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Abstract—This paper investigates the performance of a class
of irregular low-density parity-check (LDPC) codes through a
recently published low complexity upper bound on their belief-
propagation decoding thresholds. Moreover, their performance
analysis is carried out through a recently published algorithmic
method, presented in Babich et al. 2017 paper. In particular,
the class considered is characterized by variable node degree
distributions λ(x) of minimum degree i1 > 2: being, in this case,
λ′(0) = λ2 = 0, this is useful to design LDPC codes presenting
a linear minimum distance growth with the block length with
probability 1, as shown in Di et al.’s 2006 paper. These codes
unfortunately cannot reach capacity under iterative decoding,
since the achievement of capacity requires λ2 6= 0. However, in
this latter case, the block error probability might converge to a
constant, as shown in the aforementioned paper.

I. INTRODUCTION

LDPC codes are a class of channel block codes, first intro-
duced in the 1960’s by Robert Gallager [1], representing the
leading edge in modern channel coding. Due to the technical
limitations of that age, LDPC codes were scarcely considered
for almost 30 years, apart from Tanner’s generalized LDPC
definition and graphical representation, presented in his 1981
paper [2] (which was later called Tanner graph), and were re-
invented in the mid 1990’s by MacKay [3] and Luby et al.
[4]. After being included in modern communication standards
such as digital video broadcasting DVB-S2 (satellite com-
munication), ITU-T G.hn (home networking), and DOCSIS
3.1 (cable) standards, they are also used in the IEEE802.11
(Wi-Fi) [5], [6], 802.16e (Wi-MAX), and 10G-BaseT Ethernet
standards, and have been also proposed as component codes
of product code structures [7] for the next generation digital
terrestrial broadcasting transmission system [8]. Moreover,
they were recently adopted, together with polar codes, by the
fifth-generation (5G) new radio (NR) standard (see, e.g., [9] -
[11]).

As first noticed by Gallager in his aforementioned introduc-
tory work, limited to regular LDPC codes, these exhibit the
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so called “threshold phenomenon”. Namely, an upper bound
for the channel noise can be defined by the noise threshold so
that, if the channel noise is maintained below this threshold,
the probability of lost information can be made as small as
desired. Later, Luby et al. showed that irregular LDPC codes
perform better than regular ones [4], and exhibit the threshold
phenomenon, too. In this work, they also showed that their
hard-decision decoding process may be analyzed considering
an individual edge between a variable node m and a check
node c and an associated tree, rooted in m, describing its
neighborhood, as shown in Fig. 1 of [4]. Denote with pl
the probability that m sends c an incorrect value at the l-th
iteration. Following the work of Gallager [1], in [4] a recursive
equation describing the evolution of pl was determined over
a constant number of iterations.

LDPC codes are capacity-approaching codes, which means
that practical constructions exist that allow the noise threshold
to be set very close to the theoretical maximum (the Shannon
limit) for a symmetric memoryless channel. Thus, the problem
of an easy evaluation of the threshold, and, in general, of
the performance of belief propagation decoding is important
to allow the design of capacity-approaching codes, based on
noise threshold maximization (see, e.g., [12] where, using the
analysis outlined in [13], a custom software based on [14] was
employed to simulate the performances of punctured LDPC
codes over an additive white Gaussian noise (AWGN) channel,
assuming a binary phase shift keying modulator).

Our paper [15] was focused on the investigation about
the usefulness of a low complexity upper bound on belief-
propagation decoding thresholds, recently published in [16],
for the class of irregular LDPC codes characterized by variable
node degree distributions

λ(x) =

dl∑
i=i1

λix
i−1

of minimum degree i1 > 2, being λi the fraction of edges
in the Tanner graph connecting to a degree-i variable node and
dl the maximum variable node degree. This investigation was
absolutely novel. In fact, the above mentioned upper bound
of [16]1 was conceived as an algebraic method to calculate

