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1 Introduction
Different studies have been proposed recently in literature 
concerning the use of different drying technologies and 
equipment to preserve the final quality of diverse products 
such as pharmaceuticals.1 The main objective of the dry-
ing process is to remove the impregnated humidity in the 
products to prevent any type of contamination and allevi-
ate their weight to facilitate their transportation and caking. 
Taking into account that pharmaceutical powders are heat 
sensitive, the choice of an appropriate dryer depends on 
the properties of the powders. Numerous researchers have 
investigated the effect of diverse operating conditions, 
namely, vacuum pressure and temperature, on the drying 
time of various powders.2–4 Since drying experiments are 
generally costly and tedious, the exact mathematical rep-
resentation of such complex and highly non-linear behav-
iour of the drying phenomena, which is usually established 
based on a lot of hypothesis and multivariable interaction 
is difficult. Some computational models show their ability 
to alleviate above limitations and fit and control the drying 
processes accurately.5,6 The use of artificial neural networks 
and support vector machines to model different governing 
parameters of the drying process of different products and 
dryers has gained growing interest.7 For instance, ANNs 
have been used successfully to model the moisture content 
of quince slices,8 also used to study the effect of different 
drying techniques on different types of root vegetables,9 
another ANN model predicts the dehydration kinetics of 
pineapple,10 and an ANN has been used to optimise the 
drying process of kiwifruit slices in pulsed vacuum dry-

ing.11 In comparison to ANN modelling, SVR is known for 
its simplicity and optimisation adaptability and handling 
the complex parameters,12 for instance, polynomial SVM 
was employed to estimate the experimental drying per-
formance parameters,13 also it was applied successfully to 
describe the drying kinetics of persimmon fruit (Diospyros 
kaki) during vacuum and hot air drying process.14 

To our knowledge, few works have been focused on mod-
elling of quality indicators of pharmaceutical powders us-
ing machine learning techniques ANN and SVR. Therefore, 
the novelty of this work is to model the drying time of an 
active ingredient “Candesartan Cilexetil” using artificial 
neural networks and support vector regression. 

2 Results and discussion
2.1 Design of experiments 

The experimental data for vacuum oven drying kinetics of 
a thin-layer of active ingredient was reported in our pre-
viously published article.1 MODDE software was used to 
schedule experiments and generate a second-order fitting 
model with optimised coefficients. The equation of the re-
sponse surface methodology (RSM) can be written in the 
following form: 

Drying time (min) = 84.5402 − 10.679m0 +  
+ 0.7556X0 + 61.2037p − 2.91914T +  
+ 6.02469m0

2 + 0.02247X0
2 − 2.9321p2 − 0.0273T2 + 

+ 0.2111X0m0 + 10.5556m0p − 0.08333m0T − 
− 0.08333X0p + 0.003889X0T − 00.8472pT

(1)
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From this equation and based on the results found by re-
sponse surface methodology (see Fig.  1), temperature is 
shown as the most influencing parameter on drying time. 
The accuracy of the three models was tested using R² and 
RMSE as expressed in the following equations:
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Fig. 2 depicts the observed response vs. the predicted re-
sponse curve using the RSM model. Results showed that 
the RSM was found with an acceptable R² and RMSE of 
0.9756 and 1.3293 respectively, which demonstrated the 
acceptable performance of the model to fit the drying time. 

2.2 Artificial neural network (ANN) modelling

Artificial neural network methods might be employed to 
implement a non-linear modelling and provide a substi-
tute to logistic regression.15 The ANN model was designed 
with the multi-layer feed-forward network (MLP) type and 
trained with experimental data using back-propagation. 
The input parameters are initially selected based on system 
knowledge and availability of reliable data. Several stages 
are needed for the implementation of ANN in MATLAB 
software, details of these steps are shown in Fig.  3. The 
best ANN architecture was determined by optimisation 
of many parameters, such as the number of hidden layers 
and neurons, transfer function {tangent sigmoid Eq.  (4), 
Log-sigmoid Eq.  (5) and Linear}, number of iterations 
and network training algorithm {Levenberg–Marquardt, 
Bayesian regularisation}, as well as the convenient set of 
weights and biases. To avoid ANN divergence caused by 
the random initialisation of weights and biases, each ANN 
architecture was repeated twenty times. The number of 

neurons in the hidden layer was changed from 5 to 15 
neurons. Moreover, three transfer functions were tested, 
and the best performance was obtained with {sigmoid, 
linear} transfer function for the hidden and the output lay-
er, respectively. In addition, the ANN with more than one 
hidden layer was tested, and results showed no significant 
performance. 

