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Abstract—In a passive radar system, localizing a target in 

Cartesian space is achieved by using one of the following bistatic 

geometries: multiple non-cooperative transmitters with one 

receiver, one non-cooperative transmitter with multiple receivers, 

or one non-cooperative transmitter with one receiver. In this 

paper, we propose a new method for localizing a target in 

Cartesian space by passive radar having the bistatic geometry 

“one non-cooperative transmitter and one receiver”. This method 

depends on using two consecutive particle filters for estimating 

and analyzing the Doppler frequency and time delay of the 

target’s echo signal. The theoretical analysis of the proposed 

method is presented, and its efficiency is verified by simulating 

the passive radar system with a Digital Video Broadcasting-

Terrestrial (DVB-T) transmitter. 

Index Terms—Passive Radar, Target Localization, Estimation 

of Target Coordinates, Non-cooperative Transmitter, Receiver, 

Particle Filter, Doppler Frequency, Time Delay. 

 

I.  INTRODUCTION 
 

ASSIVE radar is a special bistatic radar that does not have 

dedicated transmitters, whereas it detects and tracks 

targets by processing electromagnetic reflections 

corresponding to non-cooperative transmitters [1]. The 

common structure of its receiver consists of the following two 

receiving channels: First, the surveillance channel for 

receiving targets’ echoes and multipath signals. Second, the 

reference channel for receiving the reference signal (direct 

signal), which is used for detecting targets’ echoes signals [2, 

3]. It has many advantages compared to active radar, such as 

lower cost and better immunity to jamming [3, 4]. 

Many researches have been conducted studying this radar, 

such as studying of signals of non-cooperative transmitters 

(e.g. Frequency Modulation (FM) radio, Global System for 

Mobile communication (GSM), Digital Video Broadcasting-

Terrestrial (DVB-T), and Digital Audio Broadcasting (DAB)) 
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 [1, 4, 5], suppression of the interference affecting the 

surveillance channel [6, 7], improving the detection of targets’ 

echoes signals [6, 8, 9], and estimation of targets’ parameters 

(e.g. velocity and coordinates) [10]-[16]. 

Passive radar estimates target’s Coordinates (or localizes a 

target in Cartesian space) by using one of the following two 

methods: First, estimating and processing the bistatic time 

delay corresponding to the transmitter-receiver pairs in the 

bistatic geometries “multiple non-cooperative transmitters or 

multiple receivers” [11]-[14]. Second, estimating and 

analyzing parameters of the target’s echo signal in the bistatic 

geometry “one non-cooperative transmitter and one receiver” 

[15]. The first method has the following disadvantages 

compared to the second method: a ghost target phenomenon 

and extra signal processing [1, 15]. 

In this paper, we propose a new method for estimating 

target’s coordinates by passive radar that has only one non-

cooperative transmitter and one receiver. This method depends 

on estimating and analyzing the Doppler frequency and time 

delay of the target’s echo signal. We suppose that the velocity 

of the studied target changes in a non-linear way, so we should 

choose one of the non-linear tracking filters for estimating the 

two mentioned parameters. There are different types for these 

filters, such as Extended Kalman Filter (EKF), Unscented 

Kalman Filter (UKF), and Particle Filter (PF) [17, 18]. The 

particle filter has better performance for estimating parameters 

that are changing non-linearly at low Signal-to-Noise Ratio 

(SNR) [17, 18], so it will be used in the paper. 

The paper is organized as follows: Section II presents the 

bistatic geometry of the passive radar system with the 

proposed method that depends on the particle filter. Section III 

explains the particle filter and its principles, taking into 

consideration the proposed method. Section IV illustrates the 

simulation of the mentioned system and discusses the 

simulation results. Section V concludes the paper. 

