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Abstract: Solar drying and convective oven drying of cherry tomatoes (Solanum lycopersicum) were
compared. The changes in the chemical parameters of tomatoes and principal drying parameters
were recorded during the drying process. Drying curves were fitted to several mathematical models,
and the effects of air temperature during drying were evaluated by multiple regression analyses,
comparing to previously reported models. Models for drying conditions indicated a final water
content of 30% (semidry products) and 15% (dry products) was achieved, comparing sun-drying and
convective oven drying at three different temperatures. After 26-28 h of sun drying, the tomato tissue
had reached a moisture content of 15%. However, less drying time, about 10-11 h, was needed when
starting with an initial moisture content of 92%. The tomato tissue had high ORAC and polyphenol
content values after convective oven drying at 60 °C. The dried tomato samples had a satisfactory
taste, color and antioxidant values.

Keywords: antioxidant activity; drying process; tomato

1. Introduction

Drying vegetables is a very ancient practice for food preservation, and it is still in use
nowadays. Sliced tomatoes (Solanum lycopersicum), with salt added and then dried, have
been an important element of the culinary tradition in the south of Italy. Tomato drying
is still carried out using a sun-drying process in Sicily, with an empiric method. The final
product has a high but not a homogeneous quality.

Large-scale production has limits to the use of open-air natural sun drying. Among
these are the lack of ability to control the drying process properly, weather uncertainties,
high-cost of labor, large area requirements, and insect infestation [1]. Giovannelli and
Paradiso [2] investigated tomato drying to assess the desorption isotherm and to analyze
several mathematical models to interpolate the experimental data optimally. The results
showed that the mathematical models of Oswin and Guggenheim-Anderson-de Boer
(GAB) had an average relative error (E%) lower than other models considered. This
result was supported by [2,3], where it was highlighted that the GAB model was the best
interpolating model fitting all experimental points.

In order to find the best drying conditions, several authors have studied the effects
of dipping tomato tissue in calcium chloride [4,5], sodium chloride (NaCl) [6], sodium
chloride and sucrose [7] and potassium carbonate solution [8]. However, Doymaz [9]
analyzed the effect of dipping with alkaline ethyl oleate before drying at temperatures
of 55, 60, 65 and 70 °C. The data were analyzed using different mathematical models
to assess the kinetics of drying, and, according to the author, the Page mathematical
model can be considered the most appropriate [10]. Though the primary objective of food
drying is preservation, depending on the specific technique, the raw material may end
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up a completely different product with significant variation in quality. Drying causes
oxidative damage due to the high temperatures and oxygen levels [2]. Several studies
have investigated tomato antioxidant activity after drying in which it was hypothesized
that the higher bioaccessibility of bioactive compounds, and the release of free phenolic
hydroxyl groups, increased the antioxidant activity [11]. The same effects on antioxidant
compounds were observed in dried onion (Allium cepa) powder, where the increase in
antioxidant activity was associated with the activity of hydrolytic enzymes and enhanced
the radical scavenging activity [12].

Nguyen and Schwartz [13] studied the effects of drying on tomato antioxidant com-
pounds and showed that lycopene and carotenoids were substantially stable to industrial
drying, but significant oxidative damage occurred during storage of the dried tomatoes [2].
Lycopene stability depends on both its heat resistance and the formation of Maillard re-
action products that could act as pro- or antioxidants [14]. These compounds have been
shown to act as antioxidants in dried foodstuffs, individually or in combination with
naturally occurring antioxidants, since synergistic effects between antioxidants have been
investigated [15,16]. Mrkic et al. [12] showed that high-temperature and short-duration
drying processes maximized the antioxidant activity of broccoli by increasing the release
of compounds from the matrix, hydrolytic phenomena which took place during drying,
and polyphenol oxidation resulting in oligomers with higher antioxidant activity than the
native compounds. Nevertheless, in this study, the evaluation of hydroxymethylfurfural
(HMF) content did not support the hypothesis of a contribution of Maillard reduction
products to antioxidant activity. Total lycopene content was directly connected to the
drying temperature because the higher temperatures are, the more lycopene was extracted
from the matrix [16,17].

Shi et al. [18] investigated lycopene availability during the drying process, highlighting
an isomerization of the lycopene from the most active form, “trans”, to the least active form,
“cis”. According to the author, this conversion, which stands at a value of 16%, involves
a decrease of lycopene bioactivity in dried products [19,20].

