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Abstract

For a given statistical model, the bipartite fidelity F is computed from the overlap between the
groundstate of a system of size N and the tensor product of the groundstates of the same model
defined on two subsystems A and B, of respective sizes NA and NB with N = NA + NB. In this
paper, we study F for critical lattice models in the case where the full system has periodic boundary
conditions. We consider two possible choices of boundary conditions for the subsystems A and B,
namely periodic and open. For these two cases, we derive the conformal field theory prediction
for the leading terms in the 1/N expansion of F , in a most general case that corresponds to the
insertion of four and five fields, respectively. We provide lattice calculations of F , both exact and
numerical, for two free-fermionic lattice models: the XX spin chain and the model of critical dense
polymers. We study the asymptotic behaviour of the lattice results for these two models and find
an agreement with the predictions of conformal field theory.
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1 Introduction

Understanding entanglement and correlations in quantum many-body systems is an important chal-
lenge in modern theoretical physics. The interest for these questions stems from the understanding
that quantifying entanglement, an idea that originated in the information theory community [1, 2], is
useful to diagnose phase transitions and describe the critical behaviour of many-body systems [3–5].
Entanglement now plays a prominent role in seemingly unrelated research areas, such as information
theory, condensed matter, high energy physics and black holes physics.

Among the numerous existing entanglement measures, the so-called entanglement entropy is the
most broadly studied one, both in equilibrium situations [6–11] and out of equilibrium [12–15]. It is an
efficient tool to measure bipartite entanglement in pure states. Consider a system in the pure state |ψ〉,
composed of two complementary subsystems A and B. The entanglement entropy SA is defined as the
von Neumann entropy [16] of the reduced density matrix of subsystem A,

SA = −tr(ρA log ρA), ρA = trB ρ, ρ = |ψ〉〈ψ|, (1.1)

where trB indicates a trace over the degrees of freedom inB. The entanglement entropy does not depend
on the subsystem that is traced over: SA = SB. For systems that are not critical, the entanglement
entropy satisfies an area law [9, 17]: it is proportional to the area of the boundary between the two
subsystems. In particular, for non-critical one-dimensional quantum systems, it saturates to a constant
value in the limit of large system size N → ∞. In contrast, for critical one-dimensional quantum
systems, the entanglement entropy diverges logarithmically with the system size in the scaling limit:
SA ∝ logN . The prefactor is predicted by conformal field theory (CFT) [5–7] to be proportional to
the central charge c,

SA =
ac

6
logN +O(1), (1.2)

where a is the number of contact points between the two subsystems. If the whole system is defined
on a periodic lattice, we have a = 2. On the contrary, if one end of the subsystem A is attached to a
boundary, then a = 1.

Another observable that shares many features with the entanglement entropy is the fidelity [18–22].
It is defined as the overlap between the groundstates of two Hamiltonians that differ by a small
perturbation. The Hamiltonian of the system H(λ), where λ parameterises the perturbation, has
the groundstate |λ〉. The fidelity is

f(λ1, λ2) =

∣∣∣∣
〈λ1|λ2〉2

〈λ1|λ1〉 〈λ2|λ2〉

∣∣∣∣. (1.3)

As a particular example, we consider the situation where λ parameterises the interaction between two
complementary subsystems,

H(λ) = HA +HB + λH int, (1.4)

where HA and HB are the Hamiltonians of the subsystems A and B, respectively. The term H int

contains the interaction between the two subsystems. We denote by |ψA〉, |ψB〉 and |ψAB〉 the ground-
states of HA, HB and HAB = H(1), respectively. The logarithmic bipartite fidelity [23, 24] is then
defined as

FA,B = − log

∣∣∣∣∣
〈ψA ⊗ ψB |ψAB〉2

〈ψA ⊗ ψB |ψA ⊗ ψB〉 〈ψAB |ψAB〉

∣∣∣∣∣ , (1.5)

with the notation |ψA ⊗ ψB〉 ≡ |ψA〉⊗|ψB〉 for the groundstate of H(0). Similarly to the entanglement
entropy, this quantity vanishes when the involved groundstates are of the form |ψ〉 =⊗N

j=1 |ψj〉 with
|ψj〉 independent of j and N . Otherwise it is a positive real number.

An integrable quantum model in one dimension often underlies a statistical model in two di-
mensions [25]. The transfer matrices T (u) for the latter commute at different values of the spectral
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Figure 1: The periodic pants geometry, the skirt geometry and the flat pants geometry.

parameter u, and the Hamiltonian of the former is obtained as a leading term in the expansion of T (u)
around u = 0. From its definition in terms of scalar products of groundstates, the bipartite fidelity
then has an interpretation in terms of partition functions in the two-dimensional model. If in the
one-dimensional model, the boundary conditions for the system and the two subsystems are open, the
corresponding model in two dimensions is defined on a domain that resembles a pair of flat pants. We
call it the flat pants domain. It is illustrated in the right panel of Figure 1.

Similarly to the entanglement entropy, the logarithmic bipartite fidelity is an efficient tool to de-
tect quantum phase transitions. For non-critical models it satisfies an area law, whereas it diverges
logarithmically with the system size for one-dimensional quantum critical systems. On the flat pants
geometry, Dubail and Stéphan [23, 24] used CFT arguments to derive the 1/N expansion of the log-
arithmic bipartite fidelity up to order N−1 logN . In particular, they found that the leading term is
proportional to logN , with a prefactor that depends on the central charge c of the theory. In the
simple case where there is no change in boundary conditions between the two subsystems, this term is

Fflat pants =
c

8
logN +O(1). (1.6)

In [24], the authors in fact considered a more general case where the Hamiltonians HA, HB and HAB

have different boundary conditions applied to the endpoints of the chains. In the conformal field theory,
this corresponds to a situation where four primary fields are inserted on the flat pants domain. The
three leading terms in the large-N expansion of F are proportional to logN , 1 and N−1 logN and
the explicit expressions for their coefficients are found to depend on the conformal data, namely the
central charge, the conformal dimensions of the fields and the four-point function of these fields. In
two previous papers, we checked these conformal predictions with analytical lattice computations for
the XXZ spin chain at ∆ = −1

2 [26], and for the model of critical dense polymers [27], a lattice model
known to be described by a logarithmic CFT of central charge c = −2 [28,29]. In [27], we also extended
the prediction of [24] to the cases where one and two of the fields are logarithmic. We argued that
the bipartite fidelity allows one to measure the central charge of the model, rather than the effective
central charge.

In [23], Dubail and Stéphan also investigated the behaviour of the bipartite fidelity on a second
geometry: the one drawn in the central panel of Figure 1. We call it the skirt domain. For the quantum
chain, the state |ψAB〉 used to compute (1.5) in this case is the groundstate of the Hamiltonian with
periodic boundary conditions, whereas |ψA〉 and |ψB〉 are the groundstates for the open chains of the
subsystems A and B. The results of [23, 24] cover the simplest case where no boundary condition
changing fields are inserted. The resulting 1/N expansion that they obtain for the bipartite fidelity
reads

Fskirt =
c

4
logN +

c

24
(G̃(x) + G̃(1− x)) + C̃ +O(N−1 logN), (1.7)

where x = NA/N is the aspect ratio, C̃ is a non-universal constant, and

G̃(x) =
3− 6x+ 4x2

1− x
log x. (1.8)
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In this paper, we provide new CFT predictions and lattice computations of the bipartite fidelity
on two domains with periodic boundary conditions. The first is the periodic pants domain, for which
the full system and the two subsystems all have periodic boundary conditions. It is depicted in the left
panel of Figure 1. To our knowledge, there are no previously known results for the bipartite fidelity on
this geometry. The second is the skirt domain, where we will push further the investigation initiated
in [23]. We will consider the more complicated case where boundary condition changing fields are
present in the CFT context, and will derive the leading terms in (1.7) up to order N−1 logN .

Accordingly, the bulk of the paper is divided into two large sections: Section 2 covers the case of
the periodic pants domain, and Section 3 focuses on the skirt domain. Each of these two sections is
divided into four subsections. The first subsection gives the conformal predictions for the leading terms
of F in its large-N expansion, with the details of the calculations presented in Appendix A. The second
and third subsections give the exact calculations of the bipartite fidelity for the XX spin chain and the
model of critical dense polymers, respectively. These are two free-fermionic models for which one can
diagonalise the Hamiltonian explicitly and write F as a determinant, which can be evaluated in product
form in certain favourable cases. The fourth subsection uses both exact asymptotic calculations and
numerical evaluations of the determinants to compare the lattice results with the CFT prediction.
Some of the technical details of the asymptotic calculations are relegated to Appendix B. We present
final remarks in Section 4.

2 Bipartite fidelity on the periodic pants geometry

In this section, we consider the bipartite fidelity for physical systems A, B and AB, of respective
lengths NA, NB and N = NA + NB , which are all endowed with periodic boundary conditions. For
one-dimensional chains, the fidelity is defined as

Fp = − log
∣∣〈XA ⊗XB |XAB〉

∣∣2 (2.1)

where 〈v⊗w| is a short-hand notation for 〈v|⊗ 〈w|. The states 〈XS | and |XS〉 are respectively the left
and right groundstates of the Hamiltonian of the chain of the system S. These states are normalised
in such a way that 〈XS |XS〉 = 1.

For two-dimensional lattice models, the fidelity is defined as

Fp = lim
M→∞

− log

∣∣∣∣∣

(
ZAB
p

)2

ZA
c Z

B
c Z

A∪B
c

∣∣∣∣∣. (2.2)

Here ZAB
p is the partition function defined on the periodic pants geometry depicted in the left panel

of Figure 1. The perimeter at the top is N , the perimeters of the legs A and B are NA and NB ,
and the height is 2M . Likewise, ZA

c , Z
B
c and ZA∪B

c are partition functions on cylinders of height 2M
and perimeters NA, NB and N , respectively. Clearly, the bipartite fidelity depends on the choices of
boundary conditions assigned to the top and bottom of these lattices. For suitable choices of these
boundary conditions, the partition functions are all non-zero and the limit M → ∞ in (2.2) is well-
defined.

As is well-known, certain families of integrable models in two dimensions are related to one-
dimensional quantum spin chains [25]. In these cases, the two definitions (2.1) and (2.2) coincide. In
Section 2.1, we give the conformal prediction for the leading terms in the large-N expansion of the
bipartite fidelity. In Sections 2.2 and 2.3, we compute Fp for the XX spin chain and for the model of
critical dense polymers. Finally, in Section 2.4, we compare the asymptotical behaviour of the lattice
results with the predictions of conformal field theory.
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Figure 2: The function wp(z) maps the complex plane onto the periodic pants geometry. On the right
part of the figure, the dashed and dotted lines are identified pairwise.

2.1 Predictions of conformal field theory

In this section, we give the conformal predictions for the bipartite fidelity on the periodic pants ge-
ometry. The details of the calculations are given in Appendix A. Let us consider a one-dimensional
quantum critical system of characteristic size N . For large N , its free energy f behaves as

f = fbulkN
2 + fsurfaceN + fshape logN + fcst + . . . (2.3)

where the dots indicate that lower-order terms are omitted. In this expression, the first two terms are
proportional to the area and the surface of the domain. They are non-universal in the sense that they
depend on the details of the theory’s short-range interactions. In contrast, the term fshape is universal.
It depends on the geometry considered and on the data of the underlying CFT, namely the central
charge c and the dimensions ∆i, ∆̄i of the conformal fields. Finally, the term fcst also depends on
the CFT data. Because the free energy can always be shifted by an overall non-universal constant,
arguments of conformal field theory can only predict fcst up to a non-universal additive constant.

From the definition (2.2), the bipartite fidelity on the periodic pants domain corresponds to the
following difference of free energies:

Fp = 2fp − fc(N) − fc(NA) − fc(NB), (2.4)

where fp is the free energy on the periodic pants domain and fc(P ) is the free energy on the cylinder
of perimeter P . The bipartite fidelity can then be seen as a renormalised free energy. It depends
on two independent characteristic lengths, N and NA, with the third characteristic length given by
NB = N −NA. We consider the asymptotic behaviour of Fp in the limit where N and NA are sent to
infinity with the aspect ratio x = NA/N kept fixed. It has the large-N expansion

Fp = g0 logN + g1(x) + g2(x)N
−1 logN + . . . . (2.5)

The coefficients g0, g1(x) and g2(x) can be computed by the methods of conformal field theory. In
this framework, the periodic pants domain is described as an infinite horizontal strip of width N drawn
in the complex plane. The strip is decorated with two slits that divide its left half into two strips of
width Nx and N(1 − x). The boundary conditions are periodic along the strip’s edges and along the
slits so as to reproduce the geometry of the left panel of Figure 1. In particular, due to the periodicity,
the two endpoints of the slits are identified as a unique point in the domain. We refer to this point as
the crotch point. The mapping from the complex plane to the periodic pants geometry is

wp(z) =
N

2π

(
x log(z − 1) + (1− x) log z

)
+Kx, Kx = −N

2π

(
x log x+ (1− x) log(1− x)

)
. (2.6)

This map is illustrated in Figure 2.
In a general setting, we consider the situation where four fields are inserted on the periodic pants

geometry. A field φ1 is inserted at −∞ in the leg A, a field φ2 is inserted on the crotch point, a field φ3
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is inserted at −∞ in the leg B, and a field φ4 is inserted at +∞. We denote by wi, with i = 1, . . . , 4,
these positions in the periodic pants domain, and by zi the corresponding positions in the complex
plane obtained from the inverse map w−1

p (z). For simplicity, we assume that each field φi is spinless
with conformal dimensions ∆i = ∆̄i.

The first term g0 in the expansion (2.5) is obtained as a direct application of the Cardy-Peschel
formula [30] for conical singularities. Indeed, the slit’s endpoint in the pants domain corresponds to
a single conical singularity of angle 4π, as can be seen from the expansion of wp(z) about the point
z = z2. The resulting expression for g0 depends on the dimension of the field φ2 and on the central
charge:

g0 =
c

4
+ 2∆2. (2.7)

The next term g1(x) depends on the aspect ratio x and on the dimensions ∆i of the four fields. In
the general setting where the four fields are non-trivial primary fields, g1(x) also depends on the four-
point function of the fields φ1, φ2, φ3 and φ4. A similar dependence was found in [24] for the flat pants
domain. Here, we only state the resulting expressions, with their derivations given in Appendix A. We
give the result in two cases: (i) no field is inserted on the crotch point and the fields φ1, φ3 and φ4 are
primary, and (ii) the four fields φi are vertex operators with charges qi = q̄i and conformal dimensions
∆i = ∆̄i = q2i /2. For case (i), the known form of the three-point functions allows us to find

g1(x) = 4
(
∆4 −

∆1

x
− ∆3

1− x

)(
x log x+ (1 − x) log(1− x)

)
+

c

12

(
G(x) +G(1 − x)

)
+ C (2.8)

where

G(x) =
3− 3x+ 2x2

1− x
log x (2.9)

and C is a constant with respect to x. This constant is non-universal. For case (ii), the n-point function
of the vertex fields is

〈
n∏

i=1

φ(zi, z̄i)

〉
=

∏

16i<j6n

|zi − zj |2qiqj ,
n∑

i=1

qi = 0, (2.10)

and the function g1(x) reads

g1(x) = 2
[
q21

(
1− 1

x

)
− q23 − 2q3q2 −

q22
2

+ q24(1− x)
]
log(1− x) + {q1 ↔ q3, x→ 1− x}

+
c

12

(
G(x) +G(1 − x)

)
+ C ′ (2.11)

where C ′ is a constant. On the first line of (2.11), the second contribution, marked by a bracket,
indicates that the first term must be recopied but with the substitutions indicated inside this bracket.

Finally, we find, also in Appendix A, that the prefactor g2(x) of the N
−1 logN term is

g2(x) = 2Ξ ×
(
c (1 − x+ x2)

24x(1− x)
+ ∆4 −

∆1

x
− ∆3

1− x

)
(2.12)

where the multiplicative constant Ξ, the extrapolation length, is a non-universal constant. This holds
for cases (i) and (ii).

2.2 Lattice calculation for the XX spin chain

2.2.1 Definition of the model

The first lattice model for which we compute the bipartite fidelity is the spin-12 quantum XX chain.
It is a simple model of quantum magnetism where neighbouring spins interact isotropically in the xy
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plane. We consider the XX spin chain on a ring of length N with a diagonal twist. The Hamiltonian
acts on the Hilbert space (C2)⊗N with the local canonical basis

|↑〉 =
(
1
0

)
, |↓〉 =

(
0
1

)
. (2.13)

It is convenient to introduce the Pauli matrices σx = ( 0 1
1 0 ), σ

y =
(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
, as well as

the identity matrix I2 = ( 1 0
0 1 ). We use the notation

σaj = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
j−1

⊗σa ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
N−j

, a = x, y, z, j = 1, . . . , N. (2.14)

The Hamiltonian of the model is

H = −
N−1∑

j=1

(
σ+j σ

−
j+1 + σ−j σ

+
j+1

)
− eiφσ+Nσ

−
1 − e−iφσ−Nσ

+
1 (2.15)

where σ± = 1
2(σ

x ± iσy) and φ is the twist angle. We restrict our investigations to the case where N is

an even number. The Hamiltonian commutes with the total magnetisation Sz = 1
2

∑N
j=1 σ

z
j .

In order to study the bipartite fidelity, we consider the same model on two smaller systems A and
B. Their degrees of freedom are defined on smaller rings of lengths NA and NB , and their respective
twist angles are φA and φB. The three twist angles φ, φA and φB are three free parameters. We impose
that both lengths are even numbers that satisfy NA +NB = N . The aspect ratio is x = NA

N .
We denote by H, HA and HB the Hamiltonians of the whole system, of subsystem A and of

subsystem B, with respective groundstates |XAB
0 〉, |XA

0 〉 and |XB
0 〉. The subscript 0 indicates that

these states belong to the subspaces of zero magnetisation. Defining the dual states as

〈v| = |v〉†, (2.16)

the states 〈XAB
0 |, 〈XA

0 | and 〈XB
0 | are then the left-groundstates of the Hamiltonians H, HA and HB .

The logarithmic bipartite fidelity for the XX spin chain on the periodic pants domain is

FXX

p = − log
∣∣〈XA

0 ⊗XB
0 |XAB

0 〉
∣∣2 , (2.17)

where |XAB
0 〉, |XA

0 〉 and |XB
0 〉 are assumed to have unit norms.

2.2.2 Diagonalisation of the Hamiltonian

The diagonalisation of H is standard. It uses a Jordan-Wigner transformation and a Fourier transform.
The result is

H = −
N∑

k=1

2 cos(θk)µ
†
kµk, (2.18)

where

µk =
1√
N

N∑

j=1

eijθkcj , µ†k =
1√
N

N∑

j=1

e−ijθkc†j , θk =





2πk−φ
N

N
2 + Sz odd,

2π(k− 1
2
)−φ

N
N
2 + Sz even,

(2.19)

and

cj = (−1)j−1

( j−1∏

k=1

σzk

)
σ−j , c†j = (−1)j−1

( j−1∏

k=1

σzk

)
σ+j . (2.20)
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The operators µk and µ†ℓ satisfy the usual fermionic anti-commutation rules

{µk, µ†ℓ} = δk,ℓ, {µk, µℓ} = {µ†k, µ
†
ℓ} = 0. (2.21)

With k in the set {1, . . . , N}, we have a full set of fermionic operators. It is however useful to

extend the range of k to negative values using the periodicity properties µk+N = µk and µ†k+N = µ†k.
For φ ∈ (−π, π), the groundstate of H is unique. It lies in the magnetisation sector Sz = 0 and is given
by

|X0〉 =
{

µ†(4−N)/4 · · · µ
†
N/4|0〉 N

2 even,

µ†(2−N)/4 · · ·µ
†
(N−2)/4|0〉 N

2 odd,
|0〉 = |↓ · · · ↓〉. (2.22)

Due to the anti-commutation relations of the operators µk and µ†ℓ, the groundstate has norm one,
namely 〈X0|X0〉 = 1, where

〈X0| =
{

〈0|µN/4 · · · µ(4−N)/4
N
2 even,

〈0|µ(N−2)/4 · · ·µ(2−N)/4
N
2 odd,

(2.23)

is the left groundstate of H.

