
1.  Introduction
Debris flows (DFs) are classified as mixtures of sediments and water that rapidly route along steep chan-
nels. In mountainous regions, the impulsive nature of DFs combined with their high devastating power 
threatens human life and facilities (Jakob & Hungr, 2005) and has a high socioeconomic impact (Thiene 
et al., 2017). In this work, we refer to runoff-generated DFs, that is, those formed after the entrainment of 
debris material into abundant runoff descending from rocky cliffs (Coe et al., 2008; Hürlimann et al., 2014; 
Kean et al., 2013). Doubtless, high-intensity and sub-hourly rainfalls (15–45 minutes) are the predominant 
factors for the triggering and magnitude of runoff generated DFs.

The prediction of such phenomena has great relevance for limiting damages and victims in the threatened 
areas and increasingly enters the context of social challenges. Many villages, tourist resorts, and linear 
infrastructures are built on DF fans or intersect DF channels. The expansion of human activities (new 
settlements, infrastructures, and touristic facilities, often in the extreme alpine environment) increases the 
vulnerability of society to these phenomena (Franceschinis et al., 2020). Moreover, the frequency of these 
phenomena is growing due to climate change (Stoffel et al., 2014); it leads to the increasing of both extreme 
rainfalls (Floris et al., 2010) and rock wall collapses that provide sediments even in locations where they 
never occurred before (Gatter et al., 2018; Bernard, Berti, et al., 2019). The large number of sites, which are 
potentially threatened, and the inherent inflexibility of technical countermeasures characterized by high 
costs make early warning systems the most cost-effective measure to mitigate the risk associated with DFs 
(Sättele et al., 2015). Because of the short times of DF downstream routing, the prediction of occurrences 
should occur as soon as possible. The real-time evaluation of triggering rainfalls permits to launch alerts in 
a time shorter than that given during DF downstream routing by sensors positioned along DF flow paths. 
The most common way to predict DF occurrences is the use of rainfall-based thresholds in early warning 
systems (Baum & Godt, 2010; Cannon et al., 2008; Palau et al., 2020; Restrepo et al., 2008). Following the 
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pioneers Caine (1980) and Innes (1983), considerable efforts have been made to identify local or regional 
critical thresholds: precipitations exceeding these limits should be able to generate discharges prone to ini-
tiate DFs. Despite the large number of works carried out (Guzzetti et al., 2008; Segoni et al., 2018 with the 
references therein), the employment of corresponding thresholds for forecasts or warnings is not entirely 
accurate. Limits of this approach are the sub-hourly spatial variability of convective rainfalls; the scarcity of 
historical event databases; the high variability of antecedent humidity conditions (Gregoretti & Dalla Fon-
tana, 2007); the variations of environmental conditions during years (Papa et al., 2013); the site-dependence 
of evaluated thresholds (Staley et al., 2013). In the case of just burned watersheds, critical thresholds can 
be used with success in early warning systems. In these basins, the hydrologic properties of terrain surface 
are quite uniform and it is possible to find reliable spatially variable rainfall-intensity thresholds combining 
historical data and statistical methods for DF susceptibility (Staley et al., 2017). To overcome these prob-
lems, similarly to that done for flash floods (Borga et al., 2010), nowadays, it is explored the possibility of 
estimating thresholds through models that link rainfalls and triggering of DFs, for example, hydrological 
modeling of headwater basin response, infinite-slope stability models, etc. (e.g., Bathurst et al., 2006; Crosta 
& Frattini, 2003; McGuire & Youberg, 2020). For these reasons, rainfall fields need to be accurately recorded 
to be used for assessing debris-flow initiation by hydrological modeling (Destro et al., 2018).

DF triggering storms are influenced by the topography of mountainous areas, denoting a large gradient 
in the space (Marra et al., 2014). The rainfall field often exhibits a local peak in the proximity of the trig-
gering zone (Nikolopoulos et al., 2014). To evaluate triggering rainfalls, rain gauges and weather radars 
are the more appropriate sources of information. The rain gauge-based estimation of triggering rainfalls 
is in general uncertain (Villarini et al., 2008): the distance of reference rain gauges from the initiation 
zones of DFs, both on the horizontal and on elevation, leads to an underestimation of the triggering 
rainfalls (Nikolopoulos et al., 2015). Moreover, the intergauges distance of regional monitoring networks 
is generally in the order of 5–10  km; thus, a trustworthy spatial estimation is hardly obtainable. This 
limitation could be overcome by utilizing weather radars (Cremonini & Tiranti, 2018). Radars do not di-
rectly measure the rainfall but record the energy reflected by any hit object in the atmosphere. Reflected 
energy is related to the radar reflectivity factor, Z, that is used to estimate rainfall rates, R, through a Z-R 
relationship (Rendon et al., 2013). Radar-rainfall estimates denote high spatial and temporal resolutions, 
covering continuously the area of interest. Despite the rapid advance in knowledge about this technology, 
radar rainfall estimates are still affected by various uncertainty factors reducing their accuracy, especially 
in mountainous areas (Germann et al., 2006). Furthermore, DF watershed sizes are similar to the exten-
sion of a radar cell and the rainfall variability could not be detected. This shortcoming leads to a rainfall 
overestimation/underestimation depending on recording/not recording of the local peak of precipitations 
(Rabiei & Haberlandt, 2015). For these reasons, Krajewski et al. (2010) pointed out that, at the moment, 
the usage of dense rain gauge network is essential for having accurate precipitation measures and the best 
approach for providing optimal rainfall data becomes the merging of every available information (Delrieu 
et al., 2014).

Merged rainfall estimates can be used as input rainfalls for simulating both runoff and flood routing in 
mountainous areas (Borga et al., 2006; Cunha et al., 2012; Sapriza-Azuri et al., 2015; Tramblay et al., 2011; 
Uhlenbrook & Tetzlaff, 2006). Information of interest is both the rainfall measures (as punctual measure-
ments and radar/satellite raw data) and the topographical characteristics (Goovaerts, 2000). To give more 
consistency to radar data, some correction methods need to be applied. These techniques are various and, 
each of them, with particular intrinsic errors (Hartkamp et al., 1999). The choice of which method is funda-
mental for the mountainous environment (Burrough & McDonnell, 1998), where sampling is scattered and 
information could differ substantially (Collins & Bolstad, 1996). Hasan et al. (2016) showed how increasing 
the complexity of merging algorithms the accuracy of results increases, provided that a sufficient number 
of rain gauge observations are available.

In this work, we compare rainfall measured by rain gauges with radar-derived rainfall estimates. The objec-
tive is to understand how differences in rainfall estimates during DF-producing storms translate into differ-
ences in modeled discharge, with a particular emphasis on whether or not the modeled discharge exceeds 
established thresholds for DF initiation. This is a first step in the process of exploring the possible use of rain 
gauge and/or radar data, in combination with a hydrologic model, in early warning systems for the real-time 
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evaluation of DF occurrence. A second step is the assessment of DF occurrence timing. For operational use, 
it should be closer to the observed one. In this way, the alert time for implementing the safety procedures 
(as closing roads and/or population evacuation, when necessary) should be enough. The prerequisite for 
using models in DF early warning systems is, in fact, their reliability, robustness, and short running time. 
More in detail, the objective is to understand how different estimates of rainfalls that triggered occurred 
DFs influence the simulation of the corresponding runoff. Once substantial differences have been found, 
we additionally searched for the easier methodology to adjust radar estimates for the purpose of improv-
ing the modeling outcomes. Therefore, the goal is not the development of algorithms for the correction of 
radar maps, but the use of radar estimates aimed at modeling DFs triggering. The remainder of the paper 
is organized as follows: Section 2 presents the study area and the rainfall data set. Section 3 illustrates the 
implemented methodologies for correcting radar images, the hydrological model and the rainfall Scenarios 
used for the hydrological modeling. Section 4 contains results and the corresponding discussion. Finally, a 
summary of the work is provided in Section 5.

2.  Study Site
2.1.  Study Area and DF Basins

The DF events analyzed in this study occurred along the left side of the Boite river valley in the Dolomites 
area of the Italian Alps (north-eastern Italy). In this area, old and recent occurrences of landslides are 
evident. In summer, the local population and productive activities are exposed to serious socioeconomic 
risks due to DF phenomena. They often cause fatalities, homelessness, and road interruptions, damaging 
the main local economy, which is mainly based on national and international tourism (Mattea et al., 2016). 
Figure 1 shows the whole study area, ∼300 km2.