Toor and Savage [16] and Toor et al. [17] carried out drying at 42 °C for 18 h, monitoring
lycopene, ascorbic acid and total polyphenol content. The lycopene content was comparable
to the content of the fresh product. The total lycopene content was directly related to the
drying temperature. Ascorbic acid content was lower than in the fresh product because of
its thermosensitivity [2,19,21]. The total polyphenol content was reduced due to polyphenol
oxidase (PPO) activity that, with high probability, was not inactivated by the drying
temperature (42 °C). Spagna et al. [22] monitored the PPO activity in fresh tomatoes.
The PPO activity fell significantly above 50 °C, showing an optimum at 40 °C with 55%
of activity at cold storage temperatures (4 °C). The enzyme is sensitive to the presence
of high concentrations of NaCl. The results are supported by the evidence reported by
Dewanto [19] in which the variation of the total polyphenol content, after heat treatment at
80 °C for 30 min, was negligible.

Drying also has effects on amino acid content. Significant losses in amino acids occur
during tomato processing, and the extent of degradation is correlated to the severity of
heat and oxidative stress [2,23]. Total phenolic content increased due to drying, and the
increase was proportional to drying severity. Air drying did not cause significant changes
in rutin concentration [2]. The market offers, in addition to dried products, even semidry
products, to limit the loss of the nutritional characteristics that occur in the fully dried
product. The semidry product is a special category of dehydrated products that have a
residual water content of about 30%; for this reason, nutritional product characteristics
are better preserved. In recent years, there has been an increase in research concerning the
new hybrid drying technologies to improve food quality, as heat pump drying, fluidized
bed drying, infrared drying, microwave and radio-frequency drying, freeze-drying, spray
drying and refractance window drying minimize product degradation and yet produce a
product with the desired water content [10,24].
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The aim of this study was a comparison of drying processes, convective oven drying
and sun-drying of cherry tomatoes. In the EU, cherry tomatoes are cultivated and processed
as dried products which can reduce waste and increase sustainability. The following tests
were carried out in a pilot plant, using different temperatures and open-air natural sun
drying, monitoring some of the basic chemical parameters, the trends of the main nutrients
in tomatoes during the drying process, and evaluating the sensorial characteristics of the
products. The goal was to obtain semidry and dry products with a convective oven dryer
with comparable nutritional and sensorial characteristics to those sun-dried.

2. Materials and Methods
2.1. Raw Material

A total of 50 kg of tomato fruit (Lycopersicon esculentum L. cv. Cherry) was purchased
from a local market. Tomatoes with uniform size were cut into two parts, and then salt
(1 g/50 g fresh weight) was added before the treatment.

2.2. Chemicals

Ascorbic acid, 3,4,5-trihydroxybenzoic acid, fluorescein azodiisobutyramidine dihy-
drochloride and Trolox were purchased from Sigma Chemical Co. (St. Louis, MO, USA).
All other chemicals were of analytical grade, and the solvents used for chromatography.

2.3. Drying Process, Water Content and Water Activity (ay)

Tomato drying was performed using a pilot plant dryer (Societa Italiana Essiccatoi,
Milan, Italy) at three air temperatures, 50, 60, and 70 °C, ata 1.5m s~1 flow rate, or solar
drying treatment, in order to obtain a final product with a residual water content of 15%
for dry product and 30% for semidry product. The speed of drying, therefore, was directly
related to the treatment temperature; higher temperatures lowered drying times. The
drying rate was assessed as the ratio of the initial and final water content. The water in
fresh and dried samples was measured by thermobalance (Gibertini Eurotherm, Novate
Milanese, Italy). During the drying test, the samples were collected every 30 min. For
each sample, the M value (absolute humidity), aw and the moisture sorption isotherms
were determined using a Aqualab vapor sorption analyzer (Pullman, WA, USA). Data
interpolation were evaluated by the average error value (E%) defined by Equation (1):

100 &, |Xspe — Xprev|
E% = —
Nl e

i=1

M

Xspe

where N represents the number of interpolated points, Xspe the test point and Xprey the
point obtained using the mathematical model. Then, the Arrhenius law was applied to
determine the temperature dependence of a,, by Equation (2):

AHa

Inay, =Inaygg — RT

@)
where ayy is the water activity, R is the gas constant, and T is the temperature. Through the
Arrhenius law, was traced the value of desorption energy (AH,). It was determined that
AH, was a function of absolute humidity (M), M value decreasing as AH, value increased.

It calculated drying kinetics at different experimental conditions to a minimum value
of 15% of residual water content. All the experiments were performed in triplicate.