Two different types of transfer functions were employed 
in this work for the hidden layer, hyperbolic tangent sig-
moid (named in MATLAB as tansig), log-sigmoid (named in  
MATLAB as logsig). These functions are defined in Eqs. 4 
and 5, respectively.16,17

Fig. 1 – Effects of different input combinations on drying time

Fig. 2 – Correlation between predicted values by RSM model 
and experience
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neurons, Wij is the weight of connections linking layers i 
and j, Yi is the output on the neurons in layer i, bj is the bias 
of the neurons in layer j. 

This data set will be normalised between [−βγ, (1−β)γ] 
which leads to the stable convergence of network weights 
and biases by having all inputs with the same range of val-
ues and using premnmx/postmnmx function already pro-
grammed in MATLAB software expressed by the following 
equation:18–21
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In this work, β = 0.5 and γ = 2 were selected and the 
scaled values of each input were computed. Output des-
caling can be performed using the following expression: 

Fig. 3 – Flow chart of ANN development16

Input Output
LayerLayer

11 1
14

Fig. 4 – Best architecture of FFNN-BP
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Table 1 shows the performance of the ANN model versus 
the use of two different transfer functions in its hidden lay-
er. The best ANN model was found with the architecture 
of {4-11-1} (see Fig. 4) neurons in the input, hidden, and 
output layer, respectively. In this work, tansig was found to 
be the best function in the hidden layer. 

Table 1 – RMSE of the tested ANN models 

Number of 
hidden neurons 

Levenberg-Marquardt Bayesian regularisation
tansig logsig tansig logsig

5 0.8325 0.7858 0.8471 0.8205
6 0.7999 1.6345 1.6588 0.9919
7 0.9393 0.7725 0.8269 0.7318
8 0.7769 1.7850 0.8138 0.7895
9 1.0698 0.7626 0.8263 0.6789

10 0.8020 0.6886 1.0866 0.8114
11 0.3397 0.6394 1.8936 0.7141
12 0.6316 1.9061 0.7740 0.6555
13 0.7313 0.8397 1.2866 0.8072
14 1.5541 0.5817 0.7475 0.6784
15 0.8810 0.8846 0.6400 0.5757

The performance of ANN models is depicted in Fig. 5 as a 
scatter plot of the experimental against the estimated time 
for the global data set using MATLAB function “postreg”. 
This plot shows the dispersion of the cloud of points of the 
entire data set around the first bisector. The degree of dis-
persion can be evaluated using equation (tcal = a.texp + b), 
where a is the slope, and b is the intercept. Those constants 
could be validated using a determination coefficient. The 
ideal performance is achieved when {a = 1, b = 0, and 
R² = 1}.Values of a, b, and R² are 1, 0.016, and 0.9984, 
respectively. These results can be supported by a very low 
value of RMSE = 0.33970 min, which explains the perfor-
mance of the obtained ANN when estimating drying time. 
The expression of the developed model is given by Eq. (8): 
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where k, S, l, are the number of neurons in the input, out-
put, and hidden layer, respectively. Wi(s,k), Wo(l,s) are the 
weights, and b1(s), b2(l) are the biases. 

2.3 Support vector regression (SVR) modelling

Compared with traditional regression and neural networks 
methods, recently, SVRs have been considered as a pow-
erful technique in solving the nonlinear regression prob-
lem,22,23 the details of the theory and evolution of SVM de-
veloped by Vapnik’s can be found in ref.24 The advantages 
of SVRs are that they do not require a step similar to the 
selection of ANN topology, do not suffer from a high risk 
of local minima or overfitting,25 are not sensitive to starting 
points, and require less data in comparison to the ANN.26

The determination of the model depends on the optimiza-
tion of several parameters, including capacity parameter C, 
ε-insensitive loss function ε, the kernel function type and 
its corresponding parameters.27 The flowchart of modelling 
using SVM technique is presented in Fig. 6.28,29 Many ker-
nel functions have been tested and the Gaussian function 
shows its high capability of representing the complex and 
non-linear relation between the required drying time and 
its four operating conditions (Table  2). The data set was 
scaled (Xin) based on the proposed expression in this work, 
which is given by equation Eq. (9):

1/0.009
in iX X= (9)

A scatter-plot between the observed against experimental 
data based on the SVM results is given in Fig. 7. Results 
show a satisfactory performance with high determination 
coefficient of 0.9991, and very low RMSE of 0.2616 min 
in comparison to the above models. 

