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Abstract

The study of the optimal constant in an Hessian-type Sobolev inequality leads to a fully nonlinear boundary value problem,
overdetermined with non-standard boundary conditions. We show that all the solutions have ellipsoidal symmetry. In the proof we
use the maximum principle applied to a suitable auxiliary function in conjunction with an entropy estimate from affine curvature
flow.
© 2013 Elsevier Masson SAS. All rights reserved.

Résumé

L’étude de la meilleure constante dans une inégalité de Sobolev «de type hessien» conduit a un probleme aux limites comple-
tement non linéaire surdéterminé avec des conditions aux limites non standard. On démontre que les lignes de niveau de toutes les
solutions de ce probléme sont des ellipsoides. La démonstration utilise le principe du maximum pour une fonction auxiliaire, ainsi
qu’une inégalité d’entropie pour le mouvement par courbure affine.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper we study the following fully nonlinear overdetermined boundary value problem

detD?u=1 in £2,
u=20 on 052, (1.1)
H,_1|Dul""'=¢ onag,
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where 2 C R” is a smooth, bounded open set whose boundary has positive Gaussian curvature H,,_1, and c is a given
positive constant. If we denote by w,, the volume of the unit ball in R” and £2 is any ellipsoid of measure w,c"/?, then
| A(x —x0)]* — ¢

ulx)= > (1.2)

is the solution to (1.1), for some xp € R" and some n x n matrix A with detA = 1. Obviously
2 ={x eR": |A(x — x0)|> < ¢}. Our main result reads as follows.

Theorem 1.1. Let 2 C R" be a bounded, convex, open set with C* boundary; a convex function u € C*(2) is a
solution to problem (1.1) if and only if 2 is an ellipsoid of measure w,c"'? and u has the specific form given in (1.2).

In 1971 in a celebrated paper [38] Serrin proved that a smooth domain §2 is necessarily a ball if, for some constant
y > 0, there exists a solution u € C%(§2) to the following problem

Au=1 1in §2,

u=>0 on 052,

9 (1.3)
— =y onds2,

av

where v is the unit outer normal to d£2. The main ingredients employed in the proof were a revisited Alexandrov mov-
ing plane method and a refinement of the maximum principle and Hopf’s boundary point lemma. All such techniques
soon became primary tools in the study of symmetries in PDE’s (see for instance [21] and the references therein)
when, in the wake of this pioneering paper, the study of overdetermined boundary value problems burst out.

Right after Serrin’s paper the very same result was also obtained by Weinberger [45] with a very short proof.
To better understand the key steps of our proof in the following sections, it is worth to briefly remind here the basic
ideas behind Weinberger’s one. First of all he showed that the auxiliary function | Du|? — %u (being subharmonic in £2)

achieves its maximum y2 on the boundary of §2. Then he observed that, in view of the PohozZaev identity, one has

2
|Du|2dx —— | udx = y2|[2|
n
2

2

(]$2| denoting the measure of £2), and he deduced that | Du |2 — %u is constant in £2. This fact immediately carries the
radial symmetry of the solution to (1.3).

Since these fundamental contributions, several alternative proofs and generalizations to linear and nonlinear oper-
ators followed (see for instance [45,29,16,26,10,23,5,6,20,7,11,19,22]). Maximum principle is always hidden some-
where in the proof, however some of the developed techniques do not require its explicit usage (we refer the interested
reader to [5-7]).

Compared to most of the problems that can be found in literature, (1.1) has some unusual peculiarities. Firstly the
differential operator is fully nonlinear, with strongly coupled second order derivatives. Secondly the problem admits
both radially and non-radially-symmetric solutions. Such two features can be found in literature for instance in [25,
31,33,26,34,3,13,2,17,4,18], where they rarely occur simultaneously and, to our knowledge, not for all dimensions.

