

= 1
2
Pa−1(x) − σ (a − 1)

a − 1
x
2

+ 3σ (a − 1)
2 (a − 1)

− σ (a)
a

.

In the last step we utilize the property a < σ (a) < a (1 + ln(a)) and obtain

F ′
a (x) >

1
2
Pa−1(x) − σ (a − 1) x

2 (a − 1)
+ 3

2
− (1 + ln(a)) .

The coefficients of the polynomial Pa−1 (x) are provided by (4.1) and it implies that the
coefficients of Pa−1 (x) − ((σ (a − 1))/(a − 1))x are not negative. Therefore we obtain
Pa−1 (x)−((σ (a − 1))/(a − 1))x ≥ Pa−1 (1)−((σ (a − 1))/(a − 1)) forx ≥ 1. SincePa−1 (1)
is the partition number of a − 1 we have Pa−1 (1) ≥ a − 1. Finally F ′

a (x) > ((a − 1)/2) −
((1 + ln (a − 1))/2)+(3/2)−1− ln (a) > 0 for a ≥ 7. Since Fa (1) = 2Pa−1 (1)−Pa (1) ≥ 0
we obtain Fa (x) > 0. 
�

Proof of Corollary 1.5 for the case b = 1
We have shown in the previous proof that Fa (x) > 0 and F ′

a (x) > 0 for x > x0 and
a ≥ 7. Therefore also �′

a,1 (x) = xF ′
a (x) + Fa (x) > 0 for x > x0. We also mentioned in

the previous proof that the coefficients of �a,1 (x) are not negative for 2 < a < 6. For
a = 6 it can be checked directly that �′

6,1 (x) > 0 for x ≥ x0. This proves Corollary 1.5
for b = 1. 
�
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4.2 Case b = 2 and Theorem 1.4 for x0 = 2.

Proof Let x0 = 2. We have P2 (x) = (x + 3) (x/2) and P3 (x) = (x + 8) (x + 1) (x/6). Let
Fa (x) = ((x + 4)/3)Pa−1 (x) − Pa (x). Since (x + 8) (x + 1) ≥ (x + 4) (x + 3) for x ≥ 2 we
obtain

�a,2 (x) ≥ (x + 3)
x
2

(
x + 4
3

Pa−1 (x) − Pa (x)
)

= (x + 3)
x
2
Fa (x) .

For x = x0 we have equality.
We will show Fa (x) > 0 by induction on a. It holds for a = 4 as F4 (x) =

(x + 1) (x − 1) (x − 2) (x/72) > 0 for x > 2. Similarly, we can show that Fa (x) > 0
for x > 2 for 5 ≤ a ≤ 13. The following proposition shows that F ′

a (x) > 0 for x > x0 if
we assume Fm (x) > 0 for x > x0 for 4 ≤ m < a.
The last step in the induction is the following. In Proposition 2.4 we showed that

�a,2 (x0) ≥ 0 for a ≥ 5 and �4,2 (x0) = 0 can be checked easily. Additionally,
Fa (x0) = (�a,2 (x0))/((x0 + 3) (x0/2)) ≥ 0. Using F ′

a (x) > 0 for x > x0 we can conclude
that �a,2 (x) ≥ (x + 3) (x/2)Fa (x) > 0 for x > x0. 
�
Proposition 4.1 Let a ≥ 14 and assume that Fm (x) = ((x + 4)/3)Pm−1 (x) − Pm (x) > 0
for x > x0 = 2 and 4 ≤ m < a. Then F ′

a (x) > 0.

Proof For F ′
a (x) we obtain

1
3
Pa−1 (x) + x + 4

3

a−1∑

k=1

σ (k)
k

Pa−1−k (x) −
a∑

k=1

σ (k)
k

Pa−k (x) .

