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Abstract: Motivated by recent research on the iterative approach proposed for the smoothed particle
hydrodynamics (ISPH) method, some ideas to improve the process are introduced. The standard
procedure is enhanced iterating on the residuals preserving the matrix-free nature of the process. The
method is appealing providing reasonable results with disordered data distribution too and no kernel
variations are needed in the approximation. This work moves forward with a novel formulation
requiring a lower number of iterations to reach a desired accuracy. The computational procedure is
described and some results are introduced to appreciate the proposed formulation.
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1. Introduction

Mesh-free methods are promising approaches emerging in recent years as valid com-
putational alternatives to grid-based ones. Grid-based methods adopt a computational
frame which is made up of nodes, where the field variables are evaluated, related to each
other through a predefined nodal connectivity. Mesh-free methods are independent of
a mesh and are well suited for problems with complex geometries or problems which
require highly adaptive discretizations maintaining a suitable computational effort [1–3].
Smoothed Particle Hydrodynamics is a popular kernel based approach introduced in
astrophysics [4–9] and it is being increasingly used [3,10–14]. The method provides a
spatial approximation via a discrete kernel convolution. In [15] the standard procedure has
been improved by means of an iterative approach refining the residuals. An approximant
is generated by employing strictly definite positive kernel functions and the method, in
convergence, improves the results without requiring evenly spaced data distribution. If the
linear approximation order is ensured [16,17], the iterative procedure performs better. In a
recent paper [18] some results on this improved approach have been presented, however,
the algorithm can become prohibitive for the number of iterations. In this work, starting
with the linear approximation order, a formulation which guarantees accuracy with a lower
number of iterations is proposed and discussed. The paper is organized as follows. In
Section 2 the main ideas of the method are presented. In Section 3 the iterative process and
the fast formulation are described. In Section 4 numerical validations are reported choosing
the linear approximation order as starting iteration estimate. In Section 5, remarks and
ideas on future work are outlined.

2. The Standard Approximation

The method approximates a function f at x ∈ Rd, for d ≥ 1, by means of the kernel ap-
proximation

< fh(x) >=
∫

Ω
f (ξ)K(x, ξ; h)dΩ (1)

where ξ = (ξ(1), ..., ξ(d)) and K(x, ξ; h) is the kernel function. The spatial kernel influence is
localized by the smoothing length h. The continuum is decomposed into a set of arbitrarily
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distributed data sites Ξ = (ξ j)
N
j=1, where ( f (ξ j))

N
j=1 are the corresponding measurements

and the particle approximation is introduced as

fh(x) =
N

∑
j=1

f (ξ j)K(x, ξ j; h)dΩj (2)

where dΩj is the measure of the subdomain Ωj associated with the data ξ j.
Particle approximation often loses its accuracy, especially on the boundary and with

non uniform data locations [19]. Making use of the Taylor series expansion, by retaining p
terms, multiplying for the kernel function and integrating over Ω [16,17,19] improvements
can be gained. For p = 1 it means

f(x) =< Ih(x) >< fh(x) > +O(h) (3)

with < Ih(x) >= 1/
∫

Ω K(x, ξ; h)dΩ and the corresponding discrete formulation is

f(x) = Ih(x) fh(x) + O(h) (4)

with Ih(x) = 1/
N

∑
j=1

K(x, ξ j; h)dΩj.

By increasing p, the order of accuracy increases, requiring the solution of linear
systems for each evaluation point [16,17]. In [15] an iterative matrix-free approach (ISPH)
is introduced to improve the standard method. In [18] it is adopted refining the normalized
approach (4) as starting values for the iterations. In the following section an enhanced
iterative formulation (E-ISPH) is proposed. For the sake of clarity, a brief overview on the
standard iterative formulation is at first described.

3. The Iterative Approximation
3.1. The Iterative Formulation (ISPH)

Let f be the vector collecting the function values at the data in Ξ, k(x) the vector with
the kernel values at Ξ referring to the evaluation point x, Ω the diagonal matrix with the
significant entries equal to the measures dΩj, the SPH approximant (2) can be expressed as

fh(x) = k(x)Ωf. (5)

By assuming
f (0)h (x) ≡ fh(x) (6)

the sequence { f (n)h (x)} is provided by iterating on the residuals.
Let A a matrix with entries Ai,j = K(ξi, ξ j; h)dΩj, i, j = 1, ..., N, and

s(0) = f−Af

for n ∈ N , n > 0 the term of the succession is obtained as

f (n)h (x) = f (n−1)
h (x) + k(x)Ωs(n−1) = k(x)Ω

n

∑
k=0

(I−A)kf (7)

and
s(n) = s(n−1) −As(n−1).