2.2.3 Bipartite fidelity

In order to compute the bipartite fidelity, we introduce the fermion operators for the subsystems A
and B:

µAk =
1√
NA

NA∑

j=1

eijθ
A
k cj , (µAk )

† =
1√
NA

NA∑

j=1

e−ijθA
k c†j, (2.24a)

µBk =
1√
NB

N∑

j=NA+1

ei(j−NA)θB
k cj, (µBk )

† =
1√
NB

N∑

j=NA+1

e−i(j−NA)θB
k c†j, (2.24b)

where

θAk =





2πk−φA

NA

NA

2 + (Sz)A odd,

2π(k− 1
2
)−φA

NA

NA

2 + (Sz)A even,
(Sz)A = 1

2

NA∑

j=1

σzj , (2.24c)

θBk =





2πk−φB

NB

NB

2 + (Sz)B odd,

2π(k− 1
2
)−φB

NB

NB

2 + (Sz)B even,
(Sz)B = 1

2

N∑

j=NA+1

σzj . (2.24d)

The three groundstates |XAB
0 〉, |XA

0 〉 and |XB
0 〉 have unit norms. Using Wick’s theorem, we evaluate

the overlap in (2.17) as a determinant. The corresponding matrix contains the anti-commutators of

the operators µ†k′ and µ
A
k or µBk . After simplification, the result is

∣∣〈XA
0 ⊗XB

0 |XAB
0 〉

∣∣ = 2−N/2N−N/2x−Nx/4(1− x)−N(1−x)/4
∣∣detA

∣∣, (2.25)

with

Ak,k′ =





1 + e−iπx(2k′−1)e−i(φA−xφ)

sin
[
π(2k−1)
2Nx − π(2k′−1)

2N − φA−xφ
2Nx

] k = 1, . . . , Nx
2 ,

1 + e−i(φ−φB)eiπ(1−x)(2k′−1)eixφ

sin
[
π(2k−Nx−1)

2N(1−x) − π(2k′−1)
2N − φB−(1−x)φ

2N(1−x)

] k = Nx
2 + 1, . . . , N2 ,

k′ = 1, . . . , N2 . (2.26)
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This holds for all parities of N/2, NA/2 and NB/2. For generic twist angles, we do not know how to
evaluate this determinant in closed form. This is due to the numerators in (2.26) which are different
in the two parts of the matrix A. We can however evaluate the determinant if the twist parameters φ,
φA and φB are such that

1 + e−iπx(2k′−1)e−i(φA−xφ) = 1 + e−i(φ−φB)eiπ(1−x)(2k′−1)eixφ. (2.27)

The solutions are
φ = φA + φB − π + 2πℓ, ℓ ∈ Z. (2.28)

In the following, we focus on the case ℓ = 0. Under this specialisation, we are able to simplify the
determinant and obtain a closed-form formula. Indeed, we find

|〈XA
0 ⊗XB

0 |XAB
0 〉| = N−N/2x−Nx/4(1− x)−N(1−x)/4

∣∣∣∣
N/2∏

k′=1

cos
[
πxk′ − φA(x−1)+xφB

2

]∣∣∣∣ |detM| (2.29)

where

Mk,k′ =





sin
[
π(2k−1)−φA

2Nx − π(2k′−1)−φ
2N

]−1
k = 1, . . . , Nx

2 ,

sin
[
π(2k−Nx−1)−φB

2N(1−x) − π(2k′−1)−φ
2N

]−1
k = Nx

2 + 1, . . . , N2 ,
k′ = 1, . . . , N2 . (2.30)

We use the Cauchy identity

det
i,j

1

sin(xi − yj)
=

∏
i<j sin(xi − xj) sin(yj − yi)∏

i

∏
j sin(xi − yj)

(2.31)

and find

detM =
∏

16k<k′6Nx/2

sin
[ π

Nx
(k − k′)

]
×

∏

16k<k′6N(1−x)/2

sin
[ π

N(1− x)
(k − k′)

]

×
∏

16k<k′6N/2

sin
[ π
N

(k′ − k)
]
×

Nx/2∏

k=1

N(1−x)/2∏

k′=1

sin
[π(2k − 1)− φA

2Nx
− π(2k′ − 1)− φB

2N(1− x)

]

×




Nx/2∏

k=1

N/2∏

k′=1

sin
[π(2k − 1)− φA

2Nx
− π(2k′ − 1)− φ

2N

]



−1

×




N(1−x)/2∏

k=1

N/2∏

k′=1

sin
[π(2k − 1)− φB

2N(1 − x)
− π(2k′ − 1)− φ

2N

]



−1

.

(2.32)

Many of these products have a similar structure. We define two generic products P1 and P2:

P1(N) =
∏

16k<k′6N/2

∣∣∣sin
[ π
N

(k − k′)
]∣∣∣ , (2.33a)

P2(N1, N2, φ1, φ2) =

N1/2∏

k=1

N2/2∏

k′=1

∣∣∣∣sin
[πk
N1

− πk′

N2
− π + φ1

2N1
+
π + φ2
2N2

]∣∣∣∣ . (2.33b)

Their asymptotic large-N behaviour are given in Appendices B.2 and B.3, respectively. We recast the
overlap |〈XA

0 ⊗XB
0 |XAB

0 〉| in a simple way and find

e−
1
2
FXX

p
∣∣
φ=φA+φB−π

= N−N/2x−Nx/4(1− x)−N(1−x)/4

∣∣∣∣
N/2∏

k′=1

cos
[
πxk′ − φA(x−1)+xφB

2

]∣∣∣∣

× P1(N)P1(Nx)P1(N(1 − x))P2(Nx,N(1 − x), φA, φB)

P2(Nx,N, φA, φA + φB − π)P2(N(1− x), N, φB , φA + φB − π)
. (2.34)
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M

M

N

NA NB

Figure 3: A configuration of the model of critical dense polymers on the periodic pants geometry, with
M = 6, N = 12, NA = 8 and NB = 4. It contains four non-contractible loops and therefore has a
weight α4.

2.2.4 Other instances of the bipartite fidelity

The CFT predictions of Section 2.1 cover cases where fields are inserted in the legs and on the crotch
point. In order to investigate these cases further, we consider modified instances of the bipartite fidelity
on the periodic pants lattice. We do this by relaxing the condition tying N , NA and NB , and define

FXX

p (n) = − log
∣∣∣ 〈XA

0 ⊗XB
0 ⊗ ↑↓ ⊗ · · · ⊗ ↑↓︸ ︷︷ ︸

n/2 times

|XAB
0 〉

∣∣∣
2
, (2.35)

where n is an even integer. The new constraint on the lengths is N = NA + NB + n. In this scalar
product, the magnetisation of the dual state vanishes, and the corresponding overlap is non-zero.
Following the arguments of Section 2.2.3, we obtain a determinant expression for this overlap similar
to (2.25), which we do not reproduce here. We are unable to evaluate it in product form. We analyse
FXX
p (n) for small values of n in Section 2.4 using the numerical evaluation of these determinants. The

case n = 0 corresponds to the standard definition (2.17) of FXX
p .

2.3 Lattice calculation for critical dense polymers

2.3.1 Definition of the model

The second lattice model for which we compute the bipartite fidelity is the model of critical dense
polymers. This is a two-dimensional model of interacting tiles on the square lattice, and here we define
it on the periodic pants geometry. The lattice is divided into three parts, as illustrated in the example
of Figure 3. The top part is anM×N rectangular array of tiles, with N even. The boundary conditions
on this rectangle are periodic in the horizontal direction, so that the left and right segments of this
rectangle are identified as the same segment. The bottom part is divided into two smaller arrays of
tiles of respective sizes M×NA andM×NB, with NA and NB both even and satisfying NA+NB = N .
Each of these smaller arrays also has periodic horizontal boundary conditions. The tops of these two
arrays are placed side-by-side and attached to the bottom segment of the M ×N rectangle.

A configuration of the model of critical dense polymers is a choice of the diagram or for
each tile of this lattice. These are both assigned the weight 1. The three free ends of the pants lattice,
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ZAB
p

NA NB

2M ZA∪B
c

N

2M ZA
c

NA

2M ZB
c

NB

2M ≃ ZB
c

NB

Figure 4: The lattices and boundary conditions corresponding to ZAB
p , ZA∪B

c , ZA
c and ZB

c .

one at the top and two at the bottom of the lattice, are decorated by simple half-arcs that connect each
tile to one of its neighbours. Put together, the loop segments drawn on the tiles and on the boundary
half-arcs form a set of loops. The contractible loops, namely those that can be deformed to a point, are
given a weight β = 0. Non-contractible loops are divided into three families. They can (i) wrap around
leg A, (ii) wrap around leg B, or (iii) wrap around the waist of the pants (or equivalently around both
legs A and B). We choose to assign a weight α ∈ R to non-contractible loops in the families (i) and
(iii), but a weight zero to those in the family (ii). The Boltzmann weight of a configuration σ is then
given by

Wσ = αnA+nABδnβ ,0δnB,0 (2.36)

where nβ is the number of contractible loops, and nA, nB and nAB are the numbers of non-contractible
loops in families (i), (ii) and (iii), respectively. The partition function on the pants lattice, denoted
ZAB
p , is defined as

ZAB
p =

∑

σ

Wσ. (2.37)

We also define ZA∪B
c and ZA

c , the partition functions for the model of dense polymers on cylinders
of dimensions 2M ×N and 2M ×NA, respectively. On these cylinders, the bottom and top ends are
also decorated with simple arcs. The contractible and non-contractible loops have the fugacities 0 and
α, respectively. Finally, we define ZB

c , a partition function defined on a cylinder of size 2M ×NB . It
is different from the other partition functions, in that the only configurations with non-zero weights
are those with exactly one loop. This loop can be contractible or non-contractible. The boundary
conditions are as before, with both ends of the cylinder decorated with simple half-arcs. Each of the
contributing configurations then has a weight 1, and ZB

c is simply the number of such configurations. As
argued in [31], one way to implement this without taking a limit on the fugacity of the loops is to replace
one of the half-arcs at the top edge by two defects, and likewise at the bottom of the cylinder. One then
imposes that the defects at the top connect with those at the bottom, with weight 1. For convenience,
we choose that the last half-arc, on both the top and bottom segments, is the one replaced by a pair
of defects. The lattices corresponding to the different partition functions are depicted in Figure 4.

The logarithmic bipartite fidelity is defined as

Fα
p = − lim

M→∞
log

( (
ZAB
p

)2

ZA∪B
c ZA

c Z
B
c

)
. (2.38)

As we shall see, the ratio in the parenthesis is such that the limit is well-defined.

2.3.2 The enlarged periodic Temperley-Lieb algebra

Definition of the algebra. The connectivity properties of loop segments are naturally described
in the language of Temperley-Lieb algebras. Because of the periodic boundary conditions, our calcu-
lation of Fα

p requires the periodic incarnation of the Temperley-Lieb algebra. This algebra was first
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introduced [32] by D. Levy in 1991 and was subsequently studied [33–36] by both physicists and math-
ematicians. Certain details in the definition of this algebra vary from one paper to the next, and here
we work with the enlarged periodic Temperley-Lieb algebra EPTLN (α, β), as defined in [29].

This algebra is the linear span of connectivity diagrams drawn inside a rectangular box with N
marked nodes on its top segment and N more on its bottom segment. Inside the box, the nodes are
connected pairwise by non-intersecting loop segments. The boundary conditions are periodic in the
horizontal direction. The loop segments can therefore cross this segment, in which case we say that
they travel via the back of the cylinder.

The product a1a2 of two connectivity diagrams in EPTLN (α, β) is done by vertical concatenation:
a1 is drawn below a2, the new connectivity is obtained from the connection of the top and bottom
nodes, and each loop formed in the process is removed and replaced by a multiplicative weight of α
or β depending on its contractibility. Here are two examples of products of connectivity diagrams for
N = 4:

= β , = α . (2.39)

This algebra is generated by N + 2 connectivity diagrams: Ω, Ω−1, and ej with j = 1, . . . , N .
These are depicted as

1 2 3 ... N

Ω = ,

1 2 3 ... N

Ω−1 = , ej = ... ...

1 j N

, eN =

1 2 3 N

... , (2.40)

where j = 1, . . . , N − 1. The identity I for this algebra is the element

I = Ω−1Ω = ΩΩ−1 = ...

1 2 3 N

. (2.41)

The diagrammatic rule describing the product in this algebra can be translated into relations satisfied
by the generators. These are given for instance in [29]. The value of β pertaining to the model of
critical dense polymers is β = 0. In our calculations below, α is kept as a free parameter and N is set
to an even integer.

The transfer tangle and the Hamiltonian. The transfer tangle for the model of critical dense
polymers with periodic boundary conditions is an element of EPTLN (α, 0) defined as

T (u) = . . . . . .u u u

︸ ︷︷ ︸
N

, u = cos u + sinu . (2.42)

It is a linear combination of 2N connectivity diagrams. The isotropic value is u = π
4 , and we use

the short-hand notation T = T (π4 ). This transfer tangle commutes for different values of the spectral
parameter: [T (u),T (v)] = 0. Expanding T (u) in a Taylor series in u, we obtain

T (u) = Ω(I − uH) +O(u2), H = −
N∑

j=1

ej, (2.43)

where H is the Hamiltonian. It commutes with the transfer tangle: [H ,T (u)] = 0.
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The standard modules WN,0 and WN,2. The algebra EPTLN (α, β) possesses a family of standard
modules WN,d labelled by an integer number d of defects. Our calculation of Fα

p requires two standard
modules: WN,0 and WN,2. These are respectively defined on the vector spaces generated by link states
with zero and two defects. Link states are diagrams drawn over a segment where N marked nodes are
connected pairwise by non-intersecting loop segments or occupied by vertical defects that cannot be
overarched.

The boundary conditions are periodic in the horizontal direction. For example, here are the link
states for N = 4:

W4,0 : , , , , , , (2.44a)

W4,2 : , , , . (2.44b)

The action of a connectivity in EPTLN (α, β) on a link state w in WN,0 is similar to the action of
EPTLN (α, β) on itself. The link state w is drawn on top of the connectivity, the resulting new link
state is read from the bottom nodes, and multiplicative factors of α and β are included for each non-
contractible and contractible loop, respectively. Moreover, for WN,2, the result is set to zero if the two
defects are connected. Here are examples of this standard action:

= α , = β , = 0. (2.45)

We note that the standard module WN,2 can be defined more generally with a twist parameter that
keeps track of how much the defects wrap around the cylinder.

A link state module with identified connectivities. In the special case where α = β, there
exists another representation defined on link states with zero defects, with so-called identified connec-

tivities [29]. We denote it by ŴN,0. Its vector space is spanned by the link states with zero defects in
WN,0 that have no arcs travelling via the back of the cylinder. These are in fact the same link states
that span the standard module with zero defects of the usual Temperley-Lieb algebra TLN (β). For
N = 4, these link states are:

Ŵ4,0 : , . (2.46)

The action of connectivity diagrams on link states in ŴN,0 is defined using the same construction as
for standard modules. One draws the link state above the connectivity diagram, reads the new link state
from the bottom edge of the diagram, and includes factors of β for each closed loop, both contractible
and non-contractible. Crucially, in reading off the resulting link state, there is no distinction between
arcs travelling via the front or back of the cylinder. Any arc travelling around the back of the cylinder
is transformed into an arc travelling in the front of the cylinder. Here are two examples of this action
for N = 4:

= β , = β . (2.47)

The XX representation. The XX representation of EPTLN (α, 0), which we denote by XN , is defined
on the vector space (C2)⊗N . We use the canonical basis defined in Section 2.2.1. In this basis, the
generators ej with j = 1, . . . , N − 1 are represented by the following matrices [37]:

XN (ej) = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
j−1

⊗




0 0 0 0
0 i 1 0
0 1 i−1 0
0 0 0 0


⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

N−j−1

, j = 1, . . . , N − 1. (2.48)
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Likewise, the generators Ω±1 and eN are represented by

XN (Ω±1) = t±1e±iφσz
1/2, XN (eN ) = XN (Ω)XN (e1)XN (Ω−1), (2.49)

where φ is the twist angle and t is the translation operator:

t
(
|v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vN 〉

)
= |v2〉 ⊗ · · · ⊗ |vN 〉 ⊗ |v1〉. (2.50)

The matrices XN (ej) and XN (Ω±1) realise a representation of EPTLN (α, 0) for

α = 2cos
(φ
2

)
. (2.51)

They also commute with the total magnetisation Sz = 1
2

∑N
i=1 σ

z
i . As a consequence, the representation

XN splits as a direct sum of smaller representations labelled by the eigenvalues m of Sz, which take
the values m = −N

2 , −N−2
2 , . . . , N

2 .
In this representation, the Hamiltonian H is the twisted XX Hamiltonian (2.15):

H = XN (H) = −
N−1∑

j=1

(
σ+j σ

−
j+1 + σ−j σ

+
j+1

)
− eiφσ+Nσ

−
1 − e−iφσ−Nσ

+
1 . (2.52)

Likewise, the transfer matrix is defined as T (u) = XN (T (u)). It is the transfer matrix of the six-vertex
model at the anisotropy ∆ = 0, with periodic boundary conditions and a diagonal twist. We use the
notation T = T (π4 ) for this transfer matrix at the isotropic point.

Homomorphisms. There exists a map from link states to spin states that intertwines the link state
and XX representations. Indeed, for a given link state w in WN,0, WN,2 or ŴN,0, we write its image in
(C2)⊗N under this map as |w〉. It is defined from the following local maps:

| 〉 = ω |↑↓〉+ω−1 |↓↑〉, | 〉 = |↓〉, | 〉 = ω−1e−
iφ
2 |↑↓〉+ω e

iφ
2 |↓↑〉, ω = eiπ/4. (2.53)

For a given link state, these local rules are applied to each arc and each defect. For w ∈ WN,0, WN,2 and

ŴN,0, the resulting state |w〉 has the magnetisation m = 0,−1 and 0, respectively. The homomorphism
property then reads

XN (ej)|w〉 = |ejw〉, XN (Ω±1)|w〉 = |Ω±1w〉, j = 1, . . . , N, (2.54)

and is satisfied for each link state w. This holds for WN,0, ŴN,0 and WN,2, with the action of the
generators on the right sides of the equations adapted accordingly, for each case. For WN,0, the
homomorphism with the spin-chain representation holds for α fixed as a function of φ as in (2.51).
For ŴN,0, non-contractible loops have the weight β and the homomorphism holds provided that φ is
fixed to ±π. In that case, | 〉 and | 〉 are equal up to a sign. For WN,2, the map (2.53) is a
homomorphism for the special value φ = 0. This is consistent with the fact that our definition of this
module was given without including a parameter that keeps track of the winding of the defects.