1In [16], three low complexity upper bounds to the exact belief-propagation
decoding thresholds were derived, by applying the result of [20] to the
asymptotical behavior of ∆(s, t), defining the difference between the mean
values of a generic check node output messages at the l-th and at the (l−1)-th
iteration. As shown in [16], the second and third bounds, therein presented,
called s∗approx and s∗Jensen, respectively, are applicable only to a class of
LDPC codes, namely, to the class of codes presenting variable node degree
distributions λ(x) of minimum degree i1 = 2. The first bound found in [16],
instead, called s∗bound, is more generically valid ∀i1 ≥ 2.
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upper bounds on belief-propagation decoding thresholds for
the class of irregular LDPC codes characterized by i1 ≥ 2,
since, in the literature (see, e.g., [17] and [18]), only the case
with i1 = 2 was considered before, as far as the upper bounds
on thresholds and on the coefficient λi1 (stability condition)
are concerned (see Example 12 of [18]2).

In the present paper, in addition to what already presented
in [15], we investigate the suitability of a recently published
algorithmic method, presented in [20]3, to find the convergence
conditions of the above mentioned recursive sequence describ-
ing the evolution of pl in [4]. This investigation is motivated
by the need of analyzing the class of irregular near capacity
achieving LDPC codes therein considered, characterized by
variable node degree distributions λ(x) of minimum degree
i1 > 2. This analysis is completely novel since, so far,
the performance analysis we conducted in [21] and [22]
was focused on the class of LDPC codes presenting degree
distributions λ(x) of minimum degree i1 = 2. In order to
accomplish this task, we investigated on the role played by
the product λ′(0)ρ′(1) in determining this performance, being
ρ(x) =

∑dr
j=2 ρjx

j−1, ρj the fraction of edges connecting to a
degree-j check node, and dr the maximum check node degree.
However, as shown in [21], being λ′(0) = λ2, this analysis is
feasible only for the class of LDPC codes presenting λ2 6= 0.

The investigation on the class of irregular LDPC codes
characterized by variable node degree distributions λ(x) of
minimum degree i1 > 2 is interesting because the fact that,
in this case, λ′(0) = λ2 = 0, implies that these codes
present a linear minimum distance growth with the block
length with probability 1, as shown in [23]. These codes
unfortunately cannot reach capacity under iterative decoding,
since the achievement of capacity requires λ2 6= 0. However,
in this latter case, the block error probability might converge
to a constant [23], since, as shown in [24], in order to have
zero word error probability, it is necessary to have λ2 = 0.
This was proved in [24] by the following argument: if λ2 > 0,
then in the ensemble, as the block length n→∞, the average
number of weight 2 codewords is bounded away from zero.
Hence even a maximum likelihood decoder would have non-
zero decoding error probability, fact that does not happen with
λ2 = 0.

The paper is organized as follows. In Section II we recall the
first upper bound to the belief propagation decoding thresholds
already derived in [16], since the paper is focused on it. In
Section III, the method outlined in [4] for designing irregular
graphs is recalled, based on a recursive equation describing
the evolution of the above mentioned pl, for a given value
of the parameter p0. This is necessary so as to provide the
reader with a reference to the mathematical functions needed
in the following. In Section IV we rewrite the mathematical
method presented in [20] in a form suitable to obtain the

2As far as the LDPC codes found in [18] are concerned, all presenting
variable node degree distributions λ(x) of minimum degree i1 = 2, in [16]
and [19] were presented the upper bounds to their exact belief-propagation
decoding thresholds.

3The method consists in solving a problem of quadratic degeneracy instead
of looking for the conditions guaranteeing the convergence of a certain
sequence, task which normally has to be performed manually, i.e., by repeated
trials.

“supremum p∗ of all values of p0 for which the sequence
pl is monotonically decreasing and hence converges to 0” [4].
In Section V some numerical results are given to investigate
the usefulness of the above mentioned bound in determining
the performance of an irregular LDPC code characterized by
variable node degree distributions λ(x) of minimum degree
i1 > 2. Moreover, some numerical results are also given in
terms of the obtainable p∗ values for the class of irregular
LDPC codes considered in [4] reporting some simulation
results, too. Finally, Section VI summarizes the results of the
paper.