For n→ ∞, the summation in (7) approximates A−1 if and only if ‖I−A‖2 < 1 [20];
therefore, under this condition the { f (n)h (x)} converges to the interpolant Ph(x)
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The solution for Ph(x) is admitted with strictly definite positive kernel functions on
pair-wise distinct data sites and this is the only assumption for the data location [21,22]. It
is not necessary to ask for evenly spaced data in the construction of { f (n)h (x)}.

3.2. The Enhanced Iterative Formulation (E-ISPH)

In order to speed-up the process, the computation is revisited focusing on

S(n) =
n

∑
k=0

(I−A)k n = 0, 1, 2, ... (8)

For each n, the summation S(2n−1) of 2n terms is taken into account. Let S̃(n) :=
S(2n−1), i.e.,

S̃(n) =
2n−1

∑
k=0

(I−A)k =
2n−1−1

∑
k=0

(I−A)k[I + (I−A)2n−1
]. (9)

By considering that

(I−A)s = I− [
s−1

∑
j=0

(I−A)j]A (10)

by substituting (10) in (9) with s = 2n−1 the following relation holds

S̃(n) =
2n−1−1

∑
k=0

(I−A)k{I + I− [
2n−1−1

∑
j=0

(I−A)j]A}. (11)

Consequently, the subsequent recursive formula can be written

S̃(n) = 2S̃(n−1) − (S̃(n−1))2A. (12)

Now, the (12) is employed in the overall computation, giving rise to the new succession
{ f̃ (n)(x)}. The described enhanced formulation is comparable in accuracy to ISPH, requiring
a reduced number of iterations. In the next section, the behavior of the fast procedure
E-ISPH is reported and compared with the standard SPH and ISPH formulations.

4. Numerical Results

The Franke’s function (13) with d = 2 depicted in Figure 1, taken from the scattered
data literature [23,24], is referred to as test function

f (x(1), x(2)) = 0.75 exp
[
− (9x(1)−2)2+(9x(2)−2)2

4
]
+

+0.75 exp
[
− (9x(1)+1)2

49 − (9x(2)+1)2

10
]
+

+0.5 exp
[
− (9x(1)−7)2+(9x(2)−3)2

4
]
+

−0.2 exp
[
− (9x(1) − 4)2 − (9x(2) − 7)2].

(13)

Two sets of data sites are considered: the gridded ΞG, composed of regular distribu-
tion points, and the Halton ΞH [25] which consists of unevenly distribution points. The
haltonset function of MATLAB© is used to generate ΞH . The accuracy of the estimates is
measured with

RMSE =

√√√√√ M

∑
i=1
| fh(xi)− f (xi)|2

M
(14)

by fixing M = 1600 as the number of evaluation points and N = (2t + 1)2, t = 1,2,.., as the
number of data sites increasing in the unit domain. The kernel function is the Gaussian one.

Some results on the accuracy and on the convergence are illustrated. The improve-
ments in the linear approximation are evident in Table 1, where the RMSEs for the standard
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and the formulation with p = 1 are included, referring to the ΞG and ΞH data distributions.
In Tables 2 and 3, the error behavior adopting the iterative process ISPH, assuming f (0)h
with p = 1, is shown for ΞG and ΞH respectively. A significant reduction, for the two
data sequences, can be appreciated by increasing N and the number of the iterations. In
Tables 4 and 5, the RMSEs refer to the enhanced iterative approach E-ISPH for ΞG and
ΞH showing an accuracy comparable to ISPH requiring a reduced number of iterations.
In Figures 2–4 the RMSEs behavior is reported in a loglog plot comparing the SPH,ISPH
and E-ISPH approaches. In Figure 5, the time (s), required by the ISPH and E-ISPH to
reach a comparable accuracy in the approximation, is exhibited in a loglog plot too. All
simulations have been executed with a processor 2.3 GHz Intel Core i9 8 core.

Figure 1. Test function in Equation (13).

Table 1. RMSEs for SPH (standard formulation) and with p = 1. Data sites ΞG and ΞH .

