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Advancements in recombinant technology for  
production of butyrylcholinesterase, a bioscavenger  
of nerve agents

Abstract

Butyrylcholinesterase (BChE) is a serine hydrolase present in plasma 
and other mammalian tissues. As a target of organophosphorous pes-
ticides and warfare nerve agents, BChE acts as their stoichiometric 
bioscavenger. However, so far it has been a significant challenge to 
produce BChE at large scales and low cost. For decades, numerous 
research efforts have been directed first at isolation from human volun-
teers and later at production of BChE in eukaryotic and prokaryotic 
expression systems. In this review we focused on recent studies on re-
combinant BChE discussing reasons why the efficient, economically 
sensible expression system for recombinant BChE is hard to develop. 
We also bring the most recent advancements in the use of expression 
of human BChE in vivo as an effective prophylactic against organo-
phosphate poisoning.

INTRODUCTION

The widespread use of organophosphorus compounds (OPs), primar-
ily pesticides, but also the availability of highly toxic nerve agents 

(NA), generates a significant number of poisonings worldwide; leading 
up to several hundred thousands of deaths per year (1). From the mo-
ment of their synthesis, organophosphorus compounds have become a 
constant threat throughout history and have maintained their presence 
to this day. Taking that into consideration, countermeasures for OP 
poisoning should pursue the same pattern or even be one step ahead. 
Standardized care in cases of NA poisoning with sarin (GB), soman 
(GD), tabun (GA) and VX is based on a combination of anti-muscarin-
ic antagonist atropine, reactivators of NA-inhibited acetylcholinesterase 
(AChE, EC 3.1.1.7), and an anticonvulsant (2). Although conventional 
nerve agent countermeasures have effects on survival rates depending 
on the time of application, shortcomings in the prevention of central 
nervous system exposure are commonly observed as convulsions or brain 
damage (3). Pre-treatment with bioscavangers, enzymes that rapidly 
bind OPs and reduce their free levels in circulation can prevent long 
term health effects in the central nervous system imposed by OP-inhi-
bition of the synaptic AChE. For enzymes to be used as bioscavengers 
they should act rapidly and against a broad spectrum of NAs, have 
prolonged circulation time (ideally more than 10 days), have no im-
munogenic or toxic properties, be available at sufficient concentration 
and at reasonable cost (4–6 ). 
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The most investigated bioscavenger is human plasma 
butyrylcholinesterase (BChE, EC 3.1.1.8), serine hydrolase 
and enzyme analogue of AChE. Although its physiological 
function is not essential as that of AChE, it seems that it 
plays a back-up role in maintaining and regulating the cho-
linergic activity (7). Also it has been shown that BChE is 
involved in metabolism of drugs including cocaine, heroin 
and aspirin (8–10) as well as in physiological pathways of 
ghrelin, the appetite-promoting hormone which indicate 
its possible role in lipid metabolism (11, 12). 

Given the pharmaceutical importance of BChE, the 
goal is to find a way to produce BChE in large quantities. 
Human population has a wide range of plasma BChE 
concentration from 3.5 to 9.3 mg/L (7, 13). Isolation of 
hBChE from obsolete plasma or Cohn fraction IV-4 is 
possible on a laboratory and industrial scale using ion 
exchange chromatography at pH 4 and affinity chroma-
tography on procainamide-Sepharose or Hupresin to ob-
tain purified plasma hBChE from 100 L in single cycle 
(14, 15). Outdated human plasma is a reliable source for 
the hBChE tetramer which is important for long half-life 
and bioscavenging activity, but production is expensive 
and time-consuming, since isolation requires large 
amounts of human plasma to achieve low levels of puri-
fied hBChE (13). An alternative method for obtaining 
large amounts of BChE is via synthesis of recombinant 
proteins in different expression systems. However, hBChE 
has proven difficult to reproduce by recombinant technol-
ogy because it’s hard to accomplish fully active tetramer-
ic form. Problem with most of recombinant expression 
systems is based on inadequate glycosylation, and defi-
cient oligomerization of expressed BChE. In the majority 
of expression systems recombinant BChE are found as 
monomers or dimers which lead to low half-time in cir-
culation and unsatisfactory pharmacologic properties (16, 

17). Considerable effort has been embedded into develop-
ing transgenic recombinant platforms to synthesize fully 
functional recombinant hBChE cost-effectively and on a 
large scale, and this task is still under way. 