The structure of our paper is the following. In Section 2 we introduce basic notation and preliminary results.
Section 3 is the core of the paper and for the reader’s convenience we split the proof in four claims. In the wake
of Weinberger’s paper we introduce an auxiliary function ¢(u, Du, D?u) for which a maximum principle holds
(see Claim 1 and Claim 2 below). In view of a PohoZaev type identity for Monge—Ampeére equations we show that ¢
is constant in §2 (see Claim 3 below). Surprisingly, this provides informations on the evolution of 92 by affine mean
curvature flow. In particular, an equality sign is achieved in a fundamental entropy inequality (involving the affine
surface area of £2) which have been proved in [1] and as a consequence £2 turns out to be an ellipsoid (see Claim 4
below).

The use of the affine mean curvature machinery is somehow the most original idea in our proof. We observe that,
at least in the planar case, such an idea is not needed (see [2]), and for completeness we sketch a different proof in
Remark 3.1.

Now, before entering in the details of the proof of Theorem 1.1, we want to discuss the reasons which led us
to consider the overdetermination in (1.1). They have to be found in connection with the study of Hessian Sobolev
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inequalities. To better understand such a link we give an insight on how classical isoperimetric estimates on the best
constant in a Sobolev—Poincaré type inequality are related to classical overdetermined problems like (1.3). To this aim
assuming that £2 is a bounded, open subset of R” then there exists the least positive constant 7 (§2) (called torsional

rigidity of £2) such that
2
(/udx) gT(Q)/|Du|2dx,
2 2

forall u € HO1 (£2). The variational characterization of the torsional rigidity is
1 Dv|?dx
——— = min 7f9 | | R
T(R2) venl@) (Joudx)

and any function achieving the minimum on the right-hand side of (1.4) is proportional to the unique solution to the
following Poisson problem

(1.4)

{ Au=1 1in £,
u=0 onadf2.
Now, under suitable smoothness assumptions on §2, it is possible to differentiate the torsional rigidity 7 (£2) with
respect to any smooth domain variation, leading to Hadamard formula (see for instance [30,27]). Under the additional
constraint of keeping the measure of §2 fixed, we can call stationary domains those smooth open sets on which the
derivatives of 7 (-) along any smooth domain deformation vanish. It turns out that a domain is stationary if it admits
a solution to problem (1.3) and, according to such a notion, Serrin has proved that balls are the unique stationary
domains. This is somehow in agreement with classical results (see for instance [35,39]) which established that, among
sets of given measure, 7 (§2) is maximal on balls (observe that under the same prescription 7 (£2) is not bounded
away from zero). This property was first noticed by a famous mechanician of the 19th century and named after him
Saint-Venant’s Principle. Serrin’s paper strengthened such a principle by proving that no other stationary domain
exists.

We turn now our attention to higher order (Hessian-type) Sobolev inequalities. In the paper [14] (see also [42,44,
15,41,28]), among other things, the authors proved that, whenever £2 is a smooth, convex set, there exists the least
positive constant S(§2) such that the following Hessian Sobolev inequality holds

n+1
(f(—u)dx) §S(Q)/(—u) det D%u dx
2 2

for all u € ®o(2) = {u € C*(2) N C°(2): u convex in 2, u =0 on 3£2}. The value of S(£2) can be characterized
by
1 . [o(—w)detD*wdx
——— = min
S(2)  wedo(@2) (fo(—w)dx)rt]

and any function in @((£2) achieving the minimum on the right-hand side of (1.5) is proportional to the unique
solution to the following Monge—Ampere boundary value problem

(1.5)

{det02u=1 in £, (16)
u=>0 on ds2.

We can call S(£2) the Monge—Ampere torsional rigidity in analogy with the definition given above. Now, as for the
classical torsional rigidity, we want to identify the stationary domains. To this aim let us consider a smooth, strictly
convex open set £2 and a family of maps ¥ (¢) satisfying

w1 e[0, T[— WHR", R") differentiable at 0 with ¥ (0) = I, ¥'(0) =V
where [ is the identity and V is a vector field. Let us denote §£2; = ¥ (¢)(§2) and

5(2) =82/ :/(—u(x,t))dx

2
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where u(x, t) solves problem (1.6) with §2 replaced by £2;. By Hadamard formula we get

1
s"(20)]1=0 = — / Hy— |Du|n+1V V.
n
982

Thus £2 is a stationary point for S(§2) under the volume constraint if

/ H,_i|Du/"™'v .v=0, for any V such that / V.v=0.
882 EYe;