ΞG ΞH

N SPH p = 1 SPH p = 1

9 0.3487 0.2656 0.3376 0.2624
25 0.3136 0.1234 0.2885 0.2206
81 0.2456 0.1617 0.2024 0.1244
289 0.1540 0.0880 0.1215 0.0693

1089 0.0867 0.0403 0.0720 0.0266
4225 0.0621 0.0149 0.0605 0.0137

16641 0.0545 0.0054 0.0541 0.0046
66049 0.0537 0.0023 0.0540 0.0018

Table 2. RMSEs for ISPH, f (0)h with p = 1. Data sites ΞG.

N f (0)
h f (10)

h f (100)
h f (1000)

h

9 0.2656 0.1657 0.1455 0.1834
25 0.1234 0.1355 0.1156 0.0905
81 0.1617 0.0919 0.0525 0.0396

289 0.0880 0.0255 0.0081 0.0042
1089 0.0403 0.0030 2.91 × 10−4 5.51 × 10−5

4225 0.0149 9.94 × 10−4 1.16 × 10−4 1.29 × 10−5
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Table 3. RMSEs for the ISPH, f (0)h with p = 1. Data sites ΞH .

N f (0)
h f (10)

h f (100)
h f (1000)

h

9 0.2624 0.1626 0.1427 0.1280
25 0.2206 0.1331 0.1023 0.0839
81 0.1244 0.0603 0.0269 0.0167

289 0.0693 0.0133 0.0042 0.0021
1089 0.0266 0.0017 2.35 × 10−4 4.60 × 10−5

4225 0.0137 9.15 × 10−4 1.27 × 10−4 1.71 × 10−5

Table 4. RMSEs for the E-ISPH, f (0)h with p = 1. Data sites ΞG.

N f (0)
h f̃ (10)

h f̃ (20)
h f̃ (30)

h f̃ (40)
h

9 0.2656 0.1684 0.2239 0.2247 0.2247
25 0.1234 0.0963 0.1365 0.1245 0.1375
81 0.1617 0.0406 0.0241 0.0439 0.0503

289 0.0880 0.0052 0.0019 0.0022 0.0062
1089 0.0403 7.87 × 10−5 4.18 × 10−6 9.56 × 10−7 3.19 × 10−5

4225 0.0149 2.45 × 10−5 3.84 × 10−7 5.89 × 10−8 3.99 × 10−5

Table 5. RMSEs for the E-ISPH, f (0)h with p = 1. Data sites ΞH .

N f (0)
h f̃ (10)

h f̃ (20)
h f̃ (30)

h f̃ (40)
h

9 0.2624 0.1312 0.3210 0.3210 0.3210
25 0.2206 0.0861 0.2719 0.3173 0.3173
81 0.1244 0.0172 0.0545 0.0435 0.0446

289 0.0693 0.0023 0.0011 0.0009 0.0013
1089 0.0266 6.95 × 10−5 2.64 × 10−6 9.78 × 10−7 7.43 × 10−5

4225 0.0137 3.13 × 10−5 1.74 × 10−7 1.31 × 10−8 3.17 × 10−5

(a)

Figure 2. Cont.
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(b)

Figure 2. RMSEs versus number of data sites (ΞG). (a) Comparison between SPH and ISPH; (b) com-
parison between SPH and E-ISPH. All the computations are with starting normalized values and
10 ≤ n ≤ 40.

(a)

(b)

Figure 3. RMSEs versus number of data sites (ΞH). (a) Comparison between SPH and ISPH;
(b) comparison between SPH and E-ISPH. All the computations are with starting normalized values
and 10 ≤ n ≤ 40.
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(a)

(b)

Figure 4. RMSEs versus number of data sites. Comparison between ISPH and E-ISPH. (a) ΞG; (b) ΞH .
Full line is for ISPH and dashed line is for E-ISPH. All the computations are with starting normalized
values and 10 ≤ n ≤ 40.

(a)

Figure 5. Cont.
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(b)

Figure 5. Comparison between ISPH and E-ISPH. (a) Time (s) versus number of data sites; (b) RMSEs
versus number of data sites. All the computations are with starting normalized values, ΞH as data
sites, n = 1000 for ISPH and n = 10 for E-ISPH.

5. Conclusions

The iterative procedure adopted via residual iterations gives interesting results into
SPH approximation avoiding matrix generation and without changes on the kernel function.
A normalized version which guarantees the linear order of approximation is a valid strategy
coupled in this paper with a faster approach requiring less number of iterations to achieve
the desired accuracy. Work in extending the procedure to differential operators is in
progress, so allowing one to adopt the method for a large variety of problems in the
applied sciences.
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