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Abstract

An experimental comparison of two or more optimization algorithms requires
the same computational resources to be assigned to each algorithm. When a
maximum runtime is set as the stopping criterion, all algorithms need to be exe-
cuted in the same machine if they are to use the same resources. Unfortunately,
the implementation code of the algorithms is not always available, which means
that running the algorithms to be compared in the same machine is not always
possible. And even if they are available, some optimization algorithms might
be costly to run, such as training large neural-networks in the cloud.

In this paper, we consider the following problem: how do we compare the per-
formance of a new optimization algorithm B with a known algorithm A in the
literature if we only have the results (the objective values) and the runtime
in each instance of algorithm A? Particularly, we present a methodology that
enables a statistical analysis of the performance of algorithms executed in dif-
ferent machines. The proposed methodology has two parts. Firstly, we propose
a model that, given the runtime of an algorithm in a machine, estimates the
runtime of the same algorithm in another machine. This model can be adjusted
so that the probability of estimating a runtime longer than what it should be is
arbitrarily low. Secondly, we introduce an adaptation of the one-sided sign test
that uses a modified p-value and takes into account that probability. Such adap-
tation avoids increasing the probability of type I error associated with executing
algorithms A and B in different machines.
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1. Introduction

Finding an appropriate reference point for evaluating the performance of an
optimization algorithm is not trivial. The key question is: when can we say that
the performance of an optimization algorithm is good? The answer depends
on how we define good performance. A possible solution is to compare the
performance of several algorithms in the same problem. This comparison can
show that some algorithms perform better than others on average. Precisely,
this is what a comparative study among different algorithms tries to accomplish:
analyze the relative performance of a set of algorithms.

It is crucial, for the sake of fairness, that the optimization algorithms being
compared are given the same computational resources (see AppendixA for an
illustrative example). We say that two algorithms use the same amount of re-
sources when they both take the same time to complete in the same machine.
Usually, this is achieved by executing both algorithms in the same machine and
by setting a common maximum runtime as the stopping criterion. Unfortu-
nately, it is not always possible to execute all the algorithms being compared in
the same machine, as, in many cases, the code for some of the algorithms is not
available. Even when the code is available, executing all the algorithms might
involve wasting a lot of computational resources.

Overcoming this limitation, a comparative study can still be carried out when
the results of the experimentation of an algorithm, the CPU model, and the
maximum runtime used to obtain these results are known. Dominguez et al. [7]
proposed adjusting the runtimes of the algorithms by assigning a shorter runtime
to the algorithms executed in faster machines, thus making the execution of
algorithms in different machines comparable.

Let us now look at a practical example. Let us imagine that a researcher reads
a paper in which algorithm A is executed in machine M1, taking time t1. Now,
the researcher wants to compare a new algorithm, B, with A, but has no access
to algorithm A nor to machine M1. Instead, the researcher only has access to
machine M2 and algorithm B. In this case, he/she can execute algorithm B in
machine M2 for time t2. The runtime t2 needs to be adjusted in such a way
that executing B in M1 is equivalent to executing it in M2 for time t2. From
now on, we will refer to the adjusted runtime as equivalent runtime.

The exact equivalent runtime t2 can be obtained if the exact optimization pro-
cess that was carried out in machine M1 is replicated in machine M2. This
implies executing algorithm A in machine M2, which defeats the purpose of us-
ing an equivalent runtime. Fortunately, an estimation of the equivalent runtime
t̂2 can be used instead. The estimation is carried out taking into account the
computational capabilities of machines M1 and M2, denoted as s1 and s2 in the
rest of the paper. Table 1 offers a brief overview of the terms used in the paper.

Related work: Domínguez et al. [7] proposed the following regression model
called the Reciprocal Mixed Inhibition function to estimate the equivalent run-
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A summary of the notation of the paper

Name Notation Explaination

Optimization algorithm A A
The optimization algorithm that is not executed in
the comparison. Instead, already published results
of this algorithm are used in the comparison.

Optimization algorithm B B
The optimization algorithm that is executed to
obtain the results to be compared.

Machine M1 M1
The machine in which algorithm A was executed.
We have no access to this machine.

Machine M2 M2
The machine in which algorithm B is executed to
obtain the results used in the comparison.

The score of machine M1 s1
A measure proportional to the computational
capability of machine M1.

The score of machine M2 s2
A measure proportional to the computational
capability of machine M2.

The runtime of A in
machine M1

t1

The stopping criterion (in terms of maximum
runtime) that was used in the execution of
algorithm A in machine M1.

The equivalent runtime
of A in machine M2

t2

The time it takes to replicate in machine M2 the
exact optimization process (with algorithm A)
that took time t1 in machine M1.

The estimated equivalent
runtime of algorithm A
in machine M2

t̂2

An estimation of the equivalent runtime t2.
This value is used as the stopping criterion of
algorithm B, which is executed in machine M2.

Table 1: A summary of the notation and terms considered in this paper.

time of an algorithm:

t̂1(s1, t0) =

(
as1

b(1 + t0
c )

+ s1 +
s1t0
d

)−1
, t̂2(s2, t0) =

(
as2

b(1 + t0
c )

+ s2 +
s2t0
d

)−1
(1)

where s1, s2 are the scores of machines M1,M2 (measured as the dhrystone2
score [13] of the CPU) in which the algorithm is executed, t0 represents the base
or hardware-independent complexity of the optimization process (the complexity
of the exact sequence of computational operations carried out throughout the
optimization process) and a, b, c, d are the four parameters to be fitted. Given
the runtime of algorithm A in machine M1 (by replacing t̂1 with t1), the base
runtime of the algorithm t0 can be isolated from Equation (1). Finally, the
equivalent runtime of the algorithm in another machine, t̂2, can be estimated
with this baseline runtime t0 and the speed of the other machine s2. It is
noteworthy that, unfortunately, the methodology introduced by Domínguez et
al.(2012) does not take into account that the estimated equivalent runtime can
be longer or shorter than the real equivalent runtime, and thus, may introduce
undesired biases to the comparison of the performance of algorithms.

This can be a major problem because this bias can increase the probability of
type I error when deciding if algorithm B is better than A. In the context
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of performance comparison of optimization algorithms (with null-hypothesis
statistical tests), a type I error is defined as finding a statistically significant
difference in the performance of the algorithms, when in reality, there is none.
Making a type II error, on the other hand, means not finding a statistically
significant difference in the performance of the algorithms, when in reality, the
performances are different. In the context of the comparison of optimization
algorithms, making a type II error is preferred to a type I error: falsely con-
cluding a nonexistent difference in the performance of the algorithms is worse
than not finding a statistically significant difference in the performance of the
algorithms1.

Proposed methodology: In this paper, inspired by the work of Dominguez
et al. [7], we propose a methodology to statistically assess the difference in the
performance of optimization algorithms executed in different machines. Specif-
ically, the proposed methodology can be used to show that an algorithm B
performs statistically significantly better than another algorithm A, without
executing A and, instead, using the available results of A in terms of the objec-
tive function value and the runtime in each instance. To that end, we propose
a conservative methodology in which the probability of giving algorithm B an
unfairly longer time is kept in check by i) proposing a two-parameter estimation
of the equivalent runtime with an arbitrarily low probability of estimating an
unfairly longer runtime and ii) by modifying the one-sided sign test [6] so that
it takes this probability into account.

Alongside this paper, we present a tutorial on how to apply the proposed
methodology. This tutorial and the code of all the experimentation is avail-
able in our GitHub repository2. Besides, we also give two examples of how
the methodology is applied in this paper. It is noteworthy that applying the
proposed methodology to compare algorithms in different machines does not
involve executing any additional code.

The rest of the paper is organized as follows: The next section describes and
motivates a two-parameter model proposed to estimate the equivalent time.
Section 3 presents the modifications made to the sign test to overcome the lim-
itations introduced by the execution of the algorithms in different machines.
Afterward, in Section 4 we introduce two examples in which we apply the pro-
posed methodology. Finally, Section 5 concludes the paper and proposes some
research lines for future investigation.

1 Failing to reject the null hypothesis does not imply evidence in favor of the null hypothesis.
Instead, it only shows a lack of evidence against it. In our context, failing to reject the null
hypothesis does not mean that the performance of the algorithms is the same. The correct
conclusion is, in this case, that there is not enough evidence to show a statistically significant
difference between the performance of the algorithms. Therefore, a type II error just means
that additional experimentation is needed to verify an existing difference in the performance
of the algorithms, which is not an erroneous conclusion in itself.

2Repository available in https://github.com/EtorArza/RTDHW.
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2. The estimation model of the equivalent runtime

Given i) an optimization algorithm, ii) a machine, iii) a problem instance, iv)
a stopping criterion and v) a random seed number, executing the optimization
algorithm will produce a specific sequence of computational instructions. This
sequence is completely determined by these five parameters. We call this se-
quence of instructions that is reproducible in any machine optimization process.
By recording the optimization process carried out with these parameters, we
can later reproduce the exact optimization process in another machine. Notice
that reproducing the optimization process will take a different time in each ma-
chine, even though the final result is the same (because the executed sequence
of instructions is the same). We say that the times required to replicate the
same optimization process in different machines are equivalent.

