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Abstract 

Fully automatic tracking of articulated motion in real-time with a monocular RGB camera is a challenging problem 
which is essential for many virtual reality (VR) and human-computer interaction applications. In this paper, we 
present an algorithm for multiple articulated objects tracking based on monocular RGB image sequence. Our 
algorithm can be directly employed in practical applications as it is fully automatic, real-time, and temporally 
stable. It consists of the following stages: dynamic objects counting, objects specific 3D skeletons generation, 
initial 3D poses estimation, and 3D skeleton fitting which fits each 3D skeleton to the corresponding 2D body-
parts locations. In the skeleton fitting stage, the 3D pose of every object is estimated by maximizing an objective 
function that combines a skeleton fitting term with motion and pose priors. To illustrate the importance of our 
algorithm for practical applications, we present competitive results for real-time tracking of multiple humans. Our 
algorithm detects objects that enter or leave the scene, and dynamically generates or deletes their 3D skeletons. 
This makes our monocular RGB method optimal for real-time applications. We show that our algorithm is 
applicable for tracking multiple objects in outdoor scenes, community videos, and low-quality videos captured 
with mobile-phone cameras. 

Keywords: Multi-object motion tracking, Articulated motion capture, Deep learning, Anthropometric data, 3D 
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1. Introduction 

Multiple articulated objects tracking algorithms have applications in many fields such as Virtual reality (VR), 
augmented reality (AR), 3D character animation (i.e. for movies and games), human-computer interaction, and 
sports. Tracking articulated objects from a single RGB image sequence is a challenging computer vision problem. 
Practical applications require real-time inference with low latency which makes this problem even harder. This 
problem is challenging for many other reasons such as self-similar parts, each articulated object has many degrees 
of freedom (DOF), occlusion by other objects, and self-occlusion.  

Recently, significant progress has been achieved in articulated object tracking approaches. The new 
algorithms have the ability to estimate both pose and shape (e.g. mesh) from RGB images [1–4]. Although many 
marker-less algorithms have achieved high accuracy under challenging conditions, most commercial VR systems 
still use marker-based methods that require placing markers on the human body. One of the main reasons is that 
marker-less algorithms require several manual initialization steps (e.g. estimation of objects number, their 3D 
models, and their initial poses) which are cumbersome, require a lot of experience, and time-consuming. Besides, 
most marker-less approaches [5–8] fail to reliably track articulated motion in general scenes with a single RGB 
camera. Therefore, our goal is to design a monocular fully automatic algorithm. Many recent algorithms have 
managed to estimate accurate human motion from monocular depth (i.e. RGB-D) cameras [9–11]. However, the 
RGB-D cameras fail in general outdoor scenes due to sunlight interference. Moreover, these cameras have lower 
resolution, limited range, and higher power consumption. 
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Fig 1. Fully automatic multiple articulated objects tracking pipeline overview: Given 2D joints position, our 
method dynamically detects the change in the number of objects. Then, it generates a specific 3D skeleton for each 
object and estimates its initial 3D pose. The final stage fits each 3D skeleton to the corresponding 2D body-parts 
locations. 

 

Monocular RGB cameras are very common in laptops and smartphones. Thus, developing a fully automatic real-
time multi-object marker-less human motion tracking algorithm that works with monocular cameras is essential 
for many applications. An example of these applications is to track multiple objects (e.g. persons) and to include 
their animation in VR environment using the camera of a VR-headset. Furthermore, this algorithm allows to 
interface PCs, laptops, or smartphones using their cameras (e.g. play games). Developing such an algorithm 
requires 1) automatic estimation of the number of objects in the scene 2) automatic generation of their 3D skeletons 
3) automatic estimation of their initial 3D location 4) dynamic generation or deletion of the 3D skeletons for 
objects entering or leaving the scene 5) real-time multi-object 3D pose estimation. 

Recently, the deep learning-based 2D joints positions (i.e. 2D pose) estimation algorithms achieved very high 
accuracy. In this paper, we utilize the progress in 2D pose estimation to develop a fully automatic multi-object 3D 
motion tracking algorithm that meets all these requirements. An overview of the proposed pipeline is shown in Fig. 
1. 