Therefore a stationary domain £2 carries the additional condition
H,_1|Du|"*! = const

and for such a set a solution to problem (1.1) exists. In this framework we can read Theorem 1.1 as the proof that no
stationary domain for S(-) exists other than ellipsoids. Our result is in agreement with previous papers [8,9], where
it has been proved that in the class of smooth, strictly convex, open sets of given measure, S(-) is minimal on all
ellipsoids. Balls are not the only domains since the Monge—Ampere operator is invariant under measure preserving
affine transformations and therefore it is unable to “distinguish” a ball from an ellipsoid. The analogy between S(-) and
7 (+) is not as tight as it might seem since, contrary to the behavior of 7 (-), the constant S(-) happens to be minimal
on balls and not maximal. However, what really makes a difference is that once S(-) is continuously extended to the
whole class of convex sets, trivial arguments involving maximum principle ensure that such a constant is also bounded
from above in terms of the measure of §2 alone. Compactness results in the class of convex sets (Blaschke—Santalo
theorem) guarantee that the maximum is achieved. The determination of maximizers is a puzzling nontrivial open
problem. As a corollary to our result we deduce that the maximum of S(-) is achieved on sets which are convex but
do not belong to the class of C? strictly convex sets.

2. Notation and preliminaries

2.1. Symmetric functions and Hessian operators

We denote by A = (a;;) a matrix in the space S" of the real symmetric n x n matrices, and by Ay, ..., A, its
eigenvalues. For k € {1, ..., n}, the k-th elementary symmetric function of A is
Se(A)=Sk(hiooh) = D i Ay

1<ip<<ig<n

Note that Si (A) is just the sum of all £ x k principal minors of A.
The operator S ,:/ k, for k=1, ..., n,is homogeneous of degree 1 and it is concave, if restricted to

i ={AeS" Sj(A)>0fori=1,...,k}.

Denoting by

ST (A) = 2 5.(4),
k daij

Euler identity for homogeneous functions gives
Sk(A) = Z S (A)a;.
ij
We will use the following notations:
e S;(i) means the k-th elementary symmetric function of Ay, ..., A, excluding A;;

e Sk (i, j) means the k-th elementary symmetric function of A1, ..., A, excluding A; and A ;;
e Si(i, j,r) means the k-th elementary symmetric function of A1, ..., A, excluding A;, A; and A, ;
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e Finally, when k =n,

2 3
S (A) = B(detA), SIS (A) = 0 (detA)’ S;l],rS,aﬁ(A) _ 0”(det A) ' @1
a,-j 861[1'861,»5 aaijaarsaaaﬂ
If A has diagonal form, (2.1) becomes (see for example [24])
ij v | Sec1G) ifi =,
S”(A)_{O if i # j,
- Sn—2(, J) ifi=j, r=s,i#r,
S (A) = { —Sueali ) Wi r=j, s=i,
0 otherwise,
Sp_3(i,r, o) ifi=j, r=s,a=8,r#i, a#i,r,
B —Sp3(,r,a) ifi=j, r#s, a=s, B=r, r#£i, a #i,r,
ST Ay =Y —Syalre) ifiAj r=s, a=p r£i, @i 2.2)
Sp_3(i,r, o) ifij,r=j s=a =i, r#i, a #i,r,
0 otherwise.

Now let £2 be an open subset of R" and let u € C 2(£2). The k-Hessian operator Sr(D?u) is defined as the k-th
elementary symmetric function of D?u. Notice that

M (Dzu) =Au and S, (Dzu) = det D?u.

For k > 1, the k-Hessian operators are fully nonlinear and, in general, not elliptic, unless restricted to the class of
k-convex functions

OF(2)={ueC*(2): S;(D*u)>0in 2, i=1,2,....k}.

Notice that @3((2) coincides with the class of C2(£2) convex functions.
A direct computation yields that (S,l" (D%u), ..., SZJ (D%u)) is divergence free, i.e.