Definition 1. (Optimization process)
Let M be a machine, A an optimization algorithm, i a problem instance, t1
a stopping criterion, and r a positive integer (the seed for the random number
generator). We define the optimization process ρ(M,A, i, t1, r) as the sequence of
computational instructions carried out when optimizing instance i with algorithm
A and seed r in machine M1 with stopping criterion t1.

The aim is to compare algorithm A executed in machine M1, with algorithm B,
executed in machine M2. A fair comparison can be carried out by estimating
the time it takes to replicate ρ(M1, A, i, t1, r) in machine M2 and using the
estimated value as the stopping criterion for algorithm B in machine M2. We
will sometimes denote the optimization process ρ(M1, A, i, t1, r) as ρ, for the
sake of brevity.

Definition 2. (Runtime of an optimization process)
Let M be a machine and ρ an optimization process. We define the runtime of
ρ in M , denoted as t(M,ρ), as the time it takes to carry out the optimization
process ρ in machine M .

Considering the above definitions, it follows that, t(M1, ρ) = t1.

Definition 3. (Equivalent runtime)
LetM1,M2 be two machines, ρ an optimization process and t(M1, ρ) and t(M2, ρ)
the times required to run ρ in M1 and M2 respectively. Then, we say that
t(M2, ρ) is the equivalent runtime of t(M1, ρ) for machine M2.

From here on, we will denote t(M2, ρ), the equivalent runtime of t1 = t(M1, ρ)
in machine M2, as t2.

Given t1 (the runtime of optimization process ρ in a machineM1), in the follow-
ing, we will propose a model to estimate t2 (the equivalent runtime in another
machine M2). The proposed estimation model is based on an assumption that
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Diagram of the estimation of the equivalent runtime

Figure 1: Estimated equivalent runtime of ρ in machine M2 (the response variable t̂(M2, ρ)).
The estimation is carried out with three predictor variables: the machine scores s1 and s2
and t(M1, ρ).

the ratio of the runtime of two different optimization processes is constant with
respect to the machine in which it is measured (in AppendixB, we empirically
show why this assumption is reasonable).

Assumption 1. (Constant ratio of the runtime of two optimization processes)
Let ρ, ρ′ be two optimization processes. Then, we assume that:

t(M2, ρ)

t(M2, ρ′)
≈ t(M1, ρ)

t(M1, ρ′)

for any two machines M1 and M2.

Based on this assumption, we propose a model to estimate the equivalent run-
time of an optimization process in a machine, given its runtime in another
machine, as well as the scores (relative to the computational capabilities) of
both machines. Notice that in Assumption 1, we use a reference optimization
process ρ′ to estimate the equivalent runtime of the optimization process ρ.
Any optimization process ρ′ can be used as a reference. In the following, we
will define an optimization process ρ′ whose runtime we will be able to estimate
with the scores s1 and s2 of the machines. This will allow the estimation of the
equivalent runtime t2 without executing any reference optimization processes,
as shown in Figure 1.

Let us now define the optimization process ρ′, whose runtime can be estimated.
Recall that an optimization process is just a sequence of computational instruc-
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PassMark single thread score and the runtime ρ′
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Figure 2: The runtime of ρ′, the optimization process used as a reference to define the regres-
sion model. Every point represents a different CPU, each with a different machine score and
runtime of ρ′ in this machine.

tions that can be reproduced in any machine. Aiming to obtain a more diverse
sequence of computational instructions, we define the optimization process ρ′ as
the computational instructions generated by consecutively executing 4 different
optimization algorithms in 16 problem instances. Each of the 64 executions
involves solving a permutation problem with an optimization algorithm, with
a stopping criterion of a maximum of 2 · 106 evaluations (see AppendixC for
details on the optimization problems and algorithms used).

The runtime of the optimization process ρ′ in a machine can be estimated with
its machine score. In this paper, we measure the score of a machine (its compu-
tational capability) in terms of its PassMark single thread CPU score 3, although
adapting the proposed methodology to other benchmarks is also possible. The
advantage of using the PassMark score is that it can be looked up, as the score
of most consumer CPUs is listed on their website. From the experimental re-
sults depicted in Figure 2, we see that the runtime of ρ′ decreases linearly with
respect to the machine score. Every point in Figure 2 represents a different

3 The PassMark CPU score is one of the most popular CPU benchmark scores, with over
1000 CPUs listed on their website. In this paper, we use the version 10 single thread score
of this benchmark. The highest and lowest scores at the time of writing this paper are 3174
and 147, respectively, with a higher value of the score being associated with a better relative
performance of the CPU.
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machine, each with its own machine score and runtime of ρ′.

Based on the figure shown, we infer that i) linear regression is suitable to model
the runtime of ρ′ with respect to the machine score, and ii) the machine score
has a good correlation with the runtime of ρ′. With this intuition in mind, we
define the estimation of the runtime in a machine:

Definition 4. (Prediction of the runtime of ρ′ in a machine)
Let Mj be a machine and sj its machine score. Then, the runtime of ρ′ in Mj

is modeled as
t(Mj , ρ

′) ≈ −0.57406sj + 1929

where sj is the score of machine Mj.

Considering together Assumption 1 and Definition 4, the equivalent runtime can
be estimated as:

t2 ≈ t̂2 = t1 ·
−0.57406s2 + 1929

−0.57406s1 + 1929
= t1 ·

3360.16− s2
3360.16− s1

(2)

where s1 and s2 are the PassMark single thread scores of the CPUs on machines
M1,M2, respectively. Due to the approximation errors in Assumption 1 and
Definition 4, the estimated equivalent runtime t̂2 = t̂(M2, ρ) will often differ
from the real equivalent runtime value t2 = t(M2, ρ). This means that when
using the estimated equivalent runtime as the stopping criterion for algorithm
B, sometimes, the runtime will be longer or shorter than the runtime used by
algorithm A.

To statistically assess the uncertainty associated with the comparison of the
performance of algorithms A and B, in this methodology, we propose using a
one-sided statistical test. Under this test, the alternative hypothesis states that
the performance of algorithm B is better than the performance of algorithm A.
As a result, a type I error (erroneously finding a statistically significant difference
in the performance of A and B) can only be made when algorithm B performs
better than A.

When a shorter runtime is estimated, algorithm B has an “unfairly” shorter
stopping criterion for the optimization. This implies that the measured perfor-
mance of B will be worse than or equal to the performance that would have
been measured, if the actual equivalent runtime were used. Consequently, tak-
ing into account the one-sided nature of the test, estimating a lower than actual
runtime will not increase the probability of type I error (estimating a lower than
actual runtime can never help algorithm B perform better than algorithm A).
It might, however, increase the probability of type II error.

As mentioned in the introduction, in the context of algorithm performance com-
parison, making a type II error is better than making a type I error. When using
null hypothesis statistical tests, a type I error involves falsely rejecting H0. A
type II error, on the other hand, means failing to reject H0, when H0 is true.
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Type I and II errors

reality
H0 is true H1 is true

conclusion
reject H0, accept H1 type I error, prob. α X

not reject H0, not accept H1 X type II error, prob. β

Table 2: A table summarizing the type I and II errors. In our context of one-sided algorithm
performance comparison, the hypothesis H0 states that the performance of algorithms A and
B is the same, or that the performance of algorithm A is better than the performance of
algorithm B. The alternative hypothesis H1 states that the performance of algorithm B is
better than the performance of algorithm A.

It is noteworthy that failing to reject H0 does not imply accepting H0 (see Ta-
ble 2). When a type II error is made, the conclusion is that there is not enough
evidence to state that the performance of B is better than the performance of
A, which is not an erroneous conclusion in itself. On the other hand, when a
type I error is made, the conclusion is that the performance of B is better than
the performance of A, when in reality it is not. Unlike the previous case, this is
an erroneous conclusion.

To avoid drawing erroneous conclusions, we present a modification to Equa-
tion (2) so that the probability of estimating a longer time than the actual
equivalent runtime stays under 1%. We reformulate the unbiased estimator
shown in Equation (2) to reduce the probability of estimating a longer than
real equivalent runtime. The new biased estimator is defined by multiplying the
unbiased estimator with a correction parameter γ ∈ (0, 1]:

Definition 5. (estimation of the equivalent runtime in machine M2)
Let ρ be an optimization process, M1,M2 two machines and t1 the runtime of
ρ in machine M1. We estimate the equivalent runtime of ρ for machine M2 as:

t(M2, ρ) ≈ t̂(M2, ρ) = t(M1, ρ) ·
3360.16− s2
3360.16− s1

· γ

By adjusting γ, the probability of estimating a longer runtime than the equiva-
lent runtime, P[t̂2 > t2], can be reduced; at the cost of estimating, on average, a
shorter runtime. With γ = 1.0, the original, unbiased estimator is obtained. A
lower value of γ has associated a lower probability of estimating a longer than
real runtime. Specifically, the parameter γ is equal to E[ t̂2t2 ]: how much shorter
the estimated equivalent runtime is than the real equivalent runtime on average.
Figure 3 shows the probability of estimating a longer than the real equivalent
runtime P[t̂2 > t2] with respect to γ. As can be seen in the figure, with a
correction coefficient lower than 0.5, the probability of estimating a longer than
the real equivalent runtime is close to zero. In this paper, we propose using
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Estimated runtime and the correction parameter γ
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Figure 3: The probability of estimating a longer than real runtime with respect to γ.