II. UPPER BOUNDS ON LDPC CODES DECODING
THRESHOLDS

To determine the upper bounds on thresholds, first of all we
have to determine the asymptotical behaviour of (18) in [15]
for t→∞. The first upper bound, called s∗bound in [16], was
found computing φ(x), defined in (9) of [15], with x ≥ 10.
To this end, we have added a further invertible approximation
of the function φ(x), the derivation of which is given in the
Appendix of [16]. To obtain the second upper bound, called
s∗approx in [16], we have used the approximation (16) of [16]
(that was implicitly used in [17]). The third upper bound,
called s∗Jensen in [16], was obtained applying the Jensen’s
inequality to the latter asymptotical approximation.

A. Upper bound on LDPC codes decoding thresholds holding
for i1 ≥ 2

As far as the above mentioned first upper bound on LDPC
codes thresholds (called s∗bound in [16]) is concerned, given a
degree distribution λ(x) of minimum degree i1 ≥ 2, defining
z(s, t) := s+(i1−1)t

2 and Aj := 1
(j−1)2λ2

i1

, the following
lemma is proved in [26].

Lemma: As t→∞, being W (·) the Lambert-W function:

f(s, t) = 2

dr∑
j=2

ρjW (Ajz(s, t) ez(s,t)) +O(t−1) (1)

With this f(s, t) and remembering that dW (x)
dx = 1

x+eW(x) :

ft(s, t) = 2

dr∑
j=2

ρj
zt(s, t)e

z(s,t)(1 + z(s, t))

z(s, t)ez(s,t) + eW(Ajz(s,t)ez(s,t))−logAj

(2)
Applying (15) of [15] to (1) and (2) we get: 2

∑dr
j=2 ρjW(Ajz(s, t)e

z(s,t)) = t

2
∑dr
j=2 ρj

zt(s,t)e
z(s,t)(1+z(s,t))

z(s,t)ez(s,t)+eW(Ajz(s,t)e
z(s,t))−logAj

= 1
(3)

and (18) of [15] can be rewritten as: 2
∑dr
j=2 ρjW(Ajz(s, t)e

z(s,t))− t = 0

2
∑dr
j=2 ρj

zt(s,t)e
z(s,t)(1+z(s,t))

z(s,t)ez(s,t)+eW(Ajz(s,t)e
z(s,t))−logAj

− 1 = 0

(4)
Its solution (s∗bound, t∗bound), obtained applying the instruc-

tion set produced in [20], determines the bound σ∗bound =√
2

s∗bound
, which is valid ∀i1, unlike the other two (s∗approx

and s∗Jensen) reported in [16], which hold both for i1 = 2
only.
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III. IRREGULAR GRAPHS DESIGN

Irregular LDPC codes [18] are defined by specifying the
distribution of the node degrees in their Tanner graphs. In
particular, in the edge-perspective degree distribution, λi is the
fraction of edges in the Tanner graph connecting to a degree-i
variable node, and ρj is the fraction of edges connecting to a
degree-j check node.

Consider an irregular LDPC code with edge-perspective
degree distributions λ(x) and ρ(x), defined as

λ(x) :=

dl∑
i=i1

λix
i−1 (5)

ρ(x) :=

dr∑
j=2

ρjx
j−1 (6)

being dl (respectively dr) the maximum variable (respectively
check) node degree. The dl-tuple {λi} and dr-tuple {ρj} both
add up to 1.