 

II.  PASSIVE RADAR SYSTEM 

 

A. Bistatic Geometry  

It consists of a DVB-T transmitter and one receiver, as 

shown in Fig. 1, taking into consideration that there is only

P 
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one target, where 𝑇𝑥 is the non-cooperative transmitter, 𝑅𝑥 is 

the receiver with two receiving antennas, 𝑇𝑎 is the observed 

target, SC is the Surveillance Channel, RC is the Reference 

Channel, 𝑅1 is the range between the transmitter (𝑇𝑥) and the 

target (𝑇𝑎), 𝑅2 is the effective range of the passive radar, 𝑅𝑏 is 

the bistatic range, D is the distance between the transmitter 

(𝑇𝑥) and the receiver (𝑅𝑥), (𝑥𝑎 , 𝑦𝑎, 𝑧𝑎) are the Cartesian 

coordinates of the target (𝑇𝑎), and 𝛽 is the bistatic angle. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Bistatic geometry for the passive radar system 

 

B.  Proposed Method 

It depends on estimating and analyzing the Doppler 

frequency and time delay of the target’s echo signal in the case 

of the described bistatic geometry. The target’s echo signal is 

given in (1), taking into consideration that its parameters are: 

amplitude, phase, Doppler frequency, and time delay [17, 19, 

20]. 

 
 

𝑦(𝑡) = 𝐴(𝑡) 𝑒𝑗𝜑(𝑡) 𝑆(𝑡 − 𝜏) + 𝑛(𝑡);   𝑡 = 0: 𝑇𝑝        (1) 

 

where 𝑡 is the observation time, 𝑦 is the echo signal of the 

observed target (or the observation signal), 𝐴 is the amplitude, 

𝜑 is the produced phase by the Doppler frequency (𝑓𝑑), 𝑆(𝑡 −
𝜏) is the delayed reference signal with the time delay (𝜏), 𝑛 is 

the Gaussian noise of the observation process, and 𝑇𝑝 is the 

duration of the processed data window. 

The Doppler frequency and time delay are given in (2) and 

(3), respectively [19, 20], whereas the time delay is related to 

the target’s coordinates, and the Doppler frequency is related 

to these coordinates and the Cartesian components of the 

target velocity.  
 

 

 𝑓𝑑𝑡
=

−1

𝜆
[
(𝑥𝑎𝑡

− 𝑥𝑇)𝑣𝑥 + (𝑦𝑎𝑡
− 𝑦𝑇)𝑣𝑦 + (𝑧𝑎𝑡

− 𝑧𝑇)𝑣𝑧

√(𝑥𝑎𝑡
− 𝑥𝑇)

2
+ (𝑦𝑎𝑡

− 𝑦𝑇)
2
+ (𝑧𝑎𝑡

− 𝑧𝑇)
2

  

             +
(𝑥𝑎𝑡

− 𝑥𝑅)𝑣𝑥 + (𝑦𝑎𝑡
− 𝑦𝑅)𝑣𝑦 + (𝑧𝑎𝑡

− 𝑧𝑅)𝑣𝑧

√(𝑥𝑎𝑡
− 𝑥𝑅)

2
+ (𝑦𝑎𝑡

− 𝑦𝑅)
2
+ (𝑧𝑎𝑡

− 𝑧𝑅)
2

]     (2) 

 

𝜏𝑡 = 𝜏1𝑡
+ 𝜏2𝑡

                                                                       

=  [√(𝑥𝑎𝑡
− 𝑥𝑇)

2
+ (𝑦𝑎𝑡

− 𝑦𝑇)
2
+ (𝑧𝑎𝑡

− 𝑧𝑇)
2
  

              + √(𝑥𝑎𝑡
− 𝑥𝑅)

2
+ (𝑦𝑎𝑡

− 𝑦𝑅)
2
+ (𝑧𝑎𝑡

− 𝑧𝑅)
2
]/𝑐  (3) 

where  𝜆 is the carrier wavelength, (𝑥𝑇 , 𝑦𝑇 , 𝑧𝑇)  
& (𝑥𝑅 , 𝑦𝑅 , 𝑧𝑅) are the transmitter and receiver coordinates, 

respectively, (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) are the Cartesian components of the 

target velocity, 𝜏1 is the time delay that corresponds to the 

range (𝑅1), 𝜏2 is the time delay that corresponds to the range 

(𝑅2), and 𝑐 is the speed of electromagnetic propagation.  

