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SYMMETRY BREAKING IN A CONSTRAINED CHEEGER TYPE
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Abstract. The study of the optimal constant Kq(Ω) in the Sobolev inequality

‖u‖Lq (Ω) ≤ 1

Kq(Ω)
‖Du‖(Rn), 1 ≤ q < 1∗,

for BV functions which are zero outside Ω and with zero mean value inside Ω, leads to the definition of
a Cheeger type constant. We are interested in finding the best possible embedding constant in terms of
the measure of Ω alone. We set up an optimal shape problem and we completely characterize, on varying
the exponent q, the behaviour of optimal domains. Among other things we establish the existence of a
threshold value 1 ≤ q̃ < 1∗ above which the symmetry of optimal domains is broken. Several differences
between the cases n = 2 and n ≥ 3 are emphasized.
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1. Statement of the problem and main results

Let Ω be a bounded, open set of R
n, n ≥ 2, and let 1 ≤ q < 1∗ = n

n−1 . Denoting by BV0(Ω) =
{u ∈ BV (Rn) : u ≡ 0 in R

n \ Ω } it is well-known that there exists a constant Cq(Ω) such that

‖u‖Lq(Ω) ≤ 1
Cq(Ω)

‖Du‖(Rn) (1.1)

for all u ∈ BV0(Ω). Here ||Du||(Rn) denotes the total variation of u in R
n.

The least possible constant such that (1.1) holds true is given by

Cq(Ω) = min
{‖Du‖(Rn)

‖u‖Lq(Ω)
: u ∈ BV0(Ω), u �≡ 0

}
,
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a quantity that is well-known in literature since it coincides with the so-called Cheeger constant [5] (see also
the survey paper [19] and the references therein):

Cq(Ω) = min

{
P (E)

|E| 1q
: E ⊆ Ω, |E| > 0

}
.

Here by P (E) and |E| we denote the perimeter and the Lebesgue measure of E respectively.
An elementary scaling argument enforces Cq(Ω)|Ω| 1q −n−1

n to be invariant under dilations, therefore it is
possible to optimize such a product over all bounded, open sets Ω. Indeed an interesting consequence of the
isoperimetric inequality is that

Cq(Ω)|Ω| 1q −n−1
n ≥ nω

1
n
n , (1.2)

where ωn denotes the measure of the unit ball in R
n. Hence in the class of bounded, open sets of given measure

balls minimize Cq(Ω). Furthermore, given any bounded, open set Ω, it holds that

‖u‖Lq(Ω) ≤ |Ω| 1q −n−1
n

nω
1
n
n

‖Du‖(Rn)

for all u ∈ BV0(Ω).
The study of optimal constants in Sobolev–Poincaré inequalities for BV functions has been very popular since

several decades. Many results can be found for instance in [16], and more recently in [6, 10–12].
In this paper we consider the following minimization problem

Kq(Ω) = min
{‖Du‖(Rn)

‖u‖Lq(Ω)
: u ∈ BV0(Ω), u �≡ 0,

∫
Ω

u dx = 0
}

, (1.3)

carrying the Sobolev inequality

‖u‖Lq(Ω) ≤ 1
Kq(Ω)

‖Du‖(Rn)

holding for functions u ∈ BV0(Ω) having zero mean value. Since in general Cq(Ω) ≤ Kq(Ω), in comparison
with (1.1), we are trading the restriction to zero mean value functions for a better embedding constant. Even
in this case, scaling arguments enforce Kq(Ω)|Ω| 1q −n−1

n to be invariant under dilations and the present paper is
devoted to the study of the optimal lower bound in the wake of (1.2) and to a complete characterization of the
optimal sets (from now on called “minimizers”) on which Kq(Ω)|Ω| 1q −n−1

n achieves the lower bound.
To this aim we rewrite Kq(Ω) in terms of geometric quantities, such as perimeters and measures of subsets of
Ω. For a given bounded open set Ω we define

Φ(Ω) = {(E1, E2) : E1, E2 ⊆ Ω, E1 ∩ E2 = ∅, |E1| > 0, |E2| > 0}, (1.4)

and prove the following.