2.3.3 Bilinear forms

Bilinear forms for link states. The Gram bilinear form is an invariant form on the standard
modules. For critical dense polymers, it is defined as follows. Let w,w′ be two link states in WN,0 or
WN,2. Performing a vertical flip of w and connecting its nodes to those of w′, we obtain a diagram
where the loop segments form loops, that can be contractible or non-contractible loops. For WN,0,
the Gram product of w and w′, denoted w · w′, is defined as αnαδnβ ,0, where nα and nβ count the
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non-contractible and the contractible loops. It is therefore non-zero only if the number of contractible
loops is zero.

For WN,2, the same diagram constructed from w and w′ involves loops as before, but also finds
the defects connected pairwise. If both defects of w are connected to defects of w′ and there are no
loops, then w ·w′ = 1. Otherwise, w ·w′ = 0. To illustrate, for N = 4, the matrices encoding the Gram
products between the link states in the bases (2.44) are




0 0 0 α 0 0
0 0 α 0 α α2

0 α 0 0 α2 α
α 0 0 0 0 0
0 α α2 0 0 α
0 α2 α 0 α 0



,




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


 . (2.55)

These bilinear forms allow us to express the partition functions ZA∪B
c , ZA

c and ZB
c in terms of

Gram products:

ZA∪B
c = 2MNvAB

0 · (TAB)2MvAB
0

∣∣
WN,0

, (2.56a)

ZA
c = 2MNAvA0 · (TA)2MvA0

∣∣
WNA,0

, (2.56b)

ZB
c = 2MNBvB2 · (TB)2MvB2

∣∣
WNB,2

, (2.56c)

where the boundary states are

v0 = ... , v2 = ... . (2.57)

The superscripts AB, A and B for T in (2.56) serve as a reminder that the corresponding objects
are elements of the enlarged periodic Temperley-Lieb algebra with N , NA and NB nodes, respectively.
We have also indicated by subscripts on the right side which action is used. Finally, we note that the
powers of 2 ensure that each tile has a weight 1 instead of 1√

2
as it does in (2.42) for u = π

4 .

Gram products on the pants geometry. We define a new Gram product, denoted (w1×w2) ·w3,
that is needed to compute ZAB

p . In this product, the states w1, w2 and w3 belong to WNA,0, ŴNB,0 and
WN,0 respectively, with N = NA +NB . The result of this product is obtained as follows. One flips w1

and w2 vertically, draws them on the legs A and B of the pants lattice, and connects its nodes to those
of w3 drawn on the top part of the pants lattice. Then (w1×w2)·w3 equals α

nA+nABδnβ ,0δnB,0, where nβ
counts the number of contractible loops, and the numbers nA, nB and nAB count the non-contractible
loops in the three families, as explained in Section 2.3.1. Here are two examples to illustrate:

(
×

)
· = α2, (2.58a)

(
×

)
· = 0. (2.58b)

In terms of this Gram product, the partition function ZAB
p reads

ZAB
p = 2MN

(
(TA)MvA0 × (TB)MvB0

)
· (TAB)MvAB

0 . (2.59)

In this expression, the transfer tangles TA and TAB act on the boundary states vA0 and vAB
0 under the

standard actions of WNA,0 and WN,0 respectively (where α is a free parameter). In contrast, (TB)M

acts on vB0 under the module action of ŴNB ,0 (where α = 0).
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We note that one can define more generally a Gram product on the pants geometry where the
result of the product is αnA

1 αnB
2 αnAB

3 δnβ ,0 and thus depends on three free parameters, one for each
family of non-contractible loops. Our choice to set α2 = 0 and α1 = α3 = α however allows for an
important simplification. Indeed, in this case, the connectivity of link states in leg B can be described
using the module ŴNB ,0, and the Gram products on the pants geometry can be computed using the
Gram product on the cylinder, for WN,0. Our construction above achieves this by using the natural

embedding from WNA,0× ŴNB,0 into WN,0, where the two link states w1 and w2 are simply drawn side
by side, and the loop segments of w1 that travel via the back of the cylinder (if any) are extended to
travel via the back of the larger cylinder. For instance,

× 7→ , × 7→ . (2.60)

The same embedding in WN,0 does not naturally extended to WNA,0×WNB,0. For example, we cannot
embed × in WN,0 in the same way as in (2.60).

Thus, for the case α2 = 0, any Gram product on the pants geometry can be computed using the
same product on the cylinder. In the spin-chain language, the resulting embedding translates simply
to

|w1 × w2〉 = |w1〉 ⊗ |w2〉. (2.61)

Overlaps in the XX chain. At the end of Section 2.3.2, we defined a map w 7→ |w〉 that intertwines
the link state and spin-chain representations of EPTLN (α, 0). For each link state w, we define the dual
state 〈〈w| as

〈〈w| = |w〉t
∣∣∣
φ→−φ

(2.62)

where the superscript t stands for real transposition. The Gram product between two link states w1

and w2 can then be computed from the spin-chain representation [38]:

w1 · w2 = 〈〈w1|w2〉. (2.63)

In the spin-chain language, the partition functions read

ZA∪B
c = 2MN 〈〈vAB

0 |(TAB)2M |vAB
0 〉, (2.64a)

ZA
c = 2MNA〈〈vA0 |(TA)2M |vA0 〉, (2.64b)

ZB
c = 2MNB 〈〈vB2 |(TB)2M |vB2 〉, (2.64c)

ZAB
p = 2MN 〈〈vA0 ⊗ vB0 |

(
(TA)M ⊗ (T̂B)M

)
(TAB)M |vAB

0 〉. (2.64d)

We recall that TAB and TA are the transfer matrices of the six-vertex model with a twist φ for system
sizes N and NA respectively, whereas TB and T̂B are the transfer matrices for the system size NB with
the twists φ = 0 and φ = π, respectively.

2.3.4 Bipartite fidelity

Diagonalisation of the Hamiltonian. The diagonalisation of H is given in Section 2.2.2. We recall
that for φ ∈ (−π, π), the groundstate of H is unique, belongs to the magnetisation sector Sz = 0 and
is given by

|X0〉 =
{

µ†(4−N)/4 · · · µ
†
N/4|0〉 N

2 even,

µ†(2−N)/4 · · ·µ
†
(N−2)/4|0〉 N

2 odd,
|0〉 = |↓ · · · ↓〉. (2.65)
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Likewise, in the sector Sz = −1, the groundstate of H for φ = 0 is unique and given by

|X−1〉 =





µ†(4−N)/4 · · · µ
†
(N−4)/4|0〉

∣∣
φ=0

N
2 even,

µ†(6−N)/4 · · · µ
†
(N−2)/4|0〉

∣∣
φ=0

N
2 odd.

(2.66)

The transfer matrix and Hamiltonian commute, and thus we have

T |X0〉 = Λ0|X0〉, (T |φ=0)|X−1〉 = Λ−1|X−1〉. (2.67)

The eigenvalues are [29,39]

Λ0 =
cos(φ2 )

2N−1

N/2∏

j=1

(1 + tan xj)
N∏

j=(N+2)/2

(1− tan xj), xj =
π(j − 1

2)−
φ
2

N
, (2.68a)

Λ−1 =
N

2N−1

(N−2)/2∏

j=1

(
1 + tan(πjN )

)2
. (2.68b)

and are the largest eigenvalues in the sectors Sz = 0 and Sz = −1, respectively. We note in particular
that Λ−1 = limφ→π Λ0.

In the representations WN,0 and WN,2, the transfer tangle T has the right eigenstates X0 and X−1

with respective eigenvalues Λ0 and Λ−1, and |X0〉 and |X−1〉 are their images under the homomorphism
map. Their duals 〈〈X0| and 〈〈X−1| are obtained from the definition (2.62). Because

µtk
∣∣
φ→−φ

=

{
µ†−k

N
2 + Sz odd,

µ†1−k
N
2 + Sz even,

(2.69)

we have
〈〈X0| = (−1)N(N−2)/8〈X0|, 〈〈X−1| = (−1)(N−2)(N−4)/8〈X−1| (2.70)

where 〈X0| = |X0〉† and 〈X−1| = |X−1〉†. The state 〈X0| is given in (2.23) and is the left groundstate
of H in the sector Sz = 0. Likewise, 〈X−1| is the left groundstate in the sector Sz = −1. Because of
the fermionic relations (2.21), the groundstates have unit norms, and therefore we have

〈〈X0|X0〉 = (−1)N(N−2)/8, 〈〈X−1|X−1〉 = (−1)(N−2)(N−4)/8 . (2.71)

Ratios of overlaps. We now extract the leading behaviours of the partition functions (2.56) and
(2.59) as M tends to infinity. We start with ZAB

p and assign the extra labels AB, A and B to

the groundstates over (C2)⊗N , (C2)⊗NA and (C2)⊗NB , respectively. From (2.71), we deduce that the
identity matrix over (C2)⊗N in the sector of zero magnetisation has a contribution along the groundstate
of the form

I
∣∣
Sz=0

= (−1)N(N−2)/8|XAB
0 〉〈〈XAB

0 |+ . . . . (2.72)

The next terms involve states that are not groundstates. Likewise, for (C2)⊗NA and (C2)⊗NB , we have

I
∣∣
Sz=0

= (−1)NA(NA−2)/8|XA
0 〉〈〈XA

0 |+ . . . , (2.73a)

I
∣∣
Sz=0

= (−1)NB(NB−2)/8|XB
0 〉〈〈XB

0 |+ . . . . (2.73b)

We then have

(TAB)M |vAB
0 〉 ≃ (−1)N(N−2)/8(ΛAB

0 )M |XAB
0 〉〈〈XAB

0 |vAB
0 〉, (2.74a)

〈〈vA0 |(TA)M ≃ (−1)NA(NA−2)/8(ΛA
0 )

M 〈〈vA0 |XA
0 〉〈〈XA

0 | , (2.74b)

〈〈vB0 |(T̂B)M ≃ (−1)NB(NB−2)/8(ΛB
0 )

M 〈〈vB0 |XB
0 〉〈〈XB

0 |, (2.74c)
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where ΛAB
0 , ΛA

0 and ΛB
0 are the eigenvalues of TAB, TA and T̂B in the zero magnetization sector. The

symbol ≃ indicates that the smaller contributions coming from excited states have been omitted. We
thus find

ZAB
p ≃ ǫ 2MN (ΛAB

0 ΛA
0 Λ

B
0 )

M 〈〈vA0 |XA
0 〉〈〈vB0 |XB

0 〉〈〈XA
0 ⊗XB

0 |XAB
0 〉〈〈XAB

0 |vAB
0 〉, (2.75)

where ǫ is a sign that will be irrelevant for our computation of Fα
p . We repeat the same argument for

the other partition functions and find

ZA∪B
c ≃ 2MN (ΛAB

0 )2M 〈〈vAB
0 |XAB

0 〉〈〈XAB
0 |XAB

0 〉〈〈XAB
0 |vAB

0 〉, (2.76a)

ZA
c ≃ 2MNA(ΛA

0 )
2M 〈〈vA0 |XA

0 〉〈〈XA
0 |XA

0 〉〈〈XA
0 |vA0 〉, (2.76b)

ZB
c ≃ 2MNB (ΛB

−1)
2M 〈〈vB2 |XB

−1〉〈〈XB
−1|XB

−1〉〈〈XB
−1|vB2 〉, (2.76c)

where ΛB
−1 is the groundstate eigenvalue of TB in the sector Sz = −1. Using (2.71) and ΛB

0 = ΛB
−1, we

find

Fα
p = − log

(
σ 〈〈XA

0 ⊗XB
0 |XAB

0 〉2 〈〈X
AB
0 |vAB

0 〉
〈〈vAB

0 |XAB
0 〉

〈〈vA0 |XA
0 〉

〈〈XA
0 |vA0 〉

〈〈vB0 |XB
0 〉2

〈〈vB2 |XB
−1〉〈〈XB

−1|vB2 〉

)
(2.77a)

with
σ = (−1)

N(N−2)
8 (−1)

NA(NA−2)

8 (−1)
(NB−2)(NB−4)

8 . (2.77b)

Product expressions for the overlaps involving boundary states. We use Wick’s theorem to
evaluate the various overlaps in (2.77a). To start, we note that the boundary states 〈〈v0| and 〈〈v2| can
be written in terms of the fermionic operators cj as

〈〈v0| = 〈0|aN−1aN−3 · · · a5a3a1, 〈〈v2| = 〈0|aN−3aN−5 · · · a5a3a1, aj = ω cj + ω−1cj+1. (2.78)

We have the anti-commutation relation

{a2ℓ−1, µ
†
k} =

e−2iℓθk
√
N

(
ω eiθk + ω−1

)
. (2.79)

Using Wick’s theorem, we write the overlaps 〈〈X0|v0〉 and 〈〈X−1|v2〉 as
〈〈v0|X0〉 = det

k ∈K0
ℓ=1,...,N/2

{a2ℓ−1, µ
†
k}, 〈〈v2|X−1〉 = det

k∈K−1

ℓ=1,...,(N−2)/2

{a2ℓ−1, µ
†
k}
∣∣
φ=0

, (2.80)

where

K0 =

{ {
4−N
4 , · · · , N4

}
N
2 even,

{
2−N
4 , · · · , N−2

4

}
N
2 odd,

K−1 =

{ {
4−N
4 , · · · , N−4

4

}
N
2 even,

{
6−N
4 , · · · , N−2

4

}
N
2 odd.

(2.81)

The factors that depend only on k in (2.79) can be factorised from the determinant, which can then
be evaluated in terms of a product using the Vandermonde identity. We simplify the result using the
identities

N/2∏

j=1

sin
(πj
N

)
=

N1/2

2(N−1)/2
,

N/2∏

j=1

N/2∏

k=j+1

sin
(2π(k−j)

N

)
=
NN/4

2N2/8
, (2.82)

and find

〈〈v0|X0〉 = 2N/4eiφ(N+1)/4e−iπN(N−2)/16

N/2∏

j=1

sin
( (2j−1)π+φ

2N

)
, (2.83a)

〈〈v0|X0〉
∣∣
φ=π

=
N1/2

2(N−2)/4
e−iπ(N2−6N−4)/16, (2.83b)

〈〈v2|X−1〉 =
e−iπ(N−2)(N−4)/16

2(N−2)/4
. (2.83c)
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It also follows from the definition (2.62) of dual states that

〈〈X0|v0〉 = 〈〈v0|X0〉
∣∣
φ→−φ

, 〈〈X−1|v2〉 = 〈〈v2|X−1〉. (2.84)

Putting these results together, we obtain

〈〈XAB
0 |vAB

0 〉
〈〈vAB

0 |XAB
0 〉 = e−iφ(N+1)/2

N/2∏

j=1

sin
( (2j−1)π−φ

2N

)

sin
( (2j−1)π+φ

2N

) , (2.85a)

〈〈vA0 |XA
0 〉

〈〈XA
0 |vA0 〉

= eiφ(NA+1)/2

NA/2∏

j=1

sin
( (2j−1)π+φ

2NA

)

sin
( (2j−1)π−φ

2NA

) , (2.85b)

〈〈vB0 |XB
0 〉2

〈〈vB2 |XB
−1〉〈〈XB

−1|vB2 〉
= −iNB . (2.85c)

Exact expression for the bipartite fidelity. It remains to compute the overlap 〈〈XA
0 ⊗XB

0 |XAB
0 〉.

Up to unimportant signs that come from (2.71), the overlap is exactly the one computed in (2.34) with
the specialisations φA = φ and φB = π. We note that these specialisations are compatible with (2.28)
for ℓ = 0, for which we were able to obtain product expressions from the determinant expressions.
From (2.77a) and (2.85) we find

Fα
p = FXX

p

∣∣
φA=φ
φB=π

−Q(N,φ) +Q(Nx, φ)− log
(
N(1− x)

)
(2.86)

where

Q(N,φ) =

N/2∑

j=1

log

∣∣∣∣∣
sin
( (2j−1)π−φ

2N

)

sin
( (2j−1)π+φ

2N

)
∣∣∣∣∣ . (2.87)

The closed-form expression for FXX
p

∣∣
φA=φ
φB=π

is read from (2.34).

2.4 Asymptotics

In this section, we study the large-N asymptotics of the bipartite fidelity for the XX chain and the
model of critical dense polymers on the periodic pants lattice and compare the results with the CFT
predictions of Section 2.1.

2.4.1 XX spin chain

Exact results for F
XX

p with φ = φA + φB − π. The calculation of the first terms in the large-N
asymptotics of (2.34) is a long yet straightforward calculation. The details are given in Appendix B.
We find

FXX

p

∣∣
φ=φA+φB−π

=
1

2
logN

−
π2(−1 + x)(1 + 2x)− 6πx

(
(−1 + x)φA + xφB

)
+ 3
(
(−1 + x)φA + xφB

)2

6π2x
log(1− x)

+
π2(3− 2x)x+ 6π(−1 + x)

(
(−1 + x)φA + xφB

)
− 3
(
(−1 + x)φA + xφB

)2

6π2(1− x)
log x

− 1

2
− 1

2
log π + 6 logA+O

(
N−1

)

(2.88)
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FXX
p

x

FXX
p

N

Figure 5: The standard bipartite fidelity FXX
p as a function of x for N = 800 (left panel) and as a

function of N for x = 1
4 (right panel). In both cases, the twists are set to φ = 1, φA = 2 and φB = 3.

The data points are computed from the determinant expression (2.25), whereas the continuous line is
(2.92) with (2.93), Ξ = 0 and C ′ = 0.447447.

where A ≃ 1.282427 is the Glaisher-Kinkelin constant. As expected, this function is symmetric under
the simultaneous transformations x → 1 − x and φA ↔ φB . We see that this result is identical to the
CFT prediction (2.5) for case (ii), where g0 and g1(x) are given in (2.7) and (2.11), the conformal data
is

c = 1, q1 =
φA
2π
, q2 = −1

2
, q3 =

φB
2π
, q4 = −φA + φB − π

2π
, (2.89)

and the non-universal constant is given by

C ′ = −1

2
− 1

2
log π + 6 logA ≃ 0.420162. (2.90)

We also remark that there is no term proportional to N−1 logN in (2.88). Comparing with (2.12),
we observe that the content of the large parenthesis in this equation does not vanish in general. We
therefore deduce that the extrapolation length Ξ vanishes in this case.