Note: The time delay is the bistatic time delay, which is 

related to the ranges (𝑅1, 𝑅2 & 𝐷), as shown in Fig. 1. For 

simplicity, we will consider that this delay is only related to 

the ranges (𝑅1 & 𝑅2) because the range (D) is known, as given 

in (3). 

According to (2) and (3), if the receiver can estimate the 

Doppler frequency and time delay, then the target’s 

coordinates will be estimated by searching the coordinates that 

correspond to the estimated Doppler frequency and time delay. 

This is achieved by implementing the following two 

estimation stages: First, we estimate the Doppler frequency 

and time delay by the first particle filter. Second, we estimate 

these coordinates by the second particle filter depending on 

the estimated parameters from the first estimation stage.  

For clarification, the role of the particle filter will be 

explained in the following section. 

 

III.  PARTICLE FILTER 

 

A.  Introduction 

The Particle Filter is a method for implementing Recursive 

Bayesian Filter by Monte Carlo Sampling, whereas it depends 

on propagating in a non-linear way, of a set of weighted 

particles in a range of a studied state. The estimation results 

can be computed by processing particles’ weights and states 

with helping from system observations. For better 

performance, the particles should be re-propagated 

(resampled) by using the resampling step [16], [20]-[23]. 

For each weighted particle, two equations should be 

processed for computing the estimation results. These two 

equations are the state equation and measurement equation, 

which are given in (4) and (5), respectively [16]-[24], where 𝑡 

is the current measurement time, (𝑡 − 1) is the previous 

measurement time, 𝑥 is the state vector (𝑥 ∈ ℝ𝑛𝑥), 𝑓 is a 

nonlinear function and it is a known function, 𝑣  is the state 

noise vector that has a Gaussian distribution (𝑣 ∈ ℝ𝑛𝑣); 

 𝑣~ 𝒩(0, 𝜎𝑣
2), 𝑍 is the measurement signal, and ℎ  is a 

nonlinear function and it is a known function. The symbol 

(𝒩(𝑚, 𝜎2)) denotes the Gaussian density function with the 

mean (𝑚) and variance (𝜎2). 

   
𝑥𝑡 = 𝑓 (𝑥𝑡−1) + 𝑣𝑡                                         (4) 

 

𝑍𝑡 = ℎ (𝑥𝑡)                                                     (5) 

 

There are different types of the particle filter, such as the 

Maximum Likelihood Particle Filter (MLPF), Minimum 

Variance Particle Filter (MVPF), and Dirac Particle Filter 

(DPF). The type (MLPF) has less complexity with higher 

𝑦 
𝑦𝑎 

𝑅1 𝑅2 

𝑇𝑎

a 

𝑥 

𝑥𝑎 

𝑇𝑥 
𝑅𝑥 

𝑧𝑎 
𝑧 𝑅𝑥@(0,0,0) 

𝑇𝑥@(0,D, 0) 

𝑇𝑎@(𝑥𝑎 , 𝑦𝑎 , 𝑧𝑎) 
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RC 
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estimation accuracy compared to other types [17, 18]. 

Therefore, we will estimate the target’s coordinates depending 

on the type (MLPF). 

The Maximum Likelihood Particle Filter depends on the 

Likelihood function and Extended Kalman Filter for 

computing estimation results. It is achieved by implementing 

the following steps in each observation time, taking into 

consideration that the initial propagated particles have random 

states and equal weights; {𝑤𝑡=0
𝑖 = 1/𝑁𝑠 , 𝑖 = 1: 𝑁𝑠}, where 

𝑤𝑡=0
𝑖  is the initial weight of the particle (𝑖), 𝑁𝑠 is the number 

of particles, and 𝑖 is the index of these particles [16, 17], [21]-

[24], (See the red particles in Fig. 2). The mentioned steps are 

as follows: 

1) Approximating the Likelihood function (𝑝(𝑦𝑡/𝑥𝑡
𝑖)), and 

then Updating the particles’ weights based on the 

following equation, (See the brown curve and the blue 

particles in Fig. 2). 
 