2.4. pH, Total Acidity and Total Soluble Solids

Dried samples were diluted with distilled water (1:10 w/v) and homogenized with
an Ultra-Turrax T25 homogenizer (Janke and Kunkel, Staufen, Germany) for 60 s; then
the mixture was filtered with Whatman filter paper Grade 589. Titratable acidity (TA),
total soluble solids (TSS), and pH were determined according to AOAC (1995) [25]. pH
was measured using a HI 9025 pH meter equipped with a spear electrode FC 200 (Hanna
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Instruments). TA was determined using 0.1 N sodium hydroxide and phenolphthalein
as an indicator and was expressed as% malic acid, while TSS was measured with a hand
refractometer (Mettler Toledo, Schwerzenbach, Switzerland) and expressed as °Brix. All
the analyses were made in triplicate.

2.5. Ascorbic Acid

Briefly, 5 mL of filtered juice obtained as above was poured into a flask and made up to
50 mL with 3% (w/v) metaphosphoric acid solution. An aliquot of the solution was filtered
through a 0.45 um filter, and 20 pL of this aliquot was injected into the HPLC. Ascorbic acid
was determined by liquid chromatography using an SCL-10A, Shimadzu (Kyoto, Japan)
equipped with two pumps (LC-10A), a control system (SCL-10A), a diode array detector
(SPD-M10A), a C18 Alltima ODS Hypersil column 250 x 4.6 mm LD. (Milan, Italy) with
a similarly packed pre-column. Tomato fruit samples of known weight were homogenized
using Ultra Turrax. The homogenate was centrifuged for 5 min at 16,000x g at 4 °C, and
the supernatant was filtered under vacuum. The mobile phase was 0.002 M phosphoric
acid, and the UV detector wavelength was 260 nm [26]. The equation of the calibration
curves obtained with the ascorbic acid standard was y = 661,852x with R? = 0.9961. All the
analyses were made in triplicate and are reported as mg/kg dry matter (DM).

2.6. Determination of Carotenoid Contents

Three aliquots of dried tomato samples (5 g each) obtained from 10 fruits previously
ground to a fine powder under liquid nitrogen were mixed for 20 min with 50 mL of
extracting solvent (hexane/acetone/ethanol, 50:25:25, v/v). The organic phase containing
carotenoids was recovered and then used for analyses after suitable dilution with hexane
(1:10 v/v). The total carotenoid determination was carried out on an aliquot of the hexane
extract by measuring absorbance at 450 nm k on a Varian Cary 1E spectrophotometer
(Mulgrave, VIC, Australia). Total carotenoids were calculated according to the method of
Ritter and Purcell, using an extinction coefficient of x-carotene of ¢ = 2505. The analyses
were performed in triplicate for each sample.

2.7. Total Polyphenols Content

Total polyphenols analysis was carried out according to Singleton and Rossi [27].
Briefly, 1 mL of the diluted and filtered sample obtained as above with distilled water
was mixed with 1 mL Folin-Ciocalteu reagent (FC), and after 3 min, 2.5 mL of sodium
carbonate (Na,CO3) was added. The solution was brought to a final volume of 25 mL and
incubated in the dark for 1 h. The absorbance was spectrophotometrically measured at
725 nm (PerkinElmer lambda 25 UV-vis). The equation of the calibration curves obtained
with the gallic acid (3,4,5-trihydroxybenzoic acid) standard was y = 0.102x with R? = 0.9985.
The phenolic content was expressed as mg of gallic acid equivalents (GAE) per 100 g of dry
matter. All the analyses were made in triplicate.

2.8. Polyphenol Oxidase (PPO) Activity

Polyphenol oxidase (PPO) was extracted from 20 g of dried sample in 100 mL of
0.1 M phosphate buffer pH 7.0, homogenized with an UltraTurrax T25 for 2 min, and
then centrifugated at 12,000 x g for 20 min at 4 °C. The sample was vacuum filtered with
Whatman filter paper 589, and the crude extract was purified using tangential flow filtration
(Merck Millipore, Fischer Scientific, Rodano (Mi), Italy). The activity of the filtered solution
was measured at pH 4.5 using catechol as the substrate [28]. The assay was conducted
according to the method of Todaro et al. [29]. All the assays were made in triplicate,
and enzymatic activity was expressed as enzymatic units (mmol min~—! g~1) per gram of
dry matter.
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2.9. Antioxidant Activity

Tomato samples from different drying conditions were homogenized using a blender
(Ultra Turrax T25 Janke e Kunkel, Staufen, Germany). The homogenate was centrifuged for
30 min at 10,000 rpm and 4 °C. The supernatant was separated from the pellet and finally
filtered under vacuum. The sample was diluted with phosphate buffer (1:25-100, v/v) at
pH 7.4 prior to analysis. Antioxidant activity was determined by the ORAC assay that
measures the scavenging of free radicals generated in the reaction mixture. The method
was performed as described by Cao et al. [30], with some modifications [31,32]. The mea-
surements were carried out on a Wallac 1420 Victor III 96-well plate reader (EG and Wallac,
Turku, Finland) with a fluorescence filter (excitation 485 nm, emission 535 nm). Fluorescein
(116 nM) was the target molecule for free radical attack from «,x-azodiisobutyramidine
dihydrochloride (AAPH, 153 mM) as the peroxyl radical generator. The reaction was
conducted at 37 °C and pH 7.0 with Trolox (1 uM) as the control standard and phosphate
buffer as the blank. All solutions were freshly prepared prior to analysis, and results were
reported as uM Trolox equivalents/10 g of dry matter (DM). All the analyses were made
in triplicate.