THE IMPORTANCE OF STRUCTURE FOR 
FUNCTIONAL BCHE

hBChE is a glycoprotein formed from four identical 
subunits encoded with gene localized on chromosome 3 
(3q26) (18). Each monomeric subunit has a molecular 
weight of 85 kDa consisting of 574 amino acid residues, 
24% of weight is consistent with 9 polysaccharide chains 
N-linked with asparagine residues of protein. hBChE is 
present in several oligomeric forms, of which the tetra-
meric form in the serum is most abundant, and the re-
maining is represented by trimeric, dimeric and mono-
meric forms (7). Each monomeric hBChE subunit 
contains a catalytic triad (Ser198, His438, and Glu325) 
within a 20 Å deep active site gorge. Two domains differ 
in native hBChE structure, the core or catalytic domain 
(amino acids 1–529) and the tetramerization domain 
(amino acids 530–574). The tetramerization domain of 
hBChE is formed by C-terminal tryptophan amphiphi-
lic tetramerization (WAT) helices from each subunit as a 
superhelical assembly around a central polyproline (19). 
The WAT domain can connect with the proline-rich at-
tachment domain (PRAD) sequence of ColQ or PRIMA 
protein anchors that enable cohesion of BChE to the syn-
aptic membranes of nervous system (20). Polyproline-rich 
peptides associated with BChE are mostly derived from 
lamelliopodin (~70%), membrane-associated protein (21, 
22). PRAD sequence in WAT/PRAD complex adopts a 
polyproline II helical conformation and runs antiparallel. 
This complex is important to mediate the congregation of 

Figure 1. Cryo-EM structure of the native BChE tetramer (PDB 6I2T). A) Top view of the BChE tetramer as dimer of dimers in which the 
monomers are diagonally equivalent with polyproline II helix in the centre. B) Side view of the BChE tetramer with tetramerization domain 
concealed between dimers. 
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tetrameric native hBChE which displays effective thera-
peutic action in the presence of OP compounds or other 
drugs like cocaine (19, 23–26). 

The crystal structure for recombinant hBChE mono-
mer (PDB 1P0I) was solved with truncation at C-termi-
nus of 40 amino acid residues in the tetramerization do-
main (27). Crystal structure of full-length glycosylated 
tetrameric hBChE by X-ray crystallography has not been 
determined so far, but alternative method emerged. Cryo-
genic electron microscopy provided 3D structure of 
hBChE (Figure 1) using crystal structure for recombinant 
hBChE with all the N-glycosylated sites presents (PDB 
4AQD) and WAT helices based on the synthetic WAT/
PRAD complex of AChE (PDB 1VZJ) (28, 29). The cryo-
EM structure of tetramer hBChE (PDB 6I2T; EMD-
0256) is a dimer of dimers stabilized by a superhelical 
assembly which could be the key to future advancements 
in recombinant technology for BChE production. The 
obtained model showed catalytic domains within dimers 
asymmetrically linked to the WAT/PRAD complex in-
ducing concealment of the tetramerization domain be-
tween catalytic units which can contribute to the stabil-
ity of the tetrameric form of hBChE (30, 31). 

An important role in the stabilization of the tetramer-
ic structure can also be the contribution of a high glyco-
sylation level of BChE which in past studies was assumed 
as an impairment to get proper hamper of crystals but a 
model obtained with a combination of cryo-EM, small-
angle X-ray scattering and molecular dynamics simula-
tions allowed us new insights. The acquired model clear-
ly shows that some glycans interact between monomers 
of bordering dimers. These glycans are linked to aspara-
gine 241 of one monomer and asparagine 256 of the ad-
join monomer thus strengthening the tetramer stability 
in addition to the C-terminal knot (31). Post-translation 
modification as N-glycosylation except for tetramer sta-
bility of BChE can also contribute to immunocompatibil-
ity, reactivity and pharmacokinetic stability of enzyme in 
circulation (32). Except for glycosylation for obtaining 
longer half-life in circulation, high importance is given to 
inter monomeric disulfide bonds and sialylation for pre-
vention of binding BChE-glycans to the asialoglycopro-
tein receptor in liver (33, 34).