The domain is characterized by a complex topography. Elevation ranges between 900 and 3,250 m a.s.l., 
with a mean altitude of about 1,850 m a.s.l. The landscape is dominated by large dolomite massifs: bed-
rock outcrops occupy large areas of the basins, mainly above 1,800  m a.s.l. where vegetation is limited 
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Figure 1.  Aerial view of the study area. Boundaries of the considered watershed are denoted by a red line, and the rain gauges by a yellow dot. Panel (a) shows 
the elevation of the vertical profile above the ground not covered by the radar beam; in (b), the Punta Nera basin. In the panels (c) and (d), the frontal views of 
the Fiames monitoring site, and the Cancia one. Each insert shows some of the rain gauges present in the area. The labels indicate their locations.
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and sub-vertical rock cliffs are prevalent (Marchi et al., 2008). At the base of steep rock cliffs, scree slopes 
represent sources of abundant debris. Taluses are made of poorly sorted sediments, ranging from parti-
cles to boulders. In this area, DFs generally initiate following high-intensity convective rainfall events 
(Gregoretti & Dalla Fontana, 2007). Headwater rocky basins rapidly deliver high discharges at the out-
let that can mobilize loose channel-bed sediments (Berti et al., 2020). The mobilization of loose mate-
rials has been well documented in the past, by both field monitoring (Berti & Simoni,  2005; Tecca & 
Genevois, 2009) and postevent field surveys (D'Agostino et al., 2010; Gregoretti & Dalla Fontana, 2008; 
Pastorello et al., 2020; Simoni et al., 2020). DF magnitude depends on sediment availability and runoff 
volume. It is generally enhanced by the entrainment of bed sediments during the propagation (Berger 
et  al.,  2010; Reid et  al.,  2016), and mitigated by the control works built along the channel (Bernard, 
Boreggio et al., 2019; Piton & Recking, 2016) if existing. The routing of these phenomena ends on the 
valley bottom, threatening the national road 51 and the settlements built around it (Thiene et al., 2017). 
The earliest documented occurred DFs date back to the second half of the 19th century (D'Agostino & 
Marchi, 2001). Events analyzed in this work are those that occurred after 2006 because radar data were 
not available before. The presence of rain gauges nearby the different initiation areas is fundamental to 
obtain the truthful triggering rainfall depth. Otherwise, precipitations have to be estimated through the 
rain gauges managed by the Regional Agency for Environmental Prevention and Protection of Veneto 
(ARPAV), 1–5.5 km far from triggering areas (Gregoretti & Dalla Fontana, 2008).

In the study area shown in Figure 1, we recognize eight basins subjected to DF activity, two of which in the 
area of Fiames. The basins (closed in correspondence of the DF initiation area) are listed in Table 1 with 
their morphological characteristics and hydrologic and topographical data. DFs initiate just below the base 
of the rocky cliffs but two cases: in the case of the Punta Nera basin, the DF initiation occurs on a chute in-
cising the rocky cliffs where debris material deposited after a cliff collapse (Bernard, Berti et al., 2019); in the 
case of the Rovina di Cancia basin, it occurs rather downstream the base of rocky cliffs because the upper 
part of the incised channel is occupied by several giant boulders that prevent the formation of consistent DF 
surges (Bernard, Boreggio et al., 2019; Simoni et al., 2020). However, in any case, the largest contribution to 
surface runoff comes from the rock walls. The geometric features of the watersheds (i.e., the area and the 
average slope angle θslope) have been computed employing DEMs (1-m grid size) derived from three LiDAR 
surveys carried out in 2010 (1 point/m2 density), 2011 (3 points/m2), and 2015 (10 points/m2). These LiDAR 
data were provided by the association “Regole d'Ampezzo,” the Land Protection Service of the province of 
Belluno (LPSB), and the Department of Public Works of the Veneto Region respectively (in Table 1, for each 
basin, LiDAR data used for building corresponding DEMs are reported). The morphology and the sediment 
characteristics of each initiation zone, such as the bottom width, the longitudinal slope angle θtrig, and the 
mean grain size dM, are those provided by Gregoretti and Dalla Fontana (2008) or have been directly deter-
mined in the field following their approach.
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Watershed Area (km2) θslope (°) B (m) θtrig (°) dM (m) QCRIT (m3/s) LiDAR data

Fiames 1a 0.03 72.3 2.20 33 0.09 0.17 LiDAR 2011

Fiames 2b 0.15 68.5 4.10 28 0.13 0.33 LiDAR 2011

Punta Neraa 0.20 51.5 5.00 22 0.04 0.11 LiDAR 2010

Rio Gerea 1.07 54.6 5.00 26 0.05 0.35 LiDAR 2010

Rovina di Canciab 0.65 54.2 8.00 27 0.07 0.68 LiDAR 2011

Rudanb 0.71 66.7 3.00 31 0.07 0.18 LiDAR 2011

Rudavoia 0.75 47.7 3.50 29 0.05 0.24 LiDAR 2010

Ru Seccoa 0.57 55.4 3.0 23 0.1 0.478 LiDAR 2015

Note. QCRIT is the DF triggering critical discharge distinctive for each basin evaluated by the Equation 10.
aPresent work survey data. bSurvey data from Gregoretti and Dalla Fontana (2008).

Table 1 
Watersheds With at Least One Occurred Debris Flow Since 2009. θslope Refers to the Basin Average Slope Angle, B, θtrig, 
and dM Refer to Bottom Width, Mean Diameter of Sediments and Channel Slope Angle at the Triggering section
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2.2.  Monitoring Networks and Rainfall Data

Rainfall data used in this work derives from two sources, that is, rain gauges and a C-band Doppler weather 
radar. Since 2009, rain gauges were positioned in the headwater basins to cover as much as possible this 
area, also considering the existing ones of the public authorities. Therefore, two rainfall monitoring net-
works have been implemented in a high-mountain environment. The two monitoring networks are those 
in the Fiames area (Cortina d'Ampezzo; Figure 1c) and in the Rovina di Cancia basin (Borca di Cadore; Fig-
ure 1d) far from each other about 15 km. The networks consist of 10 tipping bucket rain gauges in the area 
of Fiames (A rain gauges) and 6 in the area of Rovina di Cancia (B rain gauges). In both areas, rain gauges 
are positioned both upstream and downstream the initiation areas of DFs. Two other single rain gauges 
were installed close to the initiation area of Rio Gere (SA1) and Punta Nera (SA2) DFs (Cortina d'Ampezzo). 
Furthermore, we use data recorded by other three rain gauges (SA3, SA4, and SA5) of ARPAV, placed in the 
Boite river valley. Rain gauges sample precipitation at 5-min intervals. All the rain gauges and their related 
monitoring networks are listed in Table 2: 2 are managed by LPSB, 6 by ARPAV, 13 by the Universities of 
Bologna and Padova. Those about the two universities are mounted on some monitoring stations (Bernard, 
Berti et al., 2019; Bernard et al., 2020; Berti et al., 2020; Simoni et al., 2020) or are independent rain gauges. 
Their maintenance is quite tiring because they are scattered and at different altitudes, near initiation areas 
or higher. Moreover, due to the difficult environmental conditions, some gauges were temporarily subjected 
to malfunction and data missed. The use of alternative sensors to overcome such drawback, as disdrometers 
(Fehlmann et al., 2020), has been evaluated and planned for next monitoring seasons. In Table 3, for each 
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Rain gauge East coordinate (m) North coordinate (m) Elevation (m a.s.l) Working period Managed by