2.10. Sensory Evaluation

The determination of the sensory profile [33] was conducted by twenty-five judges
recruited from students of the Di3A Department, Catania University. Candidates were
submitted to preliminary tests to determine their sensory performance on basic tastes.
A sensory profile was constructed using a selected panel of ten judges (ISO 2003a) trained
over six sessions, who created, based on a frequency of citation of 70%, a list of eighteen
descriptors: 3 visual-based (color, shine, degree of dryness), 4 olfactory-based (salsa,
tomato, baked, or off-odor), 3 taste (salty, bitter, sweet), 3 tactile in the mouth (juiciness,
cohesiveness, adhesiveness), 4 flavor-based (tomato sauce flavor, tomato flavor, cooked
flavor, off-flavor) and overall assessment, body (Table 1). The different descriptors were
quantified using a nine-point intensity scale.

Table 1. Descriptors found for the sensory evaluation.

Descriptors

Color
Visuals Shine
Dryness degree

Salsa smell
Fresh tomato
Baked
Off-odor

Salty
Taste Bitter

Sweet

Olfactory

Juiciness
Tactile in the mouth Cohesiveness
Adhesiveness
Tomato sauce
Tomato
Cooked
Off flavor

Overall assessment Body

Flavor

The working plan provided for the evaluation of samples in triplicate, which were
presented to each judge in plastic dishes signed with a three-digit code. For all samples,
the order of presentation was randomized for judging and for sitting. The evaluations
were conducted in the laboratory of sensory analysis of Di3A of the University of Catania
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using FIZZ software for acquisition and processing of sensory data (FIZZ Biosystemes ver.
2.00 M, Couternon, France). A discontinuous scale from 1 (absence of the descriptor) to 9
(maximum intensity of the descriptor) was used for data [33].

2.11. Statistical Analysis

After extraction, all samples were fully dried and reweighed in order to report data on
a DM basis. One-way analysis of variance followed by Tukey’s post hoc test at & = 0.05 was
performed using Matlab R2015a (MathWorks, Inc., Nutick, MA, USA). Several statistical
models were applied to interpolate data with errors at the different temperatures.

3. Results and Discussion
3.1. Kinetics of Drying and Desorption Isotherms

Sun-drying was slower than the convection oven method, likely due to the atmo-
spheric temperature being lower than that of the dryer. The speed of drying, therefore,

is directly related to the treatment temperature; higher temperatures will lower drying
times (Figure 1).

100%

~ 75% -
-
E
2
5 50% -
«
T
2
<
® 25% -
0% - - T - - - T
0 200 400 600 800 1000 1200 1400
time (min)

Figure 1. Kinetics of drying at different experimental conditions.

Figure 2 shows the evolution of absolute humidity during the process of drying at 50,
60 and 70 °C. The experimental data were interpolated using a polynomial equation of
second-order. During the drying process, the a,, values were used to trace the desorption
isotherms. This operation was carried out only for dried samples with the artificial method
because the sun-dried samples were not subjected to stable temperatures over time, and
it was not possible to draw the isotherms. The samples of known size and weight were
sampled every 30 min. For each sample, the M value (absolute humidity) and a, were
calculated. The experimental data were subjected to secondary mathematical interpolations
in order to trace the desorption isotherms. Several mathematical models shown in Table 2
were used to interpolate data samples. These included the Smith [34], GAB [3,4], Iglesias-
Chirife [35], Chen [36], and Henderson [37] models.

Before applying the models, the isotherms were interpolated following a second degree
polynomial obtaining the equations y = 0.000012x? + 0.000878x + 0.908945, y = 0.000006 x* +
0.000238 x + 0.927427 and y = 0.000001x? + 0.000042x + 0.915347 with R? values of 0.94, 0.98
and 0.96 for 50, 60 and 70 °C, respectively.
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Figure 2. Trend of absolute humidity (M) during the drying process.

Table 2. Models applied to interpolate data with errors at different temperatures.