Although some of the state-of-the-art algorithms achieve better accuracy than our algorithm, they fail under our 
challenging multi-object tracking conditions. Many of these algorithms [1, 3] track only a single object (e.g. [3]). 
Moreover, other monocular algorithms such as [12, 13] are offline and exhibit jitter over time due to per-frame 
estimation. Our algorithm performs automatic object-specific skeleton generation and initial pose localization of 
a varying number of objects in real-time. It can track multiple objects moving in front of cluttered and non-static 
backgrounds with a handheld camera which suffers from high distortion. It also succeeds in case of strong 
illumination changes. It works with any mobile-phone cameras or webcams. It can also track human motion in 
community videos (e.g. YouTube videos); see Fig. 4. The estimated multi-object motions can be used in many 
fields such as Augmented reality, Virtual Reality, motion-driven 3D game character control, and human-computer 
interaction. Furthermore, our algorithm can be optimized for smartphones and driving assistance applications. In 
our experiments, we show that our algorithm can track even complex and fast body motion of multi-object in real-
time. We managed to track complex motions of multiple articulated objects in outdoor scenes with a moving mobile 
phone camera, and a webcam in an office. 



Computer Engineering and Intelligent Systems                                                                                                                                 www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.12, No.1, 2021 

 

57 
 

Fig 2. Our algorithm recovers 3D skeletons poses in real-time. It tracks complex motions of a human and a robot 
in a community video (left), estimates poses of hands (middle) and tracks a person in VR environment (right). Top 
row shows overlaid 2D skeletons and bottom row shows 3D visualizations of the tracked objects. 

 

Our algorithmic contributions that enabled achieving such results, are: 

1. Real-time, simple, and automatic multi-object 3D skeletons generation; see Section 4.1. 

2. Automatic initial 3D location estimation of each object in the scene; see Section 4.2.  

3. Automatic detection of the change in the number of objects and generating or deleting the corresponding 
3D skeletons on the fly while tracking; see Section 4.3.  

4. An algorithm which tracks articulated joint angles of multiple objects at high accuracy and temporal 
stability in real-time, given 2D body-part locations; see Section 4.3. 

 

In the rest of the paper, we focus on tracking human motion. Nevertheless, since the human represents a 
difficult type of articulated object, our algorithm is applicable to a wide range of articulated subjects. Fig. 2 shows 
the result of applying our pipeline to other articulated object given their corresponding 2D joints detections. This 
illustrates the generalizability of our algorithm which can track any articulated object given 1) 2D joint positions 
estimation algorithm for this object (e.g. CNN-based pose estimation algorithm) and 2) existing relation between 
the lengths of the object parts (e.g. anthropometric data).  

 

Moreover, our method still generates plausible tracking results even when the relation between the object parts 
is fixed to rough estimate; see section 5. The core of this approach was presented in [14], but is further generalized 
in this article to work for tracking any kind of articulated objects. An overview of the generalized pipeline is shown 
in Fig. 1. 

 

2. RELATED WORK 

It is difficult to cover the related works of all possible articulated objects. Thus, we refer the reader to [15, 
16] for a comprehensive review of articulated objects such as the human hand. As the human is the most common 
articulated object and to avoid making this section too long, we summarized the related human articulated motion 
tracking algorithms. 

Human motion tracking has seen great progress in recent years. We refer the reader to the surveys [17–19] 
for an overview. Most generative multi-view human motion tracking methods rely on maximizing the similarity 
between the input images and the 3D human model projection. These methods are slow but achieve reasonable 
accuracy because they exploit the temporal smoothness of the motion [20–26]. Monocular Human motion tracking 
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is more applicable in many fields. Thus, we focus the discussion in the rest of this section on methods that rely on 
a monocular RGB camera. 

Depth-based motion tracking methods [10, 11] have achieved robust real-time results. However, in this 
section, we focus on RGB-based methods. These methods can be divided into generative and discriminative 
methods. The generative motion tracking problem is fundamentally under-constrained in the case of monocular 
input. Thus, it is only successful for motion tracking from short clips and when combined with strong motion 
priors [27]. Manual annotation and correction of frames is suitable for some applications such as actor reshaping 
in movies [28] and garment replacement in videos [29]. These generative algorithms preclude live applications 
because of manual interaction and expensive optimization.  