Numerical results for F
XX

p (n). We now study the large-N behaviour of the bipartite fidelities
in the case where the three twists φ, φA and φB are arbitrary. We consider the standard bipartite
fidelity (2.17) as well as the modified instances FXX

p (n) defined in (2.35). Since we do not have an
exact product formula, we instead use the determinant expression (2.25), and very similar formulas for
the modified instances, to study the large-N behaviour of these quantities numerically. To get precise
numerical estimates, we follow the strategy of [23] and fit FXX

p (n) as

FXX

p (n) = g0 logN + g1(x) + g2
logN

N
+ γ3

1

N
+ γ4

logN

N2
+ γ5

1

N2
+ γ6

logN

N3
+ γ7

1

N3
. (2.91)

From these numerical explorations, we find that the leading terms in the asymptotic expansion precisely
reproduce the conformal prediction of Section 2.1. Namely, we have

FXX

p (n) =

(
1

4
+

1

4

(φ− φA − φB
π

)2)
logN + g1(x) + g2(x)N

−1 logN +O
(
N−1

)
, (2.92)

where g1(x) is given by the formula (2.11) for vertex operators, with

c = 1, q1 =
φA
2π
, q2 =

φ− φA − φB
2π

, q3 =
φB
2π
, q4 = − φ

2π
. (2.93)

Likewise, g2(x) is given by (2.12) with the conformal dimensions ∆i = q2i /2, the charges qi in (2.93),
and the extrapolation length

Ξ = −n. (2.94)
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C ′

q2

C ′

q2

Figure 6: Numerical results for the constant C ′ as a function of q2 for the standard bipartite fidelity
(left panel) and n = 4 (right panel).

g2(x)

x

n = 2

g2(x)

n = 4

x

Figure 7: The function g2(x) for the XX spin chain with φ = 1, φA = 2 and φB = 3 for n = 2 and
n = 4. The blue dots are obtained by numerical evaluation of determinants similar to (2.25). The blue
curves plot the CFT predictions (2.12) with the conformal data (2.93) and Ξ given in (2.94).

In particular, we have Ξ = 0 for the standard bipartite fidelity.
The constant C ′ is unknown and obtained from a fit in our analysis. In Figure 5, we plot (2.92)

and compare it with numerical values obtained from the determinant formula (2.25), as a function of x
and N . The agreement is remarkable. The same plots for FXX

p (n) with n = 2, 4, 6 are very similar,
and the match is again convincing. The numerical analysis reveals that C ′ depends on the twists and
on the spin state inserted at the crotch point. For a given choice of this spin state, we find that C ′

depends on the twist parameters only through the difference φ−φA − φB, or equivalently on the value
of q2. In Figure 6, we plot C ′ for various values of q2 in the range (−1

2 ,
1
2), for n = 0 and n = 4.

Finally, in Figure 7 we plot the function g2(x) for n = 2 and n = 4. This function depends on the spin
state inserted at the crotch point only via the extrapolation length (2.94). The match between our
numerical results and the CFT prediction is clear.

Conformal interpretation. Let us now discuss how our results fit with previously known results
about the conformal interpretation of the XX chain. It is well-known that the XX chain (and more
generally the XXZ chain) is described by a CFT with central charge c = 1. In this context, the
presence of a twist line φ between two points z1 and z2 is accounted for by the insertion of two fields
ϕ(z1) and ϕ(z2). The field ϕ is a so-called electric operator [40]. Its multi-point functions are known
to have the form (2.10), and our analysis in this subsection confirms this. It is also a spinless field. Its
conformal dimensions ∆XX

φ = ∆̄XX

φ can be computed from the 1
N finite-size correction term of the largest

eigenvalue of the periodic transfer matrix T with a diagonal twist. Indeed, this finite-size correction
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can be obtained either via the Bethe ansatz [41] or with the method of functional relations [42], and it
allows one to compute the difference c− 24∆ explicitly:

c− 24∆ = 1− 3φ2

π2
. (2.95)

With c = 1, the resulting conformal dimension is

∆XX

φ =
φ2

8π2
. (2.96)

This is consistent with the known values q = q̄ = φ
2π for the charges of electric operators, and the values

∆i = q2i /2 obtained in (2.89) and (2.93). Comparing (2.7) and (2.92), we see that (2.96) also produces
the correct value for g0. We note that the field inserted on the crotch point is special, as it lies at the
intersection of three twist lines. Accordingly, its conformal dimension is obtained from (2.96) with φ
replaced by the difference φ− φA − φB of the twists at this intersection. The insertion of a Néel state
of size n on the crotch point does not modify this conformal dimension.

2.4.2 Critical dense polymers

The large-N expansion for Fα
p follows directly from the same expansions for FXX

p

∣∣
φ=φA+φB−π

and the

function Q(N,φ) defined in (2.87). These are given in (2.88) and (B.24), respectively. This yields

Fα
p = FXX

p

∣∣
φA=φ
φB=π

− logN − π log(1− x) + φ log x

π

= −1

2
logN − 1

6
(G(x) +G(1 − x))− 1

2

(φ2
π2

− 1
)(

(1− x) log x+
(1− x)2

x
log(1− x)

)

− 1

2
− 1

2
log π + 6 logA+O

(
N−1

)
(2.97)

where G(x) is defined in (2.9). This exactly corresponds to the CFT prediction for case (i) with

c = −2, ∆1 = ∆4 =
1

8

(φ2
π2

− 1
)
, ∆3 = 0, C = −1

2
− 1

2
log π + 6 logA, Ξ = 0. (2.98)

This fits with previously known results for the conformal interpretation of the model of critical
dense polymers. The central charge of this model is known to be c = −2 [28,29]. In this context, for the
model defined on an infinite cylinder, assigning a fugacity α 6= β to the non-contractible loops amounts
to inserting two copies of a conformal field ρ(z) at the top and bottom of the cylinder. The properties
of this field were investigated in detail in [43]. The conformal dimensions ∆CDP

φ and ∆̄CDP

φ of ρ(z) are

equal and can be obtained from the 1
N finite-size correction term for the groundstate eigenvalue of the

periodic transfer matrix. The spectrum of the transfer matrix for the six-vertex model and for the
model of critical dense polymers are identical for α = 2cos(φ2 ). As a result, the difference c− 24∆ for
critical dense polymers is also given by (2.95). Setting c = −2 and solving for the conformal dimension
yields

∆CDP

φ =
1

8

(φ2
π2

− 1
)
. (2.99)

This is precisely the conformal dimension that we obtained in (2.98) for ∆1 and ∆4. It is also the value
previously known from Coulomb gas calculations [44].
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3 Bipartite fidelity on the skirt geometry

In this section, we consider the bipartite fidelity for physical systems A, B and AB, of respective
lengths NA, NB and N = NA +NB , where the system AB has periodic boundary conditions, whereas
the systems A and B have open boundary conditions. For one-dimensional chains, the fidelity is defined
as

Fs = − log
∣∣〈xA ⊗ xB|XAB〉

∣∣2. (3.1)

The states 〈xS | and |xS〉 are respectively the left and right groundstates of the Hamiltonian of the
system S endowed with open boundary conditions. Moreover, 〈XS | and |XS〉 are the groundstates of
the Hamiltonian of the system S with periodic boundary conditions. These states are assumed to be
normalised in such a way that 〈XS |XS〉 = 1 and 〈xS |xS〉 = 1.

For two-dimensional lattice models, the fidelity is defined as

Fs = lim
M→∞

− log

∣∣∣∣∣

(
ZAB
s

)2

ZA
r Z

B
r Z

A∪B
c

∣∣∣∣∣. (3.2)

Here ZAB
s is the partition function defined on the skirt geometry depicted in the central panel of

Figure 1. The height is 2M , the perimeter at the top is N , the width of the legs A and B are NA

and NB . Likewise, Z
A
r and ZB

r are partitions functions on rectangles of sizes 2M ×NA and 2M ×NB ,
respectively. Finally, ZA∪B

c is the model’s partition function on the cylinder of perimeter N and
height 2M . For suitable choices of these boundary conditions, the partition functions are all non-zero
and the limit M → ∞ in (3.2) is well-defined.

For two-dimensional models that have one-dimensional quantum analogues [25], the definitions
(3.1) and (3.2) coincide. In Section 3.1, we give the conformal prediction for the leading terms in the
large-N expansion of the bipartite fidelity. In Sections 3.2 and 3.3, we compute Fs for the XX spin
chain and for the model of critical dense polymers. Finally, in Section 3.4, we compare the asymptotical
behaviour of the lattice results with the predictions of conformal field theory.

3.1 Predictions of conformal field theory

This section gives the conformal predictions for the bipartite fidelity on the skirt geometry. The details
of the derivations are given in Appendix A. From the definition (3.2), the bipartite fidelity on the skirt
geometry corresponds to the following difference of free energies:

Fs = 2fs − fc(N) − fr(NA) − fr(NB), (3.3)

where fs is the free energy on the skirt geometry, fc(N) is the free energy on the cylinder of perimeter N
and fr(N) is the free energy on the rectangle of width N . The bipartite fidelity depends on two
independent characteristic lengths, N and NA, with the third characteristic length given by NB =
N −NA. We consider the asymptotic behaviour of Fs in the limit where N and NA are sent to infinity
with the aspect ratio x = NA/N kept fixed. It has the large-N expansion

Fs = g̃0 logN + g̃1(x) + g̃2(x)N
−1 logN + . . . . (3.4)

The coefficients g̃0, g̃1(x) and g̃2(x) can be computed by the methods of conformal field theory. In
this framework, the skirt domain is described as an infinite horizontal strip of width N drawn in the
complex plane, and decorated with two slits that divide the left half into two strips of width Nx and
N(1 − x). The boundary conditions are periodic along the strip’s edges for Re(w) > 0, but are open
along the strips’ edges for Re(w) < 0. This indeed reproduces the geometry of the central panel of
Figure 1. In contrast with the periodic pants domain, the skirt domain really has two distinct slit
endpoints. The map from the upper half-plane to the skirt geometry is

ws(z) =
N

2π

(
x log

(
−(z − 1)2

)
+ (1− x) log z2 − log(z2 + (z − 1)2)

)
+Kx, (3.5)
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Figure 8: The function ws(z) maps the upper half-plane onto the skirt geometry. The positions
z2 and z4 that are the preimages of the slits’ endpoints are z2 = (

√
x− x2 + x − 1)/(2x − 1) and

z4 = (−
√
x− x2 + x − 1)/(2x − 1). The bold lines are the boundaries of the domains. On the right

part of the figure, the dashed lines are identified.

where Kx is given in (2.6). This map is illustrated in Figure 8. It can be understood as the composition
ws = wp ◦ v of the function wp(z) given in (2.6) and the function v(z) = z2/(2z2 − 2z + 1). The latter
maps the upper half-plane into the complex plane with a cut along the segment [0, 1]. Hence the
boundary of the upper half-plane is mapped to the two slits of the skirt geometry.

In a more general setting, one considers the situation where five fields are inserted in the skirt
domain. A field φ1 is inserted at −∞ in the leg A, a field φ2 is inserted on the first slit’s endpoint,
a field φ3 is inserted at −∞ in the leg B, a field φ4 is inserted on the second slit’s endpoint, and a
field φ5 is inserted at +∞. The fields φi with i = 1, 2, 3, 4 are boundary fields that depend on a single
variable and have the conformal dimension ∆i. We denote by wi these positions in the skirt domain,
and by zi the corresponding positions in the complex plane obtained from the inverse map w−1

s (z). In
contrast, φ5 is a bulk field that depends on two variables, which we write as w5, w̄5 in the skirt domain
and as z5, z̄5 in the complex plane. For simplicity, we assume that φ5 is spinless. It has the conformal
dimensions ∆5 = ∆̄5.

The first function g̃0 in the expansion (3.4) is obtained as a direct application of the Cardy-Peschel
formula [30] for domains with corners. Indeed, the skirt domain has two corners of angles 2π. The
resulting expression for g̃0 depends on the dimensions of the field φ2 and φ4 and on the central charge:

g̃0 =
c

4
+ ∆2 +∆4. (3.6)

The next-leading terms g̃1(x) and g̃2(x) depend non-trivially on the aspect ratio x. In this section,
we write down the resulting expressions, with their derivations given in Appendix A. In a general setting
where the five fields are primary fields, the function g̃1(x) also depends on the non-trivial functions
of the cross-ratios that arise in the five-point function of these fields in the upper half-plane. Because
φ5 is a bulk field, from Cardy’s method of images, we know that this correlator is in fact a six-point
function in the full complex plane. Here we restrict our focus to the following special cases: (i) only
one non-trivial primary field is present, namely the bulk field φ5, and (ii) each of the fields φi is a
vertex operator. In this case, the fields φi with i = 1, . . . , 4 are boundary fields with charges qi and
dimension ∆i = q2i /2. In contrast, the field φ5 is a bulk field with the charges q5 = q̄5 and dimensions
∆5 = ∆̄5 = q25/2.

The results are as follows. For case (i), we have

g̃1(x) =
c

24

(
G̃(x) + G̃(1− x)

)
+ 4∆5 (x log x+ (1− x) log(1− x) + 2 log 2) + C̃ (3.7)

where

G̃(x) =
3− 6x+ 4x2

1− x
log x (3.8)
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and C̃ is a constant. For case (ii), we have

g̃1(x) =
c

24

(
G̃(x) + G̃(1− x)

)
+ 4∆5 (x log x+ (1− x) log(1− x) + 2 log 2)

− ∆1

x
log(1− x)− ∆3

1− x
log x+ (∆2 +∆4)(log x+ log(1− x)) + C̃ ′ (3.9)

where C̃ ′ is a constant. We note that the functions g̃0 and g̃1(x) were obtained in [23] for the special
case where all the conformal dimensions are zero.

Similarly, we compute the function g̃2(x) using the arguments of Stéphan and Dubail. The details
are given in Appendix A. The authors argue that this function depends on a non-universal constant
called the extrapolation length. As we shall see in Section 3.4, a correct conformal interpretation of
our lattice results requires a generalisation of their derivation to cases where each slit is assigned its
own extrapolation length. We denote them by Ξ2 and Ξ4, and they correspond to the corners situated
at w2 and w4, respectively. For case (i), we obtain

g̃2(x) = (Ξ2 + Ξ4)×
(
c (1 − 2x)2

48x(1 − x)
+ 2∆5

)
. (3.10)

For the case (ii), the expression for g̃2(x) instead reads

g̃2(x) = Ξ2 ×
[
c(1 − 2x)2

48(1 − x)x
+

q22 − q24
16x(1 − x)

− q1 (q1 − q2 + q4)

4x
− q3 (q3 − q2 + q4)

4(1 − x)
+ q25

]

+ {Ξ2 → Ξ4, q2 ↔ q4}.
(3.11)

We note that this expression greatly simplifies for Ξ2 = Ξ4, and becomes independent of the
charges q2 and q4 of the fields inserted at the endpoints of the slits. The function g̃2(x) also simplifies
for q2 = q4. In that case, it only depends on the sum Ξ2+Ξ4, as in (3.10), and can be written in terms
of the dimensions ∆i = q2i /2:

g̃2(x)
∣∣
q2=q4

= (Ξ2 + Ξ4)×
(
c (1− 2x)2

48x(1 − x)
+ 2∆5 −

∆1

2x
− ∆3

2(1 − x)

)
. (3.12)

3.2 Lattice calculation for the XX spin chain

3.2.1 Definition of the model

The first model for which we compute the bipartite fidelity on the skirt geometry is the XX chain. In
this case, the system AB is a periodic chain of length N . Its Hamiltonian is (2.15) and depends on the
twist φ. The subsystems A and B are instead open chains of lengths NA and NB . The Hamiltonian
for the open chain of length N with free boundary conditions, namely without fields applied to the
endpoints, is

Hf = −1

2

N−1∑

j=1

(
σxj σ

x
j+1 + σyjσ

y
j+1

)
. (3.13)

We denote by 〈xA0 | and 〈xB0 | the left groundstates of Hf with NA and NB sites, respectively, in their
zero-magnetisation sectors. As before, NA + NB = N and all three lengths are even numbers. The
logarithmic bipartite is

FXX

s = − log
∣∣〈xA0 ⊗ xB0 |XAB

0 〉
∣∣2 (3.14)

where |XAB
0 〉 is the groundstate of H given in (2.22). The states |xA0 〉 and |xB0 〉, like |XAB

0 〉, are assumed
to have unit norms.
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3.2.2 Bipartite fidelity

The diagonalisation of Hf is standard. The tensor product of the left groundstates is

〈xA0 ⊗ xB0 | = 〈0| dBNB/2 · · · dB1 dANA/2 · · · dA1 (3.15)

where

dAk =
( 2

NA + 1

)1/2 NA∑

j=1

sin
( πkj

NA + 1

)
cj , (3.16a)

dBk =
( 2

NB + 1

)1/2 N∑

j=NA+1

sin
(πk(j −NA)

NB + 1

)
cj . (3.16b)

The operators cj are the fermionic operators in (2.20). With the choice of normalisation in (3.16), both
〈xA0 | and 〈xB0 | have unit norms. To compute (3.14), we use Wick’s theorem and find

∣∣〈xA0 ⊗ xB0 |XAB
0 〉

∣∣ = 2−3N/4N−N/4(NA + 1)−(NA−2)/4(NB + 1)−(NB−2)/4 |detD| (3.17a)

where

Dk,k′ =





1− (−1)ke−i(NA+1)ϑk′

cos
(

πk
NA+1

)
− cos ϑk′

k = 1, . . . , NA

2 ,

e−iNAϑk′
1− (−1)k−NA/2 e−i(NB+1)ϑk′

cos
(π(k−NA/2)

NB+1

)
− cos ϑk′

k = NA

2 + 1, . . . , N2 ,

k′ = 1, . . . , N2 , (3.17b)

and

ϑk =
2π(k − 1

2 − N
4 )− φ

N
. (3.17c)

This holds for both parities of N/2. Sadly, we have been unable to push the calculation further and
evaluate this determinant in product form using the methods employed in [24, 27], even for special
values of x and φ. Our analysis in Section 3.4.1 of the asymptotics of FXX

s will thus rely on the
numerical evaluations of determinants.

3.2.3 Other instances of the bipartite fidelity

The CFT predictions of Section 3.1 covers cases where fields are inserted in the legs and on the slits’
endpoints. In order to investigate these cases on the lattice, we consider various modified instances
of the bipartite fidelity on the skirt domain. In each case, the state |XAB

0 〉 is kept unchanged in the
overlap, whereas the state 〈xA0 ⊗ xB0 | is replaced by a state of the form

〈xAmA
⊗ s1 ⊗ xBmB

⊗ s2| . (3.18)

Here 〈xSm| is the left groundstate of the open XX chain of the system S in the magnetisation sector m,
and s1, s2 are selected from the set {∅, ↑, ↓, ↑↓, ↑↑, ↑↑↑}. The condition on the even parity of NA and
NB is relaxed and the relation tying them to N is N = NA + n1 +NB + n2, where n1 and n2 are the
lengths of the states |s1〉 and |s2〉. Table 1 gives an overview of the thirteen cases that we consider. In
particular, case 1 corresponds to the standard bipartite fidelity, as defined in (3.14) with the overlap
(3.17). In the other cases, NA is chosen even if mA is an integer and odd if mA is a half-integer, and
likewise for NB in terms of mB . In each case, the magnetisation of the state (3.18) vanishes, and the
corresponding overlap

∣∣〈xAmA
⊗ s1 ⊗ xBmB

⊗ s2|XAB
0 〉

∣∣ is non-zero. We obtain a determinant expression
for each of these overlaps similar to (3.17), which we do not reproduce here. We are unable to evaluate
these determinants in product form. Our analysis in Section 3.4 will instead rely on the numerical
evaluation of these determinants.
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case mA s1 mB s2
1 0 ∅ 0 ∅
2 −1/2 ∅ +1/2 ∅
3 −1 ∅ 1 ∅
4 −3/2 ∅ +3/2 ∅
5 −2 ∅ 2 ∅
6 0 ↑ 0 ↓
7 −1/2 ↑ +1/2 ↓
8 +1/2 ↓ +1/2 ↓
9 0 ∅ 0 ↑↓
10 −1/2 ∅ −1/2 ↑↑
11 −1/2 ∅ 0 ↑
12 −1 ∅ 0 ↑↑
13 −3/2 ∅ 0 ↑↑↑

Table 1: The thirteen cases considered for the XX chain on the skirt geometry.