Theorem 1.1. If Ω is a bounded open set of R
n, n ≥ 2, and 1 ≤ q < 1∗, then

Kq(Ω) = min

⎧⎨
⎩

P (E1)
|E1| + P (E2)

|E2|
(|E1|1−q + |E2|1−q)

1
q

: (E1, E2) ∈ Φ(Ω)

⎫⎬
⎭ . (1.5)

Taking advantage of (1.5), we are able to characterize the minimizers. Astonishingly, the minimization is very
sensitive to the choice of n and q. A symmetry breaking phenomenon appears above a threshold value of the
exponent q. Furthermore for certain choices of n and q minimizers are not even unique. Our main result is the
following.
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Theorem 1.2. For all n ≥ 2 every minimizer of Kq(Ω) in the class of bounded, open sets with given measure,
is union of two disjoint balls. Shape and uniqueness of such minimizers depends on n and q. More specifically,
there exists q̃ = q̃(n) ∈]1, 1∗[ such that, when q < q̃, the minimizer is unique and the two balls composing the
minimizer have the same radius, while, when q > q̃, the minimizer is unique and the two balls composing the
minimizer have different radii. Moreover:

(1) If n = 2, then q̃ = 7
4 , the minimizer is unique even at q = q̃ and consists in the union of two disjoint balls

with equal radii.
(2) For all n ≥ 3, the minimizer is not unique at q = q̃, indeed there are exactly two minimizers one of which

is the union of two disjoint balls with equal radii.

Remark 1.3. We point out some additional properties that will be deduced during the proof of the Theo-
rem 1.2. Assume that we work with the class of bounded, open sets of given measure. When n = 2, the radii of
the balls composing the unique minimizer change continuously for q ∈ [1, 2[ and the largest one is nondecreasing
with respect to q. The case n ≥ 3 shows some differences. Bearing in mind that the exact value q̃ is not explicitly
given, we can bound it from above and below by 1+ 1

n + 1
n2 and 1+ 1

n respectively. More important, crossing the
threshold value q̃ the minimizer abruptly jumps from two balls of equal radii to two balls of unequal radii. For
q = q̃ minimizing pairs of balls of equal and unequal radii coexist. Considering the minimizing pairs of unequal
radii, for q ≥ q̃, the radius of the largest ball continuously increases with respect to q.

Finally, regardless the value n ≥ 2 the minimizing pair always degenerates to one ball as q → 1∗.

A different point of view to look at our problem consists in considering the minimization in (1.3) as relaxed
form of

Kq(Ω) = inf

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ω

|∇u|dx

(∫
Ω

|u|qdx

) 1
q

: u ∈ W 1,1
0 (Ω), u �≡ 0 and

∫
Ω

u dx = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (1.6)

In this case we can address to Kq(Ω) as the “twisted eigenvalue” of the 1-Laplacian or “twisted Cheeger
constant”, that means Kq(Ω) is the BV counterpart of the so-called twisted eigenvalue for the Laplacian

λT (Ω) = min

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

|∇u|2dx∫
Ω

|u|2dx

: u ∈ H1
0 (Ω), u �≡ 0 and

∫
Ω

u dx = 0

⎫⎪⎪⎬
⎪⎪⎭ .

To our knowledge the term “twisted eigenvalue” was first introduced by Barbosa and Bérard in [1]. Later Freitas
and Henrot in [13] employed symmetrization arguments to show that the pairs of disjoint balls of equal radii
are the unique minimizers of λT (Ω) among all bounded, open sets of given measure. For the interested reader,
generalization of the twisted Laplacian eigenvalue in different directions have already been studied for instance
in [2, 3, 8, 18].

In the spirit of [13], one might expect that also minimizers for Kq(Ω) are pairs of disjoint balls of equal radii,
and Theorem 1.2 contradicts this intuition.

The picture that we get is much more similar to the one obtained for certain 1-dimensional Wirtinger
inequalities in [4,7,9,14,17] where the occurrence of symmetric and asymmetric minimizers have been completely
settled. In dimension greater than 1, symmetry breaking for p-Laplacian twisted eigenvalue problems, for certain
range of exponents, have been observed in an interesting remark by Nazarov recently appeared in [18].