Recently, many monocular discriminative human pose estimation algorithms have been introduced. Some of 
them discriminatively learned the mapping from the image directly to human joint locations [1, 2, 30–34]. CNN-
based 2D and 3D human pose estimation approaches achieved high accuracy. For instance, [35–38] estimate 
human 3D pose directly from monocular image or video. Chen et al. [39] synthesize training images automatically 
with ground truth pose annotations and train CNNs with these synthetic images for 3D pose estimation.  

Other approaches estimate 3D human pose from 2D body parts locations in a monocular image [40, 41] or 
image sequence [42–47]. Many of these works rely on manually labelled 2D body part locations. Recently, a lot 
of CNN-based 2D pose estimation algorithms were proposed [48–55]. All these methods provide 2D body parts 
locations that can be used for 3D human pose estimation. For example, Cao et al. [48] managed to efficiently detect 
the 2D poses of multiple persons in an image using a nonparametric representation, which allows learning 
associations between body parts of everyone in the image. In [4] 2D body parts locations (detected by [56]) are 
used to automatically estimate the 3D pose and shape of the human body from a single unconstrained image. 
However, this method is not real-time and works for a single person only. [57] can recover any 3D articulated 
object given its joints correspondences but also works for a single object and assumes 2D joints positions to be 
given. 

The methods for the real-time estimation of the 3D human pose with a monocular RGB camera are the most 
related to our algorithm. Only a few works target the problem for estimating temporally stable results which are 
directly usable in practical applications. The top-performing 3D pose estimation methods are based on CNNs [3, 
12, 13, 30, 58, 59].  [13] used a 100-layer CNN architecture to predict 2D and 3D poses simultaneously. However, 
this algorithm is unsuitable for real-time applications due to the additional preprocessing steps such as bounding 
box extraction. [3] uses CNN to detect 2D and 3D joint’s locations. Thereafter, an optimization-based skeletal 
fitting method is applied to estimate 3D poses in real-time. In [58] a coarse-to-fine volumetric approach for 3D 
human pose estimation from a single image is introduced. Their method is computationally expensive and does 
not support temporal stability. [60] is a new method that estimates the 3D pose of hands, face, and body from a 
single RGB image. However, all these methods are trained for single human tracking and do not generalize to 
multi-objects. On the other hand, we propose a multi-object 3D pose estimation approach that automatically 
estimates object-specific 3D skeleton and initial 3D location for each articulated object in the scene. Then, the 3D 
pose of every object is estimated by means of optimizing an energy function for skeleton fitting. 

 

2. OVERVIEW 

In the following sections, we focus on human motion tracking. An outline of our human motion tracking pipeline 
is illustrated in Fig. 3. However, the same steps can be applied to any articulated object with defined skeleton and 
relation between the lengths of its parts.  

Input to our approach can be either the live stream of a monocular RGB camera (e.g. webcam), YouTube 
video, or video captured with a mobile phone camera. Any of these inputs yield a single frame  at discrete points 
in time . For frame , the final output is  where  is the number of persons 
in the scene.  is the 3D skeletal pose parameters of the person with index . This output is temporally consistent 
which makes it perfect for applications such as virtual reality and character control. Our algorithm works with any 
camera (i.e. webcam, static, moving, or spherical camera with strong distortion) and general scenes (e.g. outdoors 
with strong illumination changes). 

Many related works [3, 7, 61] assume given person-specific 3D skeletons or initial pose parameters . 
They also assume that the number of skeletons is fixed over the whole sequence. As these assumptions limits the 
benefit of the algorithm, we automatically estimate the number of persons in the scene. Then, we automatically 
generate person-specific 3D skeletons and estimate their initial 3D location. All these automatic steps are achieved 
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in real-time before tracking each sequence which we refer to as the initialization phase. The basic idea of our 
automatic skeleton generation approach is to adapt a default human skeleton to the length of each bone of each 
person. To this end, anthropometric data tables are used to define the length of each bone as a function of the height 
of each person; see Section 4 for details.  