A1 740,087 5,163,191 2,126 Jul 2010 to present UNI

A2 740,162 5,163,024 2,150 Jun 2011 to present UNI

A3a 740,149 5,162,866 2,154 Jun 2011 to present UNI

A4 740,199 5,163,017 2,146 Jun 2011 to present UNI

A5 740,044 5,162,990 2,158 Jun 2011 to present UNI

A6a 740,109 5,162,382 1707 Jul 2010 to present UNI

A7 740,339 5,162,058 1,659 Jun 2014 to present UNI

A8 740,781 5,161,932 1,692 Jul 2009 to Nov 2015 UNI

A9 738,994 5,163,875 1,518 Jul 2013 to present UNI

A10 738,398 5,164,708 1,317 1984 to present ARPAV

B1aa 749,617 5,149,008 2,150 Sept 2013 to present LPSB

B1ba 749,617 5,149,008 2,150 Sept 2013 to present LPSB

B2a 749,275 5,148,313 1,666 Jul 2014 to present UNI

B3 749,685 5,149,063 1,760 Aug 2013 to Oct 2013 ARPAV

B4 749,094 5,147,733 1,335 1984 to present ARPAV

B5 746,273 5,148,299 968 1996 to present ARPAV

SA1 745,500 5,161,912 2,241 Jul 2009 to present UNI

SA2 744,016 5,155,350 1,519 2016 to present UNI

SA3 743,501 5,157,552 2,240 1992 to present ARPAV

SA4 749,027 5,163,227 1743 1992 to present ARPAV

SA5a 739,803 5,158,433 1,270 1984 to present ARPAV

Note. Coordinates shown are UTM zone 32°N; A, B, and SA are the abbreviations for rain gauges that correspond to the Fiames network, the Rovina di Cancia 
one, and the stand alone rain gauges, respectively. The acronyms UNI, ARPAV, and LPSB refer to the universities of Bologna and Padova, the Regional Agency 
for Environmental Prevention and Protection of Veneto, and the Land Protection Service of the Province of Belluno. Rain gauges B1a and B1b are placed at 1 m 
distance each other and are referred as B1 in other tables and figures.
aUsed by Gregoretti et al. (2016).

Table 2 
Rain Gauges Located in the Study Area
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Event Watershed
Reference 
rain gauge

Distance RG-
centroid (km)

Rainfall depth 
(mm) Duration (min)

Max rainfall 
intensity 

(mm/5 min)
Operative Rain 

gauge N

Time of 
occurrence 

hh:mm GMT

18/07/2009a Rovina di Cancia B4 1.3 46.4 150 11.6 7 03:40

22/08/2009 Rudavoi SA1 0.6 18.2 30 7.4 7 –

04/07/2011a Fiames 1 A1 0.8 13.4 35 2.5 21:46

Fiames 2 A10 1.5 28.2 75 3.8 7 –

18/08/2011a Fiames 1 A1 0.6 23.4 40 10.5 18:05

Fiames 2 A10 1.5 30.6 35 7.6 8 –

26/07/2013a Rovina di Cancia B5 3.3 21.6 70 3.2 15 –

19/08/2013a Rovina di Cancia B3 0.6 29.6 50 7.8 15 –

07/06/2015 Fiames 1 A3 0.3 15.2 30 5.8 15 22:18

23/06/2015 Punta Nera SA3 1.8 9.0 80 1.2 16 –

08/07/2015 Punta Nera SA3 1.8 15.4 85 4.4 19 –

17/07/2015 Rio Gere SA1 0.7 19.5 40 9.5 17 –

23/07/2015b Rovina di Cancia B1 0.1 38.1 40 8.2 20 14:05

25/07/2015c Fiames 1 A6 0.2 18.4 30 5.8 16 –

04/08/2015b Rovina di Cancia B1 0.8 39.2 40 9.9 17 18:37

Rio Rudan B1 1.2 39.2 40 9.9 –

Ru Secco B1 2.4 39.2 40 9.9 –

08/08/2015 Punta Nera SA3 1.8 19.2 85 6.2 13 –

16/06/2016 Punta Nera SA3 1.8 4.8 35 1.6 17 –

24/06/2016 Punta Nera SA2 0.8 6.0 35 1.5 18 –

27/06/2016 Punta Nera SA2 0.8 6.0 70 1.0 18 –

13/07/2016 Punta Nera SA2 0.8 5.5 30 1.5 18 –

21/07/2016d Punta Nera SA2 0.8 8.4 25 4.0 19 18:32

05/08/2016d Punta Nera SA2 0.8 14.4 155 1.4 19 09:14

14/08/2016d Punta Nera SA2 0.8 4.4 15 3.2 20 19:03

18/08/2016d Punta Nera SA2 0.8 7.4 35 3.2 20 17:10

20/08/2016d Punta Nera SA2 0.8 25.6 325 1.6 20 –

21/08/2016d Punta Nera SA2 0.8 5.8 25 3.4 20 15:13

04/09/2016d Punta Nera SA2 0.8 21.4 155 4.8 20 18:02

22/06/2017d Punta Nera SA2 0.8 20.8 45 7.6 13 19:45

02/08/2017d Punta Nera SA2 0.8 14.6 20 6.8 15 14:58

04/08/2017d Punta Nera SA2 0.8 19.8 75 6.2 16 23:42

Rio Gere SA1 0.7 46.5 80 8.5 –

12/09/2017 Punta Nera SA2 0.8 37.8 410 1.4 15 –

05/07/2018b Rovina di Cancia B1 0.1 36.9 110 7.1 12 16:45

14/07/2018d Punta Nera SA2 0.8 15.4 25 9.6 13 21:13

01/08/2018b Rovina di Cancia B1 0.1 50.0 175 11.0 13 20:58

09/08/2018d Punta Nera SA2 0.8 16.6 35 6.8 13 12:02

01/07/2020b Rovina di Cancia B1 0.1 27.0 60 14.0 13 13:10

Table 3 
Summary of Debris-Flow Events With the Triggering Rainfall Since 2009
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DF event, we report the features of the DF triggering precipitation, recorded by the operating rain gauge 
nearest to the basin centroid. The triggering rainfall is the rainfall depth fallen from the beginning of precip-
itation to the time of DF occurrence (Gregoretti & Dalla Fontana, 2008). For identifying the rainfall begin-
ning time, we applied the definition of burst used by Coe et al. (2008). The timing of occurrence is known 
by the monitoring stations of Bernard, Berti et al. (2019); Berti et al. (2020); Simoni et al. (2020) for 20 of the 
41 DFs (Table 3). Therefore, for the sake of homogeneity, we used the entire precipitation of the event in all 
the cases. In Supporting Information Material, we show that the outcomes for the 23 events in which DF 
timing is known, do not change excessively when considering the “real” triggering rainfalls.

The weather radar is located on the top of Mount Macaion at 1860 m a.s.l. (Bolzano province), about 70 km 
far from the study area (Figure 1). Technical information about the instrumentation is reported in Marra 
et al. (2014). This radar is not the same used by Orlandini and Morlini (2000) for their study in this area. 
Precipitations are estimated from the observations of radar reflectivity, with a high resolution both in time 
(5 min) and in space (0.5 × 0.5 km2). More in detail, data furnished by the radar-managing institution and 
used in this study concern the intensities corresponding to the maximum reflectivity observed along the 
vertical of each pixel. The conversion from reflectivity to rainfall intensity is carried out using the Z-R rela-
tionship of Marshall-Palmer (Marshall & Palmer, 1948). This relation is used by the managing institution as 
the standard one, independently from the type of precipitation. In the upper left panel of Figure 1, it is pos-
sible to see the degree of occlusion of the radar beam, shown as minimum elevation above the terrain level 
visible by the radar beam. The rain gauge network A and the rain gauges SA1, SA2 and, SA3 seem affected 
by limited problems of occlusion, whereas the radar beam cannot cover at least 500 m or more of the verti-
cal profile above the other rain gauges. However, no other corrections are applied to the rainfall estimates.

3.  Methods
The objective of this research is to evaluate the ability of a hydrological model to predict the occurrences of 
DFs by using different rainfall estimates. At first, we compare the Mt. Macaion radar estimated precipita-
tions with the corresponding ground data measurements to evaluate the employing of the radar technology 
to headwater basin hydrology for determining the DF triggering conditions for early warning purposes. 
The comparison is initially carried out between the punctual measurements and the corresponding pixel 
estimates of radar by using statistical indexes. The radar-rainfall estimates are then corrected following two 
different approaches and the comparison is carried out on the basin mean areal rainfall. Finally, we evaluate 
the potential use of the extracted Scenarios (raw and corrected radar-rainfall estimates) to model DF trigger-
ing runoff and comparing the results with those provided by using the rain gauge data.

