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Abstract 
 
The mechanisms of clonal expansion of CLL are only partially understood. Several 

interactions of neoplastic cells with accessory cells and cytokines potentially sustaining 

neoplastic B cell clone survival and proliferation have been described. Recently, a 

paracrine/autocrine loop has been reported, involving the upregulation of the IL23R complex 

and IL23 secretion by CLL cells. This loop drives CLL cell clonal expansion in vitro and in 

xenografted NSG mice. Furthermore, in situ observations on tissue sections demonstrate that 

infiltrating IL23 secreting CLL cells interact with macrophages and CD40L expressing T 

cells. Although inducible in vitro by co-culturing CLL cells with T cells or CD40L 

expressing cells, the IL23 loop is not observed following stimulation of CLL cells via surface 

Ig or contact with nurse like cells or bone marrow stromal cells. 

In this study, we investigated whether the IL23 loop could be induced following Toll-like 

receptor 9 (TLR9) engagement which influences leukemic cell survival, activation 

proliferation albeit in a heterogeneous manner. In addition, we explored the possible 

existence of an autocrine/paracrine loop mediated by IL12 which shares similarities and 

surface receptors with IL23 although with a likely opposite outcome in term of the possibility 

to sustain leukemic cell growth . 

IL23R and IL12R complexes (IL23R/IL12Rβ1, IL12β2/IL12Rβ1) expression were 

evaluated by flow-cytometry following stimulation with CpG oligodeoxynucleotide (ODN) 

that binds the TLR9 on CLL, showing that CLL cells are able to express the IL23R complex 

on membrane and, at lower extent, the IL12R complex. 

 These receptors were assessed also in normal B cells by flow cytometry after 72h of 

stimulation with CpG and CpG+IL15. In this setting, normal B cells were less capable of 

IL23R complex expression compared to CLL cells. A further striking difference observed 

was related to the limited expression of IL12Rß2 receptor chain in stimulated CLL cells 

compared to normal B cells.  

Supernatants of CLL cells and normal B cells were both tested for the production of these 

cytokines after stimulation. The results showed a low level of IL23p19 secretion for both 

CLL cells and normal B cells, which is significant after CD40L stimulation (used as positive 

control), and a higher production of IL12p70 which is more pronounced in normal B cells 

compared to CLL. In another series of tests, CLL cells were stimulated with CpG for 72h, 

and subsequently exposed to IL12 or IL23. Exposure to IL12 and IL23 induced the 
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expression of pSTAT1 and pSTAT3. Collectively our data corroborate the notion that IL23R 

complex act as a pro-survival factor for CLL cells. In contrast, the restricted IL12R complex 

expression in CLL cells compared to normal B cells indicated that the suppression of the 

expression of this receptor may favor the survival of the leukemic clones.  The possibility of 

a reciprocal competition of the shared receptor chains is discussed. 

 

Introduction 
 
Chronic lymphocytic leukaemia 
 
Epidemiology and Incidence 
 

Chronic lymphocytic leukemia (CLL) results from a monoclonal expansion of CD5+ B-

lymphocytes in the bone marrow (BM), peripheral blood (PB), and secondary lymphoid 

organs, in particular lymph nodes (LNs).1,2 

CLL is a clinically heterogeneous disease, with some patients never requiring treatment, 

others needing so after several years, and others requiring it at diagnosis. This degree of 

clinical heterogeneity may in part be attributed not only to clone-intrinsic biological features, 

but also to clone-extrinsic events related to the microenvironment. Indeed, the diverse 

signals that CLL cells sense in the surrounding environment are increasingly recognized as 

determinants of clone fitness and progression. 3,4 

Genetic factors can contribute to the development of CLL; indeed CLL is the most common 

adult leukaemia in western countries, whereas it is less common in Asia and relatively rare 

in Japan and Korea, even among Japanese people who immigrate to western countries.2 

 
Diagnosis 
 

In the presence of ≥ 5000 monoclonal B cells per µl in PB, over a period of more than 3 

months, the diagnosis of CLL is commonly established by immunophenotyping.  CLL cells 

co-express B and T cell surface antigens: CD19, CD20, CD23 and CD5 respectively. 

Furthermore, leukaemic cells derived from the same clone express the same immunoglobulin 

heavy chain, either kappa or lambda.  

Recently, it has been confirmed that a panel of CD19, CD5, CD23, κ, λ and CD20 is 

sufficient for the diagnosis of CLL. In borderline cases, markers such as ROR1, CD79b, 

CD43, CD200, CD10 or CD81 could help the diagnosis.5 
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In the presence of <5000/µl B cells in the peripheral blood with a surface phenotype of CLL 

(light chain restriction and expression of CD5 and of low CD79ß) and no other features of 

lymphoproliferative disorder, the diagnosis is of “monoclonal B-lymphocytosis” (MBL), a 

precursor state of chronic lymphocytic leukaemia. Subjects with MBL, like CLL patients, 

show an increased risk of secondary cancers, in particular skin cancer.5 

 
CLL staging 
 

The definition of the CLL stage is based on the natural history of the disease. According to 

the European Binet staging system (developed in 1981), CLL is divided into three stages (A, 

B and C).6 This system is based on the number of areas involved. Patients in Binet stage A 

have 0 to 2 affected lymph node areas or organ enlargement with normal levels of 

haemoglobin and platelets. Binet stage B patients have peripheral and medullary 

lymphocytosis and 3 to 5 affected lymph node areas. Binet stage C patients have peripheral 

and medullary lymphocytosis with Hb <10 g/dl and/or thrombocytopenia (<100,000/mm3). 

In the USA, the most common clinical staging system used is the Rai staging system 

developed by Dr Kanti Rai in 1975.7 This method is based on the concept that CLL is an 

accumulative pathology. The Rai staging system divides the CLL disease into five (0-IV) 

different stages that are described in the Kanti R. Rai et al. paper as follows: 

- 0, lymphocytosis in blood as well as in bone marrow (absolute lymphocytes, 15,000/cu 

mm or more in blood, 40% or more lymphocytes in the marrow).  

- I, lymphocytosis with enlarged lymph nodes.  

- II, lymphocytosis with enlarged spleen or liver or both. Nodes may or may not be 

enlarged.  

- III, lymphocytosis with anaemia. Nodes, spleen, or liver may or may not be enlarged.  

- IV, lymphocytosis with thrombocytopenia. Anaemia and organomegaly may or may 

not be present.  

Patients belonging to the stage Binet B or Rai stage I/II are considered as intermediate-risk 

groups while patients belonging to the stage Binet C or Rai stage III/IV are defined as being 

in the high-risk categories. 

For the overall status of the patient and the disease progression these two staging systems 

are very helpful, but they are unfit for the prediction of disease evolution. On the contrary, 
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molecular prognostic markers are more useful for predicting patient survival, disease 

progression and resistance to therapy. 

 
Prognostic markers 
 
Clinical and biological prognostic factors help define the risk for disease progression in 

individual patients and for the development of personalized treatment strategies. The most 

important prognostic factors in addition to the Rai and Binet clinical staging systems are 

divided into: 

- genetic parameters, including the cytogenetic aberrations, mutational status of IGHV gene8 

and gene mutations, in particular TP53 9; 
- cell markers, including CD38 10 and ZAP7011; 

These parameters allow the stratification of the patients into different risk categories.  

 

By using predominantly fluorescence in situ hybridization (FISH), different types of 

genomic aberrations have been identified. 

The most common cytogenetic abnormality (in about 50% of CLL patients) is the deletion 

of the 13q14 region and subsequent loss of miRNAs (miR-15a and miR-16-1), which 

initiates leukaemogenesis. Usually, patients with this deletion have a good prognosis, even 

if, recently, it has been shown that a large deletion of 13q is associated with poor 

prognosis12,13. The other most common genetic abnormalities are represented by: 

- the deletion of chromosome 11q22-q23, which is found in 10–20% of cases, causes the loss 

of the ataxia telangiectasia mutated (ATM) gene that encodes a DNA damage response 

kinase, ATM, that is very important in DNA damage detection and induction of cell cycle 

arrest. This alteration defines a subgroup of patients with unfavourable prognosis13;  

- trisomy 12, its prognostic relevance is still debate14;  

- deletion of chromosome 17p13 (del (17p13)), which occurs in 5–8% of cases, causes the 

loss of the tumour suppressor gene p53 (TP53) that is involved in the DNA damage detection 

pathway, cell cycle arrest, apoptosis and regulation of cellular metabolism15. Commonly, 

this type of alteration is acquired at the late stages of the disease particularly after treatment. 

Deletion of 17p13 is associated with poor survival and high risk of resistance to 

chemotherapeutic agents16. Therefore, patients that harbor this aberration are included in the 

highest risk prognostic category17. 
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The somatic hypermutation status of the IGHV gene has a very important prognostic role.  

B lymphocytes are known to recombine immunoglobulin variable (V), diversity (D), and 

junction (J) genes during their development, to create a unique antigen binding domain of 

the B cell receptor (BCR). In order to generate high-affinity antibodies, a second process 

namely somatic hypermutation occurs. This process is triggered when the Ig binds the 

antigen and consists of the accumulation of point mutations in the V regions.  

 

The presence or not of somatic mutations in the IGHV gene of leukemic cells divides CLL 

patients into two groups: unmutated CLL (U-CLL), with a germline identity ≥98%, who 

have an aggressive disease course, and mutated CLL (M-CLL) with a germline identity 

<98% who usually have a more indolent disease8,18. 

Somatic mutations can occur in the tumor suppressor gene p53 leading to a deterioration in 

its function9. It is well known that p53 exerts its tumor suppressive activities by inducing 

cell cycle arrest and apoptosis9,19.  

Patients harbouring these mutations are characterized by an aggressive disease course and 

resistance to chemotherapy and chemoimmunotherapy, as is well documented by a variety 

of studies9,16,20, including prospective clinical trials21,22. It has been shown that in about 

5% of untreated patients, TP53 mutations take place in the absence of del (17p13) while in 

about 70% of cases, TP53 mutations can occur together with del (17p13) leading to a double 

mechanism of inactivation9. It has to be highlighted that TP53 represents an independent 

adverse prognostic marker for progression free-survival (PFS) and overall survival (OS) in 

CLL patients9.  

 

Recently, thanks to the use of next generation sequencing, new genomic abnormalities have 

been identified, for example i) activating mutations of NOTCH1, which occur in about 10% 

of CLL patients at diagnosis and are associated with poor prognosis, poorer responses to 

conventional chemoimmunotherapy and increase in the risk of transformation to diffuse 

large B-cell lymphoma (DLBCL)23; and ii) dysfunctional mutations of Splicing factor 3b, 

subunit 1 (SF3B1), which occur in about 5%-15% of patients with CLL at diagnosis and are 

related to poor overall survival, faster disease progression and chemoresistance24.  