We apply the assumptions and obtain

F ′
a (x) >

1
3
Pa−1 (x) + x + 4

3

a−1∑

k=a−3

σ (k)
k

Pa−1−k (x) −
a∑

k=a−3

σ (k)
k

Pa−k (x)

= 1
3
Pa−1 (x) + x + 4

3

(
σ (a − 3)
a − 3

(x + 3)
x
2

+ σ (a − 2)
a − 2

x + σ (a − 1)
a − 1

)

− σ (a − 3)
a − 3

(x + 8) (x + 1)
x
6

− σ (a − 2)
a − 2

(x + 3)
x
2

− σ (a − 1)
a − 1

x − σ (a)
a

= 1
3
Pa−1 (x)

− σ (a − 3)
a − 3

(x − 2)
x
3

− σ (a − 2)
a − 2

(x + 1)
x
6

− σ (a − 1)
a − 1

2x − 4
3

− σ (a)
a

≥ 1
3
Pa−1 (x) − 1 + ln (a)

6
(x + 1) (3x − 2) .

We apply now (4.1) to be able to use that

Pa−1 (x) = σ (a − 1)
a − 1

x +
a−2∑

k=1

σ (a − 1 − k) σ (k)
2 (a − 1 − k) k

x2 +
a−1∑

m=3
Aa−1,mxm

≥ x + a − 2
2

x2 +
a−1∑

m=3
Aa−1,mxm

for x ≥ 0. Therefore

F ′
a (x) >

x
3

+ a − 2
6

x2 + 1
3

a−1∑

m=3
Aa−1,mxm − 1 + ln (a)

6
(x + 1) (3x − 2)
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= 1 + ln (a)
3

+ 1 − ln (a)
6

x + a − 5 − 3 ln (a)
6

x2 + 1
3

a−1∑

m=3
Aa−1,mxm

= 4a − 16 − 12 ln (a)
6

+ 4a − 19 − 13 ln (a)
6

(x − 2)

+ a − 5 − 3 ln (a)
6

(x − 2)2 + 1
3

a−1∑

m=3
Aa−1,mxm > 0

for a ≥ 14 and x > x0 = 2. 
�

Proof of Corollary 1.5 for the case b = 2
From the proof of Theorem 1.4 for the case b = 2 we see that Fa (x) > 0 for x > x0 = 2.
The previous proposition showed that F ′

a (x) > 0 for a ≥ 14. Therefore �′
a,2 (x) =

(x + (3/2)) Fa (x)+(x + 3) (x/2)F ′
a (x) > 0 for a ≥ 14. The remaining cases for 4 ≤ a ≤ 13

can be checked directly. 
�

4.3 Case b = 3 and Theorem 1.4 for x0 = 1

Proof We have P3 (x) = (x/6) (x + 1) (x + 8) and P4 (x) = (x/24) (x + 1) (x + 3) (x + 14).
As (x + 3) (x + 14) ≥ (1/3) (x + 8) (3x + 17) for x ≥ 1 we obtain

P4 (x) ≥ x
72

(x + 1) (x + 8) (3x + 17) .

Let Fa (x) = 3x+17
12 Pa−1 (x) − Pa (x). Then

�a,3 (x) = Pa−1 (x)P4 (x) − Pa (x)P3 (x) ≥ x
6
(x + 1) (x + 8) Fa (x) (4.3)

for x ≥ 1. Note that for x = x0 = 1 we have equality. We also have Fa (x) > 0 for x > 1
and 5 ≤ a ≤ 14.
The proof will be by induction on a. The following proposition shows that F ′

a (x) > 0
for x > x0 and a ≥ 15, if we assume that Fm (x) > 0 for x > x0 and 5 ≤ m < a.
By Corollary 3.2 �a,3 (x0) ≥ 0 for a ≥ 5. Additionally,
Fa (x0) = (�a,3 (x0))/((x0/6)(x0 + 1) (x0 + 8)) ≥ 0. Using F ′

a (x) > 0 for x > x0 and (4.3)
we can conclude that �a,3 (x) ≥ (x/6) (x + 1) (x + 8) Fa (x) > 0. 
�

Proposition 4.2 Let a ≥ 15. If Fm (x) = ((3x + 17)/12)Pm−1 (x) − Pm (x) > 0 for x > x0
and for all 5 ≤ m < a then F ′

a (x) > 0.