3.1.  Statistics for Comparing Ground Data of Rainfall with Those Estimated by Radar

To evaluate differences between radar and rain gauge rainfalls, several statistics are considered. Ground 
data are selected as the independent variable (direct measurement of rainfall depths), whereas radar-rain-
fall values are chosen as the auxiliary one (rainfall depths estimated from reflectivity) according to Skinner 
et al. (2009). To evaluate the relationship between rainfall quantities, we calculate the following indexes 
commonly used for this task (Cunha et al., 2013; Vogl et al., 2012):
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Table 3 
Continued

Event Watershed
Reference 
rain gauge

Distance RG-
centroid (km)

Rainfall depth 
(mm) Duration (min)

Max rainfall 
intensity 

(mm/5 min)
Operative Rain 

gauge N

Time of 
occurrence 

hh:mm GMT

23/07/2020 Rio Gere SA1 0.7 8.4 30 4.4 15 –

29/08/2020b Rovina di Cancia B1 0.1 31.9 140 3.7 13 14:30

Note. For each event, we report the hit watershed, the reference rain gauge, its distance to the basin centroid, the features of the recorded precipitation and the 
time of DF triggering, when observed. We also report the number of operative rain gauges at that time.
aDegetto et al. (2015). bSimoni et al. (2020). cBerti et al. (2020). dBernard, Berti et al. (2019). 
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•	 �the normalized bias (NB), a measure of the overall deviation of radar values compared to the correspond-
ing rain gauge measurements, whose optimal value is 0:

 



, ,

,

( )
100 i t i t

i t

R G
NB

G� (1)

•	 �the root mean square error (RMSE) that represents the dispersion of radar estimates with a best possible 
value of 0:

 


2
, ,( )i t i tR G

RMSE
N

� (2)

•	 �the correlation coefficient (corr) that indicates the linear correlation between the two data sets, varying 
between −1 and 1:

 


[ , ]

R G

cov R Gcorr� (3)

•	 �the Nash-Sutcliffe efficiency coefficient (EC), a score proportional to the variance of quantities, varying 
between −∞ and 1:

 
 

 

2
, ,

2
,

( )
1

( )
i t i t

i t t

R G
EC

G G
� (4)

The quantities Ri,t and Gi,t indicates the rainfall depths estimated/recorded by the radar/rain gauges at the ith posi-
tion at the time t, tG  denotes the rain gauge average in space, N is the number of compared measure pairs, cov rep-
resents the covariance operator, and σX the standard deviation of the variable X. These indexes are separately com-
puted on the whole area for each rainfall event, considering all the rain gauges working at the same time. To limit 
the influence on the scores of low rain rates, we only consider the time steps for which the values of rain intensity of 
either the rain gauges or the radar is greater than the resolution of the tipping bucket rain gauge, that is, 2.4 mm/h.

3.2.  Bias Correction Methods

To give more consistency to radar data, we applied some correction methods. First, we implemented another 
equation to make the conversion from reflectivity to rainfall intensity, the relationship Z-R of NEXRAD, more 
suitable for accounting for convective events (Anagnostou et al., 2010; Fulton et al., 1998). As reported in Sec-
tion 1, in a mountain environment the choice of the best method to combine rain gauge and radar data is fun-
damental. In the past, several interpolation methods have been proposed, considering data provided by rain 
gauges as truth and those by radar as auxiliary information. Erdin (2009) categorized all the methods into 
three main classes. The first one includes the adjustment of radar images to rain gauge measures. This class 
includes those methods which modify characteristics of radar data to match as well as possible the measure-
ment given by the rain gauges (Gjertsen et al., 2004). Hence, these methods are useful to improve the accu-
racy of radar-rainfall fields and are often used to post-process radar measurements (Germann et al., 2006). 
However, it is important to evaluate uncertainties in rain gauge measurements before developing a Z-R re-
lation that considers those rain gauges as ground truth (Hasan et al., 2014), otherwise, these uncertainties 
will affect the results of hydrological modeling (Habib et al., 2008). The second class includes the disaggre-
gation of rain gauge fields using radar information. These methods can be used to fill the gaps of rain gauges 
through the spatial pattern provided by radar (DeGaetano & Wilks, 2009) or to achieve a higher resolution in 
time (Wüest et al., 2010). The third class embraces all the geostatistical approaches. Based on the theory of 
regionalized variables, geostatistics allows predicting values of an analyzed variable at unsampled locations 
evaluating the spatial correlation between its neighboring measurements (Goovaerts, 1997, 1999). There are 
several options for modeling spatial dependencies of precipitation data, that is, the choice of semivariogram 
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(Holawe & Dutter, 1999), and likewise combination methods, as co-kriging (Creutin et al., 1988; Krajew-
ski, 1987), kriging with external drift (KED; Ahmed & De Marsily, 1987; Verworn & Haberlandt, 2011), co-
KED (Sideris et al., 2014), or conditional merging (Ehret, 2003; Sinclair & Pegram, 2005).

In this work, two different approaches for improving estimates of rainfall fields are selected and compared, 
both carried out on a 5-min scale. The former consists in the adjustment of radar data to the measures of a 
reference rain gauge hereinafter called corrected radar, the latter is the KED approach.

3.2.1.  The Corrected Radar Approach

The corrected radar approach is carried out to maintain the locally recorded variability of radar rainfall 
fields. The method eliminates the difference between the rainfalls recorded by the reference rain gauge and 
the corresponding radar pixel for each time step. The radar rainfall estimates for every pixel are rescaled by 
shifting radar fields to fill the gap between reference gauge measurements and the corresponding pixel ra-
dar-rainfall estimates. The bias adjustment is additive following the example of Borga (2002). He evaluated 
a mean-field bias between radar and rain gauge rainfalls on the entire study area. In our case, the rescaling 
of the precipitation field is carried out considering the single rain gauge nearest to the basin centroid with-
out any other topographic considerations.

3.2.2.  The KED Approach

The KED approach has been chosen because it permits the estimation of a nonstationary random function 
considering the spatial dependence of a primary variable and one or more auxiliary variables, linearly re-
lated to the primary one. The choice has been supported by the results of various studies (many of which 
reported in Ly et al., 2013) that highlight that KED estimates tend to be more accurate, especially when 
weather radar maps are used as external drift. Hence, it is assumed that the expected value of the main 
variable Z(x) is linearly related to n additional drift variables Yk(x) through the unknown coefficients bk:


      0

1
( ) | ( ) ( )

n

k k k
k

E Z Y b b Yx x x� (5)

A second basic hypothesis affirms that the variance of the increment of Z(x) between two points simply 
depends on its distance vector h:

              
2

( ) ( ) ( ) ( ) 2 ( )Var Z Z E Z Z Dx h x x h x h x� (6)

where γ(h) is the semivariogram. The KED estimator for an unknown point x0 consists of a weighted sum 
of the p surrounding observation Z(xi):


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( ) ( )
p

i i
i

Z Zx x� (7)

where the λi weights have to be estimated by the kriging system:
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where μk are Lagrange multipliers, whereas the bk coefficients of Equation 5 are implicitly estimated, with 
the hypothesis that the additional variables Yk are known at all points x.

In this work, the KED approach estimates the rainfall field using the precipitations recorded by rain gauges 
as the primary variable, and radar rainfall field as an auxiliary one. Generally, also the orography of a region 
influences precipitations, mainly if it is complex. If rainfall and elevation are strongly correlated, a map of 
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topography could be used to improve the performance of interpolation 
(Masson & Frei, 2014). The relationship between rainfall and elevation is 
evaluated for each considered event following Nikolopoulos et al. (2015). 
The rain gauges are grouped according to 200-m elevation intervals and 
for each interval, both the maximum intensity and the mean of cumu-
lative depths are computed. Such quantities show a non-monotonic be-
havior so that elevation and rainfall result uncorrelated. Therefore, the 
elevation is not used as an auxiliary variable.