  

CD38 is a transmembrane glycoprotein that is commonly expressed at high levels in plasma 

cells, germinal centres B cells, B cell precursors and, with low expression, on circulating B 

cells10. The natural ligand of CD38 is CD31, an adhesion molecule expressed by different 
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cell types in the CLL microenvironment, such as “nurse like cells” (NLCs) and T 

lymphocytes. The binding between CD38 and CD31 leads to survival and proliferation 

signals in leukaemic cells10. CD38 is defined as a negative prognostic marker for patients 

with CLL10. In the majority of studies, the threshold, that provides the best prognostic value, 

is CD38+ ≥ 30% (Z., 2005). 

Like CD38, ZAP-70, a member of the syk tyrosine kinase family, is a negative prognostic 

marker for patients with CLL11. 

 

Biology of CLL and microenvironment 
 
CLL is characterized by the accumulation of CD5 and CD19 positive monoclonal B cells in 

the peripheral lymphoid organs, bone marrow and blood1,25. CLL cells are phenotypically 

similar to mature B cells that have encountered the antigen. Indeed, they express high levels 

of surface molecules (CD23, CD20 dim, CD69) and low levels of markers downregulated 

after cellular activation, such as CD22, receptor gamma Fc IIb and CD79b1,18. Furthermore, 

the expression levels of surface immunoglobulin, CD20, CD79b and CD19 are usually low 

compared with normal B cells. Yet, they express a typical marker of the memory B-cell, 

CD2726 and also the gene expression profiles are similar.  

 

In the past, CLL cells were considered to be quiescent apoptosis-resistant malignant B 

lymphocytes. This resistance was associated with the over-expression of the anti-apoptotic 

protein Bcl-227. CLL was in fact described as a “pathology of accumulation”, considering 

the defect in the apoptotic mechanism as one of the main causes of the disease. Over time, 

different studies on CLL biology revealed a new dynamic view of this disease28. It became 

clear that CLL cells undergo, during their life, iterative cycles of re-activation and 

subsequent clonal expansion, before coming back to a quiescence state. By using a 

deuterium oxide 2H in vivo labelling method, in which patients consumed deuterated 

(heavy) water (2H2O), it has been shown that the daily growth rate of CLL cells ranges from 

0.08% to 1.7%29. Furthermore, by using this same method, it has also been demonstrated 

that the lymph nodes are the anatomical site harbouring the largest fraction of newly born 

cells compared to peripheral blood and bone marrow30. This supports the concept that 

activation and clonal expansion occur in lymphoid proliferation centres within secondary 

lymphoid tissues, where multiple molecular interactions with antigen and microenvironment 

contribute to leukaemic B cell survival, chemoresistance and proliferation.  
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The tumor microenvironment (TME) is a very complex milieu in which signals, fundamental 

for the survival and accumulation of leukaemic cells, are delivered by soluble factors or 

direct cell contact. An important interaction that rescues CLL cells from apoptosis, both in 

vivo and in vitro, is represented by the binding between CD38, expressed on CLL cells, and 

its natural ligand CD31, expressed on NLCs31 and T lymphocytes 1. Bone marrow stromal 

cells (BMSC)32, the predominant stromal cell population in the CLL microenvironment, can 

also protect CLL cells from apoptosis and support their proliferation. Crucial for supporting 

growth and survival of leukaemic cells is the binding between CD40, expressed on CLL 

cells, and CD40 ligand (CD40L), expressed on activated CD4+ T helper lymphocytes1,33. In 

addition, T cells secrete different types of cytokines, including IL4 and IL21, that play an 

important role in supporting CLL cells proliferation1,33,34. 

Another soluble factor that might support the clone expansion is represented by CXCL12 

(stromal cell-derived factor 1, SDF-1), a natural ligand of the chemokine receptor CXCR4 

that is overexpressed on CLL cells. CXCL12 is secreted by NLCs and, after binding CXCR4, 

promotes the up-regulation of anti-apoptotic genes, like Bcl-2 and Mcl-1, favoring the 

survival of leukaemic cells1. Also IL6, produced by endothelial cells, inhibits apoptosis of 

CLL cells35. 

 

All these results indicate a dynamic picture where CLL cells undergo iterative cycles of re-

activation and subsequent clonal expansion in the lymphoid microenvironment, which 

crucially contribute to CLL disease progression. 

 



	 10	

Fig. 1 Interaction between CLL cells and microenviroment 

 
 
CLL treatment 
 

Since CLL disease is still an incurable disease, its pharmacological treatment remains a 

subject of considerable interest and relevance. Patients with CLL have a variable disease 

course with a third of patients never needing treatment and, on the other hand, other patients 

that need treatment soon after diagnosis. The criteria for initiating treatment in CLL patients 

depend on the symptoms caused by the disease and also on the Binet/Rai staging systems. 

In particular, patients with asymptomatic, early-stage disease (Rai 0; Binet A) are usually 

not treated but are followed on a "watch and wait" principle6,7,13. On the contrary, patients 

with signs of active disease (i.e. rapidly progressive lymphadenopathy) or classified as Binet 

stage C or Rai stage III and IV, are subjected to treatment6,7,13.  

For several decades, the “gold standard” treatment for CLL was represented by the alkylating 

agent chlorambucil36. It was discovered in the ‘90s that the combination of 

cyclophosphamide, another alkylating agent, and the purine analogues Fludarabine 

improved the quality and duration of response in younger patients37. 
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Fludarabine (FAMP) is the most studied and effective purine analogue in CLL. The purine 

analogues act by mimicking the purine’s structure and after their incorporation into DNA or 

RNA, they inhibit the cellular replication and transcription. Fludarabine is also able to induce 

cell death in quiescent cells by the activation of the mitochondrial pathway of the apoptotic 

cascade38. However, a considerable clinical problem is the development of chemoresistance. 

This might be due to genetic alterations, like MYC overexpression39, del(17p)16 and/or 

TP53mutations16, but is also markedly influenced by the TME, which induces the expression 

of anti-apoptotic Bcl-2 family proteins40, thus contributing to chemoresistance41,42. As an 

example, the Mcl-1/Bax ratio and also Bcl-2/Bax ratio was reported to correlate with 

chemoresistance to Fludarabine41,43. Also, the induction of both Bcl-xL and A1 in CLL was 

associated with chemoresistance to Fludarabine in preclinical models44.  

 

Drugs that target two fundamental kinases involved in the transduction of signals from the 

BCR, namely the Bruton’s tyrosine kinase (BTK) and the phosphatidylinositol 3-kinase 

(PI3K) δ isoform, have been developed in recent years.  

 
The BTK pathway is amplified in CLL, where this kinase is constitutively phosphorylated, 

and leads to pro-survival signals and induction of proliferation by its effect on AKT45, 

nuclear factor-KB (NF-KB)46 and extracellular signal-regulated kinase (ERK)47.  

 
PI3K is a family of enzymes involved in crucial cellular activities such as proliferation, 

survival, metabolism, migration and genomic instability48,49. PI3Kδ isoform expression is 

restricted to leukocytes and plays a central role in the survival of normal B cells. In CLL 

cells the PI3K pathway is constitutively activated and dependent on PI3Kδ50. Therefore, 

these two kinases represent a very good target for the CLL disease. Ibrutinib (PCI-32765), a 

covalent inhibitor of BTK, and Idelalisib (GS-1101 or CAL-101), a selective and reversible 

inhibitor of PI3Kδ, were particularly successful among drugs developed for inactivating 

these kinases. They are able to reduce, both in vitro and in vivo, cell survival, migration and 

proliferation50-52  of CLL cells and are currently FDA approved for patients with relapsed or 

refractory CLL and also in patients with TP53 aberrations53,54. 

 
However, recent data report the development of CLL cells resistances to Ibrutinib55,56. Also, 

immune-mediated toxicity like neutropenia and sepsis, hepatotoxicity and pneumonitis have 

been reported in patients on Idelalisib57.  
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Another drug that showed a remarkable clinical response in CLL, independently from 

negative prognostic markers like TP53 aberration58, is the B-cell lymphoma 2 (Bcl-2) 

Homology 3 (BH3)-mimetic Venetoclax (ABT-199).  

CLL cells rely on the activity of anti-apoptotic Bcl-2 family members for their survival59. 

Therefore, strategies to restore apoptosis in CLL cells by antagonizing the anti-apoptotic 

proteins have led to the development of BH3 mimetics as therapeutic agents60-64. BH3-

mimetics are small molecules modelled on the BH3 domains of BH3-only members62 (Baell 

JB, 2002). They mimic their function by binding to anti-apoptotic Bcl-2 family proteins, 

thus leading to the inhibition of their activity. In this way, Bax and Bak are released, causing 

the trigger of apoptosis59,63.  

The prototype of these small molecules was ABT-737, which mimics the pro-apoptotic 

protein Bad64. Its oral derivative is Navitoclax (ABT-263) that binds, with high affinity, the 

anti-apoptotic proteins Bcl-xL, Bcl-W and Bcl-2 but not Mcl-163. It has shown promising 

results in haematological malignancies, especially in CLL61. However, ABT-263 provoked 

severe thrombocytopenia due to on-target toxicity on the Bcl-xL protein, which is a 

fundamental survival molecule for the platelets63,65,66. In order to avoid this important side 

effect, the second-generation compound ABT199 (called also Venetoclax) was designed for 

specifically binding Bcl-260,61 sparing thus Bcl-xL and platelets. In particular, ABT199 

shows a subnanomolar affinity for Bcl-2, no interaction with Mcl-1 and very weak affinity 

for BcL-xL and Bcl-W60. This drug has been demonstrated to be efficacious in 

leukaemia/lymphoma Bcl-2 dependent cell lines and also in tumor xenograft models60. Its 

effect seems superior in CLL than in other lymphoid malignancies, although evidence in 

mantle cell lymphoma and lymphoplasmacytic lymphoma is encouraging67. In recent times, 

a phase I61  and a phase II58 studies have proved that Venetoclax monotherapy is active also 

in patients with relapsed or refractory del(17p). However, the cytotoxic activity of this 

BH3-only mimetic is impaired when anti-apoptotic proteins, like Mcl-1 and Bcl-xL, are 

overexpressed68,69. Recently, Tahir S.K. et al. have shown that in leukaemic and lymphoma 

cell lines resistant to ABT199 there is an increased expression of the anti-apoptotic proteins 

Mcl-1 and Bcl-xL, which are not targeted by ABT19969. The work of Thijssen R. et al. 

analysed in CLL cells to what extent microenvironmental signals can alter sensitivity to 

ABT-19968. They reported that unstimulated CLL cells are highly sensitive to ABT-199 

(LC50<1nM) rather than CD40 and CD40+IL-4 stimulated CLL cells that show to be fully 

resistant to 10  µM ABT-199. This might be due to the over-expression, in the proliferating 
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CLL cells, of anti-apoptotic proteins that are not targeted by ABT199, like Mcl-1 and Bcl-

xL68. 