Accumulation of BChE in aggregates was promoted by 
organophosphorus pesticide, chlorpyrifos oxon ethyl, that 
induces crosslinking by isopeptide bond leading to dimer, 
trimer, and higher complexes of BChE (35). The most 
well-defined isopeptide crosslink between monomers was 
lysine 544 to glutamic acid 542 located in the C-terminus 
tetramerization domain. It is worthy to mention that the 
protein aggregates are a characteristic feature of neurode-
generative diseases such as Parkinson’s and Alzheimer’s, 
and OP-induced crosslinking of proteins might be a link 
between pesticide exposure and the development of some 
cases of Alzheimer’s and Parkinson’s diseases (35).

HUMAN BCHE AS A BIOSCAVENGER OF 
NERVE AGENTS

hBChE was selected as the most promising bioscavan-
ger candidate for further development in 2007 when it 
acquired research status for a new drug from the US Food 
and Drug Administration. Bioscavangers as, in this case, 
OP-reacting proteins, must meet certain standards which 
account for no behavioural and physiological side effects 
and also protection higher than 5 LD50 of more than one 
nerve agent. hBChE rapidly binds nerve agents and hav-
ing high half-time in circulation of 12–15 days can pro-
vide extended protection of the synaptic AChE against 
nerve agents while avoiding unwanted immunological 
responses (2, 4). BChE can be defined as a stoichiometric 
bioscavanger, meaning that it has covalent interactions 
with OP compounds in a 1:1 ratio, i.e. one molecule of 
BChE can only remove one molecule of OP in blood. In 
this way, the concentration of the OP compound in the 
bloodstream is lowered, but the enzyme remains practi-
cally permanently inhibited. Therefore, although stoichio-
metric bioscavengers are very effective, they must be ap-
plied at a high concentration for the OP compound to be 
removed within a single circulation period (4). A hBChE 
dose of 2400 nM which corresponds to 200 mg per 70 kg 
is a prophylactic in case of human exposure to a dose of 
2–5 LD50 nerve agents (5, 36). Animal studies have 
shown that administration of a higher dose of hBChE 
would provide protection from exposure to 5.5 LD50 GD 
and 8 LD50 VX (26). Higher doses can easily trigger an 
immune response but testing on mice with a 800-times 
higher dose than in their system has shown no unwanted 
effects on health. Moreover, intravenously or intramuscu-
larly applied plasma-derived hBChE was regarded as safe 
in phase I clinical trials (4, 13). 

The use of hBChE as a stoichiometric scavenger re-
quires a high concentration of named enzyme which is 
hard to come by, so the feasibility of other approaches was 
explored. Catalytic systems combined of bioscavangers as 
BChE and reactivators as oximes seemed like a possible 
solution considering that they can neutralize substantial 
amounts of OP molecules by cycles of inhibition and re-
activation, making requirements for BChE concentra-
tions lower. This pseudo-catalytic system is limited by the 
effectiveness of reactivators to induce dephosphylation of 
the enzyme active serine. Unfortunately, standard reacti-
vators such as 2-PAM, HI-6 and obidoxime are mainly 
intended for the reactivation of AChE and the reactiva-
tion of BChE-OP conjugates by these compounds is inef-
ficient (37). In the last decade, interest in the design of 
BChE reactivation-specific oximes has emerged so groups 
like quaternary benzaldoximes (38), imidazolium and 
benzimidazolium oximes (39), chlorinated pyridinium 
oximes (40) are appearing and opening ground for future 
research in pseudo-catalytic BChE-based systems, which 
remains relevant.