We finally thank the referee for having pointed out the following estimate

K1(Ω) ≤ C1,2(Ω),
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where
C1,2 = min

(E1,E2)∈Φ(Ω)
max {C1(E1), C1(E2)}

is the second Cheeger constant introduced in [20]. If we generalise this notion, and define

Cq,2 = min
(E1,E2)∈Φ(Ω)

max {Cq(E1), Cq(E2)} , q ∈ [1, 1∗[,

by using the concavity of the function f(t) = t
1
q , we get

Kq(Ω) ≤ 21− 1
q Cq,2(Ω).

2. Proof of the Theorem 1.1: Reduction to characteristic functions

The main idea is to show that it is possible to study problem (1.3) by considering only test functions whose
positive and negative parts are characteristic functions up to multiplicative factors.

Let us introduce the following notation. For any u ∈ BV0(Ω) we set

Fq(u) =
‖Du‖(Rn)
‖u‖Lq(Ω)

·

Clearly, if as usual χE denotes the characteristic function of a set E ⊆ R
n, recalling (1.4),

Fq (|E2|χE1 − |E1|χE2) =
P (E1)
|E1| + P (E2)

|E2|(
|E1|1−q + |E2|1−q

) 1
q

, (E1, E2) ∈ Φ(Ω).

We denote

Q(E1, E2) =
P (E1)
|E1| + P (E2)

|E2|(
|E1|1−q + |E2|1−q

) 1
q

and we define
�q(Ω) = inf

(E1,E2)∈Φ(Ω)
Q(E1, E2). (2.1)

First we prove that the infimum in (2.1) is attained. The classical isoperimetric inequality implies that

Q(E1, E2) ≥ nω
1
n
n

|E1|−
1
n + |E2|−

1
n(

|E1|1−q + |E2|1−q
) 1

q

,

and, being 1 ≤ q < 1∗, the right-hand side diverges as (|E1|, |E2|) → (0, 0). Hence, if (Ek
1 , Ek

2 ) is a sequence of
couples of domains in Φ(Ω) which minimizes (2.1) as k → +∞, the sequences χEk

1
, χEk

2
are bounded in BV

and, up to subsequences, strongly converge in L1(Ω). Then the lower semicontinuity of the perimeter along
these sequences guarantees that the infimum in (2.1) is attained.

Now we show that Kq(Ω) = �q(Ω) = min
(E1,E2)∈Φ(Ω)

Q(E1, E2). Let (Ẽ1, Ẽ2) ∈ Φ(Ω) be such that �q(Ω) =

Q(Ẽ1, Ẽ2). The function ũ = |Ẽ2|χẼ1
− |Ẽ1|χẼ2

is an admissible test function in (1.3), and Fq(ũ) = �q(Ω).
Hence, we have that

Kq(Ω) ≤ �q(Ω).

In order to conclude the proof, we have to show that, for any admissible function u ∈ BV0(Ω),

Fq(u) ≥ �q(Ω).
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Using standard notation, let u = u+ − u−, where u+ and u− are, respectively, the positive and negative part of
u, and set Ω± = sptu±.

Clearly
∫

Ω+

u+dx =
∫

Ω−
u−dx. Moreover being u �≡ 0 implies that |Ω±| > 0. Let

μ+(t) = |{u+ > t}|, μ−(t) = |{u− > t}|.
By the Fubini Theorem and the Hölder inequality, we get that∫

Ω+
uq

+dx =
∫

Ω

(
uq−1

+

∫ +∞

0

χ{u+>t}(x)dt

)
dx

=
∫ +∞

0

(∫
{u+>t}

uq−1
+ dx

)
dt ≤

(∫
Ω+

uq
+dx

)1− 1
q ∫ +∞

0

μ+(t)
1
q dt

(see for example [16], Sect. 1.3.3), and the same relation holds for u−. Using the above inequality we deduce
that (∫

Ω

|u|qdx

) 1
q

≤
[(∫ ess sup u+

0

μ+(t)
1
q dt

)q

+
(∫ ess sup u−

0

μ−(s)
1
q ds

)q] 1
q

. (2.2)

Now we perform the change of variables

ξ(t) =
∫ t

0

μ+(σ)dσ, t ∈ [0, ess supu+],

and
η(s) =

∫ s

0

μ−(τ)dτ, s ∈ [0, ess supu−],

respectively, in both integrals in the right-hand side of (2.2). The functions ξ and η are strictly increasing and,
being

∫
Ω+ u+ dx =

∫
Ω− u− dx := M , we have that ξ(t) ≤ M = ξ(ess sup u+) and η(s) ≤ M = η(ess supu−).