Za—ms}g:o, ji=1,....n; (2.3)
i

hence Si(D?u) can be written in divergence form
1 1,/ .
S(D?u) = =87 (D2w)uyy = = (¢ (D2u)u; ) 2.4)
l

where subscripts stand for partial differentiations.
If ¢ is a regular value of u and H,_; stands for the Gaussian curvature of the level set d{u < ¢} at the point x, the
following pointwise identity holds (see [36,40])

S,zj(Dzu)uiuj
|Du|"+1

Finally we recall the following PohoZaev identity (see [43,5])

H,_1 = (2.5)

Proposition 2.1. Let §2 C R" be a bounded, convex, open set with C 2 boundary and let f € C'(R) be a nonnegative
function. If u € C*(82) is a convex solution to the problem

det D*u = f(u) in$2,
u=>0 on 052,
then the following identity holds

1 - 1
—n+1fs,’{(Dzu)u,-ujderm/<x,v>Hn_l|Du|”+1 =n/F(u)dx, (2.6)
952

2 2

where Sf,j(Dzu) are defined in (2.1), v is the outer unit normal to 052, and F (u) = fL? f(s)ds.
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2.2. The affine curvature flow

An affine isoperimetric inequality, known as Petty inequality, states that (see, for example, [32,37])
L n—1
f T <nof @), @)

equality holding if and only if £2 is an ellipsoid. The integral on the left-hand side of (2.7) is known as affine surface
1

area and H n"ji is known as affine curvature.
Now we recall a result proved in [1] concerning affine curvature flow.

Theorem 2.1 (Andrews '96). Let ¢o : S"~' — R" be a smooth (C™) strictly convex embedding of the unit sphere in
R"; then there exists a unique tg > 0 and a unique
@(z,1) € C®(S"! x [0, 1 [; R")

such that, for all 0 <t < tg, (-, 1) : "' — I C R" is a smooth, closed surface, uniformly convex (i.e. with strictly
positive Gaussian curvature) for t > 0, and for all (z,t) € "' x [0, tg[ ¢ is a solution to the following partial
differential equation

0 1
2en =—(Halh(et ) vr (9(z. 1)), 2.8)

where H,_1[1t]1(x) and vr,(x) are, respectively, the Gaussian curvature and the outer unit normal of I'; at the point
x € I and ¢(z,0) = ¢o(2).
Moreover

(i) I} convergesto apointast /' tg,
(i) after rescaling about the final point to make the enclosed volume constant, I'; converges in C* to an ellipsoid,

(iii) the following estimate holds:

d —n—l 1

E(Vz i /Hn—l[rt]m> >0, (2.9)
I

and the inequality is strict unless ("', t) is an ellipsoid for any 0 < t < tg. Here V, is the enclosed volume of
the hypersurface (S"1,1).

The affine curvature flow of a convex surface is a flow where each point of the surface moves in the direction of the
inner normal with velocity equal to the affine curvature of the surface itself. The previous theorem states that, for any
initial smooth, convex, closed surface, it is possible to find a unique one parameter family of solutions to the affine
curvature flow. Such a family is smooth and shrinks to a point by approaching an ellipsoidal shape.

3. Proof of Theorem 1.1

From now on u € C2(£2) N C*®(£2) will be a convex solution to problem (1.1). For the reader’s convenience we
will denote

SU=ST(D%),  SUTS =807 (D), SUTeeB = ST (D),
Differentiating the equation in (1.1) we immediately get that, fork=1,...,n,

9 (det D>
(e u) ZS”uUk— in Q, 3.1)
i,j=1

and, fork,[=1,...,n
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92 (det D?u)
7 E AR WijkUrsl + E Sju,jkz—O in £2.
0xy 0x; Y Y
7,

For any v € C%(£2), let us consider the linear operator
Lv= Z SYv; s
iVj

where S = (§%/) is the cofactor matrix of D?u. Then, for any k =1, ..., n, by (3.1) we immediately get
Lu,=0 1in £2.
Let us introduce the following auxiliary function

¢ = H,_1|Du|""' = 2u.