Gallager’s hard-decision decoding approach [1] has been
generalized in [4] to the case of irregular graphs, in order to
consider the varying degrees of the variable and check nodes.
It may be analyzed considering an individual edge between a
variable node m and a check node c and an associated tree,
rooted in m, describing its neighborhood, as shown in Fig. 1 of
[4]. Denote with pl the probability that m sends c an incorrect
value at the l-th iteration. Following the work of Gallager, in
[4] is determined a recursive equation describing the evolution
of pl over a constant number of iterations of the message
passing decoding algorithm used for hard-decision decoding.
Given an irregular LDPC code with given distributions (5) and
(6), and fixing a p0 value, this recursive equation is simply
given by

pl = f(p0, pl−1) (7)

where, for 0 ≤ p0 ≤ 1 and 0 ≤ p ≤ 1, the function f(p0, p)
is defined as

f(p0, p) := p0 −
dl∑
i=i1

λifi(p0, p) (8)

through fi(p0, p), defined as

fi(p0, p) := p0
∑i−1
k=bi(p0,p)

(
i−1
k

)[ 1+ρ(1−2p)
2

]k
·
[
1−ρ(1−2p)

2

]i−1−k
+(1− p0)

∑i−1
k=bi(p)

(
i−1
k

)[ 1−ρ(1−2p)
2

]k
·
[
1+ρ(1−2p)

2

]i−1−k
(9)

being bi(p0, p) defined as

bi(p0, p) :=
⌈
1
2

(
i− 1 + log((1−p0)/p0)

log((1+ρ(1−2p))/(1−ρ(1−2p)))

)⌉
(10)

Fig. 1. BER vs. Eb/N0 in dB of the rate-1/2 randomly chosen codes with
distribution pairs (λ, ρ) given in (13), called Code 22 in [4]. The performance
curves have been obtained with an iteration number I = 10, 20, 30, 40, and
50 of the decoding algorithm.

Gallager’s idea, resumed in [4], is then to find the supremum
p∗ of all values of p0 for which the sequence pl is monoton-
ically decreasing and hence converges to 0. He also proves
that, as the block length of the code and girth of the graph
grow large, this decoding algorithm works for all p0 < p∗.

IV. LOW COMPLEXITY DETERMINATION OF p∗

Applying the method defined in [20], instead of searching
the last value of the parameter p0 granting the convergence of
(7), we solve a problem of quadratic degeneracy which can be
assigned to a standard software.

When the second partial derivative of f(p0, p) with respect
to p, fpp(p0, p), is 6= 0, the problem of quadratic degeneracy
is the system of equations{

f(p0, p) = p
fp(p0, p) = 1

(11)

where fp(p0, p) is the first partial derivative of f(p0, p) with
respect to p.

The solution of (11) gives the value p∗, namely the maxi-
mum p0 granting the convergence of (7).

V. NUMERIC RESULTS

With regard to irregular LDPC codes with i1 > 2, as
example we consider the rate-1/2 irregular LDPC codes given
in [4] with i1 = 5, having degree distributions:

λ(x) = 0.496041x4 + 0.173862x5 + 0.077225x20

+0.252871x22

ρ(x) = x13
(12)

and
λ(x) = 0.284961x4 + 0.124061x5 + 0.068844x26

+0.109202x28 + 0.119796x29 + 0.293135x99

ρ(x) = x21

(13)
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Fig. 2. BER vs. Eb/N0 in dB of the rate-1/2 randomly chosen codes with
distribution pairs (λ, ρ) given in (12), called Code 14 in [4]. The performance
curves have been obtained with an iteration number I = 10, 20, 30, 40, and
50 of the decoding algorithm.

Fig. 3. BLER vs. Eb/N0 in dB of the rate-1/2 randomly chosen codes with
distribution pairs (λ, ρ) given in (13), called Code 22 in [4]. The performance
curves have been obtained with an iteration number I = 10, 20, 30, 40, and
50 of the decoding algorithm.

and with i1 = 3, having degree distributions:

λ(x) = 0.123397x2 + 0.555093x3 + 0.321510x15

ρ(x) = x9
(14)

and

λ(x) = 0.093368x2 + 0.346966x3 + 0.159355x20

+0.400312x22

ρ(x) = x13
(15)

The first two codes (12) and (13), called Code 14 and
Code 22 in [4], respectively, both present variable node degree
distributions λ(x) of minimum degree i1 = 5 and, therefore,

Fig. 4. BLER vs. Eb/N0 in dB of the rate-1/2 randomly chosen codes with
distribution pairs (λ, ρ) given in (12), called Code 14 in [4]. The performance
curves have been obtained with an iteration number I = 10, 20, 30, 40, and
50 of the decoding algorithm.