To start the tracking process, it’s not enough to generate the person-specific 3D skeletons, We also need to 
define the initial poses of each person. Existing human motion tracking algorithms either estimate the initial pose 
manually or use computationally expensive methods such as [4]. In this paper, we automatically estimate the 3D 
root location of each person in the scene which resolves this limitation; see Section 4 for details.  

In the second phase (i.e. tracking phase), we start with a CNN-based approach [48, 50] to estimate the 2D 
body joints locations for each person in the scene. The output of this step is the matrix  where  
contains body-parts locations of person . However, the order and number of the persons in  may vary from 
frame to frame. Therefore, we use Equation 4 to find the 2D body-parts positions  corresponding to each specific 
3D skeleton. Thereafter, we dynamically generate 3D skeletons for persons who enter the scene and delete the 
skeletons of those who left; see Section 4 for details. The pose parameters  are optimized given 
the 2D body-parts positions with the following energy function at each time frame : 

 
where  is the skeletons fitting term (Equation 5).  enforces predefined joint limits, and  
is a smoothness term that prevents sudden change in the motion; see [5] for details. Once the optimal values of the 
weights and  is found, we fixed these weights in all experiments. The proposed energy function 
is smooth and analytically differentiable. Therefore, it can be optimized efficiently using standard gradient ascent 
initialized with the initial pose estimated in Section 4. 

 
4. MULTI-PERSON 3D POSE ESTIMATION 

In this section, we introduce a detail description of the components of our pipeline. In the first two subsections, 
we discuss the initialization phase. The tracking phase is explained in last subsection. 

Fig 3. Overview of the proposed pipeline. In Phase 1, we generate multiple person-specific 3D skeletons and their 
initial location. Then, global 3D poses are estimated by fitting the skeletons to 2D body-parts positions. The 
Detections Sort & People Count step generates or deletes 3D skeletons for persons who enter or leave the scene. 
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4.1 3D Skeletons Generation 

Human motion tracking algorithms require a 3D model with a properly personalized skeleton to successfully 
track a single person. Many related works consider model personalization as a different problem. Thus, they solve 
this task manually [6, 7], which greatly reduces their applicability for real applications. In this section, we propose 
an automatic approach that generates a skeleton specific to each person. Other algorithms [62] require many RGB 
cameras to automatically estimate the body mode. Therefore, we introduce a simple human 3D skeleton 
personalization approach that works with a monocular camera. 

In this approach, we generate a default skeleton for every person. The initial number of persons is 
automatically estimated given the 2D detections of the first frame. Then, we adapt the bone length of each skeleton 
to match the corresponding person. Our default skeleton consists of 25 bones and 26 joints; see [6] for details. The 
anthropomorphic data tables [63] allow to define the length of each bone in the skeleton as a function of the height 
of the person. With these tables, the skeleton generation task is simplified to the estimation of the height of the 
person which can be estimated from a monocular RGB camera by back-projecting 2D features of an object into 
the 3D scene space; see [38, 64] for details. This allows personalizing the default skeletons to every person in the 
scene. 

 

4.2 Skeletons Localization 

The Skeleton generation step is very important. However, it is not enough to start the tracking process.  To this 
end, we still need to estimate initial 3D pose of each person. Many motion tracking methods perform this step 
manually or with a different computationally expensive approach such as [4]. Fortunately, our algorithm is stable 
even with inaccurate initial poses. Therefore, we simplify the initial pose estimation problem to the estimation of 
the initial root position (i.e. 3D point between hips) of each person. To this end, we use the heights  of each 
person , their 2D body-part detections in the first frame , and the monocular camera focal length . The person 
heights  and 2D body-parts detections  are estimated; as discussed in Section 4.1 using the CNN-based 
algorithm. As the upper body is usually more visible than the lower body, we use the height of the torso 

 for estimating the root depth. The 2D height of the torso  is the distance between the neck 
 and the root . With this, the depth of the root is calculated by: 

 
Then, the 3D root position is calculated by: 

 
where   is the projection operator. Then, our algorithm automatically moves each skeleton such that its root 
position matches the root location of the corresponding person in 3D space. 