Claim 1. The following identity holds true

Lo = Z Z Sleij”S’“ﬁurskuaﬁluiuj — Z Z Sij’le’S’“ﬁurskuaﬁluiuj.

kil T8 kil T8
l]aﬂ z]‘xﬂ

Being det D?u = 1, the matrix (S/) is the inverse of D?u, that is SV u;; = djk. Hence by (2.5) we get
9 . ,
B_Xk( — 1|Du|”+1 ™ (ZSJM u]> = ZS’f’”ursku,-uj +22S”u,~kuj
i,j ij
r,s

= Z SUTS wpsguiu j + 2ug,

i,J
r,s

and then

Let us compute the second derivatives of ¢

3% d
] rs J rs l] rs
3x0x) E ox) (S )u”ku uj+ ZEJ S upsiuing +2 ZEJ SY P upsiuiu .

r, s r,s r,s

Hence

Ly = Z S ou

_ Zzskl 0 SU rv I/t”klxl u; +ZZSkISlJ ”u”klu u; +2ZZSI<IS1] rsur KU ]

k,l lj k,l l_] k.l lj
Sletj rs,ap Sklslj rs 2 S_/I’Y
= UpskUaBlUiUj + UpskiUillj + Upsillj.
i,j S ki
]l o,pB r{v rs

By (2.3) we get that the last term in (3.6) vanishes and then

Lo = Z Z SklSij’”’a’gu”kuaﬁluiuj + Z Z Sk[Sij’”Mrskluiuj.

i, r,s kg i,
le 0{/3 r,{v

Finally substituting (3.2) in the above equality we get (3.5).

3.2)

3.3)

(3.4)

(3.5)

(3.6)
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Claim 2. Lo > 0in 2.

We distinguish two cases. Suppose first that n = 2. We observe that (3.3) gives
Tr(S . Dz(aul + ﬁuz)) = L(auy + Buz) =0
then being the involved matrices symmetric and S also positive definite, we have
det (S - D*(aui + Pu2)) <0

and
det D*(auy + Bu) = det («D*uy + BD*uz) <O Vo, B eR. (3.7)
Therefore we immediately have

_ Z Z Sij,kl Srs’aﬂurskuaﬁl Mil/tj

kil T8
i, o.B

= 2u1 (—det Dzuz) + 2u§(—det Dzul) —2uqur(ui11u222 — U1124122)

= —2det (uxD*uy — uy D*uz) > 0. (3.8)

Suppose now that > 2. Let x € £2; by performing a rotation of the coordinates we may suppose that D?u(x) is
diagonal. Since det D%u=1, (2.2) can be rewritten as follows

1 spe
Gi _ | % ifi=j,
0 ifi#],
ﬁ ifi=j, r=s,i#r,
.. 1
S-S — 1 o . . .
Y ifi#£j, r=j, s=i,
0 otherwise,

hikrha ifi=j,r=s, a=8,r#i, a#i,r,

T ifi=j, r#s, a=s, B=r, r#£i, a #i,r,

ij,rs,aff __ o ] . .
S Vo fi#j r=s, a=p r#i a#ir (3.9)
1/ r o
T ifiEj r=j, s=a, B=i, r#i, a#ir,
0 otherwise.

First let us consider the second term in the right-hand side of (3.5). By using (3.9) we have

Z Z Sij’klsrs’aﬁurskuaﬁl”iuj

kil T8
i,j o.p

(T )BT s

i=j i#j7 k1l ra

= ZZMZS” kk ZS” O‘ﬁurskuaﬂk + ZZM uj St ZS” ﬂu,sjua,g,

i ki i j#i

_ZZ ZSttkaZ Srraaurrkuaak+sra ar rak]

i k#i roa#r

ij,ji rr,oo ro,ar
—{—ZZM,‘M]‘SJJ ZZ[S urrjuaai+S urozjuroti]

i ji roastr
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z 1
= ZZ )j;\k ZZ m(”rrkuaak rtxk Z; uluj ZZ e (I/lrrjuaal
i J#i
- Z 27&: Aj Z Z ”rrJ”fWJ %aj) —uitj(UrrjUoaai — Mrajurai)]-
i JFI r