To evaluate the spatial dependence of rainfall, the semivariogram estima-
tion should be carried out for each time step. It would be time-consum-
ing: for each time step, we need to evaluate a specific experimental semi-
variogram and, then, the relative theoretical model that fits it. To simplify 
this procedure, we follow the approach used by Haberlandt (2007). We 
estimate the experimental semivariogram  *( )h  as average on time of the 
several interval-specific semivariograms:


 

    
( )

* 2
21 1

1 1( ) [ ( , ) ( , )]
2 ( ) ( )

nn t

i i
t it t

Z t Z t
n n s Z

h
h x h x

h
� (9)

where n and nt(h) are respectively the number of time steps t and cou-
ples of data separated by the distance h, and Z(xi,t) is the value assumed 
by the rain gauge precipitation in the location xi at time step t. For each 

time step, the specific experimental semivariogram is standardized by the variance 2
ts . To ensure that the 

semivariogram is continuous and evaluable for every distance h, a theoretical model γ(h) is fit on the values 
provided by the experimental semivariogram  *( )h . As a theoretical semivariogram, we use a combination 
of the spherical model and a nugget effect. Moreover, we further simplify this approach, using an “average” 
theoretical semivariogram: its parameters are evaluated as the median of the parameters of every event sem-
ivariogram. We choose the median value because it is less sensitive to outliers than the mean value (Höhle 
& Höhle, 2009). The median semivariogram will be used in two different interpolations: (1) considering the 
entire rain gauge data set; (2) considering the rain gauges of the regional monitoring network, managed 
by ARPAV (Table 2), to point out the relevance of maintaining a high-elevation rain-gauge network in a 
mountain area.

When the KED method is applied for merging rain gauge and radar data collected at a high temporal res-
olution, numerical instabilities could appear solving the kriging system (Equation  8). This considerable 
problem might occur when the variation of the modeled variable is not smooth in space, for example, when 
many rain gauges record zero precipitation. If the kriging system turns out to be singular or ill-conditioned, 
the theoretical semivariogram would be manually adapted, that is, the parameters of the theoretical semi-
variogram would be manually varied to best fit the points of the experimental semivariogram.

3.3.  The Hydrological Model for Headwater Rocky Basins

Runoff modeling is essential for the determination of debris-flow occurrence that takes place when runoff 
exceeds a critical discharge (Gregoretti & Dalla Fontana, 2008). Therefore, we used an event-based distrib-
uted hydrological model designed for a headwater rocky environment that has been satisfactorily calibrated 
and tested against field observations (Gregoretti et al., 2016). Excess rainfall is computed for each pixel by 
a simplified Hortonian law when the rainfall intensity is larger than the infiltration rate fc, or by the Curve 
Number method of Soil Conservation Service, when the rainfall intensity is smaller than the infiltration rate 
fc. The first mechanism simulates the contribution to runoff of excess rainfall whereas the second one simu-
lates the contribution of interflow. Runoff is transferred to the drainage channel network along the steepest 
slope direction, with slope velocities that are constant but different for each land use. Finally, it is routed 
to the watershed outlet using the matched diffusivity kinematic model of Orlandini and Rosso (1996). Pa-
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Parameter

CN

Rocks 91.3

Scree 65

Bushes 61

US (m/s)

Rocks 0.7

Other terrains 0.1

KS (m1/3/s) 9

fc (cm/h)

Rocks 3.12–0.15P

Scree 10.5

Bushes 6.5

Note. The relation for evaluating the Hortonian infiltration fc is effective 
only for AMC I events. P denotes the cumulated precipitation fallen in the 
2 days preceding the event (expressed in mm).

Table 4 
Calibrated Parameters of the Hydrological Model
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rameters of the model are the curve number CN, the infiltration rate fc, the slope velocity U, and the Gauck-
ler-Strickler coefficient KS (Table 4).

In Gregoretti et al. (2016), the hydrological model was calibrated by comparing the simulated discharges 
with those measured at the outlet of the rocky channel of Fiames 1. Rainfall fields used as input of the 
model were recorded by using two rain gauges placed just upstream and downstream of the watershed. In 
particular, the values of the parameters are constant for all simulations but the infiltration rate that depends 
on the 2-days previous rainfall depth. The model has been also tested, according to Rengers et al. (2016), 
through the timings of the initiation of four DF events occurred in the Acquabona and Rovina di Cancia 
basins. The calibration of parameters has been carried out only for rocky terrains (according to the Coordi-
nation of Information on the Environment land cover map published in 2012) because the headwater basin 
of Fiames 1 is almost exclusively composed of this kind of soil. In presence of scree, bushes or dwarf moun-
tain pines, the values of parameters concerning CN, slope velocity and infiltration rate are those provided 
by Gregoretti et al. (2016).

3.4.  Scenarios for Hydrological Modeling

Rainfall is the most important input for hydrological modeling; therefore, understanding how rainfall errors 
condition hydrological applications, quantifying uncertainties on the results of models has great impor-
tance (Chen et al., 2013). Hydrological modeling was carried out by using different scenarios, outcomes of 
correction methods shown in Section 3.2. We applied different scenarios to find the easier and robust meth-
od to adjust radar estimates for the purpose of improving the modeling results. The rainfall field scenarios 
used as input of modeling are:

1.	 �The nearest neighbor interpolation of rain gauges data;
2.	 �The raw radar estimates furnished by the radar managing institution;
3.	 �The radar estimates transformed by using the NEXRAD equation (Fulton et al., 1998);
4.	 �The corrected radar fields, i.e., the correction of radar maps by means of a reference rain gauge;
5.	 �The KED interpolation;
6.	 �The KED interpolation with the “median” semivariogram;
7.	 �The KED interpolation with the “median” semivariogram of the rain gauges belonging to the ARPAV 

network, that is, those not explicitly used in DF monitoring.

For each modeled event, the peak value of the simulated runoff is then compared with a triggering dis-
charge: DF initiates when runoff discharge becomes larger than the threshold value. Such approach ini-
tially used in sediment transport for determining the incipient motion condition (Bathurst et al., 1987) has 
been extended to DF initiation by Tognacca et al. (2000), and nowadays, it is widely used for determining 
the triggering conditions of DFs (Berti et al., 2020; Gong et al., 2020; McGuire & Youberg, 2020; Pastorel-
lo et al., 2020; Raymond et al., 2020; Tang et al., 2019; Wei et al., 2018) rather than the rainfall-intensity 
thresholds.

The critical discharge equation for DF triggering here used is that proposed by Gregoretti and Dalla Fon-
tana (2008), tested on about 30 occurred DFs:




1.5

1.270.78
tan

M
CRIT

TRIG

dQ B� (10)

where B, dM, and θTRIG are, respectively, the bottom width, the mean size of debris, and the bed slope angle 
at the triggering section.

4.  Results and Discussion
4.1.  Comparison Between Measured and Estimated Rainfalls

In Figure 2, we show, for each DF event listed in Table 3, the values of the computed statistics introduced in 
Subsection 3.1, that quantify the differences between gauged and radar-estimated rainfalls. Statistics were 
computed using all the active rain gauges on the entire study area.
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The NB, RMSE, and EC indexes demonstrate the relevant difference between the radar and rain gauge rain-
fall fields. The NB percentages (Figure 2a) range between −93.5% and 89.1%, with a mean value of −41.2% 
(most of the events are definitely below zero). If the NB index describes a systemic underestimation trend, 
RMSE quantifies the random error between observed rainfalls (Neary et al., 2004): the greater the index, 
the greater the existing random gaps between corresponding pairs. In this case (Figure 2b), RMSE has an 
average value of 0.9, varying between 0.2 and 2.0. Finally, the EC index (Figure 2c) varies inside a wide 
range (from −901.4 to 0.5), showing the unpredictable behavior of raw radar estimates in comparison with 
the rain gauge measures, in accordance to Verworn and Haberlandt (2011). These outcomes are expected 
because of the multiplicity of problems in mountainous areas (Andrieu et al., 1997). On the other hand, 
considering the small sampling precipitation interval (5 minutes), values of correlation show good spatio-
temporal accordance between the radar and the rain gauge fields for most of the events (it ranges between 
−0.1 and 0.9 with a mean value of 0.4). Differently from the other indexes, the correlation does not consider 
the disagreement between measured rainfall fields but enables to compare the meteorological structure of 
the recorded precipitations. It is evident that other studies (e.g., Cunha et al., 2013; Goovaerts, 2000; Velas-
co-Forero et al., 2009) obtained higher correlation values but in less complex topographies and using larger 
time intervals for comparing precipitations.