Tena Čadež and Zrinka Kovarik Production of recombinant BChE

58 Period biol, Vol 121–122, No 1–2, 2020.

EXPRESSION OF RECOMBINANT BCHE 
IN PROKARYOTIC SYSTEMS

Prokaryotic cells in terms of technology are the sim-
plest and most economically acceptable system for pro-
ducing recombinant proteins. Nevertheless, attempts to 
express native BChE in Escherichia coli have so far been 
unsuccessful. One of the reasons was presence of three 
inter monomeric disulfide bonds unable to form in E. coli 
causing accumulation of partially folded BChE as inclu-
sion bodies (7). Ongoing problem with this expression 
system is also related to the prokaryotic inability of post-
translational modifications of mammalian proteins i.e., 
E. coli does not have its own glycosylation system. Camy-
lobacter jejuni has a developed N-glycosylation system due 
to the enzymatic cascade of alkaline polygalacturonate 
lyase, and glycosyltransferase. The transfer of this system 
to the genetically known bacterium E. coli would allow 
production of recombinant glycoproteins that makes 2/3 
of eukaryotic proteins. However, for the time being, this 
mechanism can only be used for glycosylation of C. je-
juni proteins because bacterial N-glycans are completely 
distinct from any known eukaryotic glycan. Challenges 
facing this post modification can possibly be overthrown 
by the availability of needed glycan precursors by design 
gene knockout strains that overproduce glycan precursors 
(41–43). 

As stated before, glycosylated BChE is interesting from 
a pharmacological point of view as a tetramer, because of 
its longer retention capacity and its better pharmacoki-
netic profile than a dimer or monomer. Tetrameric BChE 
in prokaryotes is difficult to obtain also due to the lack of 
proline-rich peptides that, interacting with the C-termi-
nal BChE domain, promote oligomerization. The proline-
rich sequences in prokaryotic expression are omitted since 
such amino acid sequence slow down the translation of 
natural and modified gene expression. The polyproline 
mRNA motif causes the ribosome to slow down, thereby 
reducing the efficiency of translocation, the role of which, 
although not fully elucidated, is associated with gaining 
time for co-translational formation and membrane inser-
tion. To reduce ribosome retention, prokaryotic cells use 
an EF-P (elongation factor protein) that enters the empty 
E site into the ribosome and binds close to the peptidyl-
tRNA. EF-P contains a lysine residue modified by the 
enzymes YjeK and YjeA allowing the b-lysyl moiety on 
Lys34 reach the active site of a ribosome and restore cata-
lytic activity. EF-P is found in less than 100 E. coli proteins, 
which describes a small number of enzymes containing 
polyproline motifs in prokaryotes (44–46). For the intro-
duction of polyproline in the prokaryotic expression sys-
tem, it is necessary to develop a system for the co-expres-
sion of EF-P or use an E. coli species with an already 
existing peptide (47). 

Recently, Goldenzweig et al. (48) reported a computa-
tional method based on the structure and sequence for 

the design of stable proteins for prokaryotic expression, 
Protein Repair One Stop Shop (PROSS). After successful 
expression of human AChE in the bacterial system, the 
same possibility arose for BChE. The PROSS system uses 
two filters that consider each mutation individually, lim-
iting the design of the protein to mutations that could 
further contribute to the stability of the structure. Exclud-
ing context-dependent mutations leads to the minimiza-
tion of false positives risk, i.e. structures that are stable in 
silico but unstable in vivo (48). The PROSS system pro-
posed 7 variants of BChE that were expressed in E. coli 
strain as a fusion protein of thioredoxin with preserved 
amino acid residues of the catalytic triad and gorge of the 
active site to allow safe substrate binding. Surface residue 
optimization and protein stabilization suggested by the 
PROSS algorithm allowed isolation of active BChE, 
which was then purified to homogeneity. The purified 
rBChE of prokaryotic expression contains 47 intentional 
mutations with intact active gorge granting it similar ki-
netic activity as of rBChE produced in chinese hamster 
ovaries (CHO) cells or plasma derived hBChE (49, 50). 
As post-translational N-glycosylation and presence of 
polyproline peptides were excluded from prokaryotic 
BChE expression, it was essential to preserve amino acid 
residues during PROSS analysis that maintain the ho-
modimeric structure of the protein. The isolated protein 
according to SEC-MAL analysis behaves as a monomer 
(70 kDa) despite the conservation of residues included in 
the dimer interface. The presence of two mutations in the 
immediate vicinity of the last helix, Gln518His and 
Thr523Asn, are the suspected reason for impairment of 
dimer formation. However, the crystal structure reveals a 
dimeric form surely driven by a higher local protein con-
centration (51). The homodimer is connected by a bundle 
of four helices, each monomer joined by a single pair of 
spirals forming canonical dimer observed before (28). The 
main difference in structure between human BChE ex-
pressed in E. coli and in eukaryotic expression system is 
recognized as a Cys65-Cys92 disulfide bond. It has been 
established based on the amino acid residue occupancy 
that there has been a partial breakdown of the linkage 
between the chains (51). An additional E377C/A516C 
mutation to the prior BChE mutant provided a cross-
subunit disulfide bond featuring a full dimeric form with 
unaffected catalytic activity in comparison to BChE with-
out the additional mutation. BChE with 48 mutations 
has shown improved termostability justifying that disul-
fide bonds are important for dimerization and stability of 
BChE (52). 