γ = 0.55, which has an associated P[t̂2 > t2] lower than 1%4.

Even though the proposed model has a low probability of estimating a longer
than actual equivalent runtime, this probability is not zero. In the following
section, we propose a modification of the sign test that takes into account this
probability and avoids an increase in the probability type I error.

3. Modifying the one-sided sign test

In the previous sections, we proposed an estimator of the equivalent runtime of
an algorithm in a machine. Specifically, we proposed a biased estimator with a
probability of less than 1% of estimating a longer than real equivalent runtime.
By using this estimator, over 99% of the samples of the performance of algorithm
B will not be computed with a longer than real equivalent runtime. However,

4 The choice of 1% was arbitrary, but if other values are chosen, then the corrections that
we later propose for the sign test also need to be modified. This percentage was computed
with the optimization processes defined in AppendixC. The probability of estimating a higher
than real equivalent time was computed by measuring the probability of estimating a runtime
of an optimization process in a machine that was higher than the time it took to complete
this optimization process in that machine. A cross-validation setting was used, to make sure
that the optimization processes used to fit the parameters of Definition (4) never involved the
same optimization problems or CPUs used to compute the probability of predicting a higher
than real runtime. This cross-validation framework ensures that the computed percentage is
as realistic as possible regarding the use of the proposed model to estimate runtimes in new
CPUs and optimization problems.
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there is still a chance that a longer than real equivalent time is estimated.
And when it is, the probability of making a type I error is higher than if the
comparison were carried out in the same machine. Therefore, in this section,
we propose a correction of the one-sided statistical test that takes into account
the probability of estimating a longer than the real equivalent time and its
subsequent increase in the probability type I error.

Given algorithms A,B, a one-sided hypothesis test in algorithm performance
comparison is as follows5:

H0: The performance of algorithm B is worse than or equal to
A.
H1: The performance of algorithm B is better than A.

Going back to the example in the introduction, let us assume a researcher reads a
paper in which algorithm A is executed in machineM1, taking time t1. Now, the
researcher wants to compare algorithm B with A, but has no access to algorithm
A nor to machine M1. Instead, he/she only has access to machine M2 and
algorithm B. Executing algorithm B in machine M2 for the equivalent runtime
t2 would make a fair comparison (due to Definition 3). However, determining
t2 defeats the purpose of using this methodology, as it involves executing A
in machine M1. Therefore, the real equivalent runtime is estimated with the
formula in Definition 5.

We believe that the sign test [6] is a suitable hypothesis in the context of this
paper and, in general, for comparing the performance of optimization algorithms
(see AppendixD for details). We limit the statistical test to the one-sided sign
test, with the alternative hypothesis being that the algorithm whose equivalent
runtime was estimated has a higher performance. In the following, we propose
a correction for the sign test that does not increase the probability of type I
error.

3.1. One-sided sign test

The sign test [6] is a special case of the binomial test, for p = 0.5. In the
context of algorithm performance comparison, the sign test statistically assesses
if the paired performance of two algorithms is the same or not. Performing this
statistical test involves first executing the optimization algorithms A and B
in the same machine, with the same stopping criterion, in a set of n problem
instances (i ∈ {1, ..., n}), obtaining the scores ai and bi for each algorithm-
instance pair.

5It is noteworthy that failing to reject H0 does not imply statistical evidence that H0 is
true, instead it suggests a lack of evidence against H0. Therefore, in this case, it would not
be correct to conclude that “the algorithms compared perform the same with a statistical
significance of 1− α”.
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These scores depend on which random seed was chosen (this seed represents all
the non-deterministic parts of the algorithms, such as solution initialization).
Thus, the performance of an algorithm in an instance can also be seen as a
random variable that is completely determined, given a certain seed. We denote
the random variables that represent the performance of algorithms A and B in
an instance i as Ai and Bi, respectively.

The statistical test allows us to draw conclusions about the algorithms on a
larger set of problem instances based on the observed results in the set of n
instances. The sing test is based on these three assumptions [6]:

• Each of the sample pairs Ai, Bi are mutually independent of the rest of
the pairs.

• Any observable pair ai, bi can be compared, that is, we can say that ai < bi,
bi < ai or ai = bi.

• The pairs are internally consistent, or if P[Ai > Bi] > P[Ai < Bi] for one
pair, then the same is true for all pairs.

In the context of algorithm comparison, the most problematic assumption is the
first one. The reason is that in real-life benchmarks, some problem instances may
share similarities, which means that there is no complete independence among
all sample pairs Ai, Bi. The Mann-Whitney and the Wilcoxon signed rank
test also contain this first assumption [6]. However, in practice, this limitation
is usually ignored. This is why, in general, it is a good idea to use a set of
benchmark problems with many kinds of different instances.

From now on, without loss of generality6, we assume that the algorithms deal
with a minimization problem, (i.e., ai is better than bi ⇐⇒ ai < bi). We
define #{Ai < Bi} as a random variable that counts the number of cases7 that
Ai < Bi in n instances. Then, the following hypothesis test corresponds to the
one-sided sign test [6]:

H0 : P[Ai < Bi] ≥ P[Ai > Bi]
H1 : P[Ai < Bi] < P[Ai > Bi]

Under H0, the null distribution of #{Ai < Bi} is Bin(n, 0.5), where Bin(n, 0.5)
is the binomial distribution of size n and rate of success 0.5 [6]. The p-value for
this hypothesis test is

p(k) = P[#{Ai < Bi} ≤ k | H0] = P[Bin(n, 0.5) ≤ k] (3)

6A maximization problem can be converted into a minimization problem by multiplying
the objective function with −1.

7Without loss of generality, we can assume that ai 6= bi, because samples in which ai = bi
are removed when performing the sign test [6].
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where k is substituted by the statistic of the sign test: the number of cases that
ai < bi in all i ∈ {1, ..., n} samples, denoted as #{ai < bi}. By definition [12],
the p-value can be interpreted as the probability of obtaining a more extreme
(lower) statistic than the observed, assuming H0 is true. If we reject the null
hypothesis when p(#{ai < bi}) ≤ α, then the probability of type I error is less
than or equal to α.

The critical value can also be used instead of the p-value to decide when to
accept or reject the null hypothesis. The value of the statistic associated with
a certain p-value is called critical value. For a given target α value, the critical
value Crit#{ai<bi}(α) is the largest value of the statistic that produces a p-value
lower than or equal to α [6]. The advantage of the critical value over the p-value
is that it is easier to compute. It follows that in the sign test [12], rejecting the
null hypothesis when the value of the statistic #{ai < bi} is equal or lower than
Crit#{ai<bi}(α) has an associated probability of type I error lower than α.

3.2. The corrected critical value

In practice, the statistic #{ai < bi} cannot be computed because the real equiv-
alent runtime t2 is unobservable. The equivalent runtime is approximated with
t̂2 (see Definition 5). As a result, each bi is substituted with its corresponding
b̂i, which is computed by using t̂2 instead of t2 as the stopping criterion. This
means that the statistic #{ai < bi} is replaced by #{ai < b̂i}, which counts
the number of times that ai < b̂i (without loss of generality, minimization is
assumed) is observed. Therefore, we need to define the function to obtain the
p-value associated with the statistic #{ai < b̂i}:

p̂(k) = P[#{Ai < B̂i} ≤ k | H0] (4)

where the p-value is obtained by substituting k with the observed statistic
#{ai < b̂i}. The p-value is the probability of obtaining a statistic that is
lower than or equal to the observed, when H0 is true. Notice that if we reject
the null hypothesis when p̂(#{ai < b̂i}) ≤ α, then the probability of type I error
is less than or equal to α.

As seen in Section 3, for each instance i, the probability of t̂2 > t2 is lower
than 0.01. Consequently, in more than 99% of cases, bi is obtained with a
longer runtime than b̂i and therefore, the probability of b̂i ≥ bi is greater than
0.99. This means that #{ai < b̂i} is expected to be higher than or equal to
#{ai < bi}, but it will not always be so. To overcome this limitation, we
need to define a corrected p-value p̂c, an upper bound of the actual p-value
associated with statistic #{ai < b̂i}, that takes into account the small but
nonzero probability (less than 1%) of t̂2 > t2. Specifically, we define this upper
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p-value for the sign test
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Figure 4: This figure shows the p-value p and the corrected p-value p̂c for the sign test with
a sample size of n = 30. Under the null hypothesis H0, the p-value represents the probability
of #{ai < bi} ≤ k, while the corrected p-value represents an upper bound of the probability
of #{ai < b̂i} ≤ k. The null hypothesis H0 is that #{ai < bi} follows a binomial distribution
of size n and probability of success 0.5.

bound as

p̂c(k) =

n∑
v=0

(1− P[Bin(n, 0.01) < max(0, v − k)])P[Bin(n, 0.5) = v] (5)

such that

p̂c(k) > P[#{Ai < B̂i} ≤ k | H0] = p̂(k) (6)

is satisfied (we prove this inequality in AppendixE), whereH0 implies that statis-
tic #{Ai < Bi} follows the null distribution Bin(n, 0.5) [6]. Figure 4 shows p
and p̂c side by side. Notice that p̂c is slightly higher, because it needs to account
for the probability that t̂2 > t2. The corrected p-value p̂c is interesting because
rejecting H0 when p̂c(#{ai < b̂i}) < α has also an associated probability of
type I error lower than α. The reason is that p̂c(#{ai < b̂i}) > p̂(#{ai < b̂i}),
and therefore, p̂c(#{ai < b̂i}) < α⇒ p̂(#{ai < b̂i}) < α.