Error % at Different T

Model Name Equation Formula

50 °C 60 °C 70 °C

Smith M=a+x*In(1—ay) 5.0 47 5.0

Gab & = any® + Py +y 35 47 5.2
Iglesias-Chirife M=ax ﬁ +b 6.7 9.2 11.0
Chen M = =nCinlee) Ing) 11.0 145 23.0

1
Henderson M — [w} N 32.0 7.7 17.6

The Smith and GAB models showed a good capability for interpolating at all three
drying temperatures (Supplementary Figure S1). Among the tested models, Smith and GAB
interpolated the data well, showing lower E values for each of the temperatures. Iglesias
and Chirife [35] models, were suitable at 50 °C and 60 °C. In contrast, the Henderson [37]
model well described the evolution of the isotherm at 60 °C. Peishi and Pei [38] models
were not suitable at any temperature (data not showed). Ankabi et al. [3] reported that
the GAB model was the best for the interpolation of similar data, as also reported by
Giovannelli and Paradiso [2].

3.2. pH, Total Acidity and Brix Values

The pH values were stable during test drying, and, furthermore, there were no
significant differences among experimental conditions. Brix values increased during the
drying process as expected (Supplementary Table S1).

3.3. Ascorbic Acid

Ascorbic acid content decreased in all samples. This reduction was also reported by
Lavelli et al. [39], Gahler et alt [40] and Dewanto et al. [19] and is probably due to the
thermosensitivity of ascorbic acid. Figure 3 shows how the reduction of ascorbic acid was
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more pronounced in the sun-dried product, where the value decreased 49.2% from the
initial value with generally significant differences from samples that were oven-dried at the
three temperatures. This result is probably due to the combination of the processing time
and sunlight exposure. The samples dried in the oven dryer showed a decrease in ascorbic
acid content ranging between 18.5 and 30% for the slowest and highest temperature drying,
respectively, with a few significant differences between samples dried at 50 °C and the
samples dried at 60 or 70 °C.

600 -

550

—e—70°C

500

450

400

350

ascorbic acid content (mg/kg DM)

300

250
100

T T T 1

70 50 30 15
% water content

Figure 3. Ascorbic acid content with different drying conditions. Data points with different letters are statistically different

by Tukey’s test at & = 0.05.

3.4. Carotenoid Contents

The content of carotenoids was influenced by temperature and treatment duration
(Supplementary Table S1). High-temperature treatment (cooking, drying, etc.) increases
the extractability of carotenoids [30]. In our study, the higher content of carotenoids
(0.71 mg/g DM) was in the product dried at 70 °C. In the products dried at 50 °C, the
content was almost stable with a slight reduction at the end of the process (from 0.23 to
0.19 mg/g DM). The same trend was also highlighted by Toor and Savage [16]. The compar-
ison of the sample obtained at 60 °C with the sun-dried sample showed similar carotenoid
content (0.56 and 0.53 mg/g DM, respectively) at all stages with no significant difference.

3.5. Total Polyphenols and PPO Activity

Total polyphenols increased during the drying process in the semidry product (30%
of final water content) obtained at higher temperatures (60 °C and 70 °C) in contrast to
the dry product (Figure 4). This is possibly due to the collapse of the plant matrix [30],
increasing the free polyphenol fraction [16].

In the sun-dried tissue, the polyphenol content increased at 15% water content. At
low temperatures (50 °C), there was a reduction of total polyphenol content compared to
the fresh product. This was probably due to the increase of PPO activity which has an
optimum temperature at 40 °C [22].
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Figure 4. Polyphenol content at drying conditions. Bars are means with standard errors, and those with different letters are

statistically different by Tukey’s test at &« = 0.05.

PPO activity was very high in the products dried at 50 °C (3.35 U/mg protein), and the
lowest value was in the tissue dried at 70 °C (1.03 U/mg protein) (Supplemental Figure S2).
This result may be related, in addition to temperature, even to the content of total polyphe-
nol, which represents the substrate of the enzyme.

3.6. Total Antioxidant Activity

The different drying temperatures greatly influenced the evolution of ORAC values
(Table 3). In the tissue dried at 70 °C, there was an increase in antioxidant activity early
during the drying process. This phenomenon, likely due to an initially higher concentration
of carotenoids and has been widely reported [2,15,19,38].

Table 3. Antioxidant activity (ORAC value expressed as umol TE/100 g DM) from the different
drying treatments.

% H,O 50 °C 60 °C 70 °C Sun
100 3008 £217b* 3008 £ 217 b 3008 + 217 b 3008 £217b
70 1537 £ 101 e 2220+ 154 ¢ 1833 46 d 823 £30¢g
50 772 t4l1¢g 2029 + 204 ¢ 2439 + 133 ¢ 758 £53 ¢
30 1263 £ 46 f 1680 £35d 2171 £ 82 ¢ 978 =+ 11g
15 1707 £47d 1908 +32d 3488 + 146 a 1859 £91d

% Values followed by different letters are statistically different by Tukey’s test at & = 0.05.