Hence, from (2.2) and the Minkowski inequality (see for example [15], Thm. 202, p. 148) it follows that

(∫
Ω

|u|qdx

) 1
q

≤
[(∫ M

0

μ+(t(ξ))
1−q

q dξ

)q

+

(∫ M

0

μ−(s(η))
1−q

q dη

)q] 1
q

≤
∫ M

0

[
μ+(t(r))1−q + μ−(s(r))1−q

] 1
q dr. (2.3)

On the other hand, denoting by p±(t) = P ({u± > t}) for t ≥ 0, the co-area formula for BV functions yields

‖Du‖(Rn) = ‖Du+‖(Rn) + ‖Du−‖(Rn)

=
∫ +∞

0

p+(t) dt +
∫ +∞

0

p−(s) ds =
∫ M

0

[
p+(t(r))
μ+(t(r))

+
p−(s(r))
μ−(s(r))

]
dr, (2.4)

where we performed the change of variables t = t(ξ), s = s(η) defined above. Finally, combining (2.3) and (2.4)
we have

Fq(u) ≥
∫M

0

[ p+(t(r))
μ+(t(r)) + p−(s(r))

μ−(s(r))

]
dr∫M

0

[
μ+(t(r))1−q + μ−(s(r))1−q

] 1
q dr

≥ inf
0<r<M

p+(t(r))
μ+(t(r)) + p−(s(r))

μ−(s(r))[
μ+(t(r))1−q + μ−(s(r))1−q

] 1
q

≥ inf
(E1,E2)∈Φ(Ω)

Q(E1, E2) = �q(Ω),

and this concludes the proof.
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Remark 2.1. The Proof of Theorem 1.1 also implies the following property which is similar to the one holding
for the standard Cheeger problem (see [19], Rem. 3.2). Assume that for some function u we have Fq(u) = Kq(Ω).
Then for almost all ess inf u < s < 0 < t < ess supu such that the truncated function v = (u ∧ t) ∨ s has zero
mean value it holds

Q(E1, E2) = Kq(Ω) with E1 = {u > t} and E2 = {u < s},
which to a certain extent corresponds to the idea that almost all super level sets of u+ and u− have to be
“optimal”.

3. Proof of Theorem 1.2

We split the proof into two subsections. In the first one we prove that the minimum of Kq(Ω) among bounded,
open sets of given measure is attained at the union of two disjoint balls. In the second subsection we characterize
the minimizers.

3.1. An isoperimetric inequality for Kq(Ω)

We denote by B(t) the family of sets with measure t which are union of two disjoint balls.

Proposition 3.1. Let Ω be a bounded, open set of R
n, with Ω �∈ B(|Ω|) and 1 ≤ q < 1∗. There exists a set

Ω̃ = B̃1 ∪ B̃2 ∈ B(|Ω|), such that

Kq(Ω) > Kq

(
Ω̃
)

= min
A∈B(|Ω|)

Kq(A). (3.1)

Moreover
Kq

(
Ω̃
)

= Q(B̃1, B̃2). (3.2)

Proof. Let u be a minimizer for (1.3). By (1.5) there exists a couple (E1, E2) ∈ Φ(Ω) such that

Kq(Ω) = Q(E1, E2).

The standard isoperimetric inequality implies that

Kq(Ω) = Q(E1, E2) ≥ Q
(
E#

1 , E#
2

)
≥ min

(F1,F2)∈Φ(A)
Q(F1, F2) = Kq(A), (3.3)

where E#
1 , E#

2 are two disjoint balls such that |E#
i | = |Ei|, i = 1, 2, A = B1 ∪ B2 ∈ B(|Ω|), and E#

i ⊆ Bi, for
i = 1, 2. Then there exists Ω̃ = B̃1 ∪ B̃2 ∈ B(|Ω|) such that

Kq(Ω) ≥ Kq(A) ≥ min
A∈B(|Ω|)

Kq(A) = Kq(Ω̃). (3.4)

Clearly, the first inequality in (3.3) holds as an equality if and only if E1, E2 are balls. In this case, since
Ω �∈ B(|Ω|), then |E1| + |E2| < |Ω|. As matter of fact, it is easy to see that, being q < 1∗, Q(E1, E2) is strictly
decreasing with respect to homotheties of E1 ∪ E2. This implies that the second inequality in (3.4) is strict,
and the proof of (3.1) is completed.