 
4.3 Skeleton Fitting  

In the first phase, we introduced methods for estimating personalized skeletons and their initial 3D locations. Once 
these estimates are available at the bigging of the tracking process, we can start the tracking phase which continues 
until the last frame in the image sequence. The first step of the tracking phase is the estimation of the 2D body-
parts positions. Recently, many CNN based methods managed to accurately estimate these 2D body-parts positions 
[48–50]. Any of these methods can be used in our framework. However, we used both [48] and [50] in our 
experiments. As [48] achieves reasonable accuracy with multi-person, most of our results are based on this 
algorithm. Therefore, in this section, we assume, without loss of generality, that 2D body-part positions are 
estimated by [48]. 

As the 2D body-part detection algorithm does not have any temporal relation between consecutive frames, 
the order of the resulting 2D body-part detections in  for one frame chance over time. It is 
important to solve this problem because the body-parts positions  may correspond to a different person in each 
frame. For this reason, the next step in our tracking phase is to associate each existing 3D skeleton with the 
corresponding 2D detections  in each frame. To this end, we define a similarity measure between the skeleton 
defined by pose parameters  and  where  is the number of 2D body  part detections of 
one person. This is done by first projecting the 3D joint positions defined by  into the 2D image plane using the 
projection operator  . Thereafter, the distance between each projected 3D joint and the corresponding 2D 
detection is calculated. The final similarity  between skeleton with index  and detections in  is computed using 



Computer Engineering and Intelligent Systems                                                                                                                                 www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.12, No.1, 2021 

 

61 
 

the following equation: 

 
where  is the 3D joint position corresponding to the 2D body part . This allows associating each skeleton 

with index  with the 2D detection .  
 

Dynamic Number of Persons: For tracking varying number of persons, we need to generate a new 3D 
skeleton for each person who enters the scene and remove the skeleton of those who leave the scene. After 
associating each 3D skeleton with the corresponding 2D detections , some items of  may be left without a 
corresponding 3D skeleton. These items correspond to either persons who just entered the scene or false positive 
detection of a human. To distinguish between these two cases, we use the confidence of each body part detection 
in  which is another output of the CNN-based approach. This confidence allows to compute a score for each  
which corresponds to probability of a new person entering the scene. For each new   with score above the 
threshold , we generate 3D skeleton for the corresponding person and estimate the respective initial 3D 
location. On the other hand, in case of a person leaving the scene or largely occluded,  corresponding to an 
existing skeleton will either have very low score or disappear from . In both cases, we remove that skeleton.  

Our multi-person skeleton fitting term measures the similarities between a given skeleton pose Xn 
corresponding to one of the persons and 2D body-parts positions  of that person. Similar to Equation 4, we 
project each 3D joint position and calculate the distance to the corresponding 2D detection . The final fitting 
term is defined as: 

 
where  is the confidence of the 2D body-parts detection . This confidence is estimated by the CNN 
body-parts estimation method.  

Temporal Smoothness: Applying per-frame pose estimation techniques on a video does not ensure temporal 
consistency of motion. Thus, small pose inaccuracies lead to temporal jitter. Therefore, we combine our multi-
person skeletons fitting energy with temporal filtering and smoothing in a joint optimization framework to obtain 
an accurate, temporally stable and robust result; see Equation 1. 

 