3.7. Sensory Evaluation

For the tissues dried at lower temperatures (50 °C and 60 °C) and in the sun-dried
products, there was a reduction of attributes (Figure 5). Analysis of variance indicated
significant differences by drying treatment or temperature on sensory attributes: shine,
dryness degree, cooked smell, salt, bitter, sweet, juiciness, cooked flavor and off-flavor.
They were no significant differences for descriptors like color, tomato sauce smell, tomato
smell, off-odor, cohesiveness, adhesion, tomato sauce flavor and tomato flavor.
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Figure 5. Mean sensory profile of tomato dried at different conditions. The symbol * indicates statistically significant

differences among samples at p < 0.05.

4. Conclusions

The time required to reach a water content of 15% from the initial water content at the
various drying temperatures was between 420 and 1400 min. The Brix values increased
during the drying period, making the samples more palatable from the sensory point
of view, but there was a significant decrease in the ascorbic acid content. The content
of carotenoids, of which the most important is lycopene, had greater extractability in
the dried product at 70 °C compared to the other drying treatment, undoubtedly a very
encouraging aspect from the nutraceutical point of view, in concert with an increase in the
total polyphenol content. The sensory evaluation of the samples revealed a good leveling
of characteristics such as bitterness, sweetness and consistency. The optimal treatment was
determined to be at 60 °C, relative to the chemical parameters and the treatment time. In
particular, the polyphenol and ascorbic acid content was comparable to sundried products,
recognized by consumers as typical. The best drying effect on antioxidant activity was
for the samples dehydrated at 70 °C, but dehydrated at 60 °C was also comparable to
the products dried in the sun. As for the sensory profile, all the treatments tested were
acceptable. The hygienic conditions that can be achieved in a cabinet dryer and the best
nutritional values compared to sun-dried products encourage the use of the dryers.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2311-752
4/7/3/40/s1.

Author Contributions: Conceptualization, D.P.,, A.T.; formal analysis V.A., D.P, S.V,, R P, A.T,; data
curation, R.P.,, A.T.; writing—original draft preparation, A.T.; writing—review and editing, V.A., D.P,,
S.V, R.P, A.T. All authors have read and agree to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Thanks to Spagna for his advice on drying technology, to C.M. Lanza and A.
Mazzaglia for their advice on sensory analyses.

Conflicts of Interest: The authors have no advantage, financial or otherwise, and are not in a conflict
of interest with respect to this publication.


https://www.mdpi.com/2311-7524/7/3/40/s1
https://www.mdpi.com/2311-7524/7/3/40/s1

Horticulturae 2021, 7, 40 11 of 12

References

1.  Togrul, LT,; Pehlivan, D. Mathematical modelling of solar drying of apricots in thin layers. J. Food Eng. 2002, 55, 209-216.
[CrossRef]

2. Giovanelli, G.; Paradiso, A. Stability of dried and intermediate moisture tomato pulp during storage. J. Agric. Food Chem. 2002,
50,7277-7281. [CrossRef]

3. Akanbi, C.T.; Adeyemi, R.S.; Ojo, A. Drying characteristics and sorption isotherm of tomato slices. J. Food Eng. 2006, 73, 157-163.
[CrossRef]

4. Lewicki, PP; Michaluk, E. Drying of tomato pretreated with calcium. Dry Technol. 2004, 22, 1813-1827. [CrossRef]

5. Lewicki, PP; Vu Le, H.; Pomarariska-Lazuka, W. Effect of pre-treatment on convective drying of tomatoes. J. Food Eng. 2002, 54,
141-146. [CrossRef]

6.  Sacilik, K.; Keskin, R.; Elicin, A K. Mathematical modelling of solar tunnel drying of thin layer organic tomato. J. Food Eng. 2006,
73,231-238. [CrossRef]

7. Kross, RK,; Cavalcanti Mata, M.E.R.M.; Duarte, M.E.M; Silveira, V., Jr. Drying kinetic of tomatoes submits to previous osmotic
treatment. In Proceedings of the 14th International Drying Symposium, Sao Paulo, Brazil, 22-25 August 2004; pp. 22-25.

8. Doymaz, I.; Kipcak, A.S. Effect of pre-treatment and air temperature on drying time of cherry tomato. J. Therm. Eng. 2018,
4,1648-1655.