Now suppose that Kq(Ω̃) = Q(Ẽ1, Ẽ2). The couple (Ẽ1, Ẽ2) ∈ Φ(Ω̃) is such that each Ẽi is contained just in

one ball. Indeed, if for example Ẽ1 ∩ B̃1 = Ẽa
1 , Ẽ1 ∩ B̃2 = Ẽb

1, both with positive measure, and P (Ẽa
1 )

|Ẽa
1 |

≤ P (Ẽb
1)

|Ẽb
1|

,
we have that

P
(
Ẽ1

)
|Ẽ1|

=
P
(
Ẽa

1

)
+ P

(
Ẽb

1

)
|Ẽa

1 | + |Ẽb
1|

≥
P
(
Ẽa

1

)
|Ẽa

1 |
,
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which implies, being |Ẽ1| > max{|Ẽa
1 |, |Ẽb

1|}, that Q(Ẽ1, Ẽ2) > Q(Ẽa
1 , Ẽ2) contradicting the minimality of

(Ẽ1, Ẽ2). Now suppose that Ẽ1∪Ẽ2 �= B̃1∪B̃2. Then |Ẽ1|+ |Ẽ2| < |Ω|. Moreover, by the standard isoperimetric
inequality,

Q
(
Ẽ1, Ẽ2

)
≥ Q

(
Ẽ#

1 , Ẽ#
2

)
.

Finally, being Q strictly monotone with respect to the homotheties, there exist two balls F1 and F2 such that
|F1| + |F2| = |Ω| and

Q
(
Ẽ#

1 , Ẽ#
2

)
> Q(F1, F2),

contradicting the minimality of Ω̃ = B̃1 ∪ B̃2. �

3.2. Properties of the minimizers and symmetry breaking

Since the quantity Kq(Ω)|Ω| 1q −n−1
n is invariant under dilations, we are free to arbitrarily fix the measure of

Ω. Indeed the shape of minimizers of Kq(Ω) under measure constraint is not affected by the measure chosen.
For simplicity we will restrict our analysis to the case |Ω| = ωn (the measure of the unit ball in R

n). Our
minimization problem is

min
|Ω|=ωn

Kq(Ω)

and Proposition 3.1 implies that we can reduce ourselves to the study of a one-dimensional minimum problem.
More precisely we have to minimize

Q(B1, B2) = nω
1− 1

q
n

r−1
1 + r−1

2(
r
−n(q−1)
1 + r

−n(q−1)
2

) 1
q

,

over all possible pairs of balls B1 and B2 of radii r1 and r2 respectively, under the restriction rn
1 + rn

2 = 1.
We introduce the new variable

x =
1
2

log
(

rn
1

1 − rn
1

)
·

The value x = 0 corresponds to r1 = r2 and x is a monotone increasing function of r1 from −∞ to +∞, as r1

goes from 0 to 1. We have,

min
|Ω|=ωn

Kq(Ω) = n2
1
n ω

1− 1
q

n min
x∈R

fn(x, q),

where

fn(x, q) =
[
cosh x

] 1
n + 1

q−1[
cosh

(x

n

) ][
cosh(x(q − 1))

]− 1
q

. (3.5)

For every q ∈ [1, 1∗[, fn (0, q) = 1 and obviously fn(x, q) is symmetric about x = 0. Therefore we also have
that ∂xfn vanishes at x = 0, in fact two balls with equal radii are always a stationary point of the functional
Q(B1, B2). Moreover, fn(x, q) diverges for |x| → ∞. The behaviour of fn(·, q) is very sensitive to the values of n
and q as shown in Figures 1 and 2.

All the statements in Theorem 1.2 are consequences of several claims we are going to prove.