Finally, given a target probability of type I error α, we define the corrected
critical value Critc(α) as the largest #{ai < b̂i} value that produces a corrected
p-value lower than α. Observe that rejecting H0 when the observed #{ai < b̂i}
is lower than or equal to Critc(α) has an associated probability of type I error
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lower than α. Again, the critical value is interesting because it is easier to
compute than the p-value. We computed these corrected critical values for the
target α values of 0.05, 0.01 and 10−3, shown in Table F.7 in AppendixF.

3.3. Assumptions and limitations

The proposed methodology is based on certain assumptions and should only be
used taking into account certain limitations that will be addressed in this section.
First, we will address the assumption related to the probability of predicting a
longer than real equivalent runtime. Let (t̂2 > t2)i be a random variable that
represents if the estimated equivalent runtime for algorithm A, instance i in
machine M2, is longer than the real equivalent runtime or not. The required
assumption is similar to assuming that t̂2 > t2 is mutually independent for each
instance i. Specifically, it is required8 that P[(t̂2 > t2)i|∩i6=j(t̂2 > t2)j ] < 0.01.

One could argue that this assumption is false because (t̂2 > t2) depends on
many factors, such as the machines used in the experimentation. The same two
machines are used to compute all samples ai, bi suggesting that all (t̂2 > t2)i
can never be truly independent among each other. However, even though we
can not ensure that P[(t̂2 > t2)i|∩i 6=j(t̂2 > t2)j ] < 0.01, by choosing a suitable
correction coefficient γ, in Section 2, we estimated that P[(t̂2 > t2)i] < 0.01.

In addition to the previous assumption, the proposed methodology only consid-
ers one side hypothesis testing. In this regard, it should only be applied to show
a statistically significantly superior performance of the algorithm whose equiva-
lent runtime was estimated (denoted as algorithm B in this paper). The reason
is that algorithm B has a high probability of having a lower runtime, thus, it
is easy that B performs worse than A, while the opposite is difficult. Failing to
reject H0 only indicates a lack of evidence against H0, and in our context, it
only indicates that there is not enough evidence to say that B performs better
than A (it tells us nothing about A performing better than B).

Finally, there is a limitation regarding the chosen machine score: the PassMark
single thread score. In Section 2, we saw that a linear function is a suitable
function to model the relationship between the machine score and the runtime
of the reference optimization process ρ′. The formula of the fitted linear regres-
sion is t(Mj , ρ

′) ≈ −0.57406sj + 1929 where t(Mj , ρ
′) is the equivalent runtime

of ρ′ in machine Mj , and sj is the score of machine Mj . With this formula, a
PassMark single thread score higher than 3360 produces a negative estimated
equivalent runtime, which does not make sense. However, for the 8 machines
used to fit the data, as Figure 2 shows, the linear model seems to be suitable.
Therefore, we recommend applying the proposed methodology only in machines
with PassMark single thread scores in the interval (411, 2176). These values
correspond to the highest and lowest values used in the fitting of the linear

8This assumption is required in the proof of Equation (6) in AppendixE. Specifically, it is
used in Lemma 3.
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regression. As future work, and especially when more powerful processors are
available, the methodology can be updated to incorporate these new proces-
sors or even change the machine score to other benchmark scores beyond the
PassMark single thread score.

4. Applying the methodology

In this section, we illustrate how to apply the proposed methodology with two
examples. The proposed methodology is very simple to use and does not re-
quire any additional software. Further details and material are available in our
GitHub repository.

4.1. Example I

In this example, we will compare a simple random initialization local search
procedure with a memetic search algorithm by Benlic et al. [2] for the QAP.
Using the proposed methodology, we will statistically assess the difference in
the performance between these two algorithms, without having to execute the
code of the memetic algorithm. In this case, the memetic search algorithm is
algorithm A, because this is the algorithm of which we already have the results,
and the local search algorithm is algorithm B, because this is the algorithm
whose runtime is going to be estimated.

Step 1: Obtaining the data

To apply the proposed methodology, we need to find certain information about
the execution of the memetic algorithm. The required data includes the list
of instances to be used in the experimental comparison, the average objective
value obtained by the memetic search algorithm, and the runtime of the memetic
search algorithm in each of the instances. The information extracted from the
article by Benlic et al. [2] is listed in the first three columns of Table 3. Also, we
need to find the CPU model of the machine in which the memetic search was
run (machine M1), which is "Intel Xeon E5440 2.83GHz" as specified in their
article. Finally, the machine score of this CPU, measured as PassMark version
10 single thread score, is s1 = 1230 (as seen on the PassMark website).

Step 2: Estimating the equivalent runtime

With the data already gathered, the next step is to estimate the equivalent
runtime of each instance for the machine in which the local search algorithm
will be executed (machine M2). Estimating the runtime requires the score s2
of this machine to be known. The CPU model of M2 is "Intel Celeron N4100",
with a PassMark single thread score of s2 = 1032. With this information, we
are ready to estimate the equivalent runtime in machine M2 (Definition 5):

t̂2 = t1 ·
3360.16− s2
3360.16− s1

· γ = t1 ·
3360.16− 1032

3360.16− 1230
· 0.55 = 0.601 · t1
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Data obtained from the
paper by Benlic et al. [2]

Data corresponding to the
execution of B in machine M2

instance runtime in objective estimated equivalent objective
seconds, t1 value, ai runtime, t̂2 = 0.601 · t1 value, b̂i

tai40a 486 3141222 292.09 3207604
tai50a 2520 4945266 1514.52 5042830
tai60a 4050 7216339 2434.05 7393900
tai80a 3948 13556691 2372.75 13840668
tai100a 2646 21137728 1590.25 21611122
tai50b 72 458821517 43.27 459986202
tai60b 312 608215054 187.51 609946393
tai80b 1878 818415043 1128.68 824799510
tai100b 816 1185996137 490.42 1195646366
tai150b 4686 499195981 2816.29 505187740
sko100a 1338 115534 804.14 153082
sko100b 390 152002 234.39 155218
sko100c 720 147862 432.72 149076
sko100d 1254 149584 753.65 150568
sko100e 714 149150 429.11 150638
sko100f 1380 149036 829.38 150006

Table 3: This table shows all the data in the first example. The first three columns correspond
to the QAP instances in which the memetic search algorithm by Benlic et al. [2] was tested,
the runtime of the memetic search algorithm in each instance, and the best objective value
they obtained in each execution, averaged in 10 executions per instance. The information
in these three columns was directly obtained from the paper by Benlic et al., without any
additional executions. The next two columns show the estimated equivalent runtimes and the
average objective value scores that the local search algorithm obtained with this runtime as
the stopping criterion. The local search algorithm was executed in machine M2.
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where t1 is substituted with the runtime of the memetic search algorithm in
each instance, listed in Table 3.

Step 3: Running the experiments

Now, we execute the local search algorithm in the instances listed in Table 3,
using the estimated runtimes t̂2 as the stopping criterion. This execution is
carried out in machine M2, and the best objective function values b̂i are listed
in Table 3. Following the procedure by Benlic et al., these best objective values
are averaged over 10 executions.

Step 4: Obtaining the statistic and comparing it with the corrected critical value

Once all the results have been computed, the next step is to compute the statistic
#{ai < b̂i}, which counts the number of times that ai < b̂i. In this case, ai < b̂i
happens 15 times, and therefore, #{ai < b̂i} = 15. Now we compare the value
of the statistic with the corrected critical value for a sample size (the number
of instances) n = 15 and a target probability of type I error of α = 0.05. The
corrected critical value for this sample size and α is Critc(α) = 3, as shown in
shown in AppendixF. The observed statistic #{ai < b̂i} = 15 is not lower than
or equal to the corrected critical value Critc(α) = 3.

Step 5: Conclusion

Since the observed statistic is not lower than or equal to the critical value, we
cannot reject H0. In this case, the conclusion is that with the amount of data
that we have and the chosen target probability of type I error of α = 0.05, we
can not say that the local search algorithm has a statistically significantly better
performance than the memetic search algorithm9.

It is important to note that, if we had considered the original runtimes t1 as the
stopping criterion for algorithm B in machine M2 (longer than the estimated
equivalent runtime t̂2), the local search would have had an unfairly longer run-
time. In other words, the comparison would have been biased towards the local
search.