𝑤𝑡
𝑖 = 𝑤(𝑡−1)

𝑖 ∗ 𝑝(𝑦𝑡|𝑥𝑡
𝑖) = 𝑤(𝑡−1)

𝑖 ∗ 𝒩(𝑦𝑡 − ℎ (𝑥𝑡
𝑖),  𝑅𝑡)   

 

      = 𝑤(𝑡−1)
𝑖 ∗ 𝒩(𝑦

𝑡
− 𝑍𝑡

𝑖 , 𝑅𝑡)                     (6) 

 

where (𝑤𝑡
𝑖 , 𝑤(𝑡−1)

𝑖 ) are the current and previous weight for 

the particle (𝑖), respectively, p is the probability density 

function (PDF), and  𝑅  is the covariance matrix [21, 24]. 

2) Normalizing the updated weights by the following 

equation. 
 

𝑤𝑡
𝑖 = 𝑤𝑡

𝑖/∑𝑤𝑡
𝑖

𝑁𝑠

𝑖=1

                                           (7) 

 

3) The estimated values are calculated by the following 

equation: 
 

�̂�𝑡 = ∑(𝑤𝑡
𝑖 ∗ 𝑥𝑡

𝑖)

𝑁𝑠

𝑖=1

                                         (8) 

 

4) For better estimation, the particles that have higher weights 

should be selected for re-propagating other weighted 

particles in another range of the studied state. This is 

achieved by the resampling step, whereas the weights of 

the resampled particles are: {𝑤𝑡
𝑖 = (1/𝑁𝑠); 𝑖 = 1:𝑁𝑠}. See 

the blue and green particles in Fig. 2, [21]-[24]. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Representation of steps of the particle filter 

We have mentioned that the target’s coordinates can be 

estimated by using two-particle filters in two consecutive 

estimation stages. For clarification, the state and measurement 

equations of these two filters will be illustrated in the 

following subsection, taking into consideration the time 

between the observations of the studied system. 

 

B.  Equations of Two Particle Filters   

B.1 Equations of the First Particle Filter 

 

1) State equation: It is related to the following parameters of 

the target’s echo signal (amplitude, phase, Doppler 

frequency, and time delay). It is described in (9), [19, 20], 

where 𝑥1 is the state vector of the first particle filter, 𝑖1 is 

the index of the filter’s particles; (𝑖1 = 1:𝑁𝑠1
), 𝑁𝑠1

 is 

the number of the filter’s particles, (𝑣𝐴, 𝑣𝜑 , 𝑣𝑓𝑑 , 𝑣𝜏) are 

the Gaussian noises, and 𝑓0 is the carrier frequency. 
 

𝑥1𝑡

𝑖1 =

[
 
 
 
 
 𝐴𝑡

𝑖1

𝜑𝑡
𝑖1

𝑓𝑑𝑡
𝑖1

𝜏𝑡
𝑖1 ]

 
 
 
 
 

=

[
 
 
 
 
 
 𝐴𝑡−1

𝑖1

𝜑𝑡−1
𝑖1 + 2𝜋𝑓𝑑𝑡−1

𝑖1 𝑇𝑝

𝑓𝑑𝑡−1

𝑖1  

𝜏𝑡−1
𝑖1 −

𝑓𝑑𝑡−1

𝑖1

𝑓0

𝑇𝑝 ]
 
 
 
 
 
 

+

[
 
 
 
 
𝑣𝑡

𝐴

𝑣𝑡
𝜑

𝑣𝑡
𝑓𝑑

𝑣𝑡
𝜏 ]
 
 
 
 

          (9) 

 

2) Measurement equation: It is given in (10), [19, 20]. 
 