For all these reasons, it appears that the microenvironment and subsequent CLL cells 

activation/proliferation reduce CLL cell sensitivity to Venetoclax. 

The complexity of the cross-talk between CLL cells and the microenvironment, as well as 

the mechanisms of drug resistance and treatment failure need to be further investigated. 

 
Fig.2 Molecules of the CLL microenvironment 

 
 
 
ODN and Toll like receptor 
 
CpG oligonucleotides (ODNs) are synthetic ODNs that contain unmethylated CpG 

dinucleotides in specific sequences. These ODNs have been seen to be recognized by TRL-

9 with strong immunostimulatory effects. 
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Three types of CpG ODNs, type A, B and C, have been identified which differ in their 

immunostimulatory activities. Type A ODNs are characterized by a palindrome sequence 

and a 3 'poly-G sequence. They induce a high production of INF-α by dendritic cells but are 

weak stimulators of TRL-9. 

Type B ODNs contain one or more CpG dinucleotides in their sequence. They strongly 

activate B cells, on the contrary they weakly activate the secretion of INF-α. 

The latter, type C, combine the characteristics of both previous types in fact induce both the 

secretion of INF-α and the stimulation of B cells. 

In fact, recent studies have shown that the exposure of B cells to ODN and IL15 (cytokine 

present in the bone marrow, lymph nodes and spleen) leads to a vigorous proliferation70. 

 

Toll like receptors are transmembrane structures usually react with exogenous and at times 

endogenous proteins, whereas the latter recognize nucleic acids of microbial or endogenous 

origin. TLR9 and TLR7 are expressed by normal and malignant B lymphocytes 

intracellularly in endosomes. Stimulation of both types of receptors influences B-cell 

survival and proliferation of normal B lymphocytes71,72 and BCRs can have pathogenic roles 

in CLL73 and B-cell lymphomas74. 

It has been shown that both the clone antigen receptor and the milieu stromal appear to 

influence the growth rate. Furthermore, the involvement of TLR signals probably seems to 

be based on a high atypical expression of TLR9 on the CLL B cell membrane and the 

likelihood that the specificity of BCR facilitates the internalization of physically bound 

molecules to CpG sites70. The high expression of TLR9 and the specificity of the BCR for 

DNA or DNA-bound antigens suggest that TLR9 signals are important in guiding the growth 

of the leukemic clone in patients1,70. 

 
 
Cytokines and CLL 
 
Pro-inflammatory cytokines have been variously observed and used to identify subsets of 

CLL with a more aggressive course and worse survival75,76. These results suggest that 

inflammatory cytokines may provide a strong incentive for CLL origin and progression. 

Among the pro-inflammatory cytokines interleukin-23 is a heterodimeric cytokine 

composed of a p19 subunit and a p40 subunit, which is common to IL12. IL23 is 

predominantly produced by myeloid dendritic cells and type 1 macrophages in microbial 
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response or host immune stimuli, and is involved in the regulation of immune responses 

against infection and tumor development through IL receptor binding -23 (IL23R)77,78.   

IL12 is a pro-inflammatory cytokine as well, is composed of a p35 and p40 subunits and its 

receptor is made by IL12Rß1 chain and IL12Rß2 chain. This cytokine is generally produced 

by DCs, macrophages and B cells in response to microbial pathogens79. It can also induce 

the production of IFNγ by T cells and NK cells and induce the Th1 differentiation79. 

 

Regarding hematological tumors, IL23R heterodimer has been seen to be upregulated in 

primary acute lymphoblastic leukemia cells, follicular lymphoma, and diffuse large B cell 

lymphoma, where it inhibits the growth of neoplastic cells after cross linking with its ligand 
80,81. Interestingly, CLL patients have significantly higher serum IL23 levels than those of 

age-matched healthy donors, albeit with some heterogeneity among CLL patients82, 

indicating a possible role in this disease. 

 

 

 
Fig. 3 Scheme of IL23 and IL12 cytokines 
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Aim of the study 
 

A previous study83, has shown that circulating CLL cells of a large prospective series of 

early stage, Binet A patients variably express the IL23R subunit in the absence of the 

IL12Rβ1 chain, and that the expression of the IL23R subunit is positively correlated with 

adverse prognostic factors and a higher risk of therapy need. In addition, T-dependent 

(CD40L) stimulation of CLL cells was shown as capable to induce the full expression of 

IL23R complex (IL23R/IL12ß1) and the secretion of IL23 by CLL cells. Thus, evidence of 

a stroma-induced regulation of the IL23R complex was provided and an autocrine/paracrine 

loop involving IL23R complex upregulation and IL23 synthesis in CLL clones functional to 

their fitness was unveiled. The trophic nature of the IL23/IL23R axis in CLL cells was 

demonstrated in vivo by treatment with an anti-IL23p19 monoclonal antibody (IL23p19), 

which eradicated xenografted CLL clones in the infiltrated tissues by effectively inhibiting 

proliferation and inducing apoptosis. 

 

In this study, we investigated if the signaling through a different pathway was able to induce 

the IL23 loop. In particular, we focused on the stimulation of Toll-like receptor 9 (TLR9) 

which engagement influences leukemic cell survival, activation and proliferation in a 

heterogeneous manner.  

In addition, to have a better comprehension of the CLL microenvironment, we studied 

another cytokine of the same family: the IL12 and its receptor (IL12R). This cytokine has a 

pro-inflammatory function as well and shares with the IL23 a receptor chain and a cytokine 

subunit but it may negatively impact on leukemic clone expansion.   

Finally, to understand if the expression of these receptors and the production of their 

cytokines or if the activation of a possible loop represents an “ectopic” feature characterizing 

CLL cells we decided to check the status of these cytokines and their receptors also in resting 

and activated normal B cells. 
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Materials and methods 
 
 
CLL cells samples 
 
The study was approved by the Institutional Review Boards of Northwell Health and was 

conducted according to the principles of the World Medical Association Declaration of 

Helsinki. CLL patients were diagnosed as recommended84, and all subjects provided written 

informed consent at enrollment. 

 

CLL cells isolation 
 

CLL cells from each patient’s PB were isolated by negative selection using RosetteSep 

Human B Cell Enrichment Cocktail (Stemcell Technologies, Vancouver, BC). Whole PB 

was incubated with the mixture, then diluted with 2% FBS in PBS and centrifuged over 

RosetteSep DM-L Density Medium (Stemcell Technologies). CLL samples initially purified 

by this technique were tested for purity by the Center for CLL Research.  

Cells were then resuspended in freezing solution and cryopreserved in liquid nitrogen. 

Samples from CLL patients that containing at least 95% of leukaemic cells were considered 

eligible for the study. 

 

CLL cells in vitro culture 
 
Cell cultures of CLL cells were performed by seeding thawed cells in an enriched medium 

used for normal B cell replication in long-term85 cultures with added 

insulin/transferrin/selenium supplement (CAT #17-838Z; Lonza). Notably, this medium 

contains the reducing agent, 2-ME (5 × 10−5 M). The latter replaces an important function 

of bone marrow stromal cells in converting cystine to cysteine, which is needed for CLL 

uptake and use in the glutathione synthesis needed for retained viability86. Fresh medium 

was prepared for each experiment using stock addivities. Cultures were routinely established 

in 96-well round bottom plates at 4x105 cells per 200-µl volume with duplicates for each 

culture condition. Recombinant human IL-15 (PeproTech Inc.) and CpG DNA TLR9 ligand 

(ODN-2006; Invivogen) were added at final culture concentrations of 15 ng/ml and 0.2 µM 

(1.5 µg/ml) for 72h respectively70.  
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Detection of Cytokines Receptors in CLL by Flow Cytometry 
 
Live cells were identified using LIVE/DEAD Fixable Stains for flow cytometry 

(LIVE/DEAD™ Fixable Violet Dead Cell Stain Kit or Far Red Dead Cell Stain Kit, Life 

Technology). For surface membrane immunofluorescence, cells (2 × 105) in FACS buffer 

(PBS + 10% bovine serum albumin + 1% sodium azide) were incubated with primary 

antibody for 20 min at 4°C, followed by fixation with 0.1% formaldehyde in PBS. 

The same procedure and number of cells were used for the isotype control. 

To detect the different chains, the following mAbs were used: IL23R (cat #FAB140019-100, 

R&D Systems), IL12Rß1 (cat #565043, BD Horizon), IL12Rß2 (cat #FAB1959C, R&D 

Systems). Data were acquired with a BD LSR Fortessa flow cytometer using the HTS plate 

reader and analyzed by FlowJo 10.6.2 version. 

 

CLL proliferation and activation were determined checking the level of EdU incorporation, 

Click-iT™ EdU Alexa Fluor™ 647 Imaging Kit (ThermoFisher Scientific) and CD86 mAb 

expression (cat #555657, BD Pharmigen). 

 
Detection of Cytokines Receptors in CLL fractions by Flow Cytometry 
 
PBMCs were thawed and stained for the surface markers CXCR4 APC (cat #306510, 

BioLegend) and CD5 PE-Cy7 (cat #300622, BioLegend) and CD19 Pacific Blue (cat #48-

0199-42, ebioscience). For the staining, cells (2 × 105) in FACS buffer (PBS + 10% bovine 

serum albumin + 1% sodium azide) were incubated with primary antibody for 20 min at 4°C, 

followed by fixation with 0.1% formaldehyde in PBS. 

This staining allowed us to study 3 different fractions: Proliferative fraction (PF) CXCX4 

dim/CD5 bright; Resting fraction (RF) CXCR4 bright/CD5dim; Intermediate fraction (IF) 

CXCR4 dim/CD5dim87. For each of these fractions we checked the expression of the 

receptors described above. 

 
 
Normal B cells 
 

Normal B lymphocytes were obtained from the PB of healthy volunteers.  

Mononuclear cells were isolated by Ficoll density gradient centrifugation as a pre-separation 

step. Normal B cells were isolated by negative selection using a B cell Isolation Kit II 

(Miltenyi Biotec, Bergisch Gladbach, Germany) according to the manufacturer's 
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instructions. We performed a staining with CD19, CD5 and CD3 mAbs, to verify B 

lymphocytes purity.  