9.  Doymaz, I. Drying kinetics of black grapes treated with different solutions. J. Food Eng. 2006, 76, 212-217. [CrossRef]

10. Doymaz, I. Air-drying characteristics of tomatoes. J. Food Eng. 2007, 78, 1291-1297.

11.  Kaur, R; Kaur, K.; Ahluwalia, P. Effect of drying temperatures and storage on chemical and bioactive attributes of dried tomato
and sweet pepper. LWT-Food Sci. Technol. 2020, 117, 108604. [CrossRef]

12.  Mrkic, V.; Cocci, E.; Rosa, M.D.; Sacchetti, G. Effect of drying conditions on bioactive compounds and antioxidant activity of
broccoli (Brassica oleracea L.). ]. Sci. Food Agric. 2006, 86, 1559-1566. [CrossRef]

13.  Nguyen, M.L.; Schwartz, S.J. Lycopene Chemical and Biological Propertie. Food Technol. 1999, 53, 38-45.

14. Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review of non-enzymatic browning and antioxidant capacity
in processed foods. Trends Food Sci. Technol. 2000, 11, 340-346. [CrossRef]

15.  Nicoli, M.C.; Anese, M.; Parpinel, M. Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci.
Technol. 1999, 10, 94-100. [CrossRef]

16. Toor, RK.; Savage, G.P. Effect of semi-drying on the antioxidant components of tomatoes. Food Chem. 2006, 94, 90-97. [CrossRef]

17.  Toor, RK,; Lister, C.E.; Savage, G.P. Antioxidant activities of New Zealand grown tomatoes. Int. |. Food Sci. Nutr. 2005, 56,
597-605. [CrossRef]

18.  Shi, J.; Maguer, M.; Le Kakuda, Y.; Liptay, A.; Niekamp, F. Lycopene degradation and isomerization in tomato dehydration. Food
Res. Int. 2006, 32, 15-21. [CrossRef]

19. Dewanto, V,; Xianzhong, W.; Adom, K.K,; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing
total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010-3014. [CrossRef]

20. Rao, M.A,; Lee, C.Y,; Katz, J.; Cooley, H.J. A Kinetic Study of the Loss of Vitamin C, Color, and Firmness during Thermal
Processing of Canned Peas. |. Food Sci. 1981, 46, 636—637. [CrossRef]

21. Zanoni, B; Peri, C.; Nani, R.; Lavelli, V. Oxidative heat damage of tomato halves as affected by drying. Food Res. Int. 1998, 31,
395-401. [CrossRef]

22. Spagna, G.; Barbagallo, R.N.; Chisari, M.; Branca, F. Characterization of a tomato polyphenol oxidase and its role in browning
and lycopene content. J. Agric. Food Chem. 2005, 53, 2032-2038. [CrossRef]

23. Hidalgo, A.; Pompei, C. Hydroxymethylfurfural and furosine reaction kinetics in tomato products. J. Agric. Food Chem. 2000, 48,
78-82. [CrossRef]

24. Jeyaprakash, S.; Heffernan, J.E.; Driscoll, R.H.; Frank, D.C. Impact of drying technologies on tomato flavor composition and
sensory quality. LWT-Food Sci. Technol. 2020, 120, 108888. [CrossRef]

25.  AOAC. Official Methods of Analysis of Association of Official Analytical Chemistry, 16th ed.; Association of Official Analytical Chemists:
Washington, DC, USA, 1995.

26. Rapisarda, P; Intelisano, S. Sample preparation for vitamin C analysis of pigmented orange juices. Ital. J. Food Sci. 1996, 8, 251-256.

27. Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. . Enol.
Vitic. 1965, 16, 144-158.

28.  Mazzocco, F; Pifferi, P.G. An improvement of the spectrophotometric method for the determination of tyrosinase catecholase
activity by Besthorn’s hydrazone. Anal. Biochem. 1976, 72, 643-647. [CrossRef]

29. Todaro, A.; Peluso, O.; Catalano, A.E.; Mauromicale, G.; Spagna, G. Polyphenol oxidase activity from three sicilian artichoke
[Cynara cardunculus L. Var. scolymus L. (Fiori)] cultivars: Studies and technological application on minimally processed production.
J. Agric. Food Chem. 2010, 58, 1714-1718. [PubMed]

30. Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med. 1993,
14, 303-311. [CrossRef]