Proof The derivative F ′
a (x) is equal to

1
4
Pa−1 (x) + 3x + 17

12

a−1∑

k=1

σ (k)
k

Pa−1−k (x) −
a∑

k=1

σ (k)
k

Pa−k (x) .

Applying the assumptions leads to

F ′
a (x) >

1
4
Pa−1 (x) + 3x + 17

12

a−1∑

k=a−4

σ (k)
k

Pa−1−k (x) −
a∑

k=a−4

σ (k)
k

Pa−k (x)
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= 1
4
Pa−1 (x) + 3x + 17

12

(
σ (a − 4)
a − 4

P3 (x) + σ (a − 3)
a − 3

P2 (x) + σ (a − 2)
a − 2

x

+ σ (a − 1)
a − 1

)
− σ (a − 4)

a − 4
P4 (x) − σ (a − 3)

a − 3
P3 (x) − σ (a − 2)

a − 2
P2 (x)

− σ (a − 1)
a − 1

x − σ (a)
a

= 1
4
Pa−1 (x) − σ (a − 4)

a − 4
5x
36

(x + 1) (x − 1) − σ (a − 3)
a − 3

x
24

(
x2 + 10x − 19

)

− σ (a − 2)
a − 2

x
12

(3x + 1) − σ (a − 1)
a − 1

9x − 17
12

− σ (a)
a

.

Now, x2 + 10x− 19 ≤ x2 + 10x− 11 = (x + 11) (x − 1) and 9x− 17 ≤ 9x− 9. As −x < 0
we obtain

F ′
a (x) >

1
4
Pa−1 (x) − σ (a − 4)

a − 4
5x
36

(x + 1) (x − 1) − σ (a − 3)
a − 3

x
24

(x − 1) (x + 11)

− σ (a − 2)
a − 2

x
12

(3x + 1) − σ (a − 1)
a − 1

3x − 3
4

− σ (a)
a

≥ 1
4
Pa−1 (x) − 1 + ln (a)

72
(
13x3 + 48x2 + 17x + 18

)
.

Now

Pa−1 (x) = σ (a − 1)
a − 1

x +
a−2∑

k=1

σ (a − 1 − k) σ (k)
2 (a − 1 − k) k

x2

+
a−3∑

j=1

a−j−2∑

k=1

σ (a − 1 − j − k) σ (k) σ (j)
6 (a − 1 − j − k) jk

x3 +
a−1∑

m=4
Aa−1,mxm

≥ x + a − 2
2

x2 +
a−3∑

j=1

a − j − 2
6

x3 +
a−1∑

m=4
Aa−1,mxm

= x + a − 2
2

x2 +
(
a − 2
2

)
x3

6
+

a−1∑

m=4
Aa−1,mxm.

Then

F ′
a (x) >

1
4
x + a − 2

8
x2 +

(
a − 2
2

)
x3

24
+ 1

4

a−1∑

m=4
Aa−1,mxm

− 1 + ln (a)
72

(
13x3 + 48x2 + 17x + 18

)

= −1 + ln (a)
4

+ 1 − 17 ln (a)
72

x + 3a − 22 − 16 ln (a)
24

x2

+ 3 (a − 2) (a − 3) − 26 − 26 ln (a)
144

x3 + 1
4

a−1∑

m=4
Aa−1,mxm

= a2 + a − 58 − 64 ln (a)
48

+ 9a2 − 9a − 286 − 304 ln (a)
144

(x − 1)