𝑍𝑡
𝑖1 = 𝐴𝑡

𝑖1𝑒𝑗𝜑𝑡
𝑖1
 𝑆(𝑡 − 𝜏𝑡

𝑖1)                        (10) 
 

 ( 𝑡 = 0: 𝑇𝑝 )       

 
B.2 Equations of the Second Particle Filter 

 

1) State equation: It is related to the parameters of the target 

movement in Cartesian space. It is described in (11), [19], 

where 𝑥2 is the state vector of the second particle filter, 𝑖2 

is the index of the filter’s particles; (𝑖2 = 1:𝑁𝑠2
), 𝑁𝑠2

 is the 

number of the filter’s particles, (𝜀𝑥𝑎 , 𝜀𝑦𝑎 , 𝜀𝑧𝑎) are the 

Gaussian noises that are related to the state vector of the 

position, and (𝜀𝑣𝑥 , 𝜀𝑣𝑦 , 𝜀𝑣𝑧) are the Gaussian noises that 

are related to the state vector of the velocity components.  
 

𝑥2𝑡

𝑖2 =

[
 
 
 
 
 
 
 
 𝑥𝑎𝑡

𝑖2

𝑦𝑎𝑡

𝑖2

𝑧𝑎𝑡

𝑖2

𝑣𝑥𝑡

𝑖2

𝑣𝑦𝑡

𝑖2

𝑣𝑧𝑡

𝑖2
]
 
 
 
 
 
 
 
 

 =

[
 
 
 
 
 
 
 
 𝑥𝑎𝑡−1

𝑖2 + 𝑣𝑥𝑡−1

𝑖2  𝑇𝑝

𝑦𝑎𝑡−1

𝑖2 + 𝑣𝑦𝑡−1

𝑖2  𝑇𝑝

𝑧𝑎𝑡−1

𝑖2 + 𝑣𝑧𝑡−1

𝑖2  𝑇𝑝

𝑣𝑥𝑡−1

𝑖2

𝑣𝑦𝑡−1

𝑖2

𝑣𝑧𝑡−1

𝑖2
]
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
𝜀𝑥𝑎𝑡

𝜀𝑦𝑎𝑡
 

𝜀𝑧𝑎𝑡

𝜀𝑣𝑥𝑡

𝜀𝑣𝑦𝑡

𝜀𝑣𝑧𝑡 ]
 
 
 
 
 

       (11) 

 

2) Measurement equation: It is given in (12), [19, 20], where 

𝑋𝑎 
 is the target’s position vector, 𝑋𝑇 is the transmitter’s 

position vector,  𝑋𝑅 is the receiver’s position vector, 𝑉   is 

the target’s velocity vector, and ‖ ‖ is the norm of a vector. 

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑛𝑔  

&  𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 

𝑈
𝑝
𝑑
𝑎
𝑡𝑖

𝑛
𝑔

 

𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 
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𝑍𝑡
𝑖2 = [

𝑓𝑑𝑡
𝑖2

𝜏𝑡
𝑖2

] =

[
 
 
 
 −1

𝜆
[
(𝑋𝑎𝑡

𝑖2 − 𝑋𝑇)𝑉𝑡
𝑖2

‖𝑋𝑎𝑡

𝑖2 − 𝑋𝑇‖
+

(𝑋𝑎𝑡

𝑖2 − 𝑋𝑅)𝑉𝑡
𝑖2

‖𝑋𝑎𝑡

𝑖2 − 𝑋𝑅‖
]

 ‖𝑋𝑎𝑡

𝑖2 − 𝑋𝑇‖ + ‖𝑋𝑎𝑡

𝑖2 − 𝑋𝑅‖

𝑐 ]
 
 
 
 

       (12) 

 

Note: The observation signal of this (PF) depends on the 

estimated Doppler frequency and time delay from the first PF. 

By focusing on (3) and taking into consideration the 

proposed method, we notice that the summation in this 

equation affects the estimation of the target’s coordinates with 

ambiguity in the estimation. This ambiguity is related to 

infinite probabilities giving the same result of the summation. 

Therefore, the estimated coordinates will be estimated with 

ambiguity. To complete this estimation correctly without 

ambiguity, we will depend on the estimated Cartesian 

components of the target velocity. But this approach cannot be 

completed without initial values of the target’s coordinates, 

whereas these values can be taken from results of other 

researches or by using a third particle filter. For clarification, 

we will consider that the estimated coordinates “with 

ambiguity” are the primary estimated coordinates, and the 

other estimated coordinates are the corrected estimated 

coordinates. 