 
Normal B cells in vitro culture 
 

Cell cultures of normal B lymphocytes were performed by seeding purified cells into RPMI 

culture medium supplemented with 10% FBS at 2×106/ml in 24-well plates each containing 

1 ml of culture medium. 

In vitro activation of B cells was achieved by co-culturing B-lymphocytes with Recombinant 

human IL-15 (PeproTech Inc.) and CpG DNA TLR9 ligand (ODN-2006; Invivogen) at the 

final concentration of 10 ng/ml and 2,5 µg/ml for 72h. 

 
Detection of Cytokines Receptors in Normal B cell subpopulations by Flow 
Cytometry 
 

Live B lymphocytes were stained using 7-AAD (cat #51-68981E, BD), 1x10 cells in FACS 

buffer were incubated for 10 min in the dark.  

To detect each subpopulation a flow cytometry panel with 9 different fluorochromes was 

built. We started our analysis with a dot plot IgD APC-Vio770 (cat #130-110-646, Miltenyi 

Biotech) vs CD27 PE-CF594 (cat #562297, BD) that allowed us to discriminate 4 

subpopulations; Naïve (NA) CD27-/IgD+; IgM Memory (MM) CD27+/IgD+; Switch 

Memory (SM) CD27+/IgD- and Double negative (DN) CD27-/IgD-. 

 

 
Fig. 4 Example of B subpopulations gating  
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For each subpopulation we investigated the expression of the single receptors chains using 

the following mAbs: IL23R PE (cat #FAB14001P-100, R&D Systems); IL12Rß1 FITC (cat 

#FAB839F, R&D Systems); IL12Rß2 APC (cat #130-125-974, Miltenyi Biotech). 

 

Detection of IL23 and IL12 in CLL cultures  
 

Supernatants were collected from CLL cells cultures after 72h and tested with the 

MILLIPLEX MAP Human High Sensivity T cell magnetic bead panel (cat #HSCTMAG-

28SK-03, Merck Millipore) using the LUMINEX instrument. 

 

Immunoblotting  
 
CLL cells, either untreated or treated with CpG/CpG+IL-15 2,5 µg/ml for 48h, were washed 

with ice-cold PBS (Thermo Fisher Scientific, Waltham, Massachusetts, USA) and lysed in 

lysis buffer (20 mM Hepes, 150 mM NaCl, 10% glycerol, 1% Triton X-100, 1 mM Na3VO4 

and protease inhibitor (Sigma Chemical Co., St Louis, MO, USA) for 20 min on ice. 

Lysates were centrifuged 10 minutes at 10.000 g and supernatants collected. Protein 

concentration was assessed by the Bradford method. Samples were denaturated by the 

addition of Laemmli sample buffer 4x and were boiled for 5 min. 30 µg of total proteins 

were used for each sample and loaded onto a 10% sodium dodecyl sulfate–polyacrylamide 

gel (SDS-PAGE). Run was performed at 4°C, at 50 mA for each gel, for 120 min. 

Electrophoretically separated samples were transferred onto nitrocellulose (NC) membranes 

by electroblotting, at 400 mA, at 4°C for 90 min. NC membranes were blocked: 1h in 1X 

PBS, 0.1% Tween® 20 with 5% w/v Bovine serum Albumine (BSA) for the phosphorylate 

proteins, and 1h in 1X PBS, 0.1% Tween® 20 with 5% w/v nonfat dry milk for the total 

proteins; then the membranes were incubated, over-night at 4°C, with the specific primary 

antibodies (Abs): anti Phospho-JAK2 (Tyr1008) (Cell Signaling Tech.), anti JAK2 (Cell 

Signaling Tech.), anti phospho STAT3 (Tyr705)  (BD TRANDUCTION 

LABORATOIRES), anti STAT3(BD TRANDUCTION LABORATOIRES), anti phospho-

STAT1 (Tyr701) (Cell Signaling Tech.), anti STAT1 (Cell Signaling Tech.), anti phospho-

STAT4 (Cell Signaling Tech.), anti STAT4 (Tyr693) (Cell Signaling Tech.), anti phospho-

ERK  (SANTA CRUZ BIOTECH), anti ERK (Cell Signaling Tech), anti Tubulin-alpha 

(SIGMA ALDRICH). Membranes were then washed for 5 times with 0.1% PBST (1X PBS, 

0.1% Tween® 20) and incubated with secondary Goat anti-Mouse-HRPO and Goat anti-
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Rabbit-HRPO Abs (diluted at 1: 3000 for anti-mouse and 1:1000 for anti-rabbit) for 1h at 

RT. After extensive washing with 0.1% PBST, binding of Abs was revealed by an enhanced 

chemiluminescence detection system. Blots were acquired by using the instrument mini HD 

(Uvitec, Cambridge, UK). Each band was converted by mini HD into a densitometric trace 

allowing calculations of intensity and signals normalized on the signal of actin, used as the 

housekeeping protein, and also on the signal of total proteins, in the case of phosphorylating 

forms. 	

 

 

Statistics 
 

For statistical comparison between samples, the Mann-Whitney U test was used for unpaired 

sample data and the Wilcoxon signed-rank test for paired sample data. Analyses were 

performed using the GraphPad Prism version 5.00 statistical software (GraphPad Software 

Inc., La Jolla, CA). 
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Results 
 
CpG and CpG+IL-15 stimulations induce the expression of IL23R complex and 
IL12R complex in CLL cells 
 
We investigated whether the expression of the IL23R complex and IL12R complex are 

inducible after CpG/CpG+IL-15 stimulation in CLL cells. 

As shown previously, unstimulated CLL cells show a limited expression of IL23R 

complex83. In addition, similarly to what reported elsewhere88 we observed here a 

substantially lack of expression of IL12R complex on unstimulated ex vivo CLL cells which 

is mainly determined by a consistently poor expression of IL12ß2 receptor chain (data not 

shown). 

Cell activation was achieved by culturing purified CLL cells in the presence of CpG or 

CpG+IL15, whose synergy is important to promote CLL cells clonal expansion70. 

After 72h of stimulation a significant upregulation of surface IL23R and IL12Rß1 chains 

was observed whereas IL12ß2 chain was expressed on a more marginal proportion of 

leukemic cells.  This was paralleled by a significant expression of IL23R complex and IL12R 

complex (Fig. 6A-B). The IL23R and IL12R complex was evaluated gating the double 

positive cells for both chains. Results are summarized in Fig. 6C-D. 

Overall, the expression of IL23R complex appears to be more sustained compared to the 

IL12R complex on stimulated CLL cells. This was due to the limited expression of IL12ß2 

chain receptor. 

Effective CLL cell activation was also evaluated by measuring the expression of CD86 (Fig. 

6E). 
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Fig. 6 IL23R and IL12R expression in CLL  
A-B) Example of flow cytometry gating for the evaluation of IL23R and IL12R complex 
C) Expression of IL23R, IL12Rß1 and IL12Rß2 chains after 72h of stimulation in 14 CLL cells samples. Statistical 
significance of the difference is evaluated by two-sided Wilcoxon signed rank test. *p 0.05; **p 0.01; ***p 0.001; ****p 
0.0001. 
D) Evaluation of IL23R complex and IL12R complex expression in 14 CLL cells samples after 72h of activation. Double 
positive cells for both chains markers were identified within the gated viable cells. Statistical significance of the difference 
is evaluated by two-sided Wilcoxon signed rank test. *p 0.05; **p 0.01; ***p 0.001; ****p 0.0001. 
E) Example of a representative case of CD86 expression in flow cytometry after 72h of stimulation. 
On the right side, expression of CD86 percentage in 8 CLL cases. Statistical significance of the difference is evaluated by 
two-sided Wilcoxon signed rank test. *p 0.05; **p 0.01; ***p 0.001; ****p 0.0001. 
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Proliferating CLL cells are those that express the IL23R and IL12Rß1	receptor 
chains the most 
 
Next, we investigated whether after stimulation the cells were proliferating and whether the 

IL23R and IL12Rß1 receptors could be detected on proliferating cells; unfortunately we 

weren’t able to use an antibody to detect the IL12Rß2 at the time this set of experiments was 

made. CLL cells were resuspended in medium with EdU and seeded in the 96 wells round 

bottom plate with CpG and CpG+IL15. After 4 days of culture evidence for new DNA 

synthesis was observed in a relevant fraction of CLL cells. The addition of IL15 was 

indispensable to determine higher cell division, as expected70 (Fig. 7A-B). The upregulation 

of the receptor chains in the proliferating cells is presented in Fig. 7C-D. 

Fig. 7E shows as, upon stimulation with  CpG and CpG+IL15, the upregulation of these two 

receptor chains is more evident in the proliferative cells (EdU+) compared to the group of 

cells EdU-. However, differences did not reach statistical significance may be due the limited 

number of sample tested.. 
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Fig. 7 Proliferating CLL cells and receptors expression 
A) Example of EdU staining showing the proliferative fraction of CLL cells after 4 days of stimulation in a representative 
sample. 
B) Representation of the percentage of EdU positive cells after 4 days of stimulation; cells were incubated with EdU 10µM, 
washed and stained for the receptors. After, cells were washed again and incubated with Click-IT solution for 30’ RT. 
Before Flow analysis cells were washed and resuspended in FACS buffer (left side). 
C-D) Expression of the 2 chains in MFI within EdU positive cells (right side of the figure; n=4). 
E) Representation of IL23R and IL12Rß1 chains in EdU+ and EdU- cells (MFI). Statistical difference was not reached 
between the groups compared. 
 
 

IL23R and IL12R chains expression is heterogeneous in CLL fractions  
 
Calissano et al described for the first time a hypothetical model of a lifecycle of CLL cells87. 

During the first part of the lifecycle the B cells rest in the stroma because of the CXCR4-

CXCL12 interactions. After stimulation, cells start to proliferate, upregulate the CD5 and 

internalize the CXCR4. These cells, with low CXCR4 expression (CXCR4dim/CD5bright 

phenotype), can exit the solid tissue and reach the peripheral blood. These cells have been 

defined as Proliferating Fraction (PF). It should be noted that these cells have to be 

considered as “recently divided” rather than “actively proliferating”. Once these cells reach 

the blood, because of a lack of trophic input from the solid tissue microenvironment, they 

re-express CXCR4 and downmodulate CD5. This fraction has been termed as Intermediate 

Fraction (IF). At this point the cells CXCR4int/CD5int change their phenotype in 

CXCR4bright/CD5dim. 