4.2.  Bias Correction

Once the bias between recorded rainfalls has been assessed, raw radar data are corrected according to the 
methodologies pointed out in Section 3.2. The improvements on radar data are evaluated comparing for 
each event the mean areal precipitation fallen in the basin delimited to its DF initiation area. The reason for 
changing the scale, from the 300 km2 study area used for the previous point-comparison to the watershed 
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Figure 2.  Statistical indexes for the comparison between radar and rain gauge rainfall elds computed for each analyzed event. Panel (a) refer to normalized 
bias (NB), (b) refers to the root mean square error (RMSE), (c) refers to the Nash-Sutcliffe efficiency index (EC), and (d) refers to the correlation coefficient 
(corr). For graphical purposes, the lower boundary of panel (c) is limited to −16.0.
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extent, is for maintaining the observed variability of precipitation on the watersheds hit by the 
DF triggering storm. In such a case, methods for areal correction can be applied and their results 
compared. Table 5 and left inserts of Figure 3 summarize the differences between the raw and 
bias-corrected radar data. To avoid misunderstandings, we refer each rainfall field to the corre-
sponding Scenario described in Section 3.4.

Scenario 1 (the nearest neighbor interpolation of rain gauge data) is chosen as a reference since 
it better describes reality, given the noticeable difference with the raw radar data reported in Sec-
tion 4.1. The analysis of the percentage difference between the rainfall depths of each scenario and 
that of Scenario 1 is carried out for each event. Outliers are defined as values that fall outside the 
range      1 3 1 3 3 13( ), 3( )Q Q Q Q Q Q , where Q1 and Q3 are the first and third quartiles (Tuk-

ey, 1977). These events are characterized by a high spatial variation of rainfall that the rain gauges 
cannot capture. Plotting the relative boxplots (Figure 3), the median of the percentage difference 
between the rainfall depths of Scenarios 1 and 2 or 3 (the raw radar estimates) is high: −73%. 
This means a noticeable underestimation of the rainfall field (the mean areal precipitation on DF 
basins). These outcomes mean that the used Z-R relation is not much significant. The Scenarios 
4 (corrected radar field) and 5, 6, and 7 (KED interpolation with different degrees of averaging) 
are more similar to the ground-recorded rainfall field: 2%, −19%, −17%, and −18%, respectively 
(Figure 3a). A similar result could be deduced for the differences in maximum intensities (Fig-
ure 3b). Scenario 4 provides the best approximation to rainfalls of Scenario 1 (however, in Sub-
section 4.4, we will point out how the choice of the reference rain gauge for rescaling the rainfall 
fields is fundamental). The KED interpolation (Scenario 5) shows spreader differences than the 
corrected radar field (Scenario 4). A reason for this behavior has to be looked for: (1) the average 
of computed semivariograms; (2) the highly localized character of the triggering storms. A further 
demonstration is given by Scenarios 6 and 7: increasing the averaging of the semivariograms leads 
to a higher spreading of differences with respect to Scenario 1 as well as the use of a lower number 
of rain gauges in the interpolation. A different behavior can be inferred looking to the timings of 
maximum intensities (Figure 3c). In this case, the median values of differences are quite simi-
lar, ranging between 0% and 42%; the differences among scenarios lie in the interquartile range: 
the Scenarios 4–7 tend to overestimate the timing of maximum intensities respect to Scenario 1, 
whereas the timings of raw radar scenarios (2 and 3) are spread around the Scenario 1 timing, 
confirming the good correlation showed in Subsection 4.1.

4.3.  Hydrological Modeling

We highlight now the results of hydrological modeling and prediction of DF triggering that are also 
reported in Table 5. For the simulations, we did not use the mean areal rainfalls but the distributed 
rainfall fields to better characterize the contribution to runoff of the rocky walls. In the case of 
Scenario 1, we subdivided each basin by using Thiessen polygons to identify the area of influence 
of rain gauges; for the remaining scenarios, each watershed has been subdivided considering the 
pixels of radar fields. A point needs to be clarified for Scenario 5: considering that the primary and 
the secondary variables must be linearly correlated for applying, simulations corresponding to 
Scenario 5 are carried out only when the correlation index is higher than 0.2, that is, in 35 events 
of the considered 41. For Scenarios 6 and 7, this is not necessary because of the made approxima-
tions. Results are shown in Figure 3d as the percentage difference between the simulated peak 
discharges provided by each Scenario and those corresponding to the reference scenario (Scenario 
1). Boxplots show the marked underestimation of simulated peak discharges for Scenario 2 and 
3 (raw radar data). Scenario 4 (corrected radar field) provides the best approximation for the sim-
ulated discharges with respect to Scenario 1 (the median of the percentage difference values is 
−2%), whereas the simulated peak discharges corresponding to KED scenarios are either close or 
in an intermediate position (−14%, −34%, and −33% the median difference values). The results 
of KED scenarios highlight that the worse the approximation in the interpolation, the greater the 
discrepancy in the outcomes. Results do not substantially differ from previous works on the use of 
radar data for the assessment of similar phenomena as flash floods. When hydrological models use 
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unadjusted radar data as rainfall input, they perform worse than using radar data corrected by using rain 
gauge records (Borga, 2002). Furthermore, for flash floods, using adequately corrected radar data as forcing, 
simulations better reproduce the recorded observations even compared to simulations which input are rain 
gauge data (Looper & Vieux, 2012). Our outcomes result slightly different; KED Scenarios, although using 
radar maps as forcing, produce worse results than using rain gauges.

No relationships have been found between the underestimation of raw radar-based rainfall fields and the 
considered watershed features (e.g., basin area, mean slope, antecedent moisture condition). These lacks of 
correlation are due to radar indirect measure of precipitation. Each rainfall event is different from another 
and, considering that rainfall reflectivity is directly related to its features (Atlas et al., 1999; Berne & Kra-
jewski, 2013; Sempere-Torres et al., 1994), the use of a wrong Z-R relationship could lead to noticeable bias 
(Krajewski & Smith, 2002). In this case, the use of a Z-R relationship verified for convective events (Scenario 
3) leads to results similar to Scenario 2. The use of correction techniques (Chumchean et al., 2004; Marra 
et al., 2014) should allow a better estimation of the real rainfall field. Unfortunately, they are much more 
time consuming and could hardly be used when real-time forecasting is requested. Otherwise, also a radar 
located closer to the basins subjected to DFs, with fewer beam blockages, could provide a more reliable 
estimation of the real rainfall field (Tiranti et al., 2014). Differences between peak discharges related to the 
different Scenarios are larger than those of the corresponding rainfalls. This occurs because of the short du-
ration of rainfalls and the higher percentage of the losses (initial abstraction and infiltrated precipitation) so 
that a small difference of 3–5 mm can entail a sensible difference on both peak and volume of runoff (runoff 
coefficients of data of Gregoretti et al., 2016 and Berti et al., 2020 are smaller than 0.1). Moreover, when 
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Figure 3.  Boxplots of differences in (a) mean areal precipitation, (b) peak of discharge, (c) maximum intensity, and (d) timing of maximum intensity for each 
scenario compared with Scenario 1. Each boxplot refers to the values in Table 5. Circles are the outliers evaluated following Tukey (1977), the thick line in the 
boxplot difference is the average value excluded the outliers, the red diamond represents the average values considering all the events. For plotting purposes, 
some whiskers are not completely shown.
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differences between precipitations result over 100%, differences between discharges could result greater 
than 1,000% due to the nonlinearity of the runoff-generation process (Robinson et al., 1995).