5. EXPERIMENTS  

We prove the efficiency of the proposed algorithm through intensive experimental evaluations on more than 20 
challenging real-world sequences. Some of these sequences are YouTube video which includes varying number of 
persons performing complex and fast motions. Other sequences were captured outdoors with mobile-phones and 
spherical cameras. To illustrate the applicability of our algorithm for real-time applications, we performed live 
tracking of multiple persons at around 23Hz with a low-quality webcam. Moreover, we tracked several sequences 
from public datasets such as the Human3.6M [34] and the Marconi [6]. These sequences vary in numbers and 
identities of persons, the lighting conditions, complexity and speed of the motion, camera types (e.g. mobile-phone, 
GoPro, spherical cameras, and webcams), the frame rates, and the frame resolutions. Our algorithm automatically 
generates 3D skeletons and estimates initial poses for multiple persons. It does not need bounding box cropping. 
Thus, our experimental setup is very simple. It produces high-quality motion tracking, given the input images and 
the focal length of a single RGB camera. The run-time of our algorithm depends on the number of objects in the 
scene, the complexity of the motion, and the resolution of the input frames. Our experiments are performed on an 
8-core Xeon CPU and a GeForce GTX 1080 GPU. The average processing time of a single frame from a single-
person sequence is 44 milliseconds. The 2D body parts detection [48] takes 32 milliseconds while the 3D skeleton 
fitting needs 12 milliseconds. The initialization phase takes around 0.01 milliseconds, given the body parts 
detections of the first frame and the height of each person. The run time can be improved by using a better GPU. 

Our algorithm can use any 2D body-parts detection method. Therefore, we show results with two different 
body-parts detection methods. In Implementation 1, we use [48] for 2D body-parts detections. This 
implementation is discussed in detail in Section 4. [48] does not need cropping to track multi-person. 
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      (a) Community videos          (b) Marconi dataset          (d) Mobile phone video 

Fig 4. Sample results with overlaid 2D skeletons estimated with Implementation 1 (top) and respective 3D 
reconstructions (bottom) show successful multi-person tracking in challenging scenarios. (a) shows multi-person 
pose estimation results from YouTube videos. (b) shows results over selected difficult sequences from the Marconi 
dataset. (c) shows tracking results with strong illumination changes in an outdoor scene captured using a mobile 
phone camera. 
 

Implementation 2 is based on [50] which requires cropping of every person. Fortunately, we can perform 
cropping automatically without significant change to the original pipeline in Fig. 3. To this end, we extrapolate the 
persons 3D poses of the previous frame to generate a rough estimate of the 3D poses of the current frame. Then, 
the bounding box of each person is estimated by projecting his 3D skeleton to the camera view. This allows to crop 
and scale each person. With this additional automatic step, any algorithms such as [50] can be used instead of [48] 
in our pipeline for 2D body part detections. 

Qualitative Results: We used Implementation 1 to track more than 15 sequences. Fig. 2 and Fig. 4 show 
samples from the tracked sequences. This illustrates the effectiveness of our algorithm for tracking sequences with 
many (i.e. up to eight) persons performing complex and fast motions under strong distortion and strong lighting 
variations. Previous monocular methods such as [3, 12, 13] fail to track these sequences in real-time. Fig. 5 shows 
the 3D pose reconstruction results based on Implementation 2. Two sequences from the public datasets the 
Human3.6M (Fig. 5(a)) and the Marconi (Fig. 5(b)) are successfully tracked. 

To demonstrate the benefit of the proposed algorithm for real-time applications, we tracked the motion of 
multiple persons from a live stream of a webcam. Fig. 5(c) shows that our algorithm generates natural motion even 
with challenging scenarios. Furthermore, we track sequences with several people entering and leaving the scene. 
Our algorithm automatically detects the change in the scene and generates or deletes the corresponding 3D 
skeletons on the fly while tracking. 

Comparison: Fig. 6(a) illustrates the comparison between the accuracy of our algorithm and the accuracy of 
[3, 65] on two sequences. Our algorithm accurately tracks the persons in the two sequences in real-time. On the 
other hand, [65] works only offline and [3] tracks only one of the two persons in the scene with low accuracy. 
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  (a) H3.6M Sample     (b) Marconi Sample               (c) Rea- time Tracking             

Fig 5. Sample images from the H3.6M dataset (a) and the Marconi dataset (b) with overlaid 2D Skeleton along-
with respective 3D pose recovery using Implementation 2. (c) The real-time 3D pose estimation from the stream 
of a webcam with Implementation 1 (Top) and Implementation 2 (Bottom).  
 