3.3 Lattice calculation for critical dense polymers

3.3.1 Definition of the model

We study the model of dense polymers on the skirt geometry. The lattice is a cylinder of height 4M
and width N , which we choose to be even. There are two vertical slits that extend halfway across the
cylinder. They divide the lower edge into two open segments of lengths NA and NB , which are even
numbers too. A configuration of the model of critical dense polymers on the skirt lattice is a tiling of
the faces of this lattice by one of the two elementary tiles, and , with equal probability.

The top circular edge, the bottom segments as well as the interior of the two slits are decorated
with simple half-arcs. The situation is then similar to the example of Figure 3, with the following
differences: (i) the total height of the lattice is 4M instead of 2M , and (ii) the four diagonal edges in
the diagram’s lower-half are decorated with simple half-arcs. The contractible loops are given a weight
β = 0, whereas the non-contractible loops have a fugacity α. The Boltzmann weight of a configuration σ
is then given by Wσ = αnαδnβ ,0, where nα and nβ are the numbers of non-contractible and contractible

loops in the configuration. The partition function on the skirt geometry, denoted ZAB
s , is defined as

ZAB
s =

∑

σ

Wσ. (3.19)

The definition of the bipartite fidelity given below involves three more partition functions. The
first, ZA∪B

c , is the partition function of the same model defined on a cylinder of height 4M and
perimeter N . The other two partition functions, ZA

r and ZB
r , are defined on 4M ×NA and 4M ×NB

rectangles, respectively. The boundary conditions consist of simple half-arcs on all four segments, and
we restrict to configurations that have a single (contractible) loop. The partition functions ZA

r and ZB
r

are then the numbers of these restricted configurations.
Similarly to ZB

c discussed in Section 2.3.1, the partition functions ZA
r and ZB

r can alternatively
be defined on a lattice where the rightmost arcs on both the top and bottom edges are removed and
replaced by a pair of defects. One then imposes that both defects from the top segment connect to
those of the bottom segment (with weight 1). This produces exactly the same set of configurations and
therefore the correct partition functions.
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The logarithmic bipartite fidelity is then defined as

Fα
s = − lim

M→∞
log

( (
ZAB
s

)2

αZA∪B
c ZA

r Z
B
r

)
. (3.20)

As we shall see, the limit M → ∞ of this ratio is well defined. The factor α in the denominator ensures
that Fα

s is well-defined in the limit α→ 0. Indeed, ZAB
s and ZA∪B

c both vanish linearly in α as it tends
to zero. With this convention for Fα

s , the leading powers of α coincide between the numerator and the
denominator.

The choice to include ZA
r and ZB

r in the denominator is justified as follows. We note that for
the other dense loop models for which the fugacity of contractible loops is non-zero, the natural choice
would be to include in the denominator the partition functions with no defects. For the model of critical
dense polymers, these partition functions are zero. As argued in [31], the reference partition functions
in this case are instead those with pairs of defects on the top and bottom segments, as explained above.

3.3.2 The Temperley-Lieb algebra

Our goal is first to express the partition functions in (3.20) in the language of the Temperley-Lieb
algebra. The skirt geometry involves both periodic and open boundary conditions. For that reason,
both the ordinary Temperley-Lieb algebra TLN (β) and the enlarged periodic Temperley-Lieb algebra
EPTLN (α, β) are useful. Since TLN (β) is a subalgebra of EPTLN (α, β), all the tools needed to define
TLN (β) are given in Section 2.3.2, and below we only give a brief reminder.

Definition of TLN(β). The Temperley-Lieb algebra [45–50] is a unital, associative algebra generated
by the linear span of connectivities. It is the subalgebra of EPTLN (α, β) generated by the generators I
and ej , with j = 1, . . . , N − 1. With products of these generators, one can produce all the connectivity
diagrams in EPTLN (α, β) that have no loop segments travelling via the back of the cylinder. The
diagrammatic rules for computing products of connectivity diagrams are the same as those described
in the periodic case. Non-contractible loops are never created in such products, and the algebra thus
depends only on the weight β of the contractible loops. We recall that the value of β pertaining to the
model of critical dense polymers is β = 0.

The transfer tangle D(u). The double-row transfer tangle for the model of dense polymers is an
element of TLN (0) defined as [28]

D(u) =
1

sin 2u . . .

. . .

. . .

. . .

u

u

u

u

u

u

︸ ︷︷ ︸
N

, u = cos u + sinu , (3.21)

where u is the spectral parameter. We refer to the value u = π
4 , for which both tiles have equal weights,

as the isotropic point, and use the short-hand notation D = D(π4 ).
Two copies of the transfer tangle evaluated at different values of the spectral parameter commute:

[D(u),D(v)] = 0. Furthermore, the Hamiltonian Ho of the model is related to the transfer tangle via
the relation

D(u) = I − 2uHo +O(u2), Ho = −
N−1∑

j=1

ej , (3.22)

and is also in the commuting family.
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The standard modules VN,0 and VN,2. The standard modules VN,0 and VN,2 for TLN (β) are built
on the vector space generated by link states on N nodes with zero and two defects, respectively. The
standard module VN,0 is defined on the same vector space as the module ŴN,0 over EPTLN (β, β). It
is in fact the restriction of this module to the action of elements of TLN (β) ⊂ EPTLN (β, β). Likewise,
the module VN,2 is defined on the subspace of WN,2 spanned by link states with no arcs travelling via
the back of the cylinder. The diagrammatic action of the connectivities in TLN (β) on the link state of
VN,0 and VN,2 is the same as in the periodic case, with the difference that non-contractible loops are
never formed.

Partition functions. The Gram products for the standard modules of TLN (β) are defined in the
same way as those introduced in Section 2.3.3 for the periodic case. We express the partition functions
in (3.20) as

ZAB
s = 22MN (vA0 ⊗ vB0 ) ·

(
DA ⊗DB

)M(
TAB

)2M
vAB
0

∣∣
WN,0

, (3.23a)

ZA∪B
c = 22MNvAB

0 · (TAB)4MvAB
0

∣∣
WN,0

, (3.23b)

ZA
r = 22MNAvA2 · (DA)2MvA2

∣∣
VNA,2

, (3.23c)

ZB
r = 22MNBvB2 · (DB)2MvB2

∣∣
VNB,2

, (3.23d)

where v0 and v2 are defined in (2.57). The conventions are the same as those used in Section 2.3.3.

The XX representation and spin-chain overlaps. The XX representation of TLN (β = 0) is
given in (2.48). In this representation, the Hamiltonian with open boundary conditions Ho is the XX
Hamiltonian with the Uq(sℓ2)-invariant boundary magnetic fields of Pasquier and Saleur [37],

Ho = XN (Ho) = −1

2

N−1∑

j=1

(
σxj σ

x
j+1 + σyj σ

y
j+1

)
− i

2
(σz1 − σzN ). (3.24)

The representative of D(u) in the XX representation is the double-row transfer matrix D(u). We
use the notation D = D(π4 ) for the transfer matrix at the isotropic point. The map from link states
to spin states given in (2.53) is a homomorphism between link state and spin representations for the
algebra TLN (β) as well. The partition functions can then be written in terms of spin-chain overlaps as

ZAB
s = 22MN 〈〈vA0 ⊗ vB0 |

(
DA ⊗DB

)M(
TAB

)2M |vAB
0 〉, (3.25a)

ZA∪B
c = 22MN 〈〈vAB

0 |(TAB)4M |vAB
0 〉, (3.25b)

ZA
r = 22MNA〈〈vA2 |(DA)2M |vA2 〉, (3.25c)

ZB
r = 22MNB 〈〈vB2 |(DB)2M |vB2 〉. (3.25d)

We note that all the states that appear as dual states do not depend on the twist parameter φ, so in
this case (2.62) simply becomes 〈〈w| = |w〉t.

3.3.3 Bipartite fidelity

Diagonalisation of Ho. The first step is to use the Jordan-Wigner transformation to write Ho as

Ho = −
N−1∑

j=1

(
c†j+1cj + c†jcj+1

)
− i
(
c†1c1 − c†NcN

)
(3.26)
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where the fermionic operators cj and c
†
j are defined in (2.20). Recalling that ω = eiπ/4, the second step

is to perform a Fourier transform of these operators, by defining

ηk =
1

κk

N−1∑

j=1

sin(πkjN ) aj , ηtk =
1

κk

N−1∑

j=1

sin(πkjN ) atj , κk =
√
N cos(πkN ), (3.27)

where
aj = ω cj + ω−1cj+1, atj = ω c†j + ω−1c†j+1. (3.28)

These operators satisfy the fermionic relations

{aj , atk} = δj,k−1 + δj,k+1, {ηk, ηtℓ} = δk,ℓ, {aj , ak} = {atj , atk} = {ηk, ηℓ} = {ηtk, ηtℓ} = 0. (3.29)

The Hamiltonian can be expressed in Jordan-normal form using these operators. For N even, the set
of operators ηk and ηtk, with k ∈ {1, . . . , N−2

2 }∪ {N+2
2 , . . . , N − 1} is complemented with the operators

χ = −ω
√

2

N

N∑

j=1

i−(j−1)
(⌊ j

2

⌋
− N

4

)
cj, χt = −ω

√
2

N

N∑

j=1

i−(j−1)
(⌊ j

2

⌋
− N

4

)
c†j , (3.30)

as well as with the operators ϕ and ϕt,

ϕ = ω−1

√
2

N

N∑

j=1

i−(j−1)cj , ϕt = ω−1

√
2

N

N∑

j=1

i−(j−1)c†j . (3.31)

The anti-commutation relations are

{ϕ,χt} = {ϕt, χ} = 1, {ϕt, ϕ} = {χt, χ} = {ϕ,χ} = {ϕt, χt} = 0. (3.32)

All the anti-commutators involving the operators ηk and ηtk and one of ϕ,ϕt, χ and χt also vanish. In
terms of these operators, the Hamiltonian takes the form

Ho = ϕtϕ− 2
N−1∑

k=1
k 6=N/2

cos(πkN )ηtkηk. (3.33)

The groundstate eigenspace in the zero-magnetisation sector is two-dimensional and is spanned by the
states

|w0〉 = ϕtηt1η
t
2 . . . η

t
N/2−1|0〉, |ŵ0〉 = χtηt1η

t
2 . . . η

t
N/2−1|0〉. (3.34)

These form a rank-two Jordan cell:

Ho|w0〉 = h0|w0〉, Ho|ŵ0〉 = h0|ŵ0〉+ |w0〉, h0 = 1− cot( π
2N ). (3.35)

Likewise, in the sectors of magnetisation m = −1, the state with the lowest energy is

|w−1〉 = ηt1η
t
2 . . . η

t
N/2−1|0〉 (3.36)

and its eigenvalue is also h0. Because D(u) and Ho commute, we have

D(u) |w0〉 = λ0(u) |w0〉, D(u) |ŵ0〉 = λ0(u) |ŵ0〉+ f(u) |w0〉 , D(u) |w−1〉 = λ−1(u) |w−1〉.
(3.37)

where λ0(u) = λ−1(u) are the eigenvalues of D(u) and f(u) is a non-zero function. At the isotropic
point, these states generate the eigenspace of D of maximal eigenvalue in the sectors Sz = 0,−1.
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Ratios of partition functions in the limit M → ∞. Following the same steps and logic as in
Section 2.3.4 and in [27], we extract the leading behaviour of the overlaps (3.25) in the limit M → ∞.
The result is

Fα
s = − log

(
α−1〈〈wA

0 ⊗ wB
0 |XAB

0 〉2 〈〈vA0 |ŵA
0 〉2

〈〈vA2 |wA
−1〉2

〈〈vB0 |ŵB
0 〉2

〈〈vB2 |wB
−1〉2

〈〈XAB
0 |vAB

0 〉
〈〈vAB

0 |XAB
0 〉

)
(3.38)

where 〈〈v0| and 〈〈v2| are defined in (2.78).

Determinant forms for the overlaps. We express the overlaps in (3.38) in determinant form with
Wick’s theorem. Two of the ratios involving boundary states were already computed in [27],

〈〈vA0 |ŵA
0 〉

〈〈vA2 |wA
−1〉

= ω2

√
NA

2
,

〈〈vB0 |ŵB
0 〉

〈〈vB2 |wB
−1〉

= ω2

√
NB

2
. (3.39)

To compute the last ratio in (3.38), we need the explicit form of the anti-commutators (2.79). After
some algebra, we obtain

〈〈XAB
0 |vAB

0 〉
〈〈vAB

0 |XAB
0 〉 =

(
N/2∏

k=1

cos(π4 − ϑk

2 )

cos(π4 + ϑk

2 )

)
e−iφ

2
(N+1)(−1)

N
2
+1+⌊N−2

4
⌋ (3.40)

where ϑk is defined in (3.17c).
It only remains to compute the overlap 〈〈wA

0 ⊗ wB
0 |XAB

0 〉. It involves the state

〈〈wA
0 ⊗ wB

0 | = 〈0|ηBNB−2

2

. . . ηB1 ϕ
BηANA−2

2

. . . ηA1 ϕ
A (3.41)

where

ηAk =
1

κAk

NA−1∑

j=1

sin(πkjNA
)aj , ϕA = ω−1

√
2

NA

NA∑

j=1

i−(j−1) cj , (3.42a)

ηBk =
1

κBk

N−1∑

j=NA+1

sin(πk(j−NA)
NB

)aj , ϕB = ω−1

√
2

NB

N∑

j=NA+1

i−(j−NA−1) cj , (3.42b)

κAk =
(
NA cos( πk

NA
)
)1/2

, κBk =
(
NB cos( πk

NB
)
)1/2

. (3.42c)

To compute the overlap, we introduce the rescaled operators

η̃k =

N−1∑

j=1

sin(πkjN ) aj , k = 1, . . . , N − 1. (3.43)

We similarly define rescaled operators for η̃Ak and η̃Bk from (3.42), by removing the prefactors κAk and
κBk . These operators have the advantage of being well defined for k = N/2. All the fermionic operators
appearing in 〈〈wA

0 ⊗ wB
0 | can in fact be written in terms of the η̃k, as indeed we have η̃k = κkηk and

η̃N
2
= ω2

√
N/2ϕ.

The anti-commutators between the operators η̃Ak , η̃
B
k and µ†j are

{η̃Ak , µ†j} =
1√
N

(ω + ω−1e−iθj ) sin
( πk
NA

) 1− (−1)ke−iNAθj

2 cos θj − 2 cos( πk
NA

)
, (3.44a)

{η̃Bk , µ†j} =
e−iNAθj
√
N

(ω + ω−1e−iθj) sin
( πk
NB

) 1− (−1)ke−iNBθj

2 cos θj − 2 cos( πk
NB

)
. (3.44b)
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The final overlap 〈〈wA
0 ⊗ wB

0 |XAB
0 〉 is then obtained as the determinant of these commutators. Using

the identities

N
2
−1∏

k=1

sin
(πk
N

)
=

N
2
−1∏

k=1

cos
(πk
N

)
= N1/22−

N−1
2 , (3.45a)

N
2∏

k=1

cos
(π
4
+
θk
2

)
cos
(π
4
− θk

2

)
= 2−N+1 cos

(φ
2

)
= 2−Nα, (3.45b)

we find that the result simplifies to

e−Fα
s = N−N

2 (Nx)−
Nx
2

+ 3
2 (N(1− x))−

N(1−x)
2

+ 3
22−

N
2
+1(det C)2 (3.46)

where

Ck,k′ =





sin
(Nxϑk′

2 − πk
2

)(
cos ϑk′ − cos

(
πk
Nx

))−1
k = 1, . . . , Nx

2 ,

(−1)k
′

sin
(N(1−x)ϑk′

2 − π(k−Nx
2

)

2

)(
cos ϑk′ − cos

(π(k−Nx
2

)

N(1−x)

))−1
k = Nx

2 + 1, . . . , N2 ,
(3.47)

with k′ = 1, . . . , N2 . For arbitrary values of x and φ, we are unable to evaluate the determinant in
(3.46) in closed form using the Cauchy determinant formula (2.31). We are however able to compute
the determinant for two specialisations of x and φ: (i) x = 1/2 with φ arbitrary and (ii) φ = 0 with x
arbitrary. For simplicity, our results for these two cases are given below for N ≡ 0 mod 4.

Specialisation (i): x = 1/2 and arbitrary φ. For x = 1/2, N ≡ 0 mod 4 and arbitrary values
of φ, after some simplifications, we find

|det C| = cos(φ2 )
N/4

∣∣∣∣
N/4

det
k,k′=1

(
cos ϑ2k′ − cos

(
πk
N

))−1 N/4

det
k,k′=1

(
cos ϑ2k′−1 − cos

(
πk
N

))−1
∣∣∣∣. (3.48)

In this case, we can apply (2.31) to evaluate both determinants.

Specialisation (ii): φ = 0 and arbitrary x. For φ = 0, N ≡ 0 mod 4 and arbitrary values of x,
after some simplifications, we find

|det C| = 2N/4
∣∣∣det C1 det C2

N/4∏

k=1

cos
(
Nxϑk

2

) N/2∏

k=N/4+1

sin
(
Nxϑk

2

)∣∣∣ (3.49a)

with

C1
k,k′ =





(
cos ϑk′ − cos

(π(2k−1)
Nx

))−1
k = 1, . . . , Nx

4 ,(
cos ϑk′ − cos

(π(2k−Nx
2

)

N(1−x)

))−1
k = Nx

4 + 1, . . . , N4 ,
k′ = 1, . . . , N4 , (3.49b)

C2
k,k′ =





(
cos ϑk′ − cos

(
π2k
Nx

))−1
k = 1, . . . , Nx

4 ,(
cos ϑk′ − cos

(π(2k−Nx
2

−1)

N(1−x)

))−1
k = Nx

4 + 1, . . . , N4 ,
k′ = N

4 + 1, . . . , N2 . (3.49c)

In this case as well, both determinants can be evaluated with (2.31).
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case ∆1 ∆2 ∆3 ∆4 ∆5 C̃ ′ Ξ2 Ξ4

1 0 0 0 0 ∆XX

φ 0.03669 1 1

2 1/8 0 1/8 0 ∆XX

φ 0.03669 1 1

3 1/2 0 1/2 0 ∆XX

φ 0.03669 1 1

4 9/8 0 9/8 0 ∆XX

φ 0.03669 1 1

5 2 0 2 0 ∆XX

φ 0.03669 1 1

6 0 1/8 0 1/8 ∆XX

φ 1.11331 0 0

7 1/8 1/8 1/8 1/8 ∆XX

φ 1.11331 0 0

8 1/8 1/8 1/8 1/8 ∆XX

φ 0.42016 0 0

9 0 0 0 0 ∆XX

φ 0.96639 1 −1

10 1/8 0 1/8 1/2 ∆XX

φ 0.78562 1 −1

11 1/8 0 0 1/8 ∆XX

φ 0.40172 1 0

12 1/2 0 0 1/2 ∆XX

φ 0.78562 1 −1

13 9/8 0 0 9/8 ∆XX

φ 1.06794 1 −2

Table 2: The conformal dimensions, the constant C̃ ′ and the extrapolation lengths for each of the
thirteen cases, with ∆XX

φ defined in (2.96).