The re-expression of CXCR4 give to CLL cells the chance to reenter in the lymphoid tissue 

following the CXCR4/SDF1 gradient. This last fraction (CXCR4bright/CD5dim) has been 
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termed as Resting Fraction (RF). Fig. 8A depicts phenotypic features of CLL fractions as 

defined above. 

 

Based on this separation, we wondered whether the CLL cells preferentially express the 

IL23/IL23R complex and the IL12R complex at certain activation/maturation stage. To do 

that we checked the expression of the different receptors for each CLL fraction. 

We observed a similar expression of IL12Rß1in the 3 different fractions with an apparent 

increment in the PF, whereas expression of IL12Rß2 was substantially absent in the 3 

fractions (Fig. 8B). We observed a lower percentage of cells expressing IL23R in the PF 

compared to the IF and RF. 
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Fig. 8 CLL gating to identify CLL fractions and expression of the receptor chains in each CLL fraction. 
 
A) Example of gating strategy of CLL fractions 
B) Expression of IL23R, IL12Rß1and IL12Rß2 in CLL fractions in 12 CLL patients. 
Below is represented the expression of IL23R and IL12Rß1 in each fraction. Statistical significance of the difference is 
evaluated by two-sided Wilcoxon signed rank test. *p 0.05; **p 0.01; ***p 0.001; ****p 0.0001. 
 
 
 
 
 
Expression of IL23R and IL12R in normal B cells 
 
Next, we investigated whether the expression of IL23R or IL12R can be induced in normal 

B cells can help solving the issue of whether the activation of the loop represents an ectopic 

feature characterizing CLL cells. Preliminary analysis showed that IL23R and IL12R 

complexes were virtually absent in total PB B cells from normal donors (Fig. 9A, C). 

Total B cells were isolated and cultured in the presence of CpG and CpG+IL15. The 

expression of the receptors was evaluated at time 0 and at 72h for each condition. Indeed, 

the expression of IL23R and IL12R complexes was consistently observed in a variable 

proportion of stimulated B cells (Fig. 9A, C). A modest quota IL23R and IL12R complex 

was also observed in unstimulated B cells, maybe indicating some level of activation in the 

culture conditions. In addition, we evaluated whether these IL23R and IL12R complexes 

positive cells were represent by naïve or memory B cells as defined by the expression of 

IGD/CD27.  

Upon stimulation with CpG/CpG+IL15, IL23R complex positive cells appeared mostly 

composed of CD27+ cells (memory B cells) compared to CD27- naïve B cells (Fig. 7E).  

At variance, the IL12R complex positive B cells observed upon stimulation with 

CpG/CpG+IL-15 were similarly represented by naïve and memory B cells (Fig. 7E). 

In addition, most of IL12Rß2+/IL12ß1- B cells observed after stimulation were represented 

by naïve B cells (Fig. 7E).  
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After these observations the expression of these receptors in CLL and normal B cells was 

compared upon stimulation CpG/CpG+IL15 (Fig. 7F). We observed that the IL23R complex 

is expressed in a higher proportion of CLL cells whereas the IL12R complex is expressed in 

a higher proportion of stimulated B cells. Similarly, the IL12Rß2 chain is represented in a 

higher percentage of stimulated normal B cells compared to stimulated CLL cells. 
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Fig. 9 Expression of IL23R complex and IL12R complex by normal B cells.  
A-B) Flow cytometry profiles obtained in a representative experiment; the percentage of IL23R double positive cells at 
T0 and after 72h of culture as indicated (A).  
 The cells IL23R complex positive were further analyzed for CD27 and IgD expression to identify the Memory cells 
(CD27+ IgD-) and the Naïve cells (CD27- IgD+) subpopulations (B). 
C-D) Flow cytometry profiles obtained in a representative experiment; the percentage of IL12R double positive cells at 
T0 and after 72h of culture as indicated (C).  
 The cells IL12R complex positive were further analyzed for CD27 and IgD expression to identify the Memory cells 
(CD27+ IgD-) and the Naïve cells (CD27- IgD+) subpopulations (D). 
E) Receptors expression in normal B cells at time zero and after 72h of stimulation (on the left) and expression of these 
receptors in Memory (blue column) and Naïve (green column) subpopulations (right side of the figure). The data indicate 
that the receptors and IL12Rß2 chain increase their expression after stimulation. Of note, Memory B cells can express 
significantly higher percentages of IL23R complex positive cells than Naïve B cells upon stimulation with CpG while Naïve 
cells can express high levels of IL12Rß2. (n=9). 
Statistical significance of the difference is evaluated by two-sided Wilcoxon signed rank test. *p 0.05; **p 0.01; *** p 
0.001; ****p 0.0001 
F) Comparison of receptors expression between CLL cells and normal B cells. Apparently IL23R complex is higher in the 
CLL cells while IL12R complex and IL12Rß2 are higher in the normal B cells. (n=9) 
Statistical significance of the difference is evaluated by two-sided Wilcoxon signed rank test. *p 0.05; **p 0.01; *** p 
0.001; ****p 0.0001 

 
IL23 and IL12 secretion from CLL and normal B cells after stimulations 
 
 
To better understand if activated CLL cells can not only express the receptor, but also 

produce the cytokines to activate an autocrine loop, we tested the supernatants with an Elisa 

kit.	

In this set of experiments, we evaluated CpG compared to CD40L stimulation of CLL cells 

Based on a previous report83 CD40L stimulation was used as a positive control to evaluate 

IL23 secretion83. 

As shown in Fig. 10A we observed, as expected, that the stimulation with the CD40L induces 

the production of IL23p19. In addition, the detection of IL12p70 was observed as well.  

Overall, CpG induces a lower production of IL23p19 compared to CD40L and a limited 

production of IL12p70 that is, however, significant if compared to the unstimulated cells. 
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After this first set of experiments, the production of IL23p19 and IL12p70 of normal B cells 

after 72h stimulation with CpG was compared to the production of these cytokines by CLL 

cells in the same culture conditions (Fig. 10B). 

Normal B cells showed a modest basal production of IL23p19 cytokine which increases after 

their stimulation similarly to what observed with CLL cells. IL12p70 was mostly observed 

in normal B cells upon CpG stimulation. However, compared to CLL cells, differences were 

not statistically significative likely due to the still limited number of samples tested.  

	

A	

 

 
B

	
	
Fig. 10 Production of IL23p19 and IL12p70 in CLL and Normal B cells supernatants 
A) Supernatants of CLL experiments (n=6) were collected after 72h of stimulation and tested with Luminex kit for 
IL23p19 and IL12p70. 
Statistical significance of the difference is evaluated by two-sided Wilcoxon signed rank test. *p 0.05; **p 0.01; ***p 
0.001; ****p 0.0001 
B) Comparison of IL23p19 and IL12p70 secretion in CLL cells and normal B cells (statistical difference was not 
reached). 
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CLLs activated can signal through the JAK-STAT pathway 
 
Finally, we investigated whether the complete receptors expressed in the membrane after 

stimulation are functioning receptors. 

To do that, CLL cells were cultured for 48h with CpG. Cell were accurately washed and 

stimulated with the set of cytokines of the IL12 family for 30’. In particular we tested: IL23, 

IL12 and IL35. This last cytokine was included because it shares one receptor’s chain 

(IL12Rß2) and one cytokine subunit (IL12p35). 

Related to the JAK-STAT pathway, we tested the signaling for the main pSTAT involved 

for these receptors reported in the literature89: pSTAT3, pSTAT1 and pSTAT4. 

Fig. 11 shows a representative experiment for WB analysis. Overall, IL12 and IL23 were 

capable to induce substantial phosphorylation of STAT1 and STAT3 compared to STAT4 

which was mostly phosphorylated follow incubation with IL35.  

In addition, an increased amount of pERK was observed following incubation with all the 

cytokines tested. 

 

 
 
 
 



	 35	

 
 
 
 
Fig. 11 Tyrosine phosphorylation of specific proteins (as indicated) in cells from a representative CLL case stimulated 
with CpG for 72h and subsequently exposed to the indicated cytokines for 30’. Protein bands measured by Image-J 
software and ratios of the phosphorylated vs total proteins were plotted in the histograms on the left side. 
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Discussion 
 
More and more studies are focused on the importance of the micro-environment in cancer 

diseases. As for CLL, it is well recognized that expansion of leukemic clones requires the 

interaction with accessory cells and with cytokines present in the micro-environment4,90. 

These interactions likely occur primarily in the proliferating centers of peripheral lymphoid 

tissues, although the exact mechanisms involved are far from being elucidated. Recently, it 

has been demonstrated that IL23 (a cytokine of the IL12 family) plays an important function 

for CLL cell survival and expansion83. Upon interaction with activated T cells or with other 

CD40L-expressing cells, CLL cells express a functional IL23R complex and secrete IL23 in 

vitro, causing the formation of an autocrine/paracrine loop, which promotes cell 

proliferation83. 

 

In this study we explored whether IL23R/IL23 loop could be activated upon T-cell 

independent stimuli (such as CpG/IL15) of CLL cells. In addition, we have evaluated the 

possibility that another member of IL12 cytokine family (namely IL12 and its receptor) can 

be expressed as well on stimulated CLL cells.  In addition, the expression of these receptor 

chains and cytokines was explored in purified B cells derived from normal donors.  

 

Expression of IL23R/IL23 in CLL cells upon stimulation with CpG	
	
The first evidence that we provide is that IL23R complex is expressed on CLL cells upon 

stimulation with CpG. The expression of the IL23R complex is more evident when IL15 is 

added to the cell culture (Fig. 6A). The addition of IL15 favors the cell cycle entry of 

leukemic cells70 (Fig. 7). Indeed, a higher proportion of leukemic cells that have initiated 

DNA duplication express IL23 receptor chains (Fig. 7C-D). 

As CD40L/CD40 stimulation of CLL cells has been demonstrated capable of inducing IL23 

secretion, the presence of this cytokine has been tested upon CpG stimulation on culture 

supernatants. A lesser amount of IL23 was detected of CLL cells supernatant upon CpG 

stimulation compared to the stimulation obtained through CD40 molecule. This would 

indicate that the full IL23R/IL23 loop might not be obtained by CpG stimulation of CLL 

cells only. However, it can be envisaged that other sources of IL23 can be available in 

lymphoid tissues91 capable of binding the IL23R complex. 
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Expression of IL12R/IL12 in CLL cells upon stimulation with CpG	
	
Studies related to the expression/secretion of IL23R complex/IL23 were paralleled with 

those on IL12R complex/IL12. IL12 receptor complex shares the IL12ß1 chain with IL23R 

complex and depends on the expression of the IL12ß2 chain for its functionality. We 

observed that, with few exceptions, the expression of this last receptor chain is less 

pronounced compared to the IL23R chain (Fig. 6B-C). This is reflected in a limited 

proportion of leukemic cells expressing the full IL12R (Fig. 6D).   