Ablation Study: we present comprehensive ablation studies on various components of our algorithm by 
creating different alternatives pipelines. The first alternative pipeline is produced by removing the skeleton 
generation step. This means that the same default skeleton is used for every person without adaptation to his size. 
The second alternative pipeline is produced by disabling the initial pose localization step where the initial pose 
parameters are set to zero. We evaluated these alternatives by tracking the Walking sequence (i.e. Subject S9) from 
the Human3.6M dataset [34]. The Mean Per Joint Position Error (MPJPE) with our full algorithm is 90mm. The 
error increase with the first alternative pipeline to 460mm. However, the algorithm fails completely with the second 
alternative pipeline as the energy function is non-convex which leads to stuck in a local maxima; see Fig. 7. 

Quantitative Evaluation: We quantitatively evaluate our algorithm using several sequences (i.e. the 
Directions, Posing, and Waiting) from the Human3.6M dataset which capture Subject S9. See Fig. 6(b) for sample 
2D skeletons (i.e. overlaid on the input RGB images) and 3D skeletons reconstructions. The average error of all 
frames in these three sequences is 159.33 mm.  

Discussion: Our approach is subject to a few limitations. The first limitation is the low accuracy of the depth 
estimation, especially in the case of wrists and ankles occlusion. This led to relatively higher 3D joint position 
errors. Nevertheless, this is a common problem in all monocular approaches as depth estimation is severely ill-
posed. As a result of this fact, a slight inaccuracy in the 2D joints estimation leads to a large error in the depth 
estimation. Unlike other approaches, our algorithm can recover from tracking failures, even after long occlusion 
of many body-parts. The results of tracking many sequences illustrated that our algorithm succeeds in challenging 
multi-person scenarios where many other motion tracking methods fail. Furthermore, our algorithm achieved high 
temporal stability and reasonable accuracy. This accuracy can also be further improved by using 2D body part 
detectors that are more stable to occlusions. 
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      (a) comparison with both [3] and [65]         (b) H3.6M Samples used in quan. evaluations 

Fig 6. (a) Side-by-side comparison of our method (left column) against Mehta et al. [3] (top of the second column) 
and the offline method of Elhayek et al. [65] (bottom of the second column). Our approach succeeds in accurately 
tracking all persons. (b) Sample images from H3.6M sequences used for quantitative evaluations. We show 
tracking results of Directions (third column) and Posing (fourth column) sequences for Subject S9 whose Mean 
Per Joint Position Error is 153mm and 158mm respectively. 

 

5. Conclusion 

We have presented a pipeline for tracking the instantaneous pose of multiple articulated objects from a single RGB 
video. To illustrate the ability of this pipeline, we showed competitive results for tracking human motion in real-
time using a monocular RGB camera. Our pipeline leverages the accuracy of the discriminative and generative 
approaches. To this end, we utilize the discriminative deep learning-based methods for estimating the 2D joints 
positions of the articulated object. Then, the generative energy function is used to fit the 3D skeletons to these 
joint’s positions. Our fully automatic algorithm estimates 3D kinematic poses of multiple objects in a temporally 
stable manner. It automatically detects the number of objects in the scene and generates corresponding object-
specific 3D skeletons. It also automatically estimates the initial 3D location of each object which allows to define 
their coarse initial poses. The 2D joints detections can be estimated using any discriminative method which allows 
to easily upgrade our algorithm with any progress in 2D pose estimation. Our algorithm dynamically generates 3D 
skeletons for objects that enter the scene and delete the skeletons of those which leave. In contrast to previous 
works, our fully automatic algorithm can operate with multiple objects in real-time without the need of bounding 
boxes. This makes our algorithm optimal for many applications. Our intensive experiments demonstrated the 
effectiveness of our system for tracking sequences with strong distortion, strong illumination changes, and 
complex motions. Moreover, we tracked multiple humans in real-time using live streaming from a webcam. As 
future work, we are going to extend our algorithm for human pose and shape estimation. Furthermore, to improve 
the run-time, we will employ more advanced optimization algorithms. 
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Fig 7. Ablation studies on our algorithm's components. Left: tracking result of our full pipeline; MPJPE 90mm. 
Middle: an alternative of our algorithm constructed by removing the skeleton generation step (i.e. using the default 
skeleton); MPJPE 460mm. Right: second alternative constructed by removing initial pose localization step which 
fails completely. 
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