Analogously, by (3.9) the first term in the right-hand side of (3.5) becomes

Z Z Skl Sl]’rsvaﬁurskuaﬁluiuj

kil T8
i,j B

— Z Z SkkSl] rs, aﬂurskuaﬂku u;

i,j.r,s

a,p

<Z+Z> ZZS“S” " aﬂu”kualgku U

i=j i#j k aﬂ

_ Z Z Z SkkSlt rs, aﬂ”rskuaﬂk u? + ZZ Z SkkSlj rs, aﬂurskuaﬁku uj
i

o kit

_Zzskk ZZ Z S”rraaurrkuaak+S”ra ar rak)

r#i o#r,i

ki j;éi oz;éij

”rotj”roti)

- Z Ak Z Z Z urrk”aak rak) + 2uiuy(UrakUhaik — uirkuaak)]-

r

r;él
Joining (3.10) and (3.11) we get

oz;érl

Lo= Z Ak Z Z Z ”rrkuaak %ozk) + 2uiuy (UrakUaik — uirkuaak)]

oz;érl

2
- E )\‘ E E E ukkruaar ukozr) —ujuy(UkkrUhoai — ukarukai)]-
k

r

r;él a;ﬁk

We can rearrange the terms appearing in the above formula and we obtain

2
Ly = Z " Z Z { Z urrkutx(xk %ak) - Z I)/f_;(ukkr”aar - ul%ar)}
#i

a#k
Z Ak Z Z Ar { Z 2u; :r (UrgkUgit — UirkUgak) + Z M;\Zr
o o aFk
:Z,\iz Z u11+uu,12)

k i Yot

where

2 2
I, = Z (UrrkUaok — Mrak) _ Z (Ukkrtgar — Mkar)

aFEr,i Ao a#k Ao

and

(Ukkrhaai — ukarukai)}

(3.10)

3.11)
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(UrakUaik — UirkUaak) (Ukrhai — UkarUkai)
1-2:2 Z ro ol r oo +Z rtoat or (073 .

aFr,i Mo aFk P

Let us first consider Z;:

-y (Urrktaak = Ukkritaar) rrkttigek = upy)  (kkrttyrr — U,  (Uikrliiy = Ug;,)
a#i,rk Mo M Ar Ai
_ {urrk( Z uaak) _ ukkr( Z uaar)
o,k ka aFi,rk )La

2 2 2
n (Wrrictkk — urkk> _ Wkkrrrr — ukrr) _ (WUhkrtiir — ukir)
Ak Ar Aj

Using (3.1) we have

Z Uaap _ _(Uiip | Urrp | UkkS | for B=1,....n, (3.12)
- Ag A Ar Ak
o,k
and hence

2

UprkUiik — U
1.1:_( rrk lt)ic k,r)' (313)

i

Reasoning in an analogous way as before we get

UrakUgik
IZZZ’“TO”. (3.14)

o

Using (3.13) and (3.14) we can write

Ly = ZZZZ g I/)i ir)\. UrakUaik — ZZZ ek kz urrk”iik - M%ir)
ki or#io« k » k
= ZZZZ Ay i er UrakUaik — ZZZ ha )\‘2 uaakuiik - u%m)
ki oo« k ki k
:ZZZZA ii;k I/trafk’/touk_zzzk)L Mowckunk'i‘zzzk)L )\2 kza

k i r#i o ki a#fi ki a;ét
ZXk:Z;Z/\ ZK} ”’“k”“’k+zzzxx 22 it ZZ A3 i
1 r#Fl o
_ZZA‘AZullk(;u:zk)

and finally from (3.12) we deduce

L§0=ZZZZA erk urockuozlk‘|‘2:X:2:)k Ay )»2 kta

ki r#i o«

2
u,u
XYY = E L g (S5 ) 20

Claim 3. The function ¢ defined in (3.4) is constant in §2.
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By Claim 2 and maximum principle for linear elliptic operators, ¢ attains its maximum over §2 on the boundary

d52. Therefore either
(i) ¢ <cin £2,or
(i) p=c.
Suppose by contradiction that ¢ satisfies (i), that is
H,_1|Du|"™' —2u <¢ in £2.
Integrating on 2 both sides in (3.15) we get
/(Hn_llDul”H —2u) < cl$2].