31. Lo Scalzo, R.; Todaro, A.; Rapisarda, P. Methods used to evaluate the peroxyl (ROO.) Radical scavenging capacities of four

common antioxidants. Eur. Food Res. Technol. 2012, 235, 1141-1146. [CrossRef]


http://doi.org/10.1016/S0260-8774(02)00065-1
http://doi.org/10.1021/jf025595r
http://doi.org/10.1016/j.jfoodeng.2005.01.015
http://doi.org/10.1081/DRT-200032777
http://doi.org/10.1016/S0260-8774(01)00199-6
http://doi.org/10.1016/j.jfoodeng.2005.01.025
http://doi.org/10.1016/j.jfoodeng.2005.05.009
http://doi.org/10.1016/j.lwt.2019.108604
http://doi.org/10.1002/jsfa.2554
http://doi.org/10.1016/S0924-2244(01)00014-0
http://doi.org/10.1016/S0924-2244(99)00023-0
http://doi.org/10.1016/j.foodchem.2004.10.054
http://doi.org/10.1080/09637480500490400
http://doi.org/10.1016/S0963-9969(99)00059-9
http://doi.org/10.1021/jf0115589
http://doi.org/10.1111/j.1365-2621.1981.tb04929.x
http://doi.org/10.1016/S0963-9969(98)00102-1
http://doi.org/10.1021/jf040336i
http://doi.org/10.1021/jf990120u
http://doi.org/10.1016/j.lwt.2019.108888
http://doi.org/10.1016/0003-2697(76)90578-9
http://www.ncbi.nlm.nih.gov/pubmed/20073467
http://doi.org/10.1016/0891-5849(93)90027-R
http://doi.org/10.1007/s00217-012-1847-z

Horticulturae 2021, 7, 40 12 of 12

32.

33.
34.
35.

36.
37.
38.
39.

40.

Todaro, A.; Cavallaro, R.; La Malfa, S.; Continella, A.; Gentile, A.; Fischer, U.A.; Carle, R.; Spagna, G. Anthocyanin profile and
antioxidant activity of freshly squeezed pomegranate (Punica granatum L.) Juices of Sicilian and Spanish provenances. Ital. J. Food
Sci. 2016, 28, 464-479.

Pagliarini, E. Valutazione Sensoriale: Aspetti Teorici, Pratici e Metodologici; Hoepli: Milan, Italy, 2002.

Smith, S.E. The sorption of water vapor by high polymers. J. Am. Chem. Soc. 1947, 69, 646—651. [CrossRef]

Iglesias, H.A.; Chirife, ]. An Empirical Equation for Fitting Water Sorption Isotherms of Fruits and Related Products. Can. Inst.
Food Sci. Technol. J. 1978, 11, 12-15. [CrossRef]

Chen, C.S. Water Activity—Concentration Models for Solutions of Sugars, Salts and Acids. ]. Food Sci. 1989, 54, 1318-1321.
[CrossRef]

Henderson, S.M. A basic concept of equilibrium moisture. Agric. Eng. 1952, 33, 29-32.

Peishi, C.; Pei, D.C.T. A mathematical model of drying processes. Int. ]. Heat Mass Transf. 1989, 32, 297-310. [CrossRef]

Lavelli, V,; Hippeli, S.; Peri, C.; Elstner, E.F. Evaluation of radical scavenging activity of fresh and air-dried tomatoes by three
model reactions. J. Agric. Food Chem. 1999, 47, 3826-3831. [CrossRef] [PubMed]

Gabhler, S.; Otto, K.; Bohm, V. Alterations of Vitamin C, Total Phenolics, and Antioxidant Capacity as Affected by Processing
Tomatoes to Different Products. J. Agric. Food Chem. 2003, 51, 7962-7968. [CrossRef] [PubMed]


http://doi.org/10.1021/ja01195a053
http://doi.org/10.1016/S0315-5463(78)73153-6
http://doi.org/10.1111/j.1365-2621.1989.tb05982.x
http://doi.org/10.1016/0017-9310(89)90177-4
http://doi.org/10.1021/jf981372i
http://www.ncbi.nlm.nih.gov/pubmed/10552729
http://doi.org/10.1021/jf034743q
http://www.ncbi.nlm.nih.gov/pubmed/14690380

	Introduction 
	Materials and Methods 
	Raw Material 
	Chemicals 
	Drying Process, Water Content and Water Activity (aw) 
	pH, Total Acidity and Total Soluble Solids 
	Ascorbic Acid 
	Determination of Carotenoid Contents 
	Total Polyphenols Content 
	Polyphenol Oxidase (PPO) Activity 
	Antioxidant Activity 
	Sensory Evaluation 
	Statistical Analysis 

	Results and Discussion 
	Kinetics of Drying and Desorption Isotherms 
	pH, Total Acidity and Brix Values 
	Ascorbic Acid 
	Carotenoid Contents 
	Total Polyphenols and PPO Activity 
	Total Antioxidant Activity 
	Sensory Evaluation 

	Conclusions 
	References