3.4 Asymptotics

In this subsection, we study the large-N asymptotics of the bipartite fidelity for the XX chain and the
model of critical dense polymers on the skirt geometry. We compare these results with the conformal
predictions of Section 3.1.

3.4.1 XX spin chain

We study the asymptotic behaviour of the bipartite fidelity for the XX chain numerically, for each case
defined in Table 1. The data points are obtained by evaluating the determinants numerically, namely
the expression (3.17) for case 1 and similar determinant expressions for the other cases. We compare
these numerical values with a fit of the form

FXX

s = g̃0 logN + g̃1(x) + g̃2
logN

N
+ γ3

1

N
+ γ4

logN

N2
+ γ5

1

N2
+ γ6

logN

N3
+ γ7

1

N3
. (3.50)

From this analysis, we find that the asymptotic behaviour of FXX
s is correctly predicted by the

CFT formula (3.4) for case (ii), with the functions g̃0, g̃1(x) and g̃2(x) given in (3.6), (3.9) and (3.11).
These are specialised to the value c = 1 of the central charge and to values of the conformal dimensions
∆ and of the constant C̃ ′ that depend on the case considered. These values are given in Table 2. In
Figure 9, we plot the numerical data and the curve g̃0 logN + g̃1(x), for the cases 1, 6, 8 and 12. We
find a perfect agreement.

We observe that the constant C̃ ′ is independent of φ. In fact, one should note the presence of
a factor of 8∆5 log 2 in (3.9) which could a priori be included in the constant C ′. In general, C ′ is a
constant with respect to x, but can depend on the dimensions of the fields. In Appendix A.5, we argue
that the overall additive term in (3.9) should indeed include a factor 8∆5 log 2, which we have chosen
to write separately from C̃ ′. With this choice, we find that the values of C̃ ′ depend only on the fields
inserted on the endpoints of the slits, corresponding to the states s1 and s2 in (3.18).

The conformal dimensions in Table 2 are consistent with known results for the CFT description of
the XX spin chain and the six-vertex model. The field ϕ inserted at z = z5 accounts for the presence
of the twist φ in the model. As discussed in Section 2.4.1, this electric operator has the dimensions
∆ = ∆̄ = ∆XX

φ . In the current setting, the twist line connects the point z5 with the endpoint of one of
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g̃0 logN + g̃1(x)

x

case 1

g̃0 logN + g̃1(x)

x

case 6

g̃0 logN + g̃1(x)

x

case 8

g̃0 logN + g̃1(x)

x

case 12

Figure 9: The function g̃0 logN + g̃1(x) as a function of x for N = 800 and φ = 2 for the cases 1, 6, 8
and 12. For the data points, g̃0 and g̃1(x) are obtained by fitting (3.50), whereas the solid curve is the
CFT prediction for these two functions with the data of Table 2.

the two slits, which corresponds to the boundary of the domain. In the six-vertex model, the point on
the boundary where this twist line is chosen to terminate can be chosen arbitrary, and the resulting
partition function is independent of this choice. In the conformal interpretation, the method of images
tells us that we can replace the field ϕ(z5, z̄5) by the product ϕ(z5)ϕ(z̄5) of two chiral fields. These two
fields have charges q5 and −q5, respectively, and the conformal dimensions are ∆XX

φ = ∆̄XX

φ = q25/2. This
is precisely the assumption we make in Appendix A to derive the CFT prediction for the asymptotic
expansion of Fs.

The other fields in the positions zi with i = 1, . . . , 4 are so-called magnetic operators. These are
primary fields that account for the presence of spin states of fixed magnetisation m. Here they live
on the boundary and thus depend on a single variable. Their conformal dimension ∆m depends only
on the magnetisation m of the state inserted at z = zi. This dimension can be computed from the
finite-size correction of the groundstate of the Hamiltonian Hf with free boundary conditions, defined
in (3.13). The scaling limit of this Hamiltonian was for instance studied in [51]. In this case, from the
correction term proportional to 1/N , one obtains the difference c− 24∆m as

c− 24∆m = 1− 12m2. (3.51)

Setting c = 1 and solving for ∆m yields

∆m =
m2

2
. (3.52)

The values of ∆1, ∆2, ∆3 and ∆4 in Table 2 are precisely given by (3.52) with the corresponding values
for m ∈ {0,±1

2 ,±1,±3
2 ,±2}.

We plot our numerical data for g̃2(x) in Figure 10 for the cases 2, 3, 10 and 13. This data appears
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g̃2(x)

x

case 2

g̃2(x)

x

case 3

g̃2(x)

x

case 10

g̃2(x)

x

case 13

Figure 10: The function g̃2(x) for the XX spin chain for φ = 2 for the cases 2, 3, 10 and 13. The
data points are obtained by fitting (3.50). The blue lines are the CFT predictions with the conformal
dimensions and extrapolation lengths fixed as in Table 2.

alongside the CFT prediction for g̃2(x), with the suitably chosen values of the extrapolation lengths
Ξ2 and Ξ4, given in Table 2.

The original derivation of the N−1 logN term in [24] was claimed to be valid for domains with an
arbitrary number of corners of interior angle 2π. It is based on a perturbative calculation. By varying
the position of a boundary near a corner by a distance Ξ, one obtains the variation of the free energy as
a function of the perturbation, and then integrates it to obtain g̃2(x). On the skirt geometry, there are
two corners, each of internal angle 2π, and in this case, one can perform two separate perturbations near
those corners. One can then assign an extrapolation length to each of the two slits. In Appendix A,
we repeat the derivation of [24] while allowing for two such lengths, one for each slit. Because they
are assigned to the corners situated at w = w2 and w = w4, we name them Ξ2 and Ξ4. We obtain the
more general expression (3.11). This generalised result is necessary to correctly reproduce the data for
the cases 9 to 13, for which Ξ2 6= Ξ4. In the general case, our numerics reveal that the extrapolation
lengths are given by the formula

Ξ2 = 1− n1, Ξ4 = 1− n2, (3.53)

where ni, with i = 1, 2, is the length of si defined in Section 3.2.2.

3.4.2 Critical dense polymers

We now study the large-N expansion for the bipartite fidelity for the model of dense polymers on
the skirt lattice. In Section 3.3.3, we obtained product expressions for Fα

s for two specialisations:
(i) x = 1/2 with arbitrary φ, and (ii) φ = 0 with arbitrary x. We extract the asymptotic behaviour in
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these two cases using arguments that are very similar to those presented in Appendix B for the case
of the periodic pants lattice. We obtain

Fα
s

∣∣
x= 1

2
=− 1

2
logN +

log 2

3
+ 4∆CDP

φ log 2 +
1

2
(−1 + 12 logA− log π + 4 log 2) +O(N−1), (3.54a)

Fα
s

∣∣
φ=0

=− 1

2
logN − 1

12
(G̃(x) + G̃(1− x))− 1

2
(x log x+ (1− x) log(1− x) + 2 log 2)

+
1

2
(−1 + 12 logA− log π + 4 log 2) +O(N−1). (3.54b)

We recall that G̃(x) and ∆CDP

φ are defined in (3.8) and (2.99), respectively.
We performed numerical evaluations of the determinant expression (3.46) for values of x and φ

that do not enter the specialisations (i) and (ii) defined in Section 3.3.3. In Figure 11, we plot the
results for the value φ = 2. From the exact results (3.54) and our numerical experiments, we conjecture
that the general formula is

Fα
s =− 1

2
logN − 1

12
(G̃(x) + G̃(1− x)) + 4∆CDP

φ

(
x log x+ (1− x) log(1− x) + 2 log 2

)

+
1

2
(−1 + 12 logA− log π + 4 log 2) +O(N−1).

(3.55)

As illustrated in the example of Figure 11, this conjecture reproduces the numerical results with great
precision. It also coincides with the CFT prediction (3.4) for case (i), with g̃0 given in (3.6), g̃1(x) in
(3.7), g̃2(x) in (3.10), the conformal data specified to

c = −2, ∆5 = ∆CDP

φ , (3.56)

the non-universal constant taking the value

C̃ ′ =
1

2
(−1 + 12 logA− log π + 4 log 2), (3.57)

and with vanishing extrapolation lengths: Ξ2 = Ξ4 = 0. Indeed, since the conditions at the two
slits’ endpoints are identical, we must have Ξ2 = Ξ4. From the exact results (3.54) and the numerical
evaluations, we find that the term proportional to N−1 logN vanishes, namely g̃2(x) = 0. A glance at
(3.11) indicates that this is only possible if both extrapolation lengths vanish.

The values (3.56) are precisely those expected in the conformal description of the model of dense
polymers. Indeed, there is no change of boundary condition at the endpoints of the slits. Moreover,
the boundary conditions in the legs A and B are known to correspond to the groundstate of the model.
Both of these features correspond to identity fields with the dimension ∆ = 0. Similarly to what is
discussed in Section 2.4.2, the field ρ(z) at z = z5 assigns weights α 6= 0 to the non-contractible loops
and has the conformal dimension ∆CDP

φ .

4 Discussion and conclusion

In this paper, we investigated the bipartite fidelity for critical lattice models on two geometries: the
periodic pants domain and the skirt domain. Using arguments of conformal field theory, we obtained
predictions for the leading terms in the asymptotic large-N expansions of F . We compared these with
exact and numerical lattice calculations and found a precise match for two lattice models: the XX spin
chain and the model of critical dense polymers. These models are known to be described by CFTs
with central charges c = 1 and c = −2, respectively.

For the XX spin chain, we considered different instances of the bipartite fidelity with certain spin
states of magnetisation m fixed in the domain, or in the presence of twist lines φ connecting certain
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Fα
s

x

Fα
s

N

Figure 11: The bipartite fidelity Fα
s as a function of x for N = 800 (left panel) and as a function of N

for x = 1
4 (right panel). In both cases, the fugacity is set to α = 2cos(φ2 ) with φ = 2. The data points

are computed from the determinant (3.46), whereas the continuous line is (3.55).

points of the domain. In the CFT, these correspond to the insertions of magnetic and electric operators,
respectively. The conformal dimensions of these operators are known from the CFT description of the
XXZ spin chain in terms of a compact boson [40, 44, 52]. The electric operators are also known to be
vertex operators whose n-point functions are given by the simple formula (2.10). Our analysis of F
for the XX chain on the periodic pants domain confirms this. The charges of the electric operator are

q = q̄ = φ
2π , and the conformal dimensions are ∆ = ∆̄ = q2

2 . If a field marks a transition between two

twist lines φ and φA, then its charge is q = φ−φA

2π . We also investigated the case of an intersection
point between three twist lines of twists φ, φA and φB , and found that the corresponding charge is
q = φ−φA−φB

2π .
Our analysis of F on the skirt domain goes further, by considering six-point correlators that mix

electric and magnetic operators. Our numerical analysis reveals that these mixed correlators also take
the simple form (2.10) for vertex operators, with the charge of the magnetic operators given by q = m.
This is the expected result for a free CFT [53], however it is interesting to recover this property from the
scaling limit of lattice calculations. In the general case of an interacting CFT, one expects that mixed
correlators will involve non-trivial functions of the cross-ratios, sums over conformal blocks, etc, see
for instance [54]. To push our understanding further, we hope to return to the problem of computing
F for the XXZ spin chain with anisotropy ∆ 6= 0. In that case the factorisation should still occur for
−1 6 ∆ 6 1.

For the model of critical dense polymers, we studied the model with non-contractible loops that
are assigned a fugacity α = 2cos(φ2 ), different from the fugacity β = 0 of the contractible loops. In the
conformal field theory description, this amounts to inserting a bulk operator with conformal dimension

∆CDP

φ = 1
8

(φ2

π2 − 1
)
. Our investigation uses the known map from the loop model to the spin chain, and

only covers the case where at most two such operators are inserted in the domain. It is then natural to
search for an extension of these results to the case where loops are assigned different weights according
to how they encircle the various marked points. However, this appears not to be feasible using the XX
representation of the periodic Temperley-Lieb algebra. This hints at the fact that the corresponding
conformal fields are not vertex operators.

A most interesting result that we found regards the extrapolation lengths for the terms proportional
toN−1 logN . In our investigation of the XX spin chain on the skirt domain, we studied special instances
of Fs where certain spin states s1 and s2 are inserted on the endpoints of the two slits, see (3.18). As a
result, we found that the CFT prediction of Dubail and Stéphan [23,24] had to be generalised to allow
for two extrapolation lengths Ξ2 and Ξ4, one for each slit. Moreover, contrary to what these authors
claimed, these lengths sometimes take negative values. In fact, for the XX chain on the skirt, we found
a linear relation between the extrapolation lengths and the lengths of the inserted states, with the
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negative values arising when s1 and s2 are non-trivial states. We speculate that this is a consequence
of the unusual finite shape of the corner in the corresponding two-dimensional lattice model. Indeed,
in the underlying six-vertex model, the endpoints of the slits take the form of two subsequent corners,
distant by ni lattice spacings. In the scaling limit, this shape becomes a corner of internal angle 2π,
and the extrapolation length is modified accordingly.

On the periodic pants domain, the asymptotic expansion of the bipartite fidelity also has an
N−1 logN term. This is an important new result of this paper: for the bipartite fidelity, conical singu-
larities with internal angles of 4π act similarly to corners with internal angles 2π. Both these features
result in N−1 logN contributions to F . On the pants domain, there is a single conical singularity and
therefore a unique extrapolation length. For the XX spin chain, we find that the extrapolation length
is Ξ = −n, where n is the length of the spin state on the crotch point. Moreover, we remark that the
conformal predictions for g0(x), g1(x) and g2(x) are precisely equal to twice the same functions, previ-
ously obtained by Dubail and Stéphan, for the asymptotic expansion of F on the flat pants geometry.
This can be traced back to the fact that the map w(z) for the flat pants domain is equal to two times
wp(z), with z restricted to the upper half-plane.

While this has not been fully exploited in this paper, we believe that the bipartite fidelity
is a useful tool to compute the structure constants C123 that arise in the three-point functions
〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)〉C. Computing a correlation function of a lattice model for a number
of arbitrarily located positions in the complex plane is in general a notoriously difficult task, even for
two-point functions. In this case, a simple way to measure the conformal dimension ∆ that appears
in a two-point correlator is to consider the problem defined on an infinite cylinder and insert the two
fields at infinity at the endpoints of this cylinder. The dimension ∆ then appears in the 1/N finite-size
correction term of the largest eigenvalue of the transfer matrix, and computing it is possible with the
usual methods of Yang-Baxter integrability. Similarly for the three-point functions, the pants and skirt
domains are useful as they have three points at infinity where the three fields can be inserted. (No
field should then be inserted on the crotch point or on the endpoints of the slits.) This idea has the
potential to make the lattice computation of C123 a manageable problem. In the present paper, the
only case where we hoped to get a glimpse of the structure constants was in our investigation of FXX

p .
Indeed, in Appendix A.4, we set q2 = 0, calculate the difference F − F ′ of two bipartite fidelities for
two different sets of fields, and find that the difference of constants C in (2.8) is simply the logarithm
of the ratio of the two structure constants, see (A.31). For FXX

p , this analysis applies for the twist φ
specified to φ = φA + φB , so that q2 = 0. In Section 2.4.1, we however found that varying φ, φA and
φB while keeping φ − φA − φB fixed does not change C. This constant instead depends only on q2,
see Figure 6. We conclude that the structure constant in this case has no non-trivial dependence on
the three fields inserted at infinity. This is consistent with the interpretations of these fields as vertex
operators, where the structure constant are known to be equal to one.
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A The bipartite fidelity from conformal field theory calculations

In this appendix, we derive the CFT prediction for the leading terms in the 1
N expansion of the bipartite

fidelity, for the periodic pants and the skirt geometry. It closely follows the arguments of Stéphan and
Dubail [23, 24].
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Figure 12: The perturbation ε. The darkened area is the support A of ε, and the slit is moved upward
in A.

The outline of this appendix is as follows. In Appendix A.1, we derive a general formula for
the constant term of the large-N expansion of F . We find g1(x) and g̃1(x), namely the constant
contributions for the periodic pants and the skirt geometry, in Appendices A.2 and A.3, respectively.
We evaluate the constants C and C̃ in Appendices A.4 and A.5. Finally, we compute the sub-leading
contributions, g2(x) and g̃2(x) in Appendices A.6 and A.7.

A.1 Perturbation of the stress-energy tensor

To compute the constant term in the 1/N expansion of F , we follow the strategy of [23,24] that consists
in varying the aspect ratio x to find δF/δx. The general formula derived below applies to both the skirt
and the pants geometry and will allow us to compute g1(x) and g̃1(x). For this reason, we temporarily
drop the subscripts of the maps w and the free energies f .

We recall the relation between the action and the stress-energy tensor. Under a transformation
wµ 7→ wµ + εµ whose support is A, the action varies according to

δS =
1

2π

∫

A
∂µενT

µνdw1dw2. (A.1)

The free energy f is defined as minus the logarithm of the partition function: f = − logZ with Z =
〈φ1 · · ·φn〉. Here, φi is a short-hand notation for φi(wi,1, wi,2). Under the perturbation wµ 7→ wµ + εµ,
the free energy varies as

δf =
1

2π

∫

A
∂µεν

〈T µνφ1 · · · φn〉
〈φ1 · · ·φn〉

dw1dw2. (A.2)

On the periodic pants and the skirt domain, we perform the perturbation w = w1+iw2 7→ w+ε(w)
given by

ε(w) =

{
iδxN if |w2 − xN

2 | < d and |w1| < Λ,

0 elsewhere.
(A.3)

The support A of ε consists of the rectangle where the perturbation takes the value iδxN . It has a
width 2d and a length 2Λ. We will take the limit where d tends to zero. In contrast, Λ will play the
role of a cut-off for certain integrals and will be sent to infinity at the end of the calculation. The effect
of the perturbation ε is to slightly shift the slit in position ixN/2 by a distance iδxN , as depicted in
Figure 12. This is equivalent to changing x to x+ δx while keeping N unchanged.

The derivative of the perturbation yields linear integrals on the boundaries of the support A.
Because ∂1ε1 = ∂1ε2 = 0, the only contributions to the integral (A.2) come from ∂1ε2 on the width
of A, and from ∂2ε2 on its length. We take the limit d→ 0 in which case only the latter is non-zero:

δf =
1

2π
δxN

(∫

U+

〈T 22φ1 · · ·φn〉
〈φ1 · · ·φn〉

dw1 −
∫

U−

〈T 22φ1 · · ·φn〉
〈φ1 · · ·φn〉

dw1

)
. (A.4)
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Here U± = [−Λ, 0] + ixN2 − i0± are segments on the boundary of A, on each side of the slit. The
integrals along [0,Λ] + ixN2 ± d cancel each other in the limit d→ 0.