Figure-3 shows the flow chart of the proposed method, 

where the symbol (^) refers to an estimated parameter, 

[𝑥𝑎0
  𝑦𝑎0

  𝑧𝑎0
]
𝑇

 indicates the initial coordinates of the target, T 

is the transposition, ∆𝑡 is the time difference between two 

consecutive observations, and �̂�𝑒 is the estimated velocity.  
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 3. Flow chart of the proposed method 

IV.  SIMULATION AND RESULTS 

 

A.  Simulation 

MATLAB software is used for simulating the passive radar 

system that consists of a DVB-T transmitter [25], the radar 

receiver, and the Gaussian Noise channel with one observed 

target. To complete the description of this simulation, we will 

add the technical characteristics of the components of the 

mentioned system, as listed in Table I, where ERP refers to 

(Effective Radiated Power), and OFDM refers to (Orthogonal 

Frequency Division Multiplexing). 

 
TABLE I 

TECHNICAL CHARACTERISTICS OF TRANSMITTER, RECEIVER, AND TARGET 

 

1/4 Cyclic Prefix 50 (KW) ERP  

D
V

B
-T

 T
ra

n
sm

it
te

r
 

(0, D, 0) 
 

Cartesian 

Coordinates 
474 (MHz) 

Carrier 

Frequency  

5 (Km) D 8 (MHz) Bandwidth 

1 (dB) Losses 
 8K mode/ 

64QAM 

Transmission 

Mode  

1 (dB) Losses 22 (dB) 

Gain of 

Surveillance 
Antenna  

R
ec

ei
v

er
 

0.1499 (s) ∆𝑡  2.5 (dB) 

Gain of 

Reference 
Antenna  

2.2 (ms) 𝑇𝑝  (0, 0 , 0) 
Cartesian 

Coordinates 

  2 (dB) Noise Figure 

(8, 8, 3) 
(Km)  

Initial 
Coordinates 

6 (m2) 
Monostatic 

RCS 

T
ar

g
et

 

 

We consider that the observed target moves according to the 

trajectory shown in Fig. 4, and its velocity changes according 

to Fig. 5. Therefore, the (SNR) of the target’s echo signal 

changes according to the range [9.8 → 17.1](𝑑𝐵), and the 

mentioned target is detected with a false alarm probability of: 

(10−4). 
 

 
Fig. 4. Trajectory of the observed target. 

Estimating the 

parameters (𝐴,𝜑, 𝑓𝑑, 𝜏) 

Target’s echo 

signal 

The first estimation stage 

(The first particle filter)  

The second estimation 

stage (The second particle 

filter) 

Estimating 

(𝑥, 𝑦, 𝑧)& (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)  

 Primary 

estimated 

Coordinates 



 𝑥𝑎𝑡
= 𝑥𝑎𝑡−1

+ 𝑣𝑥𝑡−1
∗ ∆𝑡

 �̂�𝑎𝑡
= �̂�𝑎𝑡−1

+ 𝑣𝑦𝑡−1
∗ ∆𝑡

 𝑧Ƹ𝑎𝑡
= 𝑧Ƹ𝑎𝑡−1

+ 𝑣𝑧𝑡−1
∗ ∆𝑡

 



�̂�𝑥

�̂�𝑦

�̂�𝑧

 

[

𝑥𝑎0

𝑦𝑎0

𝑧𝑎0

] 

Corrected estimated 

coordinates  

𝑓
መ
𝑑

𝜏Ƹ
൨ 

Estimating the velocity of 

the observed target  

൬�̂�𝑒 = √𝑣𝑥
2 + 𝑣𝑦

2 + �̂�𝑧
2൰ 

By using a third PF 

Depending on results 
of other researches  
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        Fig. 5. Velocity of the observed target as a function of time 

 
This simulation has been achieved with the following 

considerations: 

1) The target’s echo signal is detected by correlating the 

reference signal with the surveillance signal. This process 

is achieved by applying the Maximum Likelihood method 

to the output of a bank of matched filters, which are tuned 

to different Doppler frequencies [1, 10, 19].  