Upon stimulation of CLL cells with CpG the secretion of IL12 was rather limited as observed 

for IL23 (Fig. 10A). Apparently the CLL cells stimulation through CD40 was more capable 

to induce IL12 secretion, however this has to be confirmed in a higher number of samples. 

 

Expression of IL23R and IL12R complexes in PB normal B cells	
	
To better understand whether what we observed in CLL cells was comparable to B cells 

derived from the PB of normal donors we reproduced these stimulations on purified normal 

B cells. 

The expression of the IL12 and IL23 receptor chains was virtually absent in unstimulated 

PB B cells. Upon CpG stimulation the IL23R and IL12Rß1 was identified in a limited 

proportion of B cells as opposed to the IL12ß2 receptor which was expressed on the majority 

of B lymphocytes (Fig. 9C-D). Indeed, only a proportion of B cells appeared to express the 

full IL12R complex (Fig. 9C-D). The capacity of normal B cells to express IL23 and IL12 

receptor complexes compared to CLL cells revealed striking differences. The expression of 

IL23R complex was observed on a larger proportion of CLL cells compared to normal B 

cells, whereas the IL12R complex was expressed on a larger proportion of normal B cells 

compared to the leukemic clones. However, as mention above, the most striking difference 

observed between normal B cells and CLL cells was the substantial inability of the leukemic 

cells to express IL12Rß2 chain upon CpG stimulation. This observation would agree with 

previous reports indicating that this gene is highly methylated in CLL cells limiting its 

expression88.  

A side observation of this part of the study indicates that, upon stimulation of B cells with 

CpG, the expression of IL23R complex involve mainly memory B cells as defined by the 

expression of CD27 molecules (see Fig. 9D). As for the expression of IL12R complex, this 

seems to be distributed on both memory and naïve B cells. We consider this observation as 



	 38	

preliminary as the real solidity of these indications should be confirmed on further 

experiments that forecast CpG stimulation of sorted B cells (CD27+ vs CD27) which are 

programmed the near future. However, the finding that IL23R complex is preferentially 

expressed by memory B cells would reinforce the notion that CLL cells originate from 

memory B cells92,93. 

 

Expression of IL23 and IL12 receptor chains in CLL cell fractions	
	
The CLL clone observed in the PB display a certain degree of heterogeneity as shown by 

the identification of “fractions” that identify leukemic cells in the PB at different stage on 

their route from and to lymphoid tissues87. We observed that IL23R chain is represented in 

higher proportion of RF and IF of leukemic cells compared to PF. In contrast, IL12ß1 seems 

to be more represented in the RF fraction (Fig. 8B). This observation might be interpreted 

as if the PF (which identifies recently divided leukemic cells just emerged from lymphoid 

tissues) had downmodulated IL23R chain. This mechanism might favor the release of 

leukemic cell from the lymphoid tissues. Unfortunately, we could not evaluate the real 

absence of the IL23R complex in PF leukemic cells, and in the other CLL fractions, as this 

needs a more sophisticated multiparametric cytometric analysis not doable with the reagents 

available at the moment.  

The IL12Rß2 chain was consistently undetectable in CLL fractions in all the samples tested.    

 

Ability of IL12R and IL23R complexes to signal in CLL cells stimulated with CpG 
 

Preliminary experiments aimed at evaluating the ability of IL12R and IL23R complexes to 

signal when engaged with their cytokines indicate that pSTAT1 and pSTAT3 are readily 

induced. In addition, we show that also IL35 is capable of signaling on stimulated CLL cells. 

IL35R shares IL12Rß2 chain with IL12R complex (parallel studies related to this cytokine 

are being conducted and not shown in this report as still preliminary). However, we believe 

that the presence of cytokine receptor chains shared between several receptor complexes 

makes difficult to predict the behavior of CLL cells in a complex environment such as 

lymphoid tissues. Indeed, the net effect of cytokines stimulations can be dictated by 

competitions for receptor chains based on local concentration of cytokines and on their 

affinity for the proper receptors.     
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It has been reported that loss of signaling through IL12 receptor may favor malignant B-cell 

clonal expansion through several mechanisms88,94 Our results suggest that, although a 

proportion of activated CLL cells can express a functional (signaling) IL12R complex, the 

concomitant presence of family related receptor chains might modulate the functionality of 

this receptor. However, functional experiments to evaluate the biological consequence of 

IL12R complex engagement on activated CLL cells, even in the presence of family related 

cytokines, have to be performed to better address and understand this issue. 

 

Taken together, we demonstrated that CLL cells are capable to upregulate different receptors 

of the IL12 cytokine family upon TLR9 stimulation. The modulation of these receptors on 

activated CLL cells appears to differ from that observed in purified normal B cells indicating 

non-random conditioning in the mechanisms that regulate the expression of this cytokine 

family members.  

Further studies related to the actions of these cytokines in the CLL micro-environment would 

be useful to understand which role they play in this disease and to understand whether they 

could represent a novel target for adjuvant therapies in this still incurable disease. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 



	 40	

Bibliography 
 
 
1.	 Chiorazzi	N,	Rai	KR,	Ferrarini	M.	Chronic	lymphocytic	leukemia.	N	Engl	J	Med.	
2005;352(8):804-815.	
2.	 Kipps	TJ,	Stevenson	FK,	Wu	CJ,	et	al.	Chronic	lymphocytic	leukaemia.	Nat	Rev	Dis	
Primers.	2017;3:16096.	
3.	 Quail	DF,	Joyce	JA.	Microenvironmental	regulation	of	tumor	progression	and	
metastasis.	Nat	Med.	2013;19(11):1423-1437.	
4.	 Burger	JA,	Gribben	JG.	The	microenvironment	in	chronic	lymphocytic	leukemia	
(CLL)	and	other	B	cell	malignancies:	insight	into	disease	biology	and	new	targeted	
therapies.	Semin	Cancer	Biol.	2014;24:71-81.	
5.	 Hallek	M,	Cheson	BD,	Catovsky	D,	et	al.	iwCLL	guidelines	for	diagnosis,	indications	
for	treatment,	response	assessment,	and	supportive	management	of	CLL.	Blood.	
2018;131(25):2745-2760.	
6.	 Binet	JL,	Auquier	A,	Dighiero	G,	et	al.	A	new	prognostic	classification	of	chronic	
lymphocytic	leukemia	derived	from	a	multivariate	survival	analysis.	Cancer.	
1981;48(1):198-206.	
7.	 Rai	KR,	Sawitsky	A,	Cronkite	EP,	Chanana	AD,	Levy	RN,	Pasternack	BS.	Clinical	
staging	of	chronic	lymphocytic	leukemia.	Blood.	1975;46(2):219-234.	
8.	 Rosenquist	R,	Ghia	P,	Hadzidimitriou	A,	et	al.	Immunoglobulin	gene	sequence	
analysis	in	chronic	lymphocytic	leukemia:	updated	ERIC	recommendations.	Leukemia.	
2017;31(7):1477-1481.	
9.	 Rossi	D,	Cerri	M,	Deambrogi	C,	et	al.	The	prognostic	value	of	TP53	mutations	in	
chronic	lymphocytic	leukemia	is	independent	of	Del17p13:	implications	for	overall	
survival	and	chemorefractoriness.	Clin	Cancer	Res.	2009;15(3):995-1004.	
10.	 Malavasi	F,	Deaglio	S,	Damle	R,	Cutrona	G,	Ferrarini	M,	Chiorazzi	N.	CD38	and	
chronic	lymphocytic	leukemia:	a	decade	later.	Blood.	2011;118(13):3470-3478.	
11.	 Wiestner	A,	Rosenwald	A,	Barry	TS,	et	al.	ZAP-70	expression	identifies	a	chronic	
lymphocytic	leukemia	subtype	with	unmutated	immunoglobulin	genes,	inferior	clinical	
outcome,	and	distinct	gene	expression	profile.	Blood.	2003;101(12):4944-4951.	
12.	 Yi	S,	Li	H,	Li	Z,	et	al.	The	prognostic	significance	of	13q	deletions	of	different	sizes	
in	patients	with	B-cell	chronic	lymphoproliferative	disorders:	a	retrospective	study.	Int	J	
Hematol.	2017;106(3):418-425.	
13.	 Hallek	M,	Shanafelt	TD,	Eichhorst	B.	Chronic	lymphocytic	leukaemia.	Lancet.	
2018;391(10129):1524-1537.	
14.	 Seiffert	M,	Dietrich	S,	Jethwa	A,	Glimm	H,	Lichter	P,	Zenz	T.	Exploiting	biological	
diversity	and	genomic	aberrations	in	chronic	lymphocytic	leukemia.	Leuk	Lymphoma.	
2012;53(6):1023-1031.	
15.	 Bieging	KT,	Mello	SS,	Attardi	LD.	Unravelling	mechanisms	of	p53-mediated	tumour	
suppression.	Nat	Rev	Cancer.	2014;14(5):359-370.	
16.	 Zenz	T,	Habe	S,	Denzel	T,	et	al.	Detailed	analysis	of	p53	pathway	defects	in	
fludarabine-refractory	chronic	lymphocytic	leukemia	(CLL):	dissecting	the	contribution	of	
17p	deletion,	TP53	mutation,	p53-p21	dysfunction,	and	miR34a	in	a	prospective	clinical	
trial.	Blood.	2009;114(13):2589-2597.	
17.	 Dohner	H,	Stilgenbauer	S,	Benner	A,	et	al.	Genomic	aberrations	and	survival	in	
chronic	lymphocytic	leukemia.	N	Engl	J	Med.	2000;343(26):1910-1916.	