We apply the change of variable w = w1 + iw2, w̄ = w1 − iw2 and rewrite the integrand in terms
of the non-vanishing components of the stress-energy tensor T (w), T̄ (w̄) using T 22 = −(T (w)+ T̄ (w̄)).
We denote the fields after the transformation by φi(wi, w̄i), i = 1, . . . , n. From here onwards, we
only consider the holomorphic part of the expression and write +c.c. for the addition of its complex
conjugate:

δf = − 1

2π
δxN

( ∫

U+

〈T (w)φ1(w1, w̄1) · · · φn(wn, w̄n)〉
〈φ1(w1, w̄1) · · · φn(wn, w̄n)〉

dw

−
∫

U−

〈T (w)φ1(w1, w̄1) · · ·φn(wn, w̄n)〉
〈φ1(w1, w̄1) · · ·φn(wn, w̄n)〉

dw
)
+ c.c. (A.5)

Integral over the real line. In order to compute these integrals, we pull them back via the inverse
of the transformation w. As illustrated in Figures 2 and 8, the pre-image of the integration curves are

w−1(U+) = [w−1(−Λ + ixN2 − i0+), w−1(ixN2 )] ≡ [1−Λ , w
−1(ixN2 )], (A.6a)

w−1(U−) = [w−1(−Λ + ixN2 + i0+), w−1(ixN2 )] ≡ [0+Λ , w
−1(ixN2 )], (A.6b)

where we introduced the short-hand notations 0+Λ and 1−Λ , highlighting the fact that those points tend
to 0 and 1 for large Λ, respectively. These values for 0+Λ and 1−Λ are different for wp(z) and ws(z), and
their leading behaviour for large Λ can be computed directly from (2.6) and (3.5).

We change the variable from w to z in the integrals in (A.5) and use the transformation law of the
stress-energy tensor T (w)(w′(z))2 = T (z)− c

12{w(z), z}, where {w(z), z} is the Schwarzian derivative.
We obtain the following integral:

δf =
δxN

2π

∫ 1−Λ

0+Λ

(
dw

dz

)−1 [〈T (z)φ1(z1, z̄1) · · · φn(zn, z̄n)〉
〈φ1(z1, z̄1) · · · φn(zn, z̄n)〉

− c

12
{w(z), z}

]
dz + c.c. (A.7)

Finally, we use the conformal Ward identity on the complex plane:

〈T (z)φ1(z1, z̄1) · · · φn(zn, z̄n)〉 =
n∑

i=1

[
∆i

(z − zi)2
+

∂i
z − zi

]
〈φ1(z1, z̄1) · · · φn(zn, z̄n)〉 (A.8)

to write the first part of the integrand in terms of an n-point correlator.

Free energy variation of the cylinder and the strip. The expressions (2.4) and (3.3) for the
bipartite fidelity on the periodic pants domain and the skirt domain involve the free energy of the
cylinder and rectangle strip geometry. These expressions are standard [53]. For a cylinder and a
rectangle of length 2Λ with inserted fields of dimension ∆, they read

fc(N) = −(2Λ)
π

N

( c
6
− 4∆

)
, fr(N) = −(2Λ)

π

N

( c
24

−∆
)
. (A.9)

We use these expressions with N replaced by NA = xN , NB = N −NA = (1− x)N . On the cylinder,
the variation of these free energies with respect to x is

δfc(N) = 0, δfc(NA) = (2Λ)
πδx

x2N

( c
6
− 4∆1

)
, δfc(NB) = −(2Λ)

πδx

(1 − x)2N

( c
6
− 4∆3

)
. (A.10)

These free energies tend to infinity with Λ. However, the differences (2.4) and (3.3) will turn out to be
finite.
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A.2 Contribution to the periodic pants geometry

We consider the periodic pants domain and compute the variation δfp from (A.7). The term involving
the Schwartzian derivative in the integrand is readily computed. One finds

∫ 1−Λ

0+Λ

(
dwp

dz

)−1

{wp(z), z}dz + c.c. =
4π2

N2

(
Λ

(1− x)2
− Λ

x2

)
+

2π

N

(
b(x)− b(1− x)

)
, (A.11)

with b(x) = (x−2)x
(1−x)2

log x− 1
2x . We now compute the second term involving the fields, for the two special

cases (i) and (ii) discussed in Section 2.1.

Case (i): Three primary fields. There are three primary fields φ1, φ3 and φ4 in the legs but no
field at the crotch point. Following the notation of Section 2.1, we denote the insertion points by w1, w3

and w4. These points correspond to z1 = 1, z3 = 0 and z4 = ∞ in the complex plane via the map
wp(z).

The three-point function is given by

〈 ∏

i=1,3,4

φi(zi, z̄i)
〉
C

=
C134

|z1 − z3|2(∆1+∆3−∆4)|z1 − z4|2(∆1+∆4−∆3)|z3 − z4|2(∆3+∆4−∆1)
, (A.12)

where C134 is the three-point structure constant. Inserting this in (A.7) and using the Ward identity
(A.8), we find after some algebra

∫ 1−Λ

0+Λ

(
dwp

dz

)−1 〈T (z)φ1φ3φ4〉
〈φ1φ3φ4〉

dz + c.c. =
8π2

N2

(
∆3Λ

(1− x)2
− ∆1Λ

x2

)

+
4π

N

(
∆4 −

∆3

(1− x)2

)
log x− 4π

N

(
∆4 −

∆1

x2

)
log(1− x). (A.13)

We can now take the linear combination (2.4) of variations of free energies. The terms proportional
to the cut-off vanish and we obtain

δFp

δx
= 4

(
∆4 −

∆3

(1− x)2

)
log x− 4

(
∆4 −

∆1

x2

)
log(1− x)− c

6
(b(x)− b(1− x)). (A.14)

Integrating with respect to x, we find (2.8).

Case (ii): Four vertex operator fields. We now consider the case (ii) where the four fields φi,
i = 1, . . . , 4, are vertex operators with charges qi = q̄i. Their positions in the complex plane are z1 = 1,
z2 = 1 − x, z3 = 0 and z4 = ∞. The charges are constrained to satisfy the neutrality condition∑

i qi = 0. In this case, the n-point function has the simple form (2.10). The same correlator vanishes
if the sum of the charges is non-zero. Using the Ward identity, we find the simple formula

〈T (z)∏n
i=1 φi(zi, z̄i)〉

〈∏n
i=1 φi(zi, z̄i)〉

=
1

2

(
n∑

i=1

qi
z − zi

)2

. (A.15)

This expression allows us to compute the first term of the integral (A.7). As in the case (i), we obtain
two terms that depend on the cut-off as well as an expression that is regular as Λ tends to infinity. We
take the linear combination (2.4) so that the divergences vanish, integrate with respect to x and find
(2.11).

We note that in both cases (i) and (ii), the term g1(x) of the fidelity is calculated up to an additive
constant that cannot be obtained from the perturbative argument presented here and involving δF/δx.
These overall constants will be discussed further in Appendices A.4 and A.5 for the periodic pants
domain and the skirt domain, respectively.
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A.3 Contribution to the skirt geometry

Let us focus on the skirt geometry. First, we compute in (A.7) the term proportional to c in δfp. We
have

∫ 1−Λ

0+Λ

(
dws

dz

)−1

{ws(z), z}dz + c.c. =
π2

N2

(
Λ

(1− x)2
− Λ

x2

)
(A.16)

+
π(2x− 1)

2N

(
2x− 3

(1− x)2
log x− 2x+ 1

x2
log(1− x) +

2

x(1− x)

)
.

The other term in (A.7) depends on the fields that are inserted. We compute it for the cases (i) and (ii)
defined in Section 3.1.

Case (i): One bulk field. We apply (A.7) in the case where one primary field φ5 is inserted at
w5 = +∞. The corresponding position on the upper half-plane is z5 = (1 + i)/2. To compute the
variation of free energy, we apply the method of images to express the one-point function on the upper
half-plane as a two-point function on the complex plane. We introduce the image field φ6 of dimension
∆6 = ∆5 at the position z6 = (1− i)/2: 〈φ5(z5, z̄5)〉H = 〈φ5(z5)φ6(z6)〉C. After some algebra, we obtain

∫ 1−Λ

0+Λ

(
dws

dz

)−1 〈T (z)φ5φ6〉
〈φ5φ6〉

dz + c.c. =
4π

N
(log x− log(1− x))∆5. (A.17)

The absence of divergences in this case can be traced back to the fact that there are no fields present
in the legs A and B. We take the linear combination of terms (3.3) and integrate over x to find (3.7).

Case (ii): Five vertex operator fields. We investigate the case where fields φ2, φ4 are inserted
on the endpoints of the slits, φ1, φ3 in the legs A and B, respectively, and φ5 is inserted at +∞. The
corresponding points on the upper half-plane are

z1 = 1, z2 =

√
x− x2 + x− 1

2x− 1
, z3 = 0, z4 =

−
√
x− x2 + x− 1

2x− 1
, z5 =

1 + i

2
. (A.18)

As in the previous case, we introduce the image field φ6 at the position z6 = (1− i)/2 in the complex
plane. We make the assumption that each field φi is a vertex operator with charge qi.

In the case of boundary fields, the ratio of n-point functions that appears in (A.7) is similar to
(A.15) and reads

〈T (z)∏n
i=1 φi(zi)〉

〈∏n
i=1 φi(zi)〉

=
1

2

(
n∑

i=1

qi
z − zi

)2

. (A.19)

We insert the right-hand side of this equality in the integral (A.7). We evaluate this integral and
obtain the real part of the contributions to δfs. It is invariant under the simultaneous transformation
x→ 1− x, q1 ↔ q3. It also contains terms that diverge for Λ → ∞. These divergences however cancel
out in the linear combination (3.3). We integrate over x and obtain

g̃1(x) =
c

24
G̃(x) +

(
x(q25 + q26) +

1

2
(q22 + q24)−

x

2(1 − x)
q23 −

(q3 + q5 + q6)
2

2

)
log x

+ {x→ 1− x, q1 ↔ q3}. (A.20)

Applying the method of images to the case where φ5 is an electric operator, the charge of the image
field φ6 is q6 = −q5. In this particular case, the expression (A.20) is further simplified and can be
expressed solely in terms of the dimensions ∆i = q2i /2, yielding (3.9).

43



A.4 The constant C for the periodic pants geometry

In the two previous sections, we computed the correction to the free energy using a perturbation δx
of the aspect ratio x. These involve additive constants C and C ′ that do not depend on x and are not
fixed by the perturbative argument. Let us investigate this further for case (i), defined in Section 2.1.
In this case, the bipartite fidelity Fp can be understood in terms of conformal correlation functions as

Fp = − log

∣∣∣∣

〈∏
i=1,3,4 φi(wi, w̄i)

〉2
p

〈φ−1 φ+1 〉c(Nx)〈φ−3 φ+3 〉c(N−Nx)〈φ−4 φ+4 〉c(N)

∣∣∣∣ (A.21)

where
〈φ−i φ+i 〉c(P ) = 〈φi(w−, w̄−)φi(w+, w̄+)〉c(P ). (A.22)

The correlators 〈φ−i φ+i 〉c(P ) are evaluated on the cylinder of perimeter P , and the fields φi are inserted
at the positions w± = ±Λ where Λ is a cut-off. The three-point function in the numerator of (A.21)
is evaluated on the periodic pants geometry. We set the positions of the three fields to be functions of
the cut-off Λ:

w1 = ( ixN2 )− − Λ, w3 = ( ixN2 )+ − Λ, w4 = Λ. (A.23)

For large Λ, the corresponding positions in the complex plane are

z1 ≃ 1− e−
2π(Λ+Kx)

Nx , z3 ≃ e
− 2π(Λ+Kx)

N(1−x) , z4 ≃ e
2π(Λ−Kx)

N . (A.24)

Let us also consider the bipartite fidelity F ′
p where the fields φ′1, φ

′
3 and φ′4 are different fields.

The conformal dimensions of these new fields are ∆′
i = ∆̄′

i, i = 1, 3, 4. We assume in the following that
all these fields are primary. The difference Fp −F ′

p is

Fp −F ′
p = − log

∣∣∣∣∣∣

〈∏
i=1,3,4 φi(wi, w̄i)

〉2
p〈∏

i=1,3,4 φ
′
i(wi, w̄i)

〉2
p

× 〈φ′1−φ′1+〉c(Nx)〈φ′3−φ′3+〉c(N−Nx)〈φ′4−φ′4+〉c(N)

〈φ−1 φ+1 〉c(Nx)〈φ−3 φ+3 〉c(N−Nx)〈φ−4 φ+4 〉c(N)

∣∣∣∣∣∣
. (A.25)

We recall that under a map w(z), correlation functions of primary fields φi of dimensions ∆i = ∆̄i

transform as 〈 n∏

i=1

φi(wi, w̄i)
〉
=

n∏

i=1

∣∣∣∣
dw

dz

∣∣∣∣
−2∆i

w=wi

〈 n∏

i=1

φi(zi, z̄i)
〉
. (A.26)

For the two-point functions, we use the map wc(z) =
P
2π log z from the complex plane to the cylinder

of perimeter P , and find

〈φ−i φ+i 〉c(P ) =

∣∣∣∣
dwc

dz

∣∣∣∣
−2∆i

w=w−

∣∣∣∣
dwc

dz

∣∣∣∣
−2∆i

w=w+

〈φi(z−, z̄−)φi(z+, z̄+)〉C ≃
∣∣∣∣
P

2π

∣∣∣∣
−4∆i

e−8πΛ∆i/P , (A.27)

where z± = e±2πΛ/P is such that wc(z±) = w±. The symbol ≃ means that the equality holds at the
leading order in Λ. Furthermore, in the last equality, we used the known value of the two-point function
〈φi(z−, z̄−)φi(z+, z̄+)〉C = |z− − z+|−4∆i .

The three-point function is given in (A.12). For the values (A.24), we have

〈 ∏

i=1,3,4

φi(zi, z̄i)
〉
C

≃ C134 e−8π∆4(Λ−Kx)/N . (A.28)

Using (A.26), we find

〈 ∏

i=1,3,4

φi(wi, w̄i)
〉
p
≃ C134

(
2π
N

)2(∆1+∆3+∆4)

x2∆1(1− x)2∆3
e−

4π∆1(Λ+Kx)
Nx e

− 4π∆3(Λ+Kx)
N(1−x) e−

4π∆4(Λ−Kx)
N . (A.29)
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After some simplifications, we find that the difference of bipartite fidelities is finite for Λ → ∞. The
result is

Fp −F ′
p = 4

(
δ4 −

δ1
1− x

− δ3
1− x

)
(x log x+ (1− x) log x)− 2 log

(C134
C′
134

)
(A.30)

where δi = ∆i − ∆′
i and C′

134 is the structure constant for the correlator 〈φ′1φ′3φ′4〉. Comparing with
(2.8), we see that the difference of constants C between Fp and F ′

p is simply

C −C ′ = −2 log(C134/C′
134). (A.31)

A.5 The constant C̃ for the skirt geometry

In Appendix A.3, we found an explicit expression for the function g̃1(x) for the skirt domain. The
result is given in (3.7) and (3.9) up to a non-universal constant, which a priori can depend on the
dimension of the inserted fields. In this section, we extract from this additive constant the dependence
on ∆5.

First, we investigate this constant in greater detail for Fs in the special case (i) where the only
non-trivial field is the bulk field φ5(z5, z̄5). We consider a second realisation F ′

s where a primary field
φ′5(z5, z̄5) replaces the field φ5(z5, z̄5) and is of conformal dimensions ∆′

5 = ∆̄′
5. In the conformal

interpretation, the difference of bipartite fidelities is

Fs −F ′
s = − log

∣∣∣∣
Z2
s

Zc

Z ′
c

(Z ′
s)

2

∣∣∣∣ = − log

∣∣∣∣∣
〈φ5(w5, w̄5)〉2s
〈φ−5 φ+5 〉c(N)

· 〈φ
′
5
−φ′5

+〉c(N)

〈φ′5(w5, w̄5)〉2s

∣∣∣∣∣ . (A.32)

Here, the two-point functions are evaluated on the cylinder of perimeter N and height Λ. Their
expression is given in the previous section in the large-Λ limit. Moreover, we calculate the one-point
function 〈φ′5(w5, w̄5)〉s for Re(w5) = Λ and Λ large. We compute it using the map to the upper
half-plane and the transformation law (A.26):

〈φ5(w5, w̄5)〉s =
∣∣∣∣
dws

dz

∣∣∣∣
−2∆5

w=w5

〈φ5(z5, z̄5)〉H. (A.33)

In the large-Λ limit, z5 tends to (1 + i)/2. The one-point correlator is calculated using the method of
images and equals 1 in this limit. As for the partial derivatives, they diverge for w1 → ∞. Hence we
parameterise w5(m) = ws(z(m)), with z(m) = 1+i

2 (1− e−2mπ/N ), to obtain for large m

〈φ5(w5(m), w̄5(m))〉s ≃
∣∣∣∣
√
2π

N

∣∣∣∣
2∆5

(e2mπ/N )−2∆5 . (A.34)

With this parameterisation, the position of w5(m) along the skirt is obtained using the explicit form
of ws(z), and is of order m:

Re(w5(m)) = m+Kx −
3N

4π
log 2 +O(1/m). (A.35)

Hence we set m = Λ−Kx +
3N
4π log 2 to compare the two partition functions. The evaluation for large

Λ yields
Fs = 4−2∆5(e−2πKx/N )−2∆5 . (A.36)

Inserting in (A.32), we find

Fs −F ′
s = 4(∆5 −∆′

5) [x log x+ (1− x) log(1− x) + 2 log 2] . (A.37)

We deduce that the additive constant in the function g̃1(x) has a term proportional to 8∆5 log 2, as
given in (3.7). The remaining constant C̃ in this equation is then independent of ∆5.
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Second, we focus on the case (ii), where five vertex operators are present. We consider a second
instance of F ′

s where the field φ5 is replaced by φ′5 with conformal dimensions ∆′
5 = ∆̄′

5. The four other
fields remain unchanged. The difference of bipartite fidelities reads

Fs −F ′
s = − log

∣∣∣∣∣
〈φ1(w1)φ2(w2)φ3(w3)φ4(w4)φ5(w5, w̄5)〉2s
〈φ1(w1)φ2(w2)φ3(w3)φ4(w4)φ′5(w5, w̄5)〉2s

·
〈φ′5−φ′5+〉c(N)

〈φ−5 φ+5 〉c(N)

∣∣∣∣∣ . (A.38)

We map the ratio of five-point functions into the upper half-plane and obtain

〈φ1(w1)φ2(w2)φ3(w3)φ4(w4)φ5(w5, w̄5)〉s
〈φ1(w1)φ2(w2)φ3(w3)φ4(w4)φ′5(w5, w̄5)〉s

=

∣∣∣∣
dws

dz

∣∣∣∣
−2(∆5−∆′

5)

w=w5

〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)φ5(z5, z̄5)〉H
〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)φ′5(z5, z̄5)〉H

.

(A.39)
We apply the method of images to express this ratio in terms of a six-point function, where we introduce
the new coordinate z6 = z̄5. We then use the generic expression for n-point functions of products of
vertex operators (2.10) and find

〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)φ5(z5, z̄5)〉H
〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)φ′5(z5, z̄5)〉H

=
〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)φ5(z5)φ5(z6)〉C
〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)φ′5(z5)φ′5(z6)〉C

=

∏4
i=1 |zi − z5|qiq5 |zi − z6|qiq6∏4
i=1 |zi − z5|qiq′5 |zi − z6|qiq′6

.

(A.40)

We exploit the fact that z1, z2, z3 and z4 lie on the real line while z6 is the complex conjugate of z5.
Hence, |zi − z6| = |zi − z5| for each i = 1, . . . , 4. We finally obtain

〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)φ5(z5, z̄5)〉H
〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)φ′5(z5, z̄5)〉H

=

∏4
i=1 |zi − z5|qi(q5+q6)

∏4
i=1 |zi − z5|qi(q′5+q′6)

=

∏4
i=1 |zi − z5|−qi(q1+q2+q3+q4)

∏4
i=1 |zi − z5|−qi(q1+q2+q3+q4)

= 1,

(A.41)
where we used the neutrality condition

∑
i qi = 0.