4.2. Example II

In this second example, we will compare the same simple random initialization
local search procedure with an estimation of distribution algorithm (EDA) for
the QAP [1]. In this case, the EDA is algorithm A, because this is the algorithm
of which we already have the results, and the local search algorithm is algorithm
B, because this is the algorithm whose runtime is estimated.

9It would not be correct to conclude that the two algorithms perform (statistically signif-
icantly) the same, or that the memetic search performs statistically significantly better than
the local search.
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Data obtained from the
paper by Arza et al. [1]

Data corresponding to the
execution of B in machine M2

instance runtime in objective estimated equivalent objective
seconds, t1 value, ai runtime, t̂2 = 1.085 · t1 value, b̂i

bur26a 1.45 5432374 1.57 5426670
bur26b 1.45 3824798 1.57 3817852
bur26c 1.43 5427185 1.55 5426795
bur26d 1.44 3821474 1.56 3821239
nug17 0.44 1735 0.48 1734
nug18 0.51 1936 0.55 1936
nug20 0.68 2573 0.74 2570
nug21 0.77 2444 0.84 2444
tai10a 0.12 135028 0.13 135028
tai10b 0.12 1183760 0.13 1183760
tai12a 0.18 224730 0.20 224416
tai12b 0.19 39464925 0.21 39464925
tai15a 0.31 388910 0.34 388214
tai15b 0.31 51768918 0.34 51765268
tai20a 0.69 709409 0.75 703482
tai20b 0.68 122538448 0.74 122455319
tai40a 5.41 3194672 5.87 3227894
tai40b 5.41 644054927 5.87 637470334
tai60a 19.23 7367162 20.86 7461354
tai60b 19.21 611215466 20.84 611833935
tai80a 50.09 13792379 54.35 13942804
tai80b 50.1 836702973 54.36 830729983

Table 4: This table shows all the data in the second example. The first three columns
correspond to the QAP instances in which the EDA algorithm by Arza et al. [1] was tested,
the runtime of the memetic search algorithm in each instance, and the best objective value
they obtained in each execution, averaged in 10 executions per instance. The information in
these three columns was directly obtained from this paper, without any additional executions.
The next two columns show the estimated equivalent runtimes and the average objective value
scores that the local search algorithm obtained with this runtime as the stopping criterion.
The local search algorithm was executed in machine M2.

Step 1: Obtaining the data

To apply the proposed methodology, we need to find certain information about
the execution of the memetic algorithm. The required data includes the list of
instances to be used in the comparison, the average objective value obtained by
the EDA, and the runtime used in each instance. The information extracted
from the paper [1] is listed in Table 4. In addition, we need to find the CPU
model of the machine in which the memetic search was run (machineM1), which
is "AMD Ryzen 7 1800X", as specified in the paper. Finally, the machine score
of this CPU, measured as PassMark single thread score is s1 = 2182, as seen on
the PassMark website.
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Step 2: Estimating the equivalent runtime

With the data already gathered, the next step is to estimate the equivalent
runtime of each instance for the machine in which the local search algorithm
will be executed (machine M2). This estimation requires the machine score s2
of this machine, which is the same as in the previous example, because the same
PC was used, s2 = 1032. The formula to estimate the runtime for each instance
is:

t̂2 = t1 ·
3360.16− s2
3360.16− s1

· γ = t1 ·
3360.16− 1032

3360.16− 2182
· 0.55 = 1.085 · t1

where t1 is substituted with the runtime of the EDA algorithm in each instance,
listed in Table 4.

Step 3: Running the experiments

Now, we execute the local search algorithm in the instances listed in Table 4,
using the estimated runtimes t̂2 as the stopping criterion. This execution is
carried out on machine M2, and the best objective function values b̂i are listed
in Table 4. Following the procedure by Arza et al., these best objective values
are averaged over 20 executions.

Step 4: Obtaining the statistic and comparing it with the corrected critical value

After the executions, the statistic #{ai < b̂i} is computed, which counts the
number of times that ai < b̂i. In this case, ai < b̂i happens 4 times, and
therefore, #{ai < b̂i} = 4. Now we compare the value of the statistic with
the corrected critical value for a sample size (the number of instances in which
ai 6= b̂i) n = 17 and a target probability of type I error of α = 0.05. The
corrected critical value for this sample size and α is Critc(α) = 4, as shown in
shown in AppendixF. The observed statistic #{ai < b̂i} = 4 is lower than or
equal to the corrected critical value Critc(α) = 4.

Step 5: Conclusion

Since the observed statistic is lower than or equal to the critical value, we
reject H0. In this case, the conclusion is that with a probability of type I
error of α = 0.05, the performance of the local search procedure is statistically
significantly better than the performance of the EDA.

In this case, machine M1 is more powerful (in terms of computational capabil-
ities) than machine M2. If we had considered the original runtimes t1 as the
stopping criterion for algorithm B in machine M2 (shorter than the estimated
equivalent runtime t̂2), it would have been more difficult for the local search to
perform better than the EDA. In that case, H0 might not have been rejected.
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5. Conclusion and future work

Usually, comparing optimization algorithms with a maximum runtime as a com-
mon stopping criterion requires the algorithms to be executed in the same ma-
chine. Unfortunately, the code of all the algorithms is not always available. An
alternative is to adjust the runtime of the algorithms relative to the speed of the
machine in which they are executed. In this paper, we proposed a methodology
to statistically compare the performance of two optimization algorithms in two
different machines, when the results of one of the algorithms are already known
and without having to execute this algorithm again. The methodology ensures
that the probability of type I error does not increase due to the algorithms being
executed in different machines. To achieve this, first, the runtime of the exe-
cuted algorithm is adjusted based on the speed of the CPUs of both machines.
Then, a modified one-sided sign test is used so that the probability of using an
unfairly longer runtime is taken into account. We illustrate the application of
the proposed methodology with two examples.

Alongside this paper, a tutorial with examples is presented in our GitHub repos-
itory. This will hopefully make it simple for people to apply the proposed
methodology.

As future work, we expect to address the assumptions mentioned in Section 3.3.
Besides, using more machines to fit the data may reduce the error of the esti-
mation. This reduction in error might allow a higher correction coefficient to
be chosen, which in turn might make the corrected sign test more powerful (a
reduction of type II error). Finally, it might be worth investigating the pos-
sibility of adopting the presented methodology to the Wilcoxon sign-rank and
Mann-Whitney tests, or even other non-hypothesis testing statistical methods,
such as Bayesian analysis.
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Figure A.5: Probability of type I error in the one-sided sign test when comparing two identical
random search algorithms. One of the algorithms is given extra runtime, according to the X-
axis. The test is applied to a set of 16 problem instances.

AppendixA. The importance of using the same resources in algorithm
comparison

As claimed in the introduction, it is essential to run the algorithms with the same
computational resources to carry out a fair comparison. To better illustrate this
point, in the following lines, a small experiment is presented. This experiment
illustrates the increase in the probability of type-I error (the probability of
erroneously concluding a difference in performance, when in reality, there is
none) with respect to the difference in execution time. Specifically, we run
a random search algorithm twice in each problem instance10 and perform the
one-sided sign test [6]11 (see Section 3.1 for an explanation of the sign test),
on the set of results obtained. The significance level is set to α = 0.05. Even
though the random search algorithm is being compared with itself, we increase
the runtime of one of the executions by 8, 16, 32, or 64 percent. We repeat the
steps above 1000 times to estimate the probability of type I error (estimated as
the probability of rejecting H0).

Figure A.5 shows the estimated probability of type I error. Notice that the

10A set of 16 permutation problem instances is considered, 4 instances of 4 problems. The
four permutation problems considered are the traveling salesman problem, the permutation
flowshop scheduling problem, the linear ordering problem, and the quadratic assignment prob-
lem.

11In AppendixD, we explain why we limit the statistical analysis to the sign test in this
paper.
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type I error starts at 0.05, which is the expected result for a significance level
of α = 0.05. However, the error shoots up dramatically when the difference
in runtime increases, more than doubling when the percentage of extra run-
time reaches 32%. Therefore, a discrepancy in the runtime of the algorithms
being compared, if high enough, can lead to falsely concluding that the perfor-
mance of the algorithms is not the same. A fair comparison requires the same
computational resources to be assigned in the execution of each algorithm.

AppendixB. Proportional runtime of optimization processes in dif-
ferent machines

The runtime of an optimization process (a sequence of computational instruc-
tions) is different in each machine. However, even though it is different, there
might be a proportional relationship between the runtime of the same opti-
mization process in two different machines. To study this, we compute the
correlation that several optimization processes have on two machines. Specif-
ically, we computed the correlation of 64 different optimization processes (see
AppendixC for additional details about the experiment) for every possible pair
of machines from the 8 different machines used in the experimentation. The av-
erage Pearson’s correlation coefficient of the runtimes is 0.989987, which shows
a strong linear [14] relationship between the runtime of the same optimization
process in two different machines.