+ 3a2 − 9a − 52 − 58 ln (a)
48

(x − 1)2

+ 3 (a − 2) (a − 3) − 26 − 26 ln (a)
144

(x − 1)3 + 1
4

a−1∑

m=4
Aa−1,mxm > 0

for a ≥ 15 and x > x0 = 1. 
�
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Proof of Corollary 1.5 for the case b = 3
From the proof of Theorem 1.4 for the case b = 3 we observe that Fa (x) > 0 for
x > x0 = 1. The previous proposition shows that F ′

a (x) > 0 for a ≥ 15 and x > x0.
Therefore �′

a,3 (x) = (1/6)
(
3x2 + 18x + 8

)
Fa (x) + (x/6) (x + 1) (x + 8) F ′

a (x) > 0. For
the remaining cases 5 ≤ a ≤ 14 it can be checked directly that �′

a,3 (x) > 0. 
�

5 Conjecture 2: approach for general b
We offer a general approach to Conjecture 2, based on four assumptions. Let x0 > 0 and
a > b + 1. We define

Hb(x) := Pb+1(x)
Pb(x)

− x
b + 1

, (5.1)

Gb(x) := x
b + 1

+ Hb (x0) = x − x0
b + 1

+ Pb+1 (x0)
Pb (x0)

, (5.2)

Fa,b(x) := Gb (x)Pa−1 (x) − Pa (x) . (5.3)

5.1 Four assumptions

In this subsection let a > b + 1 and x0 > 0 be fixed.

Assumption 5.1 �a,b (x0) ≥ 0.

Assumption 5.2 Hb(x) ≥ Hb(x0) for all x ≥ x0.

Assumption 5.3 For all x > x0 and a − 1 − b ≤ k ≤ a − 1 let

Gb(x)Pa−1−k (x) − Pa−k (x) ≤ 0. (5.4)

Assumption 5.4 (Induction hypothesis) Fm,b (x) > 0 for x > x0 and b + 2 ≤ m < a.

Remarks (1) If Hb(x) is monotonically increasing for x ≥ x0, then Assumption 5.2 is
valid.

(2) Assumption 5.2 implies

�a,b (x) ≥ Pb (x) Fa,b (x) . (5.5)

For x = x0 we have equality by (5.2) and (5.3).

The idea is to generalize the induction step approach on a > b + 1 from the previous
section to arbitrary b and show as the main intermediate step

F ′
a,b (x) ≥ 0. (5.6)

Then frompart 2 of the previous remarks we obtain Fa,b (x0) = �a,b (x0)/Pb (x0). Assump-
tion 5.1 implies Fa,b (x) ≥ 0 and together with (5.5) we obtain also �a,b (x) ≥ 0 for x ≥ x0.
Using the assumptions is not sufficient to complete the induction step. The estimate

(5.7) below on F ′
a,b (x) can in general yet only be bounded asymptotically for large a, see

next subsection.
For now we are going to explain how we can use the assumptions from the beginning

of this subsection for a lower bound on Fa,b (x). If we derive (5.3) we obtain

F ′
a,b (x) = 1

b + 1
Pa−1 (x) + Gb(x)P′

a−1 (x) − P′
a (x)
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= 1
b + 1

Pa−1 (x) + Gb(x)
a−1∑

k=1

σ (k)
k

Pa−1−k (x) −
a∑

k=1

σ (k)
k

Pa−k (x) .

Using now Assumption 5.4 we obtain

F ′
a,b (x) >

1
b + 1

Pa−1 (x) + Gb(x)
a−1∑

k=a−1−b

σ (k)
k

Pa−1−k (x) −
a∑

k=a−1−b

σ (k)
k

Pa−k (x)

= 1
b + 1

Pa−1 (x) +
a−1∑

k=a−1−b

σ (k)
k

(Gb(x)Pa−1−k (x) − Pa−k (x)) − σ (a)
a

and with Assumption 5.3 we can continue

F ′
a,b (x) >

1
b + 1

Pa−1 (x)

− (1 + ln (a))