Claim 3.2. For any given n ≥ 2 and any given q ∈ [1, 1∗[, the function fn(·, q) has at most two local minimum
points in [0,∞[, and not more than one in ]0,∞[.
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f2(x, q)

1

x

q < 7
4

q > 7
4

Figure 1. Varying the value of q changes the shape of the function f2(x, q). For q ≤ 7
4 there

is only one stationary (global minimum) point in the origin, while for q > 7
4 another stationary

point appears, the origin becomes a local maximum point and the minimum point shifts on
positive values.

x

(a)

(b)

f3(x, q)

1

(c)

(d)

Figure 2. In the picture, we present four different behaviors of the function f3(x, q), corre-
sponding to increasing values of q, from (a) to (d). In (a) there is only one stationary point: a
global minimum point at 0. In (b) there are three stationary points and the global minimum
point is at 0. In (c) there are three stationary points and the origin is still a local minimum
point yet not a global one. In (d) there are two stationary points and the origin becomes a local
maximum point. The picture is about the same for all n ≥ 3.

Proof of Claim 3.2. Differentiating fn(x, q) with respect to x, we have

∂x fn(x, q) = 2cn(x, q)
{(

1
n

+
1
q
− 1
)

cosh
(x

n

)
sinh x cosh (x(q − 1))

+
1
n

coshx sinh
(x

n

)
cosh (x(q − 1))

−
(

1 − 1
q

)
coshx cosh

(x

n

)
sinh (x(q − 1))

}
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where

cn(x, q) =
1
2

[
cosh(x(q − 1))

]− 1
q −1[

coshx
] 1

n + 1
q −2

> 0.

By using the well-known identities for sinh(a ± b) and cosh(a ± b), we get

∂x fn(x, q) = cn(x, q)
{(

1
n

+
1
q
− 1
)

sinh
[
x

(
q +

1
n

)]
+

1
n

sinh
[
x

(
2 − q +

1
n

)]

−
(

1 − 1
q

)
sinh

[
x

(
q − 1

n

)]}
= cn(x, q)An(x, q),

where An(x, q) is the function in the braces. Since An(0, q) = 0, the claim is proved if we show that An(·, q) has
no more than two zeros in ]0, +∞[. This is an immediate consequence of the following.

Lemma 3.3. Any nontrivial linear combination of three hyperbolic sinus functions has at most two positive
zeros.

Proof. Let A(x) = a sinh(αx) + b sinh(βx) + c sinh(γx), with a, b and c nonzero real numbers, and α, β, γ ≥ 0,
such that A �≡ 0. Clearly, if a, b and c have the same sign, the claim of the lemma is obvious. Hence, without
loss of generality we can consider linear combinations as follows:

A(x) = a sinh
(√

1 + ε x
)

+ b sinh
(√

1 + δ x
)
− c sinhx

= X(x) + Y (x) − Z(x),

with a, b, c > 0, ε > −1, ε �= 0 and δ ≥ −1. Obviously, A(0) = 0. Moreover,

A′′(x) = A(x) + εX(x) + δY (x). (3.6)

Suppose that there exists a nonpositive local minimum point x0 > 0 of A. Then,

A(x0) ≤ 0, A′′(x0) ≥ 0

and, together with (3.6),
εX(x0) + δY (x0) ≥ 0.

Moreover, the function εX + δY vanishes at 0, and it cannot have a nonnegative maximum in ]0, +∞[ being,
for any x > 0,

[εX(x) + δY (x)]′′ = ε(1 + ε)X(x) + δ(1 + δ)Y (x) > εX(x) + δY (x).

Hence,
εX(x) + δY (x) > 0 for any x > x0. (3.7)

Finally, (3.6) and (3.7) imply that
A′′(x) > A(x) for any x > x0,

and then the function A(x) admits at most one zero in ]x0, +∞[. This implies also that the function A can
vanish at most once in ]0, x0[, and the claim follows. �

Claim 3.4. For any given n ≥ 2, and any x ∈]0,∞[, the functions fn(x, ·) and ∂x log fn(x, ·) are decreasing in
[1, 1∗[.
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Proof of Claim 3.4. Let us compute

∂q log(fn(x, q)) =
∂

∂q

((
1
q

+
1
n
− 1
)

log(coshx) − 1
q

log(cosh(x(q − 1))
)

= − 1
q2

[
log(cosh x) − log(cosh(x(q − 1)))

]− 1
q
x tanh(x(q − 1)) < 0.