	 41	

18.	 Damle	RN,	Wasil	T,	Fais	F,	et	al.	Ig	V	gene	mutation	status	and	CD38	expression	as	
novel	prognostic	indicators	in	chronic	lymphocytic	leukemia.	Blood.	1999;94(6):1840-
1847.	
19.	 Lane	DP.	Cancer.	p53,	guardian	of	the	genome.	Nature.	1992;358(6381):15-16.	
20.	 Stengel	A,	Kern	W,	Haferlach	T,	Meggendorfer	M,	Fasan	A,	Haferlach	C.	The	impact	
of	TP53	mutations	and	TP53	deletions	on	survival	varies	between	AML,	ALL,	MDS	and	CLL:	
an	analysis	of	3307	cases.	Leukemia.	2017;31(3):705-711.	
21.	 Stilgenbauer	S,	Schnaiter	A,	Paschka	P,	et	al.	Gene	mutations	and	treatment	
outcome	in	chronic	lymphocytic	leukemia:	results	from	the	CLL8	trial.	Blood.	
2014;123(21):3247-3254.	
22.	 Gonzalez	D,	Martinez	P,	Wade	R,	et	al.	Mutational	status	of	the	TP53	gene	as	a	
predictor	of	response	and	survival	in	patients	with	chronic	lymphocytic	leukemia:	results	
from	the	LRF	CLL4	trial.	J	Clin	Oncol.	2011;29(16):2223-2229.	
23.	 Puente	XS,	Pinyol	M,	Quesada	V,	et	al.	Whole-genome	sequencing	identifies	
recurrent	mutations	in	chronic	lymphocytic	leukaemia.	Nature.	2011;475(7354):101-105.	
24.	 Quesada	V,	Conde	L,	Villamor	N,	et	al.	Exome	sequencing	identifies	recurrent	
mutations	of	the	splicing	factor	SF3B1	gene	in	chronic	lymphocytic	leukemia.	Nat	Genet.	
2011;44(1):47-52.	
25.	 Caligaris-Cappio	F,	Hamblin	TJ.	B-cell	chronic	lymphocytic	leukemia:	a	bird	of	a	
different	feather.	J	Clin	Oncol.	1999;17(1):399-408.	
26.	 Damle	RN,	Ghiotto	F,	Valetto	A,	et	al.	B-cell	chronic	lymphocytic	leukemia	cells	
express	a	surface	membrane	phenotype	of	activated,	antigen-experienced	B	
lymphocytes.	Blood.	2002;99(11):4087-4093.	
27.	 Packham	G,	Stevenson	FK.	Bodyguards	and	assassins:	Bcl-2	family	proteins	and	
apoptosis	control	in	chronic	lymphocytic	leukaemia.	Immunology.	2005;114(4):441-449.	
28.	 Damle	RN,	Calissano	C,	Chiorazzi	N.	Chronic	lymphocytic	leukaemia:	a	disease	of	
activated	monoclonal	B	cells.	Best	Pract	Res	Clin	Haematol.	2010;23(1):33-45.	
29.	 Messmer	BT,	Messmer	D,	Allen	SL,	et	al.	In	vivo	measurements	document	the	
dynamic	cellular	kinetics	of	chronic	lymphocytic	leukemia	B	cells.	J	Clin	Invest.	
2005;115(3):755-764.	
30.	 Herndon	TM,	Chen	SS,	Saba	NS,	et	al.	Direct	in	vivo	evidence	for	increased	
proliferation	of	CLL	cells	in	lymph	nodes	compared	to	bone	marrow	and	peripheral	blood.	
Leukemia.	2017;31(6):1340-1347.	
31.	 Boissard	F,	Laurent	C,	Ramsay	AG,	et	al.	Nurse-like	cells	impact	on	disease	
progression	in	chronic	lymphocytic	leukemia.	Blood	Cancer	J.	2016;6:e381.	
32.	 Kurtova	AV,	Balakrishnan	K,	Chen	R,	et	al.	Diverse	marrow	stromal	cells	protect	
CLL	cells	from	spontaneous	and	drug-induced	apoptosis:	development	of	a	reliable	and	
reproducible	system	to	assess	stromal	cell	adhesion-mediated	drug	resistance.	Blood.	
2009;114(20):4441-4450.	
33.	 Banchereau	J,	Rousset	F.	Growing	human	B	lymphocytes	in	the	CD40	system.	
Nature.	1991;353(6345):678-679.	
34.	 Pascutti	MF,	Jak	M,	Tromp	JM,	et	al.	IL-21	and	CD40L	signals	from	autologous	T	
cells	can	induce	antigen-independent	proliferation	of	CLL	cells.	Blood.	2013;122(17):3010-
3019.	
35.	 Moreno	A,	Villar	ML,	Camara	C,	et	al.	Interleukin-6	dimers	produced	by	endothelial	
cells	inhibit	apoptosis	of	B-chronic	lymphocytic	leukemia	cells.	Blood.	2001;97(1):242-249.	



	 42	

36.	 Knospe	WH,	Loeb	V,	Jr.,	Huguley	CM,	Jr.	Proceedings:	Bi-weekly	chlorambucil	
treatment	of	chronic	lymphocytic	leukemia.	Cancer.	1974;33(2):555-562.	
37.	 Flinn	IW,	Neuberg	DS,	Grever	MR,	et	al.	Phase	III	trial	of	fludarabine	plus	
cyclophosphamide	compared	with	fludarabine	for	patients	with	previously	untreated	
chronic	lymphocytic	leukemia:	US	Intergroup	Trial	E2997.	J	Clin	Oncol.	2007;25(7):793-
798.	
38.	 Robertson	LE,	Chubb	S,	Meyn	RE,	et	al.	Induction	of	apoptotic	cell	death	in	chronic	
lymphocytic	leukemia	by	2-chloro-2'-deoxyadenosine	and	9-beta-D-arabinosyl-2-
fluoroadenine.	Blood.	1993;81(1):143-150.	
39.	 Moussay	E,	Palissot	V,	Vallar	L,	et	al.	Determination	of	genes	and	microRNAs	
involved	in	the	resistance	to	fludarabine	in	vivo	in	chronic	lymphocytic	leukemia.	Mol	
Cancer.	2010;9:115.	
40.	 Smit	LA,	Hallaert	DY,	Spijker	R,	et	al.	Differential	Noxa/Mcl-1	balance	in	peripheral	
versus	lymph	node	chronic	lymphocytic	leukemia	cells	correlates	with	survival	capacity.	
Blood.	2007;109(4):1660-1668.	
41.	 Pepper	C,	Lin	TT,	Pratt	G,	et	al.	Mcl-1	expression	has	in	vitro	and	in	vivo	
significance	in	chronic	lymphocytic	leukemia	and	is	associated	with	other	poor	prognostic	
markers.	Blood.	2008;112(9):3807-3817.	
42.	 Romano	MF,	Lamberti	A,	Tassone	P,	et	al.	Triggering	of	CD40	antigen	inhibits	
fludarabine-induced	apoptosis	in	B	chronic	lymphocytic	leukemia	cells.	Blood.	
1998;92(3):990-995.	
43.	 Bannerji	R,	Kitada	S,	Flinn	IW,	et	al.	Apoptotic-regulatory	and	complement-
protecting	protein	expression	in	chronic	lymphocytic	leukemia:	relationship	to	in	vivo	
rituximab	resistance.	J	Clin	Oncol.	2003;21(8):1466-1471.	
44.	 Klein	A,	Miera	O,	Bauer	O,	Golfier	S,	Schriever	F.	Chemosensitivity	of	B	cell	chronic	
lymphocytic	leukemia	and	correlated	expression	of	proteins	regulating	apoptosis,	cell	
cycle	and	DNA	repair.	Leukemia.	2000;14(1):40-46.	
45.	 Craxton	A,	Jiang	A,	Kurosaki	T,	Clark	EA.	Syk	and	Bruton's	tyrosine	kinase	are	
required	for	B	cell	antigen	receptor-mediated	activation	of	the	kinase	Akt.	J	Biol	Chem.	
1999;274(43):30644-30650.	
46.	 Petro	JB,	Rahman	SM,	Ballard	DW,	Khan	WN.	Bruton's	tyrosine	kinase	is	required	
for	activation	of	IkappaB	kinase	and	nuclear	factor	kappaB	in	response	to	B	cell	receptor	
engagement.	J	Exp	Med.	2000;191(10):1745-1754.	
47.	 Tomlinson	MG,	Woods	DB,	McMahon	M,	et	al.	A	conditional	form	of	Bruton's	
tyrosine	kinase	is	sufficient	to	activate	multiple	downstream	signaling	pathways	via	PLC	
Gamma	2	in	B	cells.	BMC	Immunol.	2001;2:4.	
48.	 Okkenhaug	K,	Vanhaesebroeck	B.	PI3K	in	lymphocyte	development,	differentiation	
and	activation.	Nat	Rev	Immunol.	2003;3(4):317-330.	
49.	 Jou	ST,	Carpino	N,	Takahashi	Y,	et	al.	Essential,	nonredundant	role	for	the	
phosphoinositide	3-kinase	p110delta	in	signaling	by	the	B-cell	receptor	complex.	Mol	Cell	
Biol.	2002;22(24):8580-8591.	
50.	 Lannutti	BJ,	Meadows	SA,	Herman	SE,	et	al.	CAL-101,	a	p110delta	selective	
phosphatidylinositol-3-kinase	inhibitor	for	the	treatment	of	B-cell	malignancies,	inhibits	
PI3K	signaling	and	cellular	viability.	Blood.	2011;117(2):591-594.	
51.	 Primo	D,	Scarfo	L,	Xochelli	A,	et	al.	A	novel	ex	vivo	high-throughput	assay	reveals	
antiproliferative	effects	of	idelalisib	and	ibrutinib	in	chronic	lymphocytic	leukemia.	
Oncotarget.	2018;9(40):26019-26031.	