⎛

⎝1 +
a−1∑

k=a−1−b
(Pa−k (x) − Gb(x)Pa−1−k (x))

⎞

⎠ .
(5.7)

5.2 An estimate using associated Laguerre polynomials

Here we will explain an idea how to show the positivity of right hand side of (5.7). We
want to bound the coefficients of Pa−1 (x) from below in such a way that they dominate
the coefficients of the subtracted polynomial. Unfortunately this approach here in the end
only works asymptotically and only for most coefficients.
Let L(1)n (x) = ∑n

k=0
(n+1
n−k

)
((−x)k/k !) be the associated Laguerre polynomial of degree

n with parameter α = 1. Then Pn (x) ≥ (x/n)L(1)n−1 (−x) = ∑n
k=1

(n−1
k−1

)
(xk/k !) for x > 0.

This follows from [10] or directly from Kostant’s formula (4.1) as it implies An,m ≥
(1/m!)

∑
k1 ,...,km∈N

k1+...+km=n
1 = (1/m!)

(n−1
m−1

)
. From (5.7) we obtain

F ′
a,b (x) >

1
b + 1

a−1∑

k=1

(
a − 2
k − 1

)
xk

k !
(5.8)

− (1 + ln (a)) ·
⎛

⎝1 +
a−1∑

k=a−1−b
(Pa−k (x) − Gb(x)Pa−1−k (x))

⎞

⎠ . (5.9)

This is positive if we can bound the coefficients of (5.9) by the coefficients (1/(b + 1))
(a−2
k−1

)
.

This is always possible for 2 ≤ k ≤ a − 2 for large a ≥ a0.
Then for example for x0 = 2 we could deduce from Corollary 1.3 that �a,b (x0) ≥ 0. As

explained shortly before then we also have Fa,b (x0) = (�a,b (x0)/Pb (x0)) ≥ 0. Therefore,
Fa,b (x) > 0 for x > x0. Then (5.5) implies �a,b (x) ≥ Pb (x) Fa,b (x) > 0 for x > x0.

5.3 Proof of Assumptions 5.2 and 5.3 for b ∈ {0, 1, 2, 3, 4, 5, 6}
Our approach to prove Assumption 5.3 again uses induction. For b = 5 the smallest initial
point we can choose is x0 ≥ 2.0554. This means that for b > 5 we can also only choose
x0 ≥ 2.0554. For values of b < 5 we could also have chosen x0 = 2 for example, compare
Table 6.
Having proven Assumptions 5.2 and 5.3 for the cases b ∈ {4, 5, 6} carries out the induc-

tion step up to inequality (5.7). What is left to do is to prove that the right hand side of
(5.7) is really positive (and to check that �a,b (x0) ≥ 0 for x0 = 2.0554). The positivity can
probably be shown using the method proposed in the last subsection. So the analysis of
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bounding the coefficients of (5.9) has to be carried out in the cases b ∈ {4, 5, 6} in order to
complete the proof of Theorem 1.4 in these cases.

Proposition 5.5 For b ∈ {0, 1, 2, 3, 4, 5, 6} the functions x �→ ((Pb+1 (x))/Pb (x)) −
(x/(b + 1)) aremonotonically increasing for x ≥ x0 ≥ 0.776which implies Assumption 5.2.

Remark 5.6 Actually the proof will show that the functions are monotonically increasing
for all x > 0 for b ∈ {0, 1, 2, 3, 4, 6} with the exception of b = 5 where we need the
restriction on x0.

Proof The derivative is

P′
b+1 (x)Pb (x) − Pb+1 (x)P′

b (x)
(Pb (x))2

− 1
b + 1

. (5.10)

Let

Nb (x) = P′
b+1 (x)Pb (x) − Pb+1 (x)P′

b (x) . (5.11)

Then (5.10) is not negative if and only if Nb (x) − (1/(b + 1)) (Pb (x))2 ≥ 0. By Table 4 all
are not negative for x ≥ x0.