Given two machines M1 and M2, the runtime of an optimization process can
be considered as a two-dimensional vector, where each of the dimensions rep-
resents the runtime of the optimization process in each of the machines. Thus,
knowing the runtime t(s,M1) of an optimization process ρ in a machine M1, it
is reasonable to estimate the equivalent runtime of ρ in another machine M2,
when the runtime of two other optimization processes ρ′ and ρ′′ is known for
both machines. In fact, with such a high Pearson’s correlation coefficient, the
runtimes of these optimization processes (red crosses in Figure B.6) will almost
be aligned in a line [14]. Therefore, the estimated runtime of ρ in machineM2 is
defined as the value that makes the runtime of the three optimization processes
aligned. This is shown by the orange line in Figure B.6.

Observe that this procedure requires the runtime of two optimization processes
ρ′ and ρ′′ to be known in both machines M1,M2. However, by considering an
additional hypothesis, we can reduce the requirement to only one optimization
process ρ′. This additional hypothesis is that the regression line has to cross
the origin. Intuitively, if an optimization process (sequence of computational
instructions) takes no time in a machine, it makes no sense that it takes a
positive amount of time in another machine. In addition, without this condition,
it could be possible to estimate a negative runtime, which is not properly defined.

In this setting, the estimated runtime for the optimization process ρ in machine
M2 is set so that the runtime of the optimization processes ρ and ρ′ and the
origin are in the same line. This is represented by the blue line in Figure B.6.
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Figure B.6: Estimation of the runtime of an optimization process ρ with one ρ′ or two ρ′, ρ′′
reference optimization processes. The x-axis represents the runtime in machine M1, while the
y-axis is the runtime in machine M2. The runtime of the optimization process ρ is estimated
for machine M2.

The estimation of the runtime of the optimization process ρ in machine M2,
shown in the figure as a blue square, is given by the slope-intercept formula for
the points (0, 0) and (t(M1, ρ

′), t(M2, ρ
′)):

t(M2, ρ) ≈
t(M2, ρ

′)

t(M1, ρ′)
t(M1, ρ) (B.1)

By rewriting Equation (B.1), we obtain that the ratio of two optimization pro-
cesses is (approximately) constant in different machines:

t(M2, ρ)

t(M2, ρ′)
≈ t(M1, ρ)

t(M1, ρ′)
(B.2)

AppendixC. Details on the executed optimization processes

In the following, we detail the optimization processes executed in the experi-
mentation. As defined in this paper, an optimization process is just a sequence
of computational instructions that can be executed in any machine. Specifically,
each of the optimization processes described in this section consists of execut-
ing an optimization algorithm in a problem instance for a maximum of 2 · 106
objective function evaluations.

Problem instances: We solved four types of optimization problems (all of
them are permutation problems): the traveling salesman problem [8], the quadratic

25



Problem instances

instance name problem size
tai75e02 qap 75
sko100a qap 100
tai100a qap 100
tai100b qap 100
eil101 tsp 101
pr136 tsp 136
kroA200 tsp 200
kroB200 tsp 200
tai100_20_0 pfsp (100,20)
tai100_20_1 pfsp (100,20)
tai200_20_1 pfsp (200,20)
tai200_20_1 pfsp (200,20)
N-be75np_150 lop 150
N-stabu3_150 lop 150
N-t65d11xx_150 lop 150
N-t70f11xx_150 lop 150

Table C.5: The list of 16 problem instances and their size.

Machines

CPU model name speed score
Intel i5 470U 411
Intel Celeron N4100 1032
AMD A9 9420 with Radeon R5 1311
AMD FX 6300 1484
Intel i7 2760QM 1550
Intel i7 6700HQ (2.60GHz) 1918
Intel i7 7500U 2025
AMD Ryzen7 1800X 2180

Table C.6: The list of 8 machines used in the experimentation and their speed score, measured
in terms of PassMark single thread score.

assignment problem [10], the linear ordering problem [5] and the permutation
flowshop scheduling problem [9]. For each of these four problem types, we chose
4 problem instances, as listed in Table C.5.

Optimization algorithms: Each of the 16 problem instances was optimized
with four optimization algorithms. These optimization algorithms are random
search and local search with three different neighborhoods: swap, interchange
and insert [11, 4]. The local search is a best-first or greedy approach that is
randomly reinitialized when a local optimum is found.

We define each of the 64 different optimization processes as running each of
these four optimization algorithms in each of the 16 problem instances.

Machines: The experimentation was carried out in a set of 8 different machines.
Table C.6 lists the CPU models of these machines, as well as their single thread
PassMark CPU scores.
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AppendixD. The sign test for algorithm performance comparison

When statistically assessing the comparison of the performance of optimization
algorithms, a classical way is to use non-parametric tests as the distribution of
the performance is usually unknown. In the literature, the Wilcoxon signed-
rank test, the Mann-Whitney test and the sign test [6] are often used to assess
a statistically significant difference in the performance of two algorithms. We
argue that, in the context of optimization algorithm performance comparison,
it may be more suitable to use the sign test than the Wilcoxon signed-rank or
the Mann-Whitney test.

It turns out that the result of the Wilcoxon and the Mann-Whitney tests might
change when the objective function value of some of the problems is scaled
(multiplied or divided by a positive constant). The reason is that they both
take into account the magnitude of the differences between the observations,
and these differences change with scaling. A usual solution is to consider the
average relative deviation percentage with respect to the optimum (or any other
reference solution) instead of the objective value, but this only changes the
problem: now the results of these tests change when the objective function
value of some of the problems is shifted (add or subtract a constant). In our
opinion, the performance comparison of two optimization algorithms should be
invariant to these two alterations, otherwise, problems that are on a higher scale
(for example, when the dimension of the problem is high), will have a larger
impact on the result of the statistical test. In addition, we believe that it is
reasonable that all problem instances have the same weight in the conclusion of
the statistical test, which both the Wilcoxon signed-rank and the Mann-Whitney
test are unable to accomplish due to their dependence on the magnitude of the
differences.

An alternative is the sign test [6], which is invariant to the shifting and scaling
of the problems. In fact, the result of the sign test does not change even if
some of the problems are modified by composing the objective function with
any strictly increasing function. For this reason, and even though the sign test
is a less powerful alternative (higher probability of type II error), we believe it is
the most suitable hypothesis test for algorithm performance comparison when
the objective functions of all the problems are not directly comparable.
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AppendixE. Proof of Equation (6).

When performing the statistical analysis, a set of n problem instances is used
to compute the statistic and the p-value. The goal of the analysis is to draw
conclusions on a larger set of problem instances based on the observed sample of
size n. Given a problem instance, we can define the performance of an algorithm
in this instance.

Definition 6. (The performance of an algorithm in an instance)
Let M be a machine, t a stopping criterion in terms of maximum runtime, A an
optimization algorithm and i a problem instance. The performance of algorithm
A in an instance i, denoted A(M, t, i), is defined as a random variable whose
outcome is obtained by first sampling a random seed r and then optimizing
instance i with optimization algorithm A in machine M for time t. Given this
random seed r, the performance of an algorithm in an instance is deterministic.

In Section 2, we defined t1 as the stopping criterion for algorithm A in machine
M1, which is obviously the time it takes to carry out this optimization process
in machine M1. We also defined the equivalent runtime t2 as the time it takes
to replicate the exact same optimization process in machine M2 in definition 3.
Because of this definition, A(M1, t1, i) and A(M2, t2, i) are the same random
variables. Therefore, it makes sense to denote A(M1, t1, i) and A(M2, t2, i) or
B(M1, t1, i) and B(M2, t2, i) as Ai or Bi, respectively. To ease the notation, we
will also denote B(M2, t̂2, i) as B̂i.

Finally, as discussed in Section 3.3, we assume that whether t̂2 < t2 is true or
not is independent for each instance i, and that P(t̂2 < t2) < 0.01. Let us now
prove Equation (6).

Lemma 1. Let n be an integer, X and Y two random variables. Let X1, ..., Xn

be n independent random variables distributed as X. Let Y1, ..., Yn be n indepen-
dent random variables distributed as Y . Let vx and vy be two possible outcomes
of the random variables X and Y respectively, l ∈ {0, ..., n} be an integer and
p ∈ (0, 1) be a real number.

I) If P[Y = vy | X = vx] = 1, then

P[X = vx] ≤ P[Y = vy]

and
#{Xi = vx} ≤ #{Yi = vy}

II) If P[Y = vy | X = vx] = 1 and P[X = vx | Y = vy] = 1 then

P[X = vx] = P[Y = vy]
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III) If P[X = vx] < p then

P[#{Xi = vx} ≥ l] < P[Bin(n, p) ≥ l]
Lemma 2. Let i ∈ {1, .., n} be n problem instances and let A and B be two
optimization algorithms. Let ai, bi and b̂i be the observed values of Ai, Bi and
B̂i respectively, ∀i ∈ {1, ..., n}. Let k and v ∈ {0, ..., n} be two integers. Suppose
that Ai 6= Bi and Ai 6= B̂i.