	 43	

52.	 Hoellenriegel	J,	Meadows	SA,	Sivina	M,	et	al.	The	phosphoinositide	3'-kinase	delta	
inhibitor,	CAL-101,	inhibits	B-cell	receptor	signaling	and	chemokine	networks	in	chronic	
lymphocytic	leukemia.	Blood.	2011;118(13):3603-3612.	
53.	 Byrd	JC,	Furman	RR,	Coutre	SE,	et	al.	Targeting	BTK	with	ibrutinib	in	relapsed	
chronic	lymphocytic	leukemia.	N	Engl	J	Med.	2013;369(1):32-42.	
54.	 Furman	RR,	Sharman	JP,	Coutre	SE,	et	al.	Idelalisib	and	rituximab	in	relapsed	
chronic	lymphocytic	leukemia.	N	Engl	J	Med.	2014;370(11):997-1007.	
55.	 Woyach	JA,	Furman	RR,	Liu	TM,	et	al.	Resistance	mechanisms	for	the	Bruton's	
tyrosine	kinase	inhibitor	ibrutinib.	N	Engl	J	Med.	2014;370(24):2286-2294.	
56.	 Woyach	JA,	Ruppert	AS,	Guinn	D,	et	al.	BTK(C481S)-Mediated	Resistance	to	
Ibrutinib	in	Chronic	Lymphocytic	Leukemia.	J	Clin	Oncol.	2017;35(13):1437-1443.	
57.	 Coutre	SE,	Barrientos	JC,	Brown	JR,	et	al.	Management	of	adverse	events	
associated	with	idelalisib	treatment:	expert	panel	opinion.	Leuk	Lymphoma.	
2015;56(10):2779-2786.	
58.	 Stilgenbauer	S,	Eichhorst	B,	Schetelig	J,	et	al.	Venetoclax	in	relapsed	or	refractory	
chronic	lymphocytic	leukaemia	with	17p	deletion:	a	multicentre,	open-label,	phase	2	
study.	Lancet	Oncol.	2016;17(6):768-778.	
59.	 Del	Gaizo	Moore	V,	Brown	JR,	Certo	M,	Love	TM,	Novina	CD,	Letai	A.	Chronic	
lymphocytic	leukemia	requires	BCL2	to	sequester	prodeath	BIM,	explaining	sensitivity	to	
BCL2	antagonist	ABT-737.	J	Clin	Invest.	2007;117(1):112-121.	
60.	 Souers	AJ,	Leverson	JD,	Boghaert	ER,	et	al.	ABT-199,	a	potent	and	selective	BCL-2	
inhibitor,	achieves	antitumor	activity	while	sparing	platelets.	Nat	Med.	2013;19(2):202-
208.	
61.	 Roberts	AW,	Davids	MS,	Pagel	JM,	et	al.	Targeting	BCL2	with	Venetoclax	in	
Relapsed	Chronic	Lymphocytic	Leukemia.	N	Engl	J	Med.	2016;374(4):311-322.	
62.	 Baell	JB,	Huang	DC.	Prospects	for	targeting	the	Bcl-2	family	of	proteins	to	develop	
novel	cytotoxic	drugs.	Biochem	Pharmacol.	2002;64(5-6):851-863.	
63.	 Tse	C,	Shoemaker	AR,	Adickes	J,	et	al.	ABT-263:	a	potent	and	orally	bioavailable	
Bcl-2	family	inhibitor.	Cancer	Res.	2008;68(9):3421-3428.	
64.	 Oltersdorf	T,	Elmore	SW,	Shoemaker	AR,	et	al.	An	inhibitor	of	Bcl-2	family	proteins	
induces	regression	of	solid	tumours.	Nature.	2005;435(7042):677-681.	
65.	 Roberts	AW,	Seymour	JF,	Brown	JR,	et	al.	Substantial	susceptibility	of	chronic	
lymphocytic	leukemia	to	BCL2	inhibition:	results	of	a	phase	I	study	of	navitoclax	in	
patients	with	relapsed	or	refractory	disease.	J	Clin	Oncol.	2012;30(5):488-496.	
66.	 Zhang	H,	Nimmer	PM,	Tahir	SK,	et	al.	Bcl-2	family	proteins	are	essential	for	platelet	
survival.	Cell	Death	Differ.	2007;14(5):943-951.	
67.	 Seymour	JF,	Davids	MS,	Pagel	JM,	et	al.	Bcl-2	Inhibitor	ABT-199	(GDC-0199)	
Monotherapy	Shows	Anti-Tumor	Activity	Including	Complete	Remissions	In	High-Risk	
Relapsed/Refractory	(R/R)	Chronic	Lymphocytic	Leukemia	(CLL)	and	Small	Lymphocytic	
Lymphoma	(SLL).	Blood.	2013;122(21):872-872.	
68.	 Thijssen	R,	Slinger	E,	Weller	K,	et	al.	Resistance	to	ABT-199	induced	by	
microenvironmental	signals	in	chronic	lymphocytic	leukemia	can	be	counteracted	by	
CD20	antibodies	or	kinase	inhibitors.	Haematologica.	2015;100(8):e302-306.	
69.	 Tahir	SK,	Smith	ML,	Hessler	P,	et	al.	Potential	mechanisms	of	resistance	to	
venetoclax	and	strategies	to	circumvent	it.	BMC	Cancer.	2017;17(1):399.	



	 44	

70.	 Mongini	PK,	Gupta	R,	Boyle	E,	et	al.	TLR-9	and	IL-15	Synergy	Promotes	the	In	Vitro	
Clonal	Expansion	of	Chronic	Lymphocytic	Leukemia	B	Cells.	J	Immunol.	2015;195(3):901-
923.	
71.	 Fonte	E,	Vilia	MG,	Reverberi	D,	et	al.	Toll-like	receptor	9	stimulation	can	induce	
IkappaBzeta	expression	and	IgM	secretion	in	chronic	lymphocytic	leukemia	cells.	
Haematologica.	2017;102(11):1901-1912.	
72.	 Yam-Puc	JC,	Zhang	L,	Zhang	Y,	Toellner	KM.	Role	of	B-cell	receptors	for	B-cell	
development	and	antigen-induced	differentiation.	F1000Res.	2018;7:429.	
73.	 Packham	G,	Krysov	S,	Allen	A,	et	al.	The	outcome	of	B-cell	receptor	signaling	in	
chronic	lymphocytic	leukemia:	proliferation	or	anergy.	Haematologica.	2014;99(7):1138-
1148.	
74.	 Burger	JA,	Wiestner	A.	Targeting	B	cell	receptor	signalling	in	cancer:	preclinical	and	
clinical	advances.	Nat	Rev	Cancer.	2018;18(3):148-167.	
75.	 Yan	XJ,	Dozmorov	I,	Li	W,	et	al.	Identification	of	outcome-correlated	cytokine	
clusters	in	chronic	lymphocytic	leukemia.	Blood.	2011;118(19):5201-5210.	
76.	 Rozovski	U,	Keating	MJ,	Estrov	Z.	Targeting	inflammatory	pathways	in	chronic	
lymphocytic	leukemia.	Crit	Rev	Oncol	Hematol.	2013;88(3):655-666.	
77.	 Hunter	CA.	New	IL-12-family	members:	IL-23	and	IL-27,	cytokines	with	divergent	
functions.	Nat	Rev	Immunol.	2005;5(7):521-531.	
78.	 Teng	MW,	Bowman	EP,	McElwee	JJ,	et	al.	IL-12	and	IL-23	cytokines:	from	discovery	
to	targeted	therapies	for	immune-mediated	inflammatory	diseases.	Nat	Med.	
2015;21(7):719-729.	
79.	 Vignali	DA,	Kuchroo	VK.	IL-12	family	cytokines:	immunological	playmakers.	Nat	
Immunol.	2012;13(8):722-728.	
80.	 Cocco	C,	Canale	S,	Frasson	C,	et	al.	Interleukin-23	acts	as	antitumor	agent	on	
childhood	B-acute	lymphoblastic	leukemia	cells.	Blood.	2010;116(19):3887-3898.	
81.	 Cocco	C,	Di	Carlo	E,	Zupo	S,	et	al.	Complementary	IL-23	and	IL-27	anti-tumor	
activities	cause	strong	inhibition	of	human	follicular	and	diffuse	large	B-cell	lymphoma	
growth	in	vivo.	Leukemia.	2012;26(6):1365-1374.	
82.	 Sherry	B,	Jain	P,	Chiu	PY,	et	al.	Identification	and	characterization	of	distinct	IL-17F	
expression	patterns	and	signaling	pathways	in	chronic	lymphocytic	leukemia	and	normal	
B	lymphocytes.	Immunol	Res.	2015;63(1-3):216-227.	
83.	 Cutrona	G,	Tripodo	C,	Matis	S,	et	al.	Microenvironmental	regulation	of	the	IL-
23R/IL-23	axis	overrides	chronic	lymphocytic	leukemia	indolence.	Sci	Transl	Med.	
2018;10(428).	
84.	 Hallek	M.	Chronic	lymphocytic	leukemia:	2020	update	on	diagnosis,	risk	
stratification	and	treatment.	Am	J	Hematol.	2019;94(11):1266-1287.	
85.	 Mongini	PK,	Inman	JK,	Han	H,	Kalled	SL,	Fattah	RJ,	McCormick	S.	Innate	immunity	
and	human	B	cell	clonal	expansion:	effects	on	the	recirculating	B2	subpopulation.	J	
Immunol.	2005;175(9):6143-6154.	
86.	 Zhang	W,	Trachootham	D,	Liu	J,	et	al.	Stromal	control	of	cystine	metabolism	
promotes	cancer	cell	survival	in	chronic	lymphocytic	leukaemia.	Nat	Cell	Biol.	
2012;14(3):276-286.	
87.	 Calissano	C,	Damle	RN,	Marsilio	S,	et	al.	Intraclonal	complexity	in	chronic	
lymphocytic	leukemia:	fractions	enriched	in	recently	born/divided	and	older/quiescent	
cells.	Mol	Med.	2011;17(11-12):1374-1382.	



	 45	

88.	 Pistoia	V,	Cocco	C,	Airoldi	I.	Interleukin-12	receptor	beta2:	from	cytokine	receptor	
to	gatekeeper	gene	in	human	B-cell	malignancies.	J	Clin	Oncol.	2009;27(28):4809-4816.	
89.	 Hasegawa	H,	Mizoguchi	I,	Chiba	Y,	Ohashi	M,	Xu	M,	Yoshimoto	T.	Expanding	
Diversity	in	Molecular	Structures	and	Functions	of	the	IL-6/IL-12	Heterodimeric	Cytokine	
Family.	Front	Immunol.	2016;7:479.	
90.	 Caligaris-Cappio	F,	Bertilaccio	MT,	Scielzo	C.	How	the	microenvironment	wires	the	
natural	history	of	chronic	lymphocytic	leukemia.	Semin	Cancer	Biol.	2014;24:43-48.	
91.	 Tang	C,	Chen	S,	Qian	H,	Huang	W.	Interleukin-23:	as	a	drug	target	for	autoimmune	
inflammatory	diseases.	Immunology.	2012;135(2):112-124.	
92.	 Klein	U,	Tu	Y,	Stolovitzky	GA,	et	al.	Gene	expression	profiling	of	B	cell	chronic	
lymphocytic	leukemia	reveals	a	homogeneous	phenotype	related	to	memory	B	cells.	J	Exp	
Med.	2001;194(11):1625-1638.	
93.	 Chiorazzi	N,	Ferrarini	M.	Cellular	origin(s)	of	chronic	lymphocytic	leukemia:	
cautionary	notes	and	additional	considerations	and	possibilities.	Blood.	
2011;117(6):1781-1791.	
94.	 Airoldi	I,	Di	Carlo	E,	Cocco	C,	et	al.	Lack	of	Il12rb2	signaling	predisposes	to	
spontaneous	autoimmunity	and	malignancy.	Blood.	2005;106(12):3846-3853.	
 