2) The range of the Signal-to-Interference ratio (SIR) is 

[−70.8 →  −63.2](𝑑𝐵), whereas this parameter is very 

important for detecting the target’s echo signal in the 

surveillance channel [7]. 

3) Estimation accuracy is related to the standard deviation of 

estimation errors. It is given in (13), [16, 18], where 𝜎𝐸𝐴 is 

the Estimation Accuracy of the studied parameter, 𝑀 is the 

number of observations, 𝑑 is the estimation error that has 

the equation: (𝑑𝑖 = 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒𝑖 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑖), and 𝜇 is 

the mean of estimation errors. 

 

𝜎𝐸𝐴 = √
1

𝑀 − 1
∑(𝑑𝑖 − 𝜇)2

𝑀

𝑖=1

                   (13) 

 

4) The initial coordinates of the observed target are taken 

from the method of [15], whereas authors of this reference 

studied estimating the target’s coordinates by analyzing the 

bistatic geometry of passive radar with a single non-

cooperative transmitter and a single receiver. 

5) The movement of targets at high velocities imposes a  

noise on the state vector of a studied system, whereas it is 

uncorrelated with the state noise vector. This noise is 

called Dynamic Noise, and it is Gaussian noise with a 

variance and zero mean [17, 18]. We will list its Gaussian 

distribution in the case of our parameters as follows, where  

(𝐷𝑁) is the Dynamic Noise, and (nor) refers to 

“normalized”. 

• 𝐷𝑁𝐴~𝒩(0, 0.01 
2 (𝑛𝑜𝑟)) 

• 𝐷𝑁𝑓𝑑~𝒩(0, 1 
2 (𝐻𝑧2)). 

• 𝐷𝑁𝜏~𝒩(0, 0.0035 
2 (𝑛𝑜𝑟)).  

• 𝐷𝑁𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛~𝒩(0, 12 (𝑚2)). 

•  𝐷𝑁𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦~𝒩 ൬0, 0.12  (
𝑚

𝑠
)

2

൰. 

6) The parameters of those two consecutive particle filters are 

listed in Table II, where (𝜎) is the standard deviation, [17]-

[19]. 

 
TABLE II 

PARAMETERS OF TWO CONSECUTIVE PARTICLE FILTERS 

 

F
ir

st
 P

ar
ti

cl
e 

F
il

te
r 

𝑁𝑠1
 27 𝜎𝑤𝐴 (normalized) 0.001 

𝜎𝑤𝑓𝑑  
  (Hz) 0.1 𝜎𝑤𝜏  (normalized) 0.001 

S
ec

o
n
d

 P
ar

ti
cl

e 
F

il
te

r 
𝑁𝑠2

 300 𝜎𝜀𝑣𝑥 
(𝑚/𝑠)  0.05 

𝜎𝜀𝑥𝑎 
(𝑚)  0.5 𝜎𝜀𝑣𝑦 

 (𝑚/𝑠) 0.05 

𝜎𝜀𝑦𝑎 
(𝑚) 0.5 𝜎𝜀𝑣𝑧 

(𝑚/𝑠) 0.05 

𝜎𝜀𝑧𝑎 
(𝑚) 0.5   

Standard deviations 
of initial coordinates 

(m) 

[
86
95
17

] 
Standard deviations 

of initial velocity 

components (𝑚/𝑠) 
[
12
12
6

]  

 

B.  Results  

After performing the simulation of the passive radar 

system, we obtained the estimated parameters (amplitude, 

Doppler frequency, and time delay) resulting from the first 

estimation stage, whereas the estimation accuracies were as 

follows: 𝜎𝐴 = 0.012 (normalized), 𝜎𝑓𝑑
=1.24 (Hz) and 𝜎𝜏 =

0.0039 (normalized). See figures (6, 7, and 8) that show the 

results of the first estimation stage. 
 