Previously it was not possible to express proteins that 
contain disulfide bonds in prokaryotes because of an un-
favorable reduction environment in bacterial cytoplasm 
(53). E. coli SHuffle® strains based on trxB suppression 
have enhanced capacity to correctly fold proteins with 
multiple disulfide bonds in the cytoplasm. SHuffle® 
strains also contain constitutively expressed, cytoplasmic, 
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disulfide bond isomerase to aid in the formation of disul-
fide bonds and promote proper protein folding (54, 55). 
The ability to form wanted inter monomeric disulfide 
bonds impedes misfolding and generation of unfunc-
tional proteins into the inclusion body. This is evident 
from two disulfide bonds fully formed Cys252-Cys263; 
Cys400-Cys519 in prokaryotic BChE without palpable 
denaturation and no major differences in structure of re-
combinant BChE. It is important to emphasize that by 
optimizing surface residues and stabilizing proteins, it was 
possible to isolate and purify homogeneous, active butyr-
ylcholinesterase thanks to the PROSS algorithm (51, 56). 
Further research to improve glycosylation process and 
additional expression of the polyproline peptide prokary-
otic expression system could be the answer for the produc-
tion of the therapeutic butyrylcholinesterase protein. 

EXPRESSION OF RECOMBINANT BCHE 
IN EUKARYOTIC SYSTEMS

Expression of rBChE in eukaryotic cells has been 
yielded with reliable activity in different mammalian cells 
as CHO, HEK293, COS-7 counting production up to 5 
mg/L. Technical means such as spinner, roller bottles or 
bioreactors help with the higher production of wanted 
enzymes, which for BChE should be at least 50–100 mg/l 
to hold as an affordable expression system (5, 13, 16). 
Large scale expression of BChE is often followed by an 
increase of protein misfolding due to the overload of post-
translation modification in eukaryotic cells leading to 
production of a certain amount of inactive protein. The 
development of a system with adequate co-expression of 
peptides or enzymes included in post-translation adjust-
ments can help avert decreases in specific BChE activity. 
The co-expression of the PRAD peptide during BChE 
expression in the eukaryotic system or the addition of 
chemically synthesized polyproline to the growth medi-
um can increase tetramer production by 70% (23, 57). 
Transfection of expression vectors containing EF-1 pro-
moter with proline-rich chaperons in CHO cells can in-
crease production of active rBChE to 40 mg/L (16, 58). 
BChE expressed in CHO cells showed longer retention 
times but still not as long as plasma-derived BChE (57–
59). Regardless of improvements, mammalian cells as an 
expression system of BChE are still economically undesir-
able. 

Recombinant BChE was also successfully expressed in 
the silkworm (60) Nicotiana benthamiana (61), rice (62), 
and insect cells (28) with proper enzymatic activity but 
poor yield. In cases of enzymes from silkworms and trans-
gene plants, incomplete or improper glycosylation occurs 
which can cause instability of rBChE. Even though there 
is a possibility to isolate tetrameric plant-derived rBChE 
(63), nonhuman glycan structure presents the issue of 
being recognized as an immunogen. Also, there is need 
of co-expression for sialylation which has a significant role 

in the pharmacokinetic behavior of a BChE in vivo (34, 
64). An industrial production of rBChE from milk of 
transgenic goats allows a high amount of fully active 
rBChE (up to 5 g/L) that is low-glycosylated mostly mono-
mers or dimers. It has been shown that the  PEGylation of 
rBChE prolonged its half-life in blood stream to 40−45 
hours in pigs (65). Whereas rBChE derived from milk of 
transgenic mice had better pharmacokinetic properties 
even without PEGylation (t½ =32 h in pigs), the production 
yield was low (in µg/L) (66). Except for PEGylation as a 
tool to improve circulation half-life of monomers or dimers 
expressed in milk but also in silkworms, transgenic plants, 
etc., the solution could be nanocapsules. Encapsulating 
BChE in zwitterionic polymer gel layer can protect it from 
denaturation and improve pharmacokinetic properties of 
rBChE (67). For now, PEGylated BChE from the milk of 
transgenic goat is implemented as prophylaxis or treatment 
in case of OP use until a better source emerges (65).