2
Moreover by (2.5) and (2.4) we have

/Hn_llDu|”+1 =/Siju,-uj =n[(—u)det(D2u) =n/(—u).
2 2 2 2

Substituting (3.17) in (3.16) we get

c
/(—u) < m|9|-
2

On the other hand, (2.6) and (3.17) imply

n c _
oy [ [en=n o,
Q 92 2

n _ C
QR Sy
2

082

that is

By divergence theorem we finally get

— ¢ Q
/(—M) = m| [,

2

that is in contradiction with (3.18).
Claim 4. $2 is an ellipsoid.

Being ¢ constant we have

H,_1|Du|"t' —2u=c¢ in £,
with ¢ =2max g (—u).
Let us consider the following positive, increasing function

g(s) = E[CV!/("-H) —(c— zs)n/(n+1)i|’ 0<s < f
2n 2

By (3.19), we get that the function ¥ (x) = g(—u(x)) satisfies the following equation:

H,_1|Dy|""' =1 in2.

Denote by

(3.15)

(3.16)

3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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Qt)={xe: yx)>1t}, >0,
then 052 (¢) is the ¢-level set of the function ¥ (x). By (3.21) we have
Hy—1[002(1)] T
[ 1 t n+ .
Dy
Thus the family £2(¢) is a one-parameter family of solutions to the affine curvature flow (2.8). By Theorem 2.1 estimate
(2.9) holds, that is
a
—| |92
oy (l (1)

We claim that equality sign holds in (3.22). Hence by Theorem 2.1 £2(¢) is an ellipsoid for any 0 < ¢ < tg and in
particular we get that £2(0) = 2 is an ellipsoid.
Let us define

Cnt 1
nl f Hn"ji>>0. (3.22)

382(1)

v =20 =|{re2: y@x) >t} =|{reR2: g(-u@) =1}, >0,
and
uis) = Hx e —ulx) > s} , §>0;
clearly v(g(s)) = u(s). Taking into account (3.21) we immediately have
/ / / 1 #
el =no== [ Zo=— [ B (3.23)

¥=g(s) —u=s
On the other hand, from (3.19) we deduce

1 1 -2 1 -2
u(s) = - / det D2 = - / Hyy | Dup" = =2 f - W=
n n n | Dul|
—U=s —U=s

n
—u>s

The above equality and (3.20) give

W(s) = —npu(s)(g )",
and hence
2 —1
V(8(9) = —npu(s)g' ()" = —nv(g(s)) [ﬁg(s) —c “*”] : (3.24)
Using (3.23) and (3.24) we finally obtain
i) -t L 9 nml i) 2 ( 2n o)
g (Vﬁg) / Hnii) = —@(vag) ' (g)) = i [v(g) (—g e +l>> }

n+1
v=g

—n| 2 u(e) (o) [ g — D R
n+1 n—+1

)
—v(g)% 2n < 2n g_cn/(n-i-l)) ]=0.

n+1\n+1

Remark 3.1. When n = 2 it is possible to skip the use of the affine curvature flow in the proof of Claim 4. Indeed,
being ¢ constant in £2, from (3.8)

u%(—det Dzuz) + u%(—det Dzul) —urur (U112 — uipu122) = 0.
On the other hand, by (3.7)

o (—det D?us) + p*(—det D*u1) — af(uyyiuaz — uriau122) >0
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for all o, B € R. Hence we have
(ui11u22 — u112u122)2 = 4(det Dzul)(det Dzuz).

Then, for almost every x € §£2 we can use a reference frame where 1 = 0 and u; # 0 and we deduce that det D?u; =0
and u111u22 — ur12u122 = 0. These identities, together with (3.1), give the following system

U1 — ut, =0,

uiu —urpu22 =0,

uuy] +uiiug —2uppuyr =0,
uiiau22 +upu2 —2upuin =0,

which enforces all third order derivatives of u to vanish at x. Indeed, suppose by contradiction that one of them is

2
. . u . . .
different from zero, for instance u1; # 0, then u2; = ﬁ The third equation gives

2

2 2 i
0 =uopuyyy +uniuyy —2unpuinui = Z SYuitiuinj
ij=1

and the positivity of the matrix S implies u11] = u112 = 0, which is absurd.
By continuity the same holds in the whole §2, and the claim is proved.
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