Proposition 5.7 Let b ∈ {1, 2, 3, 4, 5, 6} then x �→ (Pk+1 (x)/Pk (x))− (x/(b + 1)) is mono-
tonically increasing for x > x0 = 2.0554 and 0 ≤ k ≤ b and

Pb+1 (x0)
Pb (x0)

≤ Pk+1 (x0)
Pk (x0)

(5.12)

for 0 ≤ k ≤ b. This implies Assumption 5.3 for x0 = 2.0554.

Proof Deriving the functions x �→ (Pk+1 (x)/Pk (x))− (x/(b + 1)) for 0 ≤ k ≤ bwe obtain
using similarly Nk (x) from (5.11) ((Nk (x) − (1/(b + 1)) (Pk (x))2)/(Pk (x))2). This is not
negative if and only if the numerator is not negative. Obviously this is larger thanNk (x)−
(1/(k + 1)) (Pk (x))2 which we have seen to be not negative in the proof of the previous
proposition. What remains to check is that (Pb+1 (x0)/Pb (x0)) ≤ (Pk+1 (x0)/Pk (x0)) for
0 ≤ k ≤ b − 1, compare Table 5.

For fixed b we can also determine the smallest x0 for which (5.12) holds (Table 6).

Table4 Polynomials Nb (x) − (1/(b + 1)) (Pb (x))
2 for b ∈ {0, 1, 2, 3, 4, 5, 6}

b Nb (x) − 1
b+1 (Pb (x))

2

0 0

1 0

2 5
6 x

2

3 5
24 (x + 1)2 x2

4 1
48

(
x2 + 4x + 16

)
(x + 3)2 x2

5 1
4320

(
5 x6 + 120 x5 + 1250 x4 + 6144 x3 + 11705 x2 − 1800 x − 9000

)
x2

6 1
120960 (5 x

8+220 x7+4090 x6+38416 x5 + 192565 x4+536500 x3 + 1049420 x2+1440000 x + 763008) x2
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Table5 Approximate values of Pb+1(x0)
Pb(x0)

for b ∈ {1, 2, 3, 4, 5, 6}
b 1 2 3 4 5 6
Pb+1(x0)
Pb (x0)

≈ 2.527700 2.025772 2.017982 1.819048 1.819044 1.707376

Table 6 Approximate smallest x0 for which (5.12) holds

b x0 ≈
2 2

3 2

4 1.6881868943126478278636511038164231908

5 2.0553621798507231766687152242721716951

6 1.5657320643972915718958748689518846691

5.4 Partial result

Unfortunately we cannot showAssumption 5.2 for all b yet, but we can show the following
weaker version.

Lemma 5.8 If we assume that �b+1,B (x) > 0 for all x > x0 > 0 and 0 ≤ B ≤ b − 1 then
(Pb+1 (x)/Pb (x)) is monotonically increasing for x > x0.

Proof If we consider its derivative we obtain ((P′
b+1 (x)Pb (x) − Pb+1 (x)P′

b (x))/(Pb (x))
2).

The numerator is
b+1∑

k=1

σ (k)
k

Pb+1−k (x)Pb (x) − Pb+1 (x)
b∑

k=1

σ (k)
k

Pb−k (x)

= σ (b + 1)
b + 1

Pb (x) +
b∑

k=1

σ (k)
k

(Pb+1−k (x)Pb (x) − Pb+1 (x)Pb−k (x)) .