Fig. 5. BER vs. Eb/N0 in dB of the rate-1/2 randomly chosen codes with
distribution pairs (λ, ρ) given in (15), called Code 14’ in [4]. The performance
curves have been obtained with an iteration number I = 10, 20, 30, 40, and
50 of the decoding algorithm.

this ensures that their graphs have good expansion, as proved
in Lemma 3 of [4]. In fact, in this Lemma 3 it is shown
that, when i1 ≥ 5, the polynomial ρ(x) has degree at most J
for some constant J . Secondly, it is demonstrated that, given
the block length n, with probability 1 − O(1/n), for some
fixed α > 0, ε > 0, and β = 3/4 + ε, the bipartite graph of
the code is an (α, β) expander. Thus, the analysis performed
in [26] to determine the asymptotical behaviour of (18) in
[15] for t → ∞ can be applied (to find the upper bounds
σ∗bound =

√
2

s∗bound
, solution of (4)). Moreover, since, for the

codes considered, i1 > 2, the bounds s∗approx and s∗Jensen,
reported in [16], cannot be applied.

On the other hand, as far as the other two codes (14) and
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Fig. 6. BER vs. Eb/N0 in dB of the rate-1/2 randomly chosen codes with
distribution pairs (λ, ρ) given in (14), called Code 10’ in [4]. The performance
curves have been obtained with an iteration number I = 10, 20, 30, 40, and
50 of the decoding algorithm.

Fig. 7. BLER vs. Eb/N0 in dB of the rate-1/2 randomly chosen codes with
distribution pairs (λ, ρ) given in (15), called Code 14’ in [4]. The performance
curves have been obtained with an iteration number I = 10, 20, 30, 40, and
50 of the decoding algorithm.

(15) are concerned, called Code 10’ and Code 14’ in [4], both
present variable node degree distributions λ(x) of minimum
degree i1 = 3 and have associated bipartite graphs that do not
have a sufficient expansion (for Lemma 3 in [4] to hold). Thus,
our above mentioned Lemma (1) cannot instead be applied.

The two codes with degree distribution polynomials (12)
and (13), respectively, present a threshold upper bound
σ∗bound = 1.02239 and σ∗bound = 1.07602, respectively.
The Mathematica® script written to determine these results
is reported in Appendix A of [15].

In [4], after defining pl as the probability that a variable
node sends an incorrect message in round l of a message
passing decoding algorithm, the authors have determined, for
each of the four rate-1/2 codes reported in Table I of [4],

Fig. 8. BLER vs. Eb/N0 in dB of the rate-1/2 randomly chosen codes with
distribution pairs (λ, ρ) given in (14), called Code 10’ in [4]. The performance
curves have been obtained with an iteration number I = 10, 20, 30, 40, and
50 of the decoding algorithm.

also the values p∗, defined as the “supremum of all values of
p0 for which the sequence pl is monotonically decreasing and
hence converges to 0”. The two codes with degree distribution
polynomials (12) and (13), respectively, have p∗ values of
0.0505 and 0.0533, respectively, when the transmission of
coded symbols over a binary-symmetric channel is considered,
whereas the two codes with degree distribution polynomials
(14) and (15), respectively, have p∗ values of 0.0578 and
0.0627, respectively.

Solving (11), instead, we found that the two codes with
degree distribution polynomials (12) and (13), respectively,
have p∗ values of 0.05053 and 0.05334, respectively, whereas
the two codes with degree distribution polynomials (14) and
(15), respectively, have p∗ values of 0.05781 and 0.06272,
respectively, thus obtaining a perfect agreement with the
results of [4].