A novel source of therapeutic BChE was recently in-
vestigated where a fully functioning tetrameric enzyme 
was produced without the need for modifications by 
other systems. Mesenchymal stromal cells isolated form 
Wharton’s Jelly of umbilical cord known as human um-
bilical cord perivascular cells (HUCPVCs) are the key for 
this therapeutic platform (68). This expression system is 
suitable for producing native BChE but not in high 
amounts. The paradigm that HUCPVCs has cellular ma-
chinery that protects and synthetizes genetic material of 
BChE with continuous emission in circulation can be 
used to increase enzyme output with transgene encoding 
of hBChE controlled by a proper promotor. To take full 
use of this system for BChE expression there is need to 
disable the internal regulatory system of HUPCVCs that 
inhibit accumulation of BChE in the extracellular matrix 
(68). The expression system provided by HUCPVCs 
could be a future answer for in vivo delivery of BChE, 
minimizing the necessity for reiterative dosing.

VIRUS-MEDIATED EXPRESSION OF 
BCHE

The in vivo delivery system was previously investigated 
as a persistent source of stoichometric bioscavenger BChE 
to uphold sufficient levels essential for OP neutralization. 
Direct delivery to system would surely reduce the cost and 
protein loss with bypassing enzyme purification. Adeno-
virus-mediated delivery of hBChE to organs as liver or 
muscle that are capable to express functional hBChE has 
shown efficacy with increased production more than 300 
fold over the baseline in mice. Even though the concentra-
tion of hBChE showed protection up to 5 LD50 of VX in 
mice, it was not long lasting (~10 days) due to adenovirus 
immunogenicity (69–71). An alternative strategy arose 
with adeno-associated virus vectors (AAV) to produce 
hBChE after it was regarded as safe (72). The AAV vector 
used in bicistronic form to co-express hBChE and poly-
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prolin peptide facilitate the formation of fully functional 
tetramers. The administration of AAV-hBChE vectors 
with intra muscular injection provided expression of 
hBChE within 3–4 weeks in mice similar as in studies 
with intravenous injection for delivery of AVV vectors to 
the liver. From the liver, expressed enzyme levels were 
sustained for 8–16 months, but from muscles after single 
injection expression lasted without silencing up to 140 
days (73–75). Levels of expression achieved through 2–3 
weeks were sufficient to neutralize 2 LD50 VX. Taking 
into consideration the correlation of inter muscular dose 
of 1012 genome copies per mouse and 0.5 mg/ml of active 
hBChE in serum, prophylactic efficiency can be adjusted 
by vector dose (75). The results obtained so far are encour-
aging for further studies on non-human primates to as-
certain the AVV-mediated delivery efficiency and impact 
on the immunosystem with higher doses.

Recently Gao et al. (76 ) showed that the AAV gene 
transfer of BChE could impact BChE expression across 
the entire brain or in selective regions of the central ner-
vous system. Their approach was focused on the BChE 
gene transfer as a means to explore the emerging issue of 
the enzyme’s physiologic role as a key regulator of ghrelin 
in general and, more particularly, in specific brain centers 
involved in emotional states that are strongly influenced 
by this peptide hormone (76). 

CONCLUSION

Butyrylcholinesterase, even though without any essen-
tial function in the organism, has shown great importance 
as a bioscavenger for cholinergic systems in cases of OP 
exposure. One drawback to bioscavenger-based therapy is 
the need for sustained delivery of large enzyme quantities 
- an expensive process. To alleviate this problem, recom-
binant technology, expression system and more recently 
gene therapy made a major breakthrough in pursuance of 
economic goals, requirements for post-modification and 
also to gain long-term systematic expression of fully func-
tional hBChE in efficacious levels. In regard with expres-
sion system, gene therapy could also show potential in 
unresolved issues of BChE's physiological roles or its role 
in the onset and progression of Alzheimer's disease.
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