Now for A = b + 1 and B = b − k ≤ b − 1 = A − 2 we can apply the assumption and
obtain that all Pb+1−k (x)Pb (x) − Pb+1 (x)Pb−k (x) = �A,B (x) > 0 for x > x0. 
�

6 Concluding remarks
We consider sequences {an}∞n=0 with non-negative elements. A sequence is log-concave
if a2n −an−1 an+1 ≥ 0 for all n ∈ N, and strongly log-concave if the inequalities are strictly
positive. Let cn := ∑

i+j=n ai bj be the convolution of two sequences. Hoggar [13] proved
that the convolution of two finite positive log-concave sequences is again log-concave.
This result was extended by Johnson and Goldschmidt [16] to infinite sequences. Let x1
and x2 be complex numbers, then the convolution of the two sequences

{
Pn(x1)

}
n and

{
Pn(x2)

}
n is equal to

{
Pn(x1 + x2)

}
n. Note that Pn(x) > 0 for x > 0.

The link between �a,b ≥ 0 and log-concavity is given by the following observation. Let
x > 0 and a, b ∈ N with a > b + 1:

�a,b(x) ≥ 0 ⇐⇒ Pb+1(x)
Pb(x)

≥ Pa(x)
Pa−1(x)

. (6.1)

Remarks Let x > 0 be given.

(a) Let �b+2,b(x) ≥ 0 for all b ∈ N0. Then {Pn(x)} is log-concave.
(b) Let {Pn(x)} be log-concave, then �a,b(x) ≥ 0 for all a > b + 1 and b ∈ N0.
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Table7 Approximate values ofmax
{
2x11 + (x/24), (100/(x − 24)) + (x/24)

}

x max
{
2x11 + (x/24), 100

x−24 + (x/24)
}

≈
2 4096.08333333

3 354294.12500000

4 8388608.16666667

5 97656250.20833333

Fig. 2 Roots of �a,27(x) and �a,28(x) with a positive real part blue = real root, red = complex root

Bringmann et al. [4] proved (see also introduction), that there exists a constant B0 =
B0(x) := max

{
2x11 + (x/24), (100/(x − 24)) + (x/24)

}
for x ≥ 2 such that �a,b(x) ≥ 0

for all b ≥ B0(x) and a ≥ b + 1 (Table 7).
Let x = k ∈ N≥2, then B0(k) = 2k11 + (k/24). Thus, �a,b(x) ≥ 0 for fixed x > 0 and all

pairs (a, b) with a ≥ b+1 and b ∈ N0 is equivalent to {Pn(x)} log-concave. Now, by [4] it is
sufficient to show that the quotients (Pn(x)/Pn−1(x)) are decreasing when n is increasing
for all 1 ≤ n ≤ B0(x). In [4] this last step had been executed successfully for k = 2
and n ≥ 6 and k = 3 and all n. The authors also invented some sophisticated computer
calculations for k = 4 and k = 5. Although, they still needed a 5 day and a 71 day long
computer calculation for these cases. It follows that {Pn(2)} is log-concave for n ≥ 6 and
{Pn(k)} is log-concave for k = 3, 4 and 5. Applying the result of Johnson and Goldschmidt
finally proves the Chern–Fu–Tang conjecture. Note that limx→∞ B0(x) = ∞, which
makes this method difficult to prove Conjecture 2, for general x ≥ 2. For 0 < x < 3,
the sequence {Pn(x)} is never log-concave (for small n) since �2,0(x) < 0, which causes
technical problems (see also k = 1 and k = 2, where finitely many exceptions appear). In
this paper we offer an approach which takes care of x ≥ x0 bounded from below.We fix b
and determine a0 ∈ N and x0 ∈ R>0 such that�a,b (x) ≥ 0 for all a ≥ a0 and x ≥ x0. This
takes into account that exceptions may exist and allows for example to vary a0 and x0. Let
b ∈ {0, 1, 2, 3}. We have determined a0 and x0 dependent on b, such that �a,b(x) ≥ 0 and
�′

a,b(x) ≥ 0 for a ≥ a0 and x ≥ x0.
We expect for b ≥ 27 and x0 = 1 that a0 can be chosen as b+ 2. This can be considered

as the generic case (see Fig. 2 which illustrates this expectation). If we assume 0 < x0 < 1,
then it is an interesting but challenging task to determine a0 = a0(b, x0).
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