The rest of the computation of the difference Fs − F ′
s is similar to the case (i) and yields a term

proportional to 8∆5 log 2 in the additive constant in g̃1(x), as stated in (3.9).

A.6 Sub-leading term for the periodic pants geometry

The computation of the sub-leading correction g2(x) for the periodic pants domain follows closely the
same computation by Stéphan and Dubail [24] for the flat pants domain. Here we only state the main
differences with their proof.

For a conical singularity of internal angle θ, the geometry is that of a simply connected domain
with a conical corner of angle θ. The two edges leaving this corner are endowed with periodic boundary
conditions. If the corner is at the origin, the map w(z) from the complex plane to this domain behaves
as

w(z) = zθ/2π(1 + κ1z + κ2z
2 + . . . ). (A.42)

The preimages in the z-plane of the edges leaving the corner are two lines leaving the origin at angles 0
and 2π. In comparison, for the case considered in [24], the domain of the transformation is the upper
half-plane, the origin is mapped to a corner that lies on the boundary of the domain, and the prefactor
in (A.42) is instead zθ/π.

The rest of the computation is similar to [24] and we have

g2(x) = Ξ× N

2π
Res

[
eiϕc

(
dw

dz

)−1( c

12
{w(z), z} − 〈T (z)φ1 · · ·φn〉

〈φ1 · · ·φn〉

)
, z = zc

]
+ c.c. (A.43)

where ϕc = arg (w′′(zc)). Computing the residue with w(z) = wp(z), four arbitrary primary fields
φ1, . . . , φ4 inserted in the positions z1 = 0, z2 = 1−x, z3 = 1 and z4 = ∞, and with zc = z2, we obtain
(2.12). This is exactly twice the result obtained in [24]. This factor of 2 can be traced back to wp(z)
being exactly half of the map for the flat pants geometry considered in [27].
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A.7 Sub-leading term for the skirt geometry

In this subsection, we compute the sub-leading corrections to the free-energy g̃2(x) for the skirt domain,
see (3.4). For a geometry with a boundary and a given number of corners of internal angle 2π, this
function is

g̃2(x) =
N

2π

∑

2π corners

Ξc × Res

[
eiϕc

(
dw

dz

)−1( c

12
{w(z), z} − 〈T (z)φ1 · · · φn〉

〈φ1 · · ·φn〉

)
, z = zc

]
+ c.c. (A.44)

Here, the sum runs over all the corners of internal angle 2π. The phase ϕc is arg (w
′′(zc)). The Ξc is the

extrapolation length corresponding to the corner situated at z = zc. This formula is a generalisation
of the one given in [24], where the authors take the same extrapolation length for all corners, Ξc = Ξ.
However, our lattice analysis of FXX

s in Section 3.4.1 includes cases where spin states of different lengths
are assigned to the endpoints of the slits, and this requires a CFT analysis with non-equal extrapolation
lengths.

We now apply the formula to the skirt geometry. The phase verifies eiϕc = −1 for both corners at
z = z2 and z = z4. We write Ξ2 and Ξ4 for the corresponding extrapolation lengths.

For case (i), we use the method of images to express the one-point correlator as a two-point
function and readily find (3.10). In the case (ii), there is a vertex operator φi at the position zi on the
upper half-plane, with i = 1, . . . , 5. We use the method of images as well as (A.15) to find the real part
of the sub-leading contribution to the free-energy:

g̃2(x) = Ξ2 ×
[
c(1− 2x)2

48(1 − x)x
+

q22 − q24
16x(1 − x)

− q1 (q1 − q2 + q4)

4x
− q3 (q3 − q2 + q4)

4(1− x)
+
q25 + q26

2

]
(A.45)

+ {Ξ2 → Ξ4, q2 ↔ q4}.

We note that this formula greatly simplifies if the two extrapolation lengths are identical. In that case,
the result does not depend on q2 or q4. We particularise our result to the case q6 = −q5 and obtain
(3.11).

B Asymptotics

In this appendix, we derive the asymptotic expansion of F on the periodic pants domain, for the
XX chain (2.88) and for the model of dense polymers (2.97). The starting point is the closed-form
expressions (2.34) and (2.86) for finite N .

B.1 Toolbox

We define the mathematical tools and functions used in the computation.

Exact expressions. The building blocks of the calculations are the functions

s[x] =
sinx

x
, (B.1a)

X(a, b,N) =

N/2∑

k=0

log s
[2πa
N

(k + b)
]
, (B.1b)

Y (a, b,N, x) =

Nx/2∑

k=0

N/2∑

k′=0

log s
[2πa
N

(k
x
− k′ + b

)]
, (B.1c)

Z(a, b,N, x) =

Nx/2∑

k=1

N/2∑

k′=1

log

∣∣∣∣k′ − a− k − b

x

∣∣∣∣ . (B.1d)
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Asymptotics for X and Y . To compute the asymptotic expansion of the X and Y functions, we
use the Euler-Maclaurin formula

b∑

i=a

f(i) =

∫ b

a
f(x)dx+

f(a) + f(b)

2
+

∞∑

k=1

B2k

(2k)!
(f2k−1(b)− f2k−1(a)) (B.2)

where Bk is the k-th Bernoulli number. The results read

X(a, b,N) =
N

2
I1(πa, 0) +

(
b+

1

2

)
log s[πa] +O

(
N−1

)
, (B.3a)

Y (a, b,N, x) =
N2x

4
I2(πa,−πa) +

Nx

2

(
− b+

1

2

)
I1(−πa, πa) +

Nx

2

(
b+

1

2

)
I1(−πa, 0)

+
N

4
(I1(πa,−πa) + I1(πa, 0)) + log s[πa]

{1
2
+ xb2 +

x

6
+

1

6x

}
+O

(
N−1

)
, (B.3b)

with

I1(a, b) =
∫ 1

0
dy log s[ya+ b], I2(a, b) =

∫ 1

0

∫ 1

0
dwdz log s[wa+ bz]. (B.4)

Asymptotics for Z. The function Z(a, b,N, x) is written in terms of Gamma functions as

Z(a, b,N, x) = −Nx
2

log π +

Nx/2∑

k=1

log
∣∣∣ sin

[
π
(−k + b

x
− a
)]∣∣∣

︸ ︷︷ ︸
K(a,b,N,x)

+

Nx/2∑

k=1

{
log Γ

(k
x
+
b− 1

x
+ 1− a

)
+ log Γ

(k
x
− b

x
+ a
)}

︸ ︷︷ ︸
Z̃(a,b,N,x)

.

(B.5)

Let us focus on the function Z̃(a, b,N, x). We use the integral representation for the logarithm of the
Gamma function:

log Γ(z) =

∫ ∞

0

dt

t

{
(z − 1)e−t − e−t − e−zt

1− e−t

}
, Re z > 0, (B.6)

and find

Z̃(a, b,N, x) =

Nx/2∑

k=1

∫ ∞

0

dt

t



(2k
x

− 1

x
− 1
)
e−t −

2e−t − e−
kt
x

(
e−
(

b−1
x

+1−a
)
t + e−

(
−b
x
+a
)
t
)

1− e−t




=

∫ ∞

0

dt

t


Nx

2

(N
2

− 1
)
e−t −Nx

e−t

1− e−t
+

e−
Nt
2 − 1

1− e
t
x

· e
−
(

b−1
x

+1−a
)
t + e−

(
−b
x
+a
)
t

1− e−t


. (B.7)

To proceed further, we use the relations [27]

i1(n) ≡
∫ ∞

ǫ

dt

t
e−nt = − log ǫ− log n− γ +O(ǫ), (B.8a)

i2(n) ≡
∫ ∞

ǫ

dt

t2
e−nt =

1

ǫ
+ n log ǫ+ n log n+ n(γ − 1) +O(ǫ), (B.8b)

i3(n) ≡
∫ ∞

ǫ

dt

t3
e−nt =

1

2ǫ2
− n

ǫ
− n2

2
log ǫ− n2

2

(
log n− 3

2
+ γ
)
+O(ǫ), (B.8c)

j(α) ≡
∫ ∞

ǫ

dt

t

1

eαt − 1
=

1

αǫ
+

1

2
log(αǫ) +

γ

2
− 1

2
log(2π) +O(ǫ), (B.8d)
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valid for n > 0 and α > 0. Here γ ≃ 0.57722 is the Euler-Mascheroni constant. In the following,
we change the lower bounds of the integrals from 0 to ǫ and take the limit ǫ → 0 at the end of the
computation. The first part of the integral (B.7) becomes

∫ ∞

ǫ

dt

t

[
Nx

2

(N
2

− 1
)
e−t −Nx

e−t

1− e−t

]
=
Nx

2

(N
2

− 1
)
i1(1) −Nx j(1). (B.9)

For the second part, we first consider the term with a factor of e−Nt/2. We keep the exponentials in
the numerator unchanged and expand the denominator around t = 0. We only need to keep term up
to order t−1. Indeed, for k > 0, the integral

∫∞
0 tke−Nt vanishes as N−(k+1) for N → ∞. Hence, we

have

∫ ∞

ǫ

dt

t

[
e−

Nt
2

1− e
t
x

· e
−
(

b−1
x

+1−a
)
t + e−

(
−b
x
+a
)
t

1− e−t

]
=

3− 1
x − x

12

[
i1

(N
2

+
b− 1

x
+ 1− a

)
+ i1

(N
2

− b

x
+ a
)]

+
1− x

2

[
i2

(N
2

+
b− 1

x
+ 1− a

)
+ i2

(N
2

− b

x
+ a
)]

− x

[
i3

(N
2

+
b− 1

x
+ 1− a

)
+ i3

(N
2

− b

x
+ a
)]

+O(N−1). (B.10)

The last integral in (B.7) is also divergent. Changing the lower bound to ǫ, we simplify the integral
by adding and subtracting a function m(a, b, x, t)e−t from the integrand. We choose m(a, b, x, t) so that
(i) the leading terms in its expansion around t = 0 are identical to those of the original integrand, and
(ii) it can be easily integrated in terms of the integrals i1(n), i2(n) and i3(n) introduced in (B.8). We
find

∫ ∞

ǫ

dt

t


− 1

1− e
t
x

· e
−
(

b−1
x

+1−a
)
t + e−

(
−b
x
+a
)
t

1− e−t


 =

∫ ∞

ǫ

dt

t

[
J(a, b, x, t) −m(a, b, x, t)e−t

]
(B.11)

+ 2x(i3(1) + i2(1)) +
(
b+

1

6

(
−3 +

1

x

)
+

(−1 + b)b

x
+

7x

6
+ a2x− a(−1 + 2b+ x)

)
i1(1)

with

J(a, b, x, t) = − 1

1− e
t
x

· e
−
(

b−1
x

+1−a
)
t + e−

(
−b
x
+a
)
t

1− e−t
, (B.12a)

m(a, b, x, t) = 2x
( 1

t2
+

1

t

)
+
(
b+

1

6

(
−3 +

1

x

)
+

(−1 + b)b

x
+

7x

6
+ a2x− a(−1 + 2b+ x)

)
. (B.12b)

We obtain the leading terms in the expansion of Z̃ by combining (B.9), (B.10), (B.11) and (B.12).
Using (B.8), we find that the divergent contributions cancel as expected. The result has a well-defined
ǫ→ 0 limit:

Z̃(a, b,N, x) =

∫ ∞

0

dt

t

[
J(a, b, x, t) −m(a, b, x, t)e−t

]
− N2x

8
(3 + 2 log 2− 2 logN) +

Nx

2
log(2π)

+ logN
1 + 6b2 − 6b(1 − x+ 2ax) + x(−3 + x+ 6a(1 − x+ ax))

6x

− 3x2 + (1 + x2 − 3x+ 6(b− ax)(−1 + b+ x− ax)) log 2

6x
+O(N−1). (B.13)

We note that the integral
∫∞
0

dt
t

[
J(a, b, x, t) −m(a, b, x, t)e−t

]
is convergent.
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B.2 Asymptotics for P1(N)

To derive the large-N expansion of P1(N), we start from the definition (2.33) and rewrite each sine
factor using sinx = x s[x]. Each product then splits into two products, the first involving the function
s[x] and the second involving the arguments x. The former products are expressed in terms of the
functions X and Y in (B.1). The latter are written in terms of Barnes’ G-function. The result is

logP1(N) = −N(N − 2)

8
(logN − log π) + logG

(N
2

+ 1
)
+

1

2
Y
(1
2
, 0, N, 1

)
−X

(1
2
, 0, N

)
. (B.14)

We recall the asymptotics of the Barnes’ G-function:

logG(z) =

(
(z − 1)2

2
− 1

12

)
log(z − 1)− 3(z − 1)2

4
+
z − 1

2
log(2π) +

1

12
− logA+O(z−1), (B.15)

where A ≃ 1.282427 is the Glaisher-Kinkelin constant. Combining this with the asymptotic expansions
(B.3) of X and Y , we obtain the large-N expansion of P1 up to order O(N−1).

B.3 Asymptotics for P2(N1, N2, φ1, φ2)

We follow the same strategy for P2 and find

log P2(N1, N2, φ1, φ2) = −N1N2

4
log

N2

π
+ log s

[ π
N2

(
− 1

2z
+

1

2
− φ1

2πz
+
φ2
2π

)]

+ Z
(1
2
+
φ2
2π
,
1

2
+
φ1
2π
,N2, z

)
+ Y

(1
2
,− 1

2z
− φ1

2πz
+

1

2
+
φ2
2π
,N2, z

)
(B.16)

−X
(1
2
, z
(
− 1

2z
− φ1

2πz
+

1

2
+
φ2
2π

)
, N1

)
−X

(1
2
,
1

2z
+

φ1
2πz

− 1

2
− φ2

2π
,N2

)

where z ≡ N1
N2

. The term log s
[

π
N2

(
− 1

2z +
1
2 −

φ1

2πz +
φ2

2π

)]
does not contribute to the leading orders in

the large-N expansion. Using (B.3), we obtain the large-N expansion of P2 up to order O(N−1).

B.4 Combinations of non-trivial terms

We consider the combination of log P1 and logP2 corresponding to (2.34). In doing so, we find that
all the terms involving the integrals I1 and I2 that appear in the large-N expansion (B.3) of X and Y
cancel out. Let us now investigate the remaining terms.

Combination of Z̃. We are interested in the combination

Z̃
(
rB, rA, N(1− x),

x

1− x

)
− Z̃(r, rA, N, x)− Z̃(r, rB , N, 1 − x) (B.17)

with rA,B = 1
2 +

φA,B

2π and r = 1
2 + φ

2π = rA + rB − 1. This last constraint follows
from (2.28) with ℓ = 0. The only non-trivial combination involves the (convergent) integral∫∞
0

dt
t

[
J(a, b, x, t) −m(a, b, x, t)e−t

]
. From (B.12a), we observe that

J
(
rB , rA,

x

1− x
, t
)
− J

(
rA + rB − 1, rA, x, t

)
− J

(
rA + rB − 1, rB , 1− x, t

1− x

x

)
= 0. (B.18)

Hence, in computing (B.17), we make the change of variable t→ t1−x
x in the integral of the third term.

The integrals involving the functions J cancel and the resulting combination

∫ ∞

0

dt

t

[
−m

(
rB , rA,

x

1− x
, t
)
e−t +m

(
rA + rB − 1, rA, x, t

)
e−t

+m
(
rA + rB − 1, rB , 1− x, t

1− x

x

)
e−t 1−x

x

]
(B.19)
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can be written in terms of the functions i1(n), i2(n) and i3(n) defined in (B.8). Including the remaining
terms in (B.13), we find that the result simplifies to

Z̃
(
rB, rA, N(1− x),

x

1− x

)
− Z̃(rA + rB − 1, rA, N, x)− Z̃(rA + rB − 1, rB , N, 1− x) =

1

8
N2
{
2(1− x)x

(
logN + log(1− x)

)
− 2 logN +

(
(x− 1)x+ 1

)
(3 + log 4)

}
+

1

2
N(x− 1) log(2π)

+
6r2A(x− 1)2 + 6rA(x− 1)(2rBx− 3x+ 1) + x

(
6rB(rBx− 3x+ 1) + 13x− 9

)
+ 1

6x
log(1− x)

+
6r2A(x− 1)2 + 6rA(x− 1)(2rBx− 3x+ 2) + x

(
6rB(rBx− 3x+ 2) + 13x− 17

)
+ 5

6(1− x)
log x+O(N−1).

(B.20)

Combination of trigonometric functions. The logarithm of the product of cosines in (2.34) and
the functions K appearing in the definition (B.5) of Z combine to give the identity

K
(
rB, rA, N(1− x),

x

1− x

)
−K

(
rA + rB − 1, rA, N, x

)
−K

(
rA + rB − 1, rB , N, 1− x

)

+

N/2∑

k′=1

log

∣∣∣∣cos
[
πxk′ − φA(x− 1) + xφB

2

]∣∣∣∣ = −1

2
Nx log 2,

(B.21)

whose proof is straightforward.
We now have all the ingredients needed to compute the large-N expansion of FXX

p |φ=φA+φB−π,
defined in (2.34). Simplifying the result, we find (2.88).

B.5 Asymptotics for Q(N,φ)

We obtain the large-N expansion (2.97) of Fα
p from (2.86) and (2.88) by computing the asymptotic

expansion of the function Q, defined in (2.87). Using the same strategy as for the functions P1 and P2,
we find

Q(N,φ) = log Γ
(N
2

+
1

2
− φ

2π

)
− log Γ

(1
2
− φ

2π

)
−X

(1
2
,−1

2
+

φ

2π
,N
)
−
{
φ→ −φ

}
. (B.22)

We use

log Γ(z) = z log z − 1

2
log z +

1

2
log(2π) +O(z−1) (B.23)

and (B.3), and find

Q(N,φ) = −φ
π
log

N

π
+ log

Γ
(
1
2 + φ

2π

)

Γ
(
1
2 − φ

2π

) +O
(
N−1

)
. (B.24)

This indeed yields (2.97).
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[20] H.-Q. Zhou and J.P. Barjaktarevič. Fidelity and quantum phase transitions. J. Phys. A:

Math. Theor., 41:412001, 2008. arXiv:0701608 [cond-mat.stat-mech].

[21] J. Sirker. Finite temperature fidelity susceptibility for one-dimensional quantum systems.
Phys. Rev. Lett., 105:117203, 2010. arXiv:1006.2522 [cond-mat.str-el].

[22] S.-J. Gu. Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B, 24:4371, 2010.
arXiv:0811.3127 [quant-ph].

52

http://arxiv.org/abs/quant-ph/0202029
http://arxiv.org/abs/quant-ph/0202162
http://arxiv.org/abs/quant-ph/0211074
https://arxiv.org/abs/hep-th/9403108
http://arxiv.org/abs/hep-th/0405152
http://arxiv.org/abs/quant-ph/0703044
http://arxiv.org/abs/0808.3773
http://arxiv.org/abs/0906.1499
http://arxiv.org/abs/cond-mat/0503393
https://arxiv.org/abs/0804.3559
https://arxiv.org/abs/1608.00614
https://arxiv.org/abs/1903.00467
http://arxiv.org/abs/hep-th/9303048
http://arxiv.org/abs/quant-ph/0512249
http://arxiv.org/abs/cond-mat/0701608
http://arxiv.org/abs/1006.2522
http://arxiv.org/abs/0811.3127
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