 
Fig. 6. Real and estimated amplitude as a function of time 
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Fig. 7. Real and estimated Doppler frequency as a function of time 

 

       
Fig. 8. Real and estimated time delay as a function of time 

 

After performing the second estimation stage based on the 

results of the first estimation stage, we can obtain the primary 

coordinates, the corrected coordinates, and the Cartesian 

components of the target velocity. To verify the efficiency of 

the proposed method, we will show the estimated parameters 

as follows: First, the primary and corrected coordinates, as 

shown in Fig. 9 and Fig. 10, respectively. Second, the velocity 

of the target, which is estimated by calculating the resultant of 

the estimated Cartesian components of the target velocity, as 

shown in Fig. 11. The estimation accuracy of the target 

velocity is (𝜎𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 0.74 (𝑚/𝑠)). 

 

       
Fig. 9. “Real” and “primary estimated” coordinates as a function of time 

 
      Fig. 10. “Real” and “corrected estimated” coordinates as a function of time 

 

  
Fig. 11. Real and estimated velocity of the target as a function of time 

 

Note: We have mentioned that the primary estimated 

coordinates are not the right ones, meanwhile they lead to the 

same time delay that corresponds to the corrected estimated 

coordinates, as shown in Fig. 12. 
 

 
Fig. 12. Real and calculated time delay as a function of time 

 

C.  Discussing the Simulation Results 

By focusing on the simulation results, we notice the 

following points: 

• The estimation accuracies of the corrected estimated 

coordinates are related to the standard deviations of  
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the initial coordinates. 

• The target’s coordinates have been estimated for the 

observed target that moves along the specific trajectory, 

which was a straight trajectory. In the case of a 

maneuvering target, having a “zigzag” trajectory, for 

example, the proposed method fails, and the target’s 

coordinates cannot be estimated correctly. To be able to 

estimate them correctly in that case of the “zigzag” 

trajectory, we need to determine/estimate the direction of 

the target according to the axes of Cartesian space. 

• Processing the passive radar with bistatic geometry “One 

Non-cooperative Transmitter / One Receiver” overrides the 

disadvantages of Multistatic Passive Radars [15]. 

• The effectiveness of this method has been compared with 

that of the method of [15]. Comparison results are 

illustrated in the following table.  

 
TABLE III 

COMPARISON WITH THE METHOD OF [15] 

 

 Method of this paper Method of [15] 

Bistatic geometry 
One Pair 

 (𝑇𝑥 − 𝑅𝑥) 

One Pair  

 (𝑇𝑥 − 𝑅𝑥) 

Complexity More complexity Less complexity 

Estimation accuracies 

of target’s coordinates 

Errors are related to 
the standard deviations 

of the initial 

coordinates 

Errors are related to 

the method of 
processing 

Estimation of target’s 

coordinates without the 
need for initial 

coordinates 

Not effective 

(These initial 
coordinates can be 

taken from results of 

other researches or by 
using a third particle 

filter) 

Effective 

Estimation of Doppler 

frequency and velocity 
More effective Less effective 

Estimation of target’s 

coordinates in the case 

of a slight zigzag 
trajectory 

Effective Effective 

Estimation of target’s 

coordinates in the case 

of a strong zigzag 
trajectory 

Less effective More effective 

  

• Integrating the method of this paper with the method of 

[15] can improve the performance of the proposed passive 

radar for tracking targets in many spaces, such as 

“Cartesian space”, “Spherical space”, “Doppler Frequency-

Time delay”, and “Velocity-effective range”.  

 

 

 
 

 

V.  CONCLUSION 
 

In this paper, a new method has been proposed for 

localizing a target in Cartesian Space by passive radar that has 

a single bistatic geometry (one DVB-T transmitter and one 

receiver). This method depends on estimating and analyzing 

the Doppler frequency and time delay of the target’s echo 

signal, by using two consecutive particle filters. By 

performing the simulation of the proposed passive radar 

system, we have achieved localization of a target in Cartesian 

space by estimating its Cartesian coordinates. The 

effectiveness of the proposed method has been illustrated by 

comparing the simulation results with other researches. 
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