Then,

P[#{Ai < min(B̂i, Bi)} ≤ min(k, v) | #{Ai < Bi} = v] ≤
P[#{Ai > B̂i ∧Ai < Bi} ≥ max(0, v − k) | #{Ai < Bi} = v]

Proof.
#{Ai < min(B̂i, Bi)} ≤ min(k, v) =⇒
#{Ai < B̂i ∧Ai < Bi} ≤ min(k, v) =⇒

#{Ai < Bi} −#{Ai > B̂i ∧Ai < Bi} ≤ min(k, v) =⇒

Substituting #{Ai < Bi} = v,

v −min(k, v) ≤ #{Ai > B̂i ∧Ai < Bi} =⇒

Considering v −min(k, v) = max(0, v − k),

#{Ai > B̂i ∧Ai < Bi} ≥ max(0, v − k)

We have just shown that

#{Ai < min(B̂i, Bi)} ≤ min(k, v) =⇒ #{Ai > B̂i ∧Ai < Bi} ≥ max(0, v− k)

Which means that,

P[#{Ai > B̂i∧Ai < Bi} ≥ max(0, v−k) | #{Ai < min(B̂i, Bi)} ≤ min(k, v)] = 1

Finally, we apply Lemma 1 I), obtaining

P[#{Ai < min(B̂i, Bi)} ≤ min(k, v) | #{Ai < Bi} = v] ≤
P[#{Ai > B̂i ∧Ai < Bi} ≥ max(0, v − k) | #{Ai < Bi} = v]
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Lemma 3. Let i ∈ {1, .., n} be n problem instances and let A and B be two
optimization algorithms. Let ai, bi and b̂i be the observed values of Ai, Bi and
B̂i respectively, ∀i ∈ {1, ..., n}. Let k and v ∈ {0, ..., n} be two integers. Suppose
that Ai 6= Bi and Ai 6= B̂i.

Then,

P[#{Ai < B̂i} ≤ k | #{Ai < Bi} = v] < P[Bin(n, 0.01) ≥ max(0, v − k)]

Proof.
P[#{Ai < B̂i} ≤ k | #{Ai < Bi} = v] ≤

P[#{Ai < min(B̂i, Bi)} ≤ k | #{Ai < Bi} = v]

Now, observe that #{Ai < min(Bi, B̂i)} ≤ #{Ai < Bi} = v, which implies that

#{Ai < min(B̂i, Bi)} ≤ k ⇐⇒ #{Ai < min(B̂i, Bi)} ≤ min(k, v)

This means that

P[#{Ai < min(B̂i, Bi)} ≤ k | #{Ai < min(B̂i, Bi)} ≤ min(k, v)∧#{Ai < Bi} = v] = 1

and

P[#{Ai < min(B̂i, Bi)} ≤ min(k, v) | #{Ai < min(B̂i, Bi)} ≤ k∧#{Ai < Bi} = v] = 1

We apply Lemma 1 II), obtaining

P[#{Ai < min(B̂i, Bi)} ≤ k | #{Ai < Bi} = v] =

P[#{Ai < min(B̂i, Bi)} ≤ min(k, v) | #{Ai < Bi} = v]

Applying Lemma 2, we obtain

P[#{Ai < min(B̂i, Bi)} ≤ min(k, v) | #{Ai < Bi} = v] ≤

P[#{Ai > B̂i ∧Ai < Bi} ≥ max(0, v − k) | #{Ai < Bi} = v]

Note that bi is the score obtained with the real equivalent runtime t2 as the
stopping criterion, while in the case of b̂i, the stopping criterion is the estimated
equivalent runtime t̂2. In a minimization context, b̂i < bi =⇒ t̂2 > t2,
because a better score can only be obtained with a longer runtime (a shorter
runtime implies an equal or worse performance). Let us consider the following
implications:

30



ai > b̂i ∧ ai < bi =⇒ b̂i < bi =⇒ t̂2 > t2

We infer that

P[t̂2 > t2 | Ai > B̂i ∧Ai < Bi] = 1

Applying Lemma 1 I), we obtain

P[#{Ai > B̂i ∧Ai < Bi | #{Ai < Bi} = v} ≥ max(0, v − k)] ≤

P[#{t̂2 > t2 | #{Ai < Bi} = v} ≥ max(0, v − k)] =

P[#{t̂2 > t2} ≥ max(0, v − k)]

The estimated runtime t̂2 was computed with the equation in Definition 5 in
Section 2, with an estimated probability that t̂2 < t2 lower than 0.01. With this
information, we apply Lemma 1 III) taking into account that P[t̂2 > t2] < 0.01:

P[#{t̂2 > t2} ≥ max(0, v − k)] <

P[Bin(n, 0.01) ≥ max(0, v − k)]

Theorem 1. Let i ∈ {1, .., n} be n problem instances and let A and B be two
optimization algorithms. Let ai, bi and b̂i be the observed values of Ai, Bi and
B̂i respectively, ∀i ∈ {1, ..., n}. Let H0 be the null hypothesis that implies the
null distribution Bin(n, 0.5) for the statistic #{Ai < Bi}. Suppose that Ai 6= Bi

and Ai 6= B̂i. Then,

P[#{Ai < B̂i} ≤ k | H0] ≤
n∑

v=0

(1− P[Bin(n, 0.01) < max(0, v − k)]) · P[Bin(n, 0.5) = v]

Proof. Let X,C be a two random variables, where SC and SX are the sets
of all possible outcomes of C and X respectively. Consider the law of total
probability [3]:

∀x ∈ SX , P[X = x] =
∑
c∈SC

P[C = c] · P[X = x | C = c]

Applying this formula, we obtain

P[#{Ai < B̂i} ≤ k | H0] =
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n∑
v=0

P[#{Ai < B̂i} ≤ k | H0 ∧#{Ai < Bi} = v] · P[#{Ai < Bi} = v | H0] =

Given that #{Ai < Bi} = v, we can say that #{Ai < B̂i} ≤ k is independent
of H0, because #{Ai < B̂i} is determined by how many times t̂2 > t2 resulted
in Ai < Bi∧Ai > B̂i and t̂2 < t2 resulted in Ai > Bi∧Ai < B̂i. Specifically, H0

gives the prior probabilities of Ai > Bi, which are not relevant when we know
that #{Ai > Bi} = v. That gives us

n∑
v=0

P[#{Ai < B̂i} ≤ k | #{Ai < Bi} = v] · P[#{Ai < Bi} = v | H0] <

Applying Lemma 3 and considering thatH0 implies the null distributionBin(n, 0.5)
for the statistic #{Ai < Bi},

n∑
v=0

P[Bin(n, 0.01) ≥ max(0, v − k)] · P[#{Ai < Bi} = v | H0] =

n∑
v=0

P[Bin(n, 0.01) ≥ max(0, v − k)] · P[Bin(n, 0.5) = v] =

n∑
v=0

(1− P[Bin(n, 0.01) < max(0, v − k)]) · P[Bin(n, 0.5) = v]
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AppendixF. Corrected critical values for the sign test

α
———————–
0.05 0.01 10−3

———————–
n Critc(α)
— ———————–
2 - - -
3 - - -
4 - - -
5 0 - -
6 0 - -
7 0 - -
8 1 0 -
9 1 0 -
10 1 0 -
11 2 1 -
12 2 1 0
13 2 1 0
14 3 2 0
15 3 2 0
16 4 2 1
17 4 3 1
18 4 3 1
19 5 3 2
20 5 4 2
21 5 4 2
22 6 4 3
23 6 5 3
24 7 5 3
25 7 5 4
26 7 6 4
27 8 6 4
28 8 6 5
29 9 7 5
30 9 7 5
31 10 8 6
32 10 8 6

α
———————–
0.05 0.01 10−3

———————–
n Critc(α)
— ———————–
33 10 8 6
34 11 9 7
35 11 9 7
36 12 10 7
37 12 10 8
38 12 10 8
39 13 11 8
40 13 11 9
41 14 12 9
42 14 12 9
43 15 12 10
44 15 13 10
45 15 13 11
46 16 14 11
47 16 14 11
48 17 14 12
49 17 15 12
50 18 15 12
51 18 16 13
52 18 16 13
53 19 16 14
54 19 17 14
55 20 17 14
56 20 18 15
57 21 18 15
58 21 18 15
59 21 19 16
60 22 19 16
61 22 20 17
62 23 20 17
63 23 20 17

α
———————–
0.05 0.01 10−3

———————–
n Critc(α)
— ———————–
64 24 21 18
65 24 21 18
66 25 22 19
67 25 22 19
68 25 23 19
69 26 23 20
70 26 23 20
71 27 24 21
72 27 24 21
73 28 25 21
74 28 25 22
75 28 25 22
76 29 26 23
77 29 26 23
78 30 27 23
79 30 27 24
80 31 28 24
81 31 28 25
82 32 28 25
83 32 29 25
84 32 29 26
85 33 30 26
86 33 30 27
87 34 31 27
88 34 31 27
89 35 31 28
90 35 32 28
91 36 32 29
92 36 33 29
93 36 33 29
94 37 34 30

Table F.7: The corrected critical values for the sign test. Rejecting H0 when the
observed number of cases that ai < b̂i is lower than or equal to Critc(α) has an
associated probability of type I error lower than α.
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α
———————–
0.05 0.01 10−3