Fig. 5 – Scatter plot of the drying time estimated by ANN vs ex-
perimental drying time
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Table 2 – Performance of SVR using different kernel functions 

Kernel function RBF Gaussian Polynomial Linear
RMSE 0.3046 0.2616 0.8635 1.4852
cross-validation 7.27 ∙ 10−4 6.45 ∙ 10−4 0.004 0.012
quantity of 
support vectors 74 74 74 74

R2 0.9988 0.9991 0.9899 0.9687

The optimisation of SVR parameters, namely, C, γ, and ε, 
was performed by varying them in the range of [10−3, 103], 
[10−3, 103], and [10−9, 10−1], respectively.30 The obtained 
best SVR parameters are given in Table 3.

3	SVR-based model versus  
ANN and RSM methodology 

A comparison was performed using a bar plot of R² and 
RMSE of RSM, ANN, and SVR when estimating vacuum dry-
ing time. Figs. 8 and 9 clearly show the high accuracy of sup-
port vector regression model. Results confirm that the SVR 
model highly outsmarts the ANN and RSM with low RMSE of 
0.2616 min, and high determination coefficient close to one. 

Fig. 8 – Comparison between RSM, ANN, and SVM in terms of 
RMSE

Fig. 6 – SVR modelling steps of vacuum drying time

Fig. 7 – Regression plot between experimental and predicted 
time by SVR model

Table 3 – SVR model properties

C γ ε Kernel type Loss function Quantity of 
support vectors

Number of 
training data Cross-validation error

3.0 1.45 0.0046 Gaussian ε-insensitive 74 74 6.4458 ∙ 10−4
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Fig. 9 – Comparison between RSM, ANN, and SVM in terms of 
determination coefficient

Fig. 10 shows that the data predicted by SVR model follow 
accurately the tendency of the experimental data, which 
again confirms the superiority of the SVR approach against 
ANN and RSM methodology. 

Fig. 10 – Comparison between estimated and experimental data 
for the generalisation phase

4	Graphical user interface for 
drying time calculation

An instantaneous drying time estimation of Candesartan 
Cilexetil, as an active ingredient, based on the obtained 
SVR model can be done through a graphical user interface 
within the domain of training data and solely based on four 
operating conditions. The created offline graphical user in-
terface (GUI) is a user-friendly environment for those with-
out formal knowledge of support vector regression method 
or any other special skills. The screen image of the user 
interface is shown in Fig. 11.

Fig. 11 – Screen image of the graphical user interface

5 Conclusion
A comparative study between RSM, ANN, and SVR ap-
proaches was conducted to model the final drying time 
of an active pharmaceutical ingredient. Experiments were 
conducted under vacuum dyer based on an experimental 
design implemented in Modde software. Compared with 
the RSM model {RMSE = 1.3293 and R2 = 0.9756} and 
ANN model {RMSE = 0.3397 and R2 = 0.9984}, the per-
formance of the SVM model presently developed was im-
proved for testing phase by 25 % in terms of RMSE, and 
with very acceptable determination coefficient of 0.9991. 
The SVM model proved to be much more powerful and 
accurate in estimating the time drying within the range of 
trained data compared to ANN and RSM models. A friend-
ly user interface was designed for the SVM model.
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SAŽETAK
Modeliranje vremena sušenja praha Candesartan Cilexetil  

primjenom tehnike računalne inteligencije 
Sonia Keskes,a,b Mohamed Hentabli,a,b* Mamaar Laidi b i Salah Hanini b

Cilj ovog rada bio je primjena dvije tehnike računalne inteligencije (umjetne neuronske mreže 
(ANN) i regresije potpornih vektora (SVR)) za modeliranje vremena sušenja farmaceutskog praha 
Candesartan Cilexetil, koji se primjenjuje za liječenje arterijske hipertenzije i zatajenje srca. Ek-
sperimentalni skup podataka korišten u ovom radu prikupljen je iz prethodno objavljenog rada 
o kinetici sušenja Candesartan Cilexetila pomoću vakuumskog sušionika i pod različitim radnim 
uvjetima. Usporedba između dva modela provedena je pomoću različitih statističkih parametara, 
odnosno korijenom srednje kvadratne pogreške (RMSE) i koeficijenta određivanja (R2). Rezul-
tati su pokazali da u usporedbi s modelom ANN model SVR pokazuje visoku točnost za pred-
viđanje nelinearnog ponašanja vremena sušenja koristeći odgovarajuće varijable {R2 = 0,9991, 
RMSE = 0,262} u odnosu na {R2 = 0,998, RMSE = 0,339} za SVR i ANN.

Ključne riječi 
Candesartan Cilexetil, metodologija odgovora površine, vakuumsko sušenje,  
umjetna neuronska mreža, regresija potpornih vektora
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