Regarding the triggering of DFs, Figure 4 shows for each basin the comparison between simulated and 
critical discharges computed according to Equation  10. Considering Scenarios 1 and 4, simulated peak 
runoff correctly predicts 33 and 32 DFs on 41 (80% and 78%, respectively), whereas those corresponding to 
Scenario 5 are 27 on 35 (77%). The prediction rates of Scenarios 6 and 7 are lower, 27 on 41 (66%). About 
70% of the simulated peak discharge corresponding to Scenarios 2 and 3 are smaller than critical discharges 
computed by Equation 10 so that only 13 DF events are properly predicted. The events that Scenario 1 could 
not predict are DFs that occurred in the Punta Nera basin. Here, the nearest reference rain gauge is about 
0.9 km far from the basin centroid. This distance could make recorded depths less representative of the 
rainfall fallen in the basin. On the other hand, in this basin, the radar beam clogging is less pronounced and 
could better estimate precipitations. For these reasons, for some events, rainfalls of Scenario 1 lead to simu-
lated peak discharge smaller than the critical discharge, while corresponding rainfalls evaluated with other 
Scenarios result much larger than the critical discharge, pointing out the potential usefulness of radar data 
when the effects of the source errors are reduced. Although the simplified KED (Scenario 6) underestimates 
both rainfall and simulated discharges, its results are not so different from the more rigorous KED method. 
Scenario 7 deserves a separate discussion: its percentage of prediction is quite low and highlights the need to 
have a widespread network of rain gauges in a so complex area. Scenario 4 results in the best predictor but, 
on the other side, requires to maintain the network of rain gauges in the proximity of DF triggering areas 
(as we will highlight in Subsection 4.4).

Regarding the prediction of DF occurrence timings, we analyzed two cases: (a) DF occurrence time corre-
sponding to the timing when simulated discharge overpasses the triggering threshold (Figure 5a); (b) DF 
occurrence time corresponding to the peak of the simulated discharge (Figure 5b). In both cases, scenari-
os show a good correspondence between observation and simulation timings (reported in the Supporting 
Information Material). Most of the events are predicted in a ±5-min time lag. In case (a) Scenario 1 tends 
to forecast DFs too early (in four events, the time lag is greater than 10 min in advance). The worst perfor-
mances are obtained by raw-radar (the events are predicted with a time lag equal to or greater than 10 min). 
The other Scenarios have good timing (on average time lags lie in the range ±2 min). In case (b), Scenario 1 
improves its prediction times, while the others tend to predict with delay (on average 2 min) the triggering 
of DFs (only two events are predicted in advance). However, the prediction in advance is not surprising 
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Figure 4.  Comparison between the simulated peak runoff and the critical discharges values (horizontal segments) 
provided by Equation 10 for the watershed hits by debris flows. The insert zooms the simulated peak values that do not 
exceed the threshold. Rescaling of runoff with the basin area, A, was done for plotting purpose.



Water Resources Research

because the DF formation, that is, the entrainment process of large quantities of sediments into runoff, 
could require some minutes.

As the last analysis, for the basins with more than 2 recorded DFs, we evaluated the correction factor (CF) 
from one rainstorm to another (defined as the ratio between cumulative depths of Scenarios 1 and 2). CFs 
consistently vary for every analyzed basin, further demonstrating how variable radar precipitation estimates 
are also in the same location (Figures 6a and 6b). However, a reasonable correlation between mean areal 
precipitation and CF has been found for each basin (Figure 6a): the lower the cumulative precipitation es-
timated by radar, the greater the CF. This result should be encouraging, especially for the high value of the 
various coefficients of determination, greater than 0.85 for every basin. It could provide an empirical-based 
operative method that could be generalized and used at other sites or for groups of neighboring basins, 
that is, (1) installing a rain gauge in the proximity of the basin, (2) fitting a relation between cumulative 
depths and CFs, (3) applying the fitting equation to future events. The same procedure has been carried 
out by fitting a power function on the full data set (Figure 6b). This interpolation has a greater degree of 
approximation, given that the value of the coefficient of determination is around 0.55. By multiplying the 
Scenario 2 maps by the relative site-specific or the global CFs, the results on modeling of DF triggering are 
better than those obtained with Scenarios 1 and 2: on 37 events, specific and global CF adjustments lead to 
34 and 33 forecast DFs in comparison to 29 and 11 of Scenarios 1 and 2, respectively. The global CF function 
has been verified on the basins not used in its development, that is, those with only one or two DF events 
(Fiames 2, Rio Rudan, and Ru Secco). All the four DF events have been correctly predicted (two more than 
Scenario 2), proving good robustness of the tested procedure (detailed outcomes are reported in Supporting 
Information Material).

Unfortunately, this approach is lacking since the cumulative depth that the radar will estimate during an 
event is not known a priori. To overcome this issue, this application could be done auto-adjusting the CFs. 
Every 5 min, CFs should be updated based on the partial cumulative rainfall and hydrological simulations 
performed, paying attention to the values computed on the first time steps. In those instants, the radar 
cumulative precipitation tends to be very low and, consequently, the CF to be applied is very high (upper 
panels of Figure 6). A cumulative threshold could be adopted, that is, a minimum value for considering 
radar-recorded precipitation as significant; in this way, rainfalls of little interest will not be considered. 
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Figure 5.  Comparison between the observed time of DFs occurrence and the simulated one. In the panels, the simulated time corresponds to the timing when 
the simulated discharge: (a) overpasses the triggering threshold, (b) reaches the peak of the discharge. Dotted and dashed lines indicate a 5-min and a 10-min 
lag with respect to the 1:1 line (red line), respectively. DF, debris flow.
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Taking for example the value of 8 mm as a critical threshold, almost half of the analyzed DF events, usually 
characterized by small magnitude (i.e., a small volume of transported sediments) are not considered. For 
the other events with much larger transported sediment volumes, once the set threshold was overcome, the 
auto-updating procedure can be carried out. Lower panels of Figure 6 show as examples the events that 
occurred on July 4, 2011 (Figure 6c) on the Fiames 2 basin, and on August 4, 2015, in the Rovina di Cancia 
(Figure 6d) and the Rudan (Figure 6e) basins, respectively. In general, after the auto-updating procedure, 
the discharge of hydrological simulations corresponding to events with radar cumulative rainfall larger 
than 8 mm overpasses the triggering threshold, whereas simulations performed using Scenario 2 maps do 
not always succeed in exceeding it. On the downside, the obtained peak values are quite different with re-
spect to those obtained by Scenario 1. However, we must remember that considered precipitations are short-
er than those used in the other simulations. Furthermore, these simulations do not differ too much from 
the simulations performed correcting the radar maps with the CF evaluated at the end of the precipitation 
(lasting longer). These results show that the hydrological model here applied can be used for determining 
the DF occurrence in early warning systems. Its operational use is guaranteed by the small time lag between 
the observed and predicted DF occurrence timings and its computational time shorter than 1 min. The high 
velocity of DF downstream routing requires an alert time as large as possible for implementing the safety 
procedures of civil protection.

4.4.  Rescaling the Radar Field

In this section, we analyze how the choice of different rain gauges as ground truth could influence the re-
sults of simulations performed with radar data corrected through the Scenario 4 procedure (i.e., the correct-
ed radar approach). The basins taken into account for this analysis are Fiames 1 and 2, and Rovina di Cancia 
(hereafter called Cancia). Fiames basins are two watersheds on the western slope of the Pomagagnon massif 
in the monitoring site A (Figure 7a). Cancia is located in the monitoring site B (Figure 7b), delimited by the 
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Figure 6.  In upper panels, correction factors (CF) versus cumulative depths (CD) for the events of watersheds with more than 2 recorded DFs. In panel (a), 
we fit a different power function on data of each basin. In panel (b), we fit a power function on the entire data set of events. In lower panels, hydrological 
simulations of the event occurred on (c) July 4, 2011, in the Fiames 2 basin, and on August 4, 2015, in (d) the Rovina di Cancia and (e) the Rudan basins, 
respectively. Input rainfall data are Scenario 1, Scenario 2, Scenario 2 adjusted using the global CF evaluated when rainfall overcomes the critical cumulative 
threshold of 8 mm, and Scenario 2 adjusted using the global CF evaluated at the end of the precipitation. The timing of DF triggering is reported as an arrow for 
the event whose trigger has been monitored. DF, debris flow.
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western slope of Mt. Antelao. Furthermore, the Cancia basin is historically prone to stony DFs, that in the 
past inundated the village of Borca di Cadore causing several fatalities, as pointed out by several authors 
(Bacchini & Zannoni, 2003; Deganutti & Tecca, 2013; Simoni et al., 2020). This is the reason of the presence 
at Cancia of two permanent (B4 and B5) rain gauges managed by ARPAV, two rain gauges (B2 and B3) 
installed by the Universities of Bologna and Padova (Gregoretti et al., 2016; Simoni et al., 2020), and two 
rain gauges (B1a and B1b) of the monitoring and alarm system of the LPSB, since 2014. The abundance of 
gauges in both the areas with different distances from the watershed centroids permits to analyze how the 
choice of the reference gauge for the correction of radar rainfall (Scenario 4) influences both the corrected 
radar rainfall field and the simulated runoff discharges. For the Fiames basins, we choose the events that 
occurred in 2011 (both the basins) and 2015 (only Fiames 1), for Cancia we consider the DF events that 
occurred in 2015, 2018, and 2020 when data of rain gauge B1 (averaged values of B1a and B1b) are available. 
The rain gauges available at Fiames are A1, A6, and A10 for the events of 2011 and A3, A6, and A10 for the 
events of 2015. The rain gauges available at Cancia are B1, B2, B4, and B5 for all the events.