For any fixed q, such derivative is decreasing with respect to x in [0, +∞[. Indeed, for x > 0 we have

∂q x log(fn(x, q)) = − 1
q2

tanh x − 1
q2

tanh(x(q − 1)) − x

(
1 − 1

q

)
[cosh(x(q − 1))]−2

< 0,

which completes the proof.

Remark 3.5. From the monotonicity of ∂x log fn(x, q) with respect to q it follows that, if log fn(x, q̄) is in-
creasing with respect to x in [0, +∞[ for some q̄ ∈ [1, 1∗[, then the same holds true for all q ∈ [1, q̄[. Obviously
this also means that fn(x, q) is increasing with respect to x for all q ∈ [1, q̄[ as soon as it is increasing with
respect to x when q = q̄.

Moreover, since for all 0 < x < x0 and q ∈ [1, 1∗[ the trivial inequality holds

∂q (log fn(x, q) − log fn(x0, q)) = −
∫ x0

x

∂sq log fn(s, q) ds > 0,

we also deduce the following.

Remark 3.6. From Claim 3.4, if x0 > 0 is a global minimum point for the function fn(·, q), for certain
q = q0 ∈ [1, 1∗[, then for all q ∈]q0, 1∗[ global minimum points cannot exist in [0, x0[. Roughly speaking positive
global minimum points of fn(·, q) move left to the right as q increases.

Claim 3.7. If 1 ≤ q ≤ 7
4 , the function f2(·, q) is increasing in [0,∞[.

Proof of Claim 3.7. In view of Claims 3.2 and 3.4 (Rem. 3.5) it is enough to observe that the function A2(·, 7
4 )

is positive in ]0,∞[. Indeed

A2

(
x,

7
4

)
=

1
14

{
sinh

(
9
4
x

)
+ 7 sinh

(
3
4
x

)
− 6 sinh

(
5
4
x

)}

=
2
7

sinh3

(
1
4
x

){
6 coshx + 2 cosh

(
3
2
x

)
− 1
}

> 2 sinh3

(
1
4
x

)

for all x > 0.

Claim 3.8. If 7
4 < q < 2, the function f2(·, q) has a unique local (and global) minimum point x̄(q) in [0,∞[

which is not x = 0.

Proof of Claim 3.8. We observe that

∂xxfn(0, q) = cn(0, q) ∂xAn(0, q) =
(
−q + 1 +

1
n

+
1
n2

)
, (3.8)

hence ∂xxf2(0, q) < 0 if q > 7
4 . Hence, being ∂xf2(0, q) = 0, then x = 0 is a local maximum point for 7

4 < q < 1∗.
From the coercivity of f2, a positive minimum point exists and, by Claim 3.2, it is unique.

Remark 3.9. Denoting by x̄(q) the unique minimum point of f2(·, q), x̄(q) : [1, 2[→ [0,∞[ is the continuous
nondecreasing function represented in Figure 3.



CONSTRAINED CHEEGER TYPE INEQUALITY 369

1, 5 q̃ = 1, 75 2 = 1∗

x

q

x̄(q)

Figure 3. The graph, for n = 2, of x̄(q) (defined in Claim 3.8). The distance from the origin
of the global minimum point is nondecreasing and continuous with respect to q.

Claim 3.10. For any n ≥ 3 and 1 ≤ q ≤ 1 + 1
n , the function fn(·, q) is increasing in [0,∞[.

Proof of Claim 3.10. In view of Claim 3.4 (Rem. 3.5) it is enough to prove the monotonicity in [0,∞[ just for
q = 1 + 1

n . In fact we have that

fn

(
x, 1 + 1

n

)
=
[
coshx

] 1
n2+n

[
cosh

(x

n

)] 1
n+1

.

Claim 3.11. For any n ≥ 3 and 1+ 1
n + 1

n2 ≤ q < 1∗, the function fn(·, q) has a local maximum point at 0 and
a unique local (and global) minimum point in ]0,∞[.