———————–
n Critc(α)
— ———————–
95 37 34 30
96 38 34 31
97 38 35 31
98 39 35 31
99 39 36 32
100 40 36 32
101 40 37 33
102 41 37 33
103 41 37 34
104 41 38 34
105 42 38 34
106 42 39 35
107 43 39 35
108 43 40 36
109 44 40 36
110 44 40 36
111 45 41 37
112 45 41 37
113 45 42 38
114 46 42 38
115 46 43 38
116 47 43 39
117 47 44 39
118 48 44 40
119 48 44 40
120 49 45 41
121 49 45 41
122 50 46 41
123 50 46 42
124 50 47 42
125 51 47 43
126 51 47 43
127 52 48 44
128 52 48 44
129 53 49 44
130 53 49 45
131 54 50 45
132 54 50 46
133 54 50 46
134 55 51 46

α
———————–
0.05 0.01 10−3

———————–
n Critc(α)
— ———————–
135 55 51 47
136 56 52 47
137 56 52 48
138 57 53 48
139 57 53 49
140 58 54 49
141 58 54 49
142 59 54 50
143 59 55 50
144 59 55 51
145 60 56 51
146 60 56 52
147 61 57 52
148 61 57 52
149 62 58 53
150 62 58 53
151 63 58 54
152 63 59 54
153 64 59 55
154 64 60 55
155 65 60 55
156 65 61 56
157 65 61 56
158 66 62 57
159 66 62 57
160 67 62 57
161 67 63 58
162 68 63 58
163 68 64 59
164 69 64 59
165 69 65 60
166 70 65 60
167 70 66 60
168 70 66 61
169 71 66 61
170 71 67 62
171 72 67 62
172 72 68 63
173 73 68 63
174 73 69 64

α
———————–
0.05 0.01 10−3

———————–
n Critc(α)
— ———————–
175 74 69 64
176 74 70 64
177 75 70 65
178 75 70 65
179 75 71 66
180 76 71 66
181 76 72 67
182 77 72 67
183 77 73 67
184 78 73 68
185 78 74 68
186 79 74 69
187 79 74 69
188 80 75 70
189 80 75 70
190 81 76 70
191 81 76 71
192 81 77 71
193 82 77 72
194 82 78 72
195 83 78 73
196 83 78 73
197 84 79 73
198 84 79 74
199 85 80 74
200 85 80 75
201 86 81 75
202 86 81 76
203 87 82 76
204 87 82 76
205 87 82 77
206 88 83 77
207 88 83 78
208 89 84 78
209 89 84 79
210 90 85 79
211 90 85 80
212 91 86 80
213 91 86 80
214 92 87 81
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α
———————–
0.05 0.01 10−3

———————–
n Critc(α)
— ———————–
215 92 87 81
216 93 87 82
217 93 88 82
218 93 88 83
219 94 89 83
220 94 89 83
221 95 90 84
222 95 90 84
223 96 91 85
224 96 91 85
225 97 91 86
226 97 92 86
227 98 92 87
228 98 93 87
229 99 93 87
230 99 94 88
231 99 94 88
232 100 95 89
233 100 95 89
234 101 96 90
235 101 96 90
236 102 96 90
237 102 97 91
238 103 97 91
239 103 98 92
240 104 98 92
241 104 99 93
242 105 99 93
243 105 100 94
244 105 100 94
245 106 100 94
246 106 101 95
247 107 101 95
248 107 102 96
249 108 102 96
250 108 103 97
251 109 103 97
252 109 104 97
253 110 104 98
254 110 105 98

α
———————–
0.05 0.01 10−3

———————–
n Critc(α)
— ———————–
255 111 105 99
256 111 105 99
257 111 106 100
258 112 106 100
259 112 107 101
260 113 107 101
261 113 108 101
262 114 108 102
263 114 109 102
264 115 109 103
265 115 110 103
266 116 110 104
267 116 110 104
268 117 111 105
269 117 111 105
270 118 112 105
271 118 112 106
272 118 113 106
273 119 113 107
274 119 114 107
275 120 114 108
276 120 115 108
277 121 115 109
278 121 115 109
279 122 116 109
280 122 116 110
281 123 117 110
282 123 117 111
283 124 118 111
284 124 118 112
285 124 119 112
286 125 119 113
287 125 120 113
288 126 120 113
289 126 120 114
290 127 121 114
291 127 121 115
292 128 122 115
293 128 122 116
294 129 123 116

α
———————–
0.05 0.01 10−3

———————–
n Critc(α)
— ———————–
295 129 123 116
296 130 124 117
297 130 124 117
298 131 125 118
299 131 125 118
300 131 125 119
301 132 126 119
302 132 126 120
303 133 127 120
304 133 127 120
305 134 128 121
306 134 128 121
307 135 129 122
308 135 129 122
309 136 130 123
310 136 130 123
311 137 130 124
312 137 131 124
313 138 131 125
314 138 132 125
315 138 132 125
316 139 133 126
317 139 133 126
318 140 134 127
319 140 134 127
320 141 135 128
321 141 135 128
322 142 135 129
323 142 136 129
324 143 136 129
325 143 137 130
326 144 137 130
327 144 138 131
328 145 138 131
329 145 139 132
330 145 139 132
331 146 140 133
332 146 140 133
333 147 141 133
334 147 141 134
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α
———————–
0.05 0.01 10−3

———————–
n Critc(α)
— ———————–
335 148 141 134
336 148 142 135
337 149 142 135
338 149 143 136
339 150 143 136
340 150 144 137
341 151 144 137
342 151 145 137
343 152 145 138
344 152 146 138
345 152 146 139
346 153 146 139
347 153 147 140
348 154 147 140
349 154 148 141
350 155 148 141
351 155 149 141
352 156 149 142
353 156 150 142
354 157 150 143
355 157 151 143
356 158 151 144
357 158 152 144
358 159 152 145
359 159 152 145
360 159 153 146
361 160 153 146
362 160 154 146
363 161 154 147
364 161 155 147
365 162 155 148
366 162 156 148
367 163 156 149
368 163 157 149
369 164 157 150
370 164 157 150
371 165 158 150
372 165 158 151
373 166 159 151
374 166 159 152

α
———————–
0.05 0.01 10−3

———————–
n Critc(α)
— ———————–
375 167 160 152
376 167 160 153
377 167 161 153
378 168 161 154
379 168 162 154
380 169 162 154
381 169 163 155
382 170 163 155
383 170 163 156
384 171 164 156
385 171 164 157
386 172 165 157
387 172 165 158
388 173 166 158
389 173 166 159
390 174 167 159
391 174 167 159
392 174 168 160
393 175 168 160
394 175 169 161
395 176 169 161
396 176 169 162
397 177 170 162
398 177 170 163
399 178 171 163
400 178 171 163
401 179 172 164
402 179 172 164
403 180 173 165
404 180 173 165
405 181 174 166
406 181 174 166
407 182 174 167
408 182 175 167
409 182 175 168
410 183 176 168
411 183 176 168
412 184 177 169
413 184 177 169
414 185 178 170

α
———————–
0.05 0.01 10−3

———————–
n Critc(α)
— ———————–
415 185 178 170
416 186 179 171
417 186 179 171
418 187 180 172
419 187 180 172
420 188 180 173
421 188 181 173
422 189 181 173
423 189 182 174
424 189 182 174
425 190 183 175
426 190 183 175
427 191 184 176
428 191 184 176
429 192 185 177
430 192 185 177
431 193 186 177
432 193 186 178
433 194 186 178
434 194 187 179
435 195 187 179
436 195 188 180
437 196 188 180
438 196 189 181
439 197 189 181
440 197 190 182
441 197 190 182
442 198 191 182
443 198 191 183
444 199 192 183
445 199 192 184
446 200 192 184
447 200 193 185
448 201 193 185
449 201 194 186
450 202 194 186
451 202 195 187
452 203 195 187
453 203 196 187
454 204 196 188
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α
———————–
0.05 0.01 10−3

———————–
n Critc(α)
— ———————–
455 204 197 188
456 205 197 189
457 205 198 189
458 205 198 190
459 206 198 190
460 206 199 191
461 207 199 191
462 207 200 192
463 208 200 192
464 208 201 192
465 209 201 193
466 209 202 193
467 210 202 194
468 210 203 194
469 211 203 195
470 211 204 195

α
———————–
0.05 0.01 10−3

———————–
n Critc(α)
— ———————–
471 212 204 196
472 212 205 196
473 213 205 196
474 213 205 197
475 213 206 197
476 214 206 198
477 214 207 198
478 215 207 199
479 215 208 199
480 216 208 200
481 216 209 200
482 217 209 201
483 217 210 201
484 218 210 201
485 218 211 202
486 219 211 202

α
———————–
0.05 0.01 10−3

———————–
n Critc(α)
— ———————–
487 219 211 203
488 220 212 203
489 220 212 204
490 221 213 204
491 221 213 205
492 221 214 205
493 222 214 206
494 222 215 206
495 223 215 206
496 223 216 207
497 224 216 207
498 224 217 208
499 225 217 208
500 225 217 209
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