In Figure 8, for each event, we plot the cumulative rainfall recorded by each considered rain gauge and esti-
mated by radar in the corresponding locations. It is interesting pointing out that the spread between the depths 
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Figure 7.  Orthophoto of the Fiames area (a) and the Cancia watershed (b); (c–e) The land cover of the basins Fiames 2, Fiames 1, and Cancia, respectively. 
Isolines represent isohypses.
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Figure 8.  Precipitations recorded by rain gauges during the DF events occurred on 2011, (a) July 4, (b) August 18; 2015, (c) June 7, (d) July 25, (e) July 
23, (f) August 4, 2018, (g) July 5, (h) August 1, 2020, (i) July, 1, (j) August, 29. In the figure, we also report the cumulative depths estimated by radar in the 
corresponding locations (the same line style identifies corresponding rain gauge and radar depths). DF, debris flow.
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recorded by rain gauges is small for each event in the Fiames area, whereas in the Cancia area tends to be larg-
er, despite the maximum distances and elevation gaps between gauges are comparable in the two monitoring 
sites. On the other hand, for both the sites the significance of radar estimates depends on the considered event.

Due to these marked differences in both rainfall depths and simulated discharges between Scenarios 1 
and 2, we applied the Scenario 4 correction, using one by one the various rain gauges as reference gauge. 
Figure 9 compares the mean areal rainfall depth RM on the basins and the corresponding simulated peak 
discharges Q after using different rain gauges for the Scenario 4 correction, normalized through data and 
results provided by Scenario 1 (RM1 and Q1).

The performed analysis shows as better estimations are obtained when the rain gauge nearest to the wa-
tershed centroid is used, independently from its location. For the events recorded in Fiames, better results 
are obtained when radar images are corrected by using the rain gauges A6 or A10; nevertheless, all the 
simulations but two (corrected by A1 rain gauge) can predict the triggering of DFs. The event of August 
18, 2011, shows higher gaps between Scenario 1 and Scenario 4 due to the pre-existing difference between 
raw radar images and rain gauge measurements. For all the events, the worst performance of correcting 
images with the A1 rain gauge is probably due to its position beyond the ridge that delimits the hydrological 
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Figure 9.  Comparison of the mean areal rainfall depth (RM) and peak simulated discharges (Q) corresponding to Scenario 4 after using all the rain gauge as 
reference rain gauge in Fiames 1 (red markers) and 2 (blue markers) for the events of July 4 and August 18, 2011, and June 7 and July 25, 2015 (a and c), 2011, 
and in Rovina di Cancia (b and d) for the events of July 23 and August 4, 2015; July 5 and August 1, 2018; July 1 and August 29, 2020. The terms are rescaled 
with the correspondent Scenario 1 values, respectively, RM1 and Q1.
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watersheds, even if, in the case of the Fiames 2 basin, it is closer than A10 to the centroid of the catchment. 
Storms traveling from West to East mostly unload on the basin and, getting over the ridge, their intensity de-
creases. Consequently, the correction with a rain gauge far from the core of the precipitation could lead to a 
high error. The case of Cancia is a bit different. Differences between mean areal rainfall depths of Scenarios 
4 and 1 for the events vary in the range −11%–10%, and between −61% and 16% when using the rain gauges 
B1 and B2 respectively. In the case of the B4 and B5, these values range from −81% to −8% and from −86% 
to −18%, respectively. The corresponding differences for the simulated peak discharges vary between −24% 
and 10% in the case of B1, and in the range −81%–84%, in the case of B2. A larger underestimation in sim-
ulated peak runoff occurs when using B4 and B5. In these cases, the differences generally stand over 80%, 
and the critical discharge threshold is overpassed only for the events that occurred on August 1, 2018, and 
on August 29, 2020. These exceptions occurred because, in these events, the greatest cumulative rainfalls 
were recorded by the B2 rain gauge and the precipitation depths recorded by B3 were comparable or greater 
than the B1 ones. Therefore, the use of corrected radar rainfall by using rain gauges far from the centroid 
could lead to a possible high underestimation of rainfall depths and simulated peak discharges, which could 
result in not able to provide the hydrological conditions required for the DF initiation processes.

5.  Conclusions
The differences between rain gauge and radar-rainfall estimates and the use of different methods for cor-
recting the radar images are studied to simulate the hydrologic DF triggering conditions. Results show that 
for the hydrological modeling of critical discharges of DF initiation, the use of rain gauges close or inside 
the DF-prone basin appears the better solution. Raw-radar data well capture the spatial variability of rain-
falls but usually underestimate depths and intensities. The use of radar-rainfall fields does not allow the 
reproduction of the runoff required for the DF triggering, except in the Punta Nera basin, where radar beam 
is only marginally shielded by reliefs, at most up to 500 m. Radar-rainfall maps are therefore corrected fol-
lowing two methods: the former is the rescaling of radar-rainfall estimates employing the measured rainfall 
of a reference gauge (corrected radar approach), the latter is the KED (using different degrees of approxima-
tion). The corrected radar approach allows a better approximation of the rainfall field obtained by using the 
nearest neighbor interpolation of rain gauges, resulting in similar triggering discharges. KED shows worse 
performances, both in basin mean areal rainfalls and in simulated peak discharges. Nevertheless, both the 
methods have a similar rate on predicting the triggering of occurred DF events, twice the percentage result-
ing from the use of raw radar-rainfall data. The weaknesses of these methods are the restricted validity of 
the corrected radar approach (higher the distance between the reference gauge and the centroid of the basin 
closed at the DF initiation area, higher the probability to fail the simulation of the hydrological triggering 
conditions), whereas the main limitation for the employment of KED approach is the need of a linear re-
lation between ground-recorded and radar rainfalls to obtain the rain fields. The corrected radar approach 
gives more certainties when the reference gauge used for the correction is located as much as possible close 
to the centroid and not beyond a ridge, while the KED one is better for a more general view in the whole area 
due to the use of more rain gauges. The use of simplified versions of KED could give decent results despite 
their degree of approximation. A potential solution could be the development of a basin-specific or a global 
relation, centered on a CF to be applied to the radar maps of each event. In this way, the rate of prediction 
of DFs results better than other methods, also in the basins not used for developing the global corrective 
function. Unfortunately, this approach is still lacking since the radar cumulative depth of each event, neces-
sary to estimate the CF, is difficult to establish a priori. To overcome this problem, CFs can be auto-updated 
during the events and hydrological simulations consequently performed. Such an empiric approach can be 
applied when the cumulative-depth estimated by the radar exceeds a threshold usually corresponding to 
DF events of medium-high magnitude, and in these cases, it allows the prediction of all the occurred DFs. 
However, this methodology should be deeper tested, both in this and in other geological and environmental 
contexts. In conclusion, outcomes highlight that, at the moment, in this area, it is essential to maintain at 
least a rain gauge, as close as possible to the centroid of the basin contributing to the DF initiation area 
because radar estimates are not always suitable for hydrological modeling. However, using these networks, 
it is possible to develop a radar-data correction approach that allows the correction of data also in case of 
malfunction of the rain gauges. Anyway, the placement of a radar closer to the areas could improve the re-
al-time estimation of rainfall field, to be used for the prediction of DF occurrence in early warning systems.
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Data Availability Statement
Data are archived in HydroShare, http://www.hydroshare.org/resource/
de564970a2924bcc8eb04cfd75e19f60.
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