As noticed in [4], “p∗ represents the error rate we would
expect to be able to handle for arbitrarily long block lengths,
and that we only expect to approach p∗ asymptotically in
practice as the number of nodes grows”. Thus, higher p∗ values
lead to a better code performance, as shown in Figs. 3 and
4 of [4], where the experimental results with hard decision
decoding are presented. As shown in Fig. 3 of [4], Code 22,
presenting a p∗ value of 0.0533, performs better than Code 14,
presenting a p∗ value of 0.0505, and, similarly, as shown in
Fig. 4 of the same paper, Code 14’, presenting a p∗ value of
0.0627, performs better than Code 10’, presenting a p∗ value
of 0.0578.

As expected, and as noted also in [18], where σ∗ and
p∗ values have been compared in Tables I and II, the code
characterized by a lower p∗ value, i.e., the code with degree
distribution polynomials (12), also presents a lower threshold
upper bound σ∗bound value.
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A. Simulation Results

Consider an ensemble of random codes with edge-
perspective degree distributions λ(x) and ρ(x) given above.
A custom software based on [14] (also used in [13] and
[25] to design well performing rate compatible puncturing
patterns for LDPC codes on the basis of the results of [16]
and [20]) was employed to simulate their performance over an
additive Gaussian noise channel (AWGN) channel, assuming
a binary phase shift keying (BPSK) modulator. The belief
propagation algorithm, also called message passing or sum-
product algorithm, commonly employed for LDPC decoding,
has been adopted, employing soft decision.

In Figs. 1 and 2 are shown the bit error rate (BER)
performance curves of some randomly chosen codes with
distribution pairs (λ, ρ) given in (12) and (13), called Code 14
and Code 22 in [4], respectively. As expected from the hard
decoding experiments conducted in [4] and mentioned above,
the BER performance obtained using Code 22 is better than
that obtained with Code 14, since the first presents a higher
p∗ value. As far as the block error rate performance (BLER)
is concerned, reported in Figs. 3 and 4, the same conclusions
still hold.

In Figs. 5 and 6 are shown the bit error rate (BER)
performance curves of some randomly chosen codes with
distribution pairs (λ, ρ) given in (15) and (14), called Code 14’
and Code 10’ in [4], respectively. As expected from the hard
decoding experiments conducted in [4] and mentioned above,
the BER performance obtained using Code 14’ is better than
that obtained with Code 10’, since the first presents a higher
p∗ value. As far as the block error rate performance (BLER)
is concerned, reported in Figs. 7 and 8, the same conclusions
still hold.

VI. CONCLUSIONS

Owing to their good performance, LDPC codes are an
important family of error-correction codes employed in current
data communication systems. In this paper, the analysis of
irregular LDPC codes based on some low complexity upper
bounds on their belief-propagation decoding thresholds, re-
cently presented in [16], was addressed. This was possible
thanks to the work in [17], upon which the derivation is based,
and to the algorithmic method for LDPC codes threshold
evaluation proposed in [20]. The results found in the paper
show that the first low complexity upper bound on belief-
propagation decoding thresholds, published in [16], is useful
for the class of irregular low-density parity-check (LDPC)
codes for which it was conceived, i.e., for the LDPC codes
characterized by variable node degree distributions λ(x) of
minimum degree i1 > 2. However its validity is restricted to
bipartite graphs that present a sufficient expansion, namely to
the bipartite graphs of LDPC codes fulfilling the conditions
given in Lemma 3 of [4]. The analysis published in [16]
cannot be applied, instead, to bipartite graphs that do not
have a sufficient expansion. Furthermore, we investigated the
suitability of the algorithmic method presented in [20] also to
carry out the performance analysis of the class of irregular near
capacity achieving LDPC codes considered. The p∗ values,

representing the error rate we would expect to be able to
handle for arbitrarily long block lengths, obtained applying
the quadratic degeneracy theory, have been shown to be in
perfect agreement with those reported in [4]. Moreover, the
simulation results obtained applying the belief propagation
algorithm, employing soft decision, have been shown to be in
perfect agreement with the hard decoding experimental results
reported in the same paper.
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