Proof of Claim 3.11. In view of Claim 3.2 and the coercivity of fn with respect to x, if x = 0 is a local maximum
point, then fn has a unique local (and global) minimum point in ]0, +∞[. In view of Claim 3.4 (Rem. 3.5)
(and the fact that fn(0, q) = 1 for any admissible q), it is enough to prove that 0 is a local maximum point for
q = 1+ 1

n + 1
n2 . Observe also that for all 1+ 1

n + 1
n2 < q < 1∗ the statement of Claim 3.11 is a trivial consequence

of (3.8). Let us therefore consider q = q̄ = 1 + 1
n + 1

n2 . We have that

∂x fn(x, q̄) = cn(x, q̄)An(x, q̄),

with

An(x, q̄) =
1

n (n2 + n + 1)

{
sinh

(
(n + 1)2

n2
x

)
+
(
n2 + n + 1

)
sinh

(
n2 − 1

n2
x

)

−n(n + 1) sinh
(

n2 + 1
n2

x

)}
.

A straightforward computation shows that

An(0, q̄) = ∂xAn(0, q̄) = ∂xxAn(0, q̄) = 0,

and

∂xxxAn(0, q̄) = 4
−n5 + 3n3 + 5n2 + 4n + 1

n6 (n2 + n + 1)
·

For n = m + 3, the polynomial in the numerator becomes

−m5 − 15m4 − 87m3 − 238m2 − 290m− 104,
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q̄ 3
2 = 1∗

x̄(q)

q

x

q̃

Figure 4. The graph, for n = 3, of x̄(q) (defined in Claim 3.12). The distance from the origin
of the global minimum point is nondecreasing and discontinuous at q = q̃. Here q̄ = 13

9 . The
behavior is similar for n > 3 with q̄ = 1 + 1

n + 1
n2 .

which is negative if m = n − 3 ≥ 0. Then, in this case we have

∂fn

∂x
(0, q̄) =

∂2fn

∂x2
(0, q̄) =

∂3fn

∂x3
(0, q̄) = 0, and

∂4fn

∂x4
(0, q̄) < 0,

which proves that x = 0 is a local maximum point for fn(x, q̄).

Claim 3.12. For any n ≥ 3, there exists q̃ ∈ ]1 + 1
n , 1 + 1

n + 1
n2

[
such that the function fn(·, q̃) has two global

minimum points in [0,∞[, one of which at 0. As a consequence the function fn(·, q) has a unique global minimum
point x̄(q) in [0,∞[ for all q ∈ [1, 1∗[−{q̃}. In particular x̄(q) = 0 for q ∈ [1, q̃[ and limq→q̃+ x̄(q) > 0 (see Fig. 4).

Proof of Claim 3.12. We use a continuity argument by taking advantage of the smoothness of fn in [0,∞[×[1, 1∗[.
All we have to prove is the existence of a value q̃ such that fn(·, q̃) has exactly two global minimum points.
Claim 3.2 and the monotonicity properties stated in Claim 3.4 (Rem. 3.5) immediately imply the rest of the
statement.

For any given n ≥ 3, let q̃ be the supremum of all q ∈ [1, 1∗[ such that the function fn(·, q) achieves a global
minimum at x = 0. In view of Claim 3.10 and Claim 3.11 we know that q̃ ∈ ]1 + 1

n , 1 + 1
n + 1

n2

[
. Since from (3.8)

we have ∂xxfn(0, q̃) > 0, then by definition of q̃ there exists x̃ > 0 such that fn(x̃, q̃) = fn(0, q̃). Both x = 0
and x = x̃ are global minimum points for fn(·, q̃) in [0,∞[ and the claim is proved. With Claim 3.12 the proof
of Theorem 1.2 is complete.

Concerning Remark 1.3, the fact that the radius of the largest ball in the minimizers increases with q is
a consequence of Claim 3.4 (see Rem. 3.6). Moreover the minimizers degenerate to one ball as q → 1∗ since
the minimum point of the function fn(x, q) diverges as q → 1∗. This is a consequence of the fact that fn(x, q)
converges as q → 1∗ (monotonically with respect to q) to

f∗
n(x) =

[
cosh

(x

n

) ][
cosh

(
x

n − 1

)]−1+ 1
n

,

and f∗
n(x) is in fact decreasing in [0,∞[ in view of

∂xf∗
n(x) = − 1

n

[
sinh

(
x

n2 − n

)][
cosh

(
x

n − 1

)]−2+ 1
n

.
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