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Abstract—In this paper we propose an approach for classifying
documents, embedding documents into feature vectors and using
these embeddings for finding similarities between them. Our
chosen domain for applying this method is the IT-Service Support
branch, where the documents we try to analyse are support
tickets and the potential of classifying and finding patterns
between tickets is huge for optimizing the service process. We aim
to tackle the problem with multiple methods of text classification
and recognition, and data analysis, followed by comparison and
interpretation of the results. Following our previous work in this
field, we propose further means of validating our models, so we
can describe and visualize several methods of feature extraction
and recognition for service tickets that help the business process
for Service Support.

I. INTRODUCTION

Data analysis in an informal context, especially in the Natural
Language Processing (NLP) [1] branch, has been proven a
difficult subject, in which humans still outperform machines.
Our contribution to this domain mainly lies in the method
of extracting embedding from ticket documents and using
these to analyse our data pool and derive concepts: ticket
embeddings allow us to analyse tickets through mathematical
methods. Their key advantage is projecting a text from the
informal human language into a formal one, that can be
manipulated by machines.
In our previous paper [2] we describe the steps we took for

developing ticket classifiers along with extracting and analyz-
ing features. Continuing our work, we focused on interpreting
our achieved results through different means, and ways we can
aid our business domain into making an educated decisions,
based on these interpretations.
In the following sections we will discuss the problems we

tackled in the context of service process optimization, and
aspects relevant to the problem domain, our approach, our im-
plementation of the agent(s) for pattern recognition and feature
extraction, the achieved results and means of interpretation
together with output enhancements that better suit the practical
domain of our scope.
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II. THE SERVICE-FLOW OPTIMIZATION PROBLEM

As discussed in [2], we want to aid the HelpDesk process
through augmenting it with two main automated features:
classifying tickets into service categories and finding similar
tickets for a new incoming one.
The problems we tried to tackle came into a cascade format,

but to reiterate shortly, these were the steps we took towards
a solution for optimizing the HelpDesk process:
Firstly we had to classify tickets into Service Requests and

Incidents. A service request is an application someone makes
when they need a service, a functioning item or a Helpdesk
clearance. This category includes network access, phone and
laptop requests, admin rights, and others. Whereas the Incident
is a type of ticket that the user usually makes when he
experiences some kind of problem or failure, it is denoted
by the fact that something is not working properly. Common
records for this type of event are hardware or software failures
that occur most of the time. This classification type (Service
vs. Incident) is called Procedure Type.

Our usecase subsequently developed into a more detailed
ticket type hierarchy: Request Type. This form of classification
has several more label forms (around 120), with random
variations in frequency in all groups. So we took the top 50%
tickets from the most commonly seen groups and were left
with 12 separate courses for our training so to avoid coping
with the distorted classes [3]. The following sections include:
E-mail and exchange queries, VPN communication, orders or
enquiries for hardware and accessories, password resets and
much more.
After ticket classification, came another opportunity to op-

timize the Service process: by finding similarities between
tickets. Similarly to the Frequently Asked Questions (FAQ)
concept, routine requests or problems appear more often and
share similarities in text, thus having the same solutioning
process.
However, the linguistic barrier imposes a noticeable diffi-

culty: mails are sent to the HelpDesk team in multiple lan-
guages, including English, German and Romanian. Moreover,
roughly 95% of the inquiries in our context are made in
German. This means that it was imperious for us to find natural
language processing tools that can operate on the German
corpus and vocabulary. Also, our solution should be able to
work for English and Romanian texts as well, making the task
even more complicated.
Related work tackles a classical classification problem: spam

filtering. For instance, [4] presents a wide range of machine
learning methods for e-mail filtering and classification. Other

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 1, MARCH 2021 29

1845-6421/03/1024 © 2021 CCIS

FESB
Typewritten Text

FESB
Typewritten Text
Original scientific article

FESB
Typewritten Text

FESB
Typewritten Text



authors use Support Vector Machines [5] and Artificial Neural
Networks (ANN) [6]. The efficiency of Multilayer Perceptrons
regarding spam filtering has been studied in [7]. Through
yielding noticeable results, a particular weakness of these
models is their incapacity to perceive the context: the hu-
man language is strongly context sensitive, especially when
it comes to order. This key problem is addressed in [8],
where the authors also propose a solution for this: Recurrent
Neuronal Networks [9]. Numerous other works in the field of
Natural Language Processing [10], [11] are using Recurrent
Neuronal Networks for text-document classification, since they
represents the state of the art in this field due to their ability
to process data in a time-dependent form. Since the core of
our problem relies on text classification using NLP methods
for ticket sorting, we attempted to achieve similar results by
using these types of neural networks, as will be described in
the following sections.

III. OUR APPROACH

For our usecase we researched a particular branch of tools
form the field of Natural Language Processing, capable of
capturing features and classifying a text into categories:
Word2Vec [12], and GloVe [13] word representations. Another
representation of words in a text we used was the Bag Of
Words Model (BoW) [14] that basically represents a word
counter vector of all the words of a text in relation to the
vocabulary of the corpus used. BoW was used as well as
an independent encoder, as in conjuncture with Word2Vec
embeddings.
As described in [2], the above mentioned methods were

used for coding the input of our neural networks in two
ways: a BoW vectorial input, which simply represents an one-
dimensional tensor the size of the vocabulary, and sequences
of indexes, in which each word is represented by it’s index
in the corpus vocabulary. A sequence is a vector of indexes
that represent words of the vocabulary. The advantage is,
these indexes appear in the order of the words in text, thus
preserving the structure of the message. The texts were also
preprocessed before encoding them, eliminating redundant
parts and recurring formulas.
For the models we decided to use neural networks with differ-

ent types of architectures and layers. We used the Rosenblatt
Perceptron [15] as a binary classifier for the Procedure Type
problem, as it only has 2 classes. Afterwards we extended
our networks with additional layers, to achieve a finer model
with better performance, and output sizes, to fit the Request
type classification. Long Short Term Memory [16] layers
were used, that specialize in processing ordered sequences of
input. As our task is to classify texts, the order of words is
tremendously relevant for the context of the given message,
thus we chose to use these types of layers as they capture
patterns from an ordered set of inputs. For these layers, the
sequential vectors described above is essential, as they process
the input element-wise and their final prediction is influenced
by the order of elements as well.
Our idea of finding ticket similarities was based on

Word2Vec: we wanted to encode an entire document with a
vector, much like Word2Vec embeds one single word into a

vector (In here a document is referred to as a text from a
ticket). This method is known as Doc2Vec and it has many
options of implementation (ours will be explained in the next
sections), as it is our customized way of doing so. The reason
why Doc2Vec helps us for finding similarities, is that after
embedding our texts into vectors, we basically built a hash-
function that mapped our tickets in an n-dimensional vector
space, so they can be compared. To establish a measure of
similarity between them, we decided to use the same measure
that is used for the similarity of Word2Vec embeddings,i.e.,
Cosine similarity.

sim(A,B) =
A ·B
‖A‖ · ‖B‖

(1)

The cosine distance of two vectors (1), A and B, is calculated
based on their scalar product and is used as a similarity
measure. The idea behind this is that the closest two vectors
are to each other, the more similar their meanings in our
vector space would be. Ergo, the closer the two vectors are
to each other, the smaller the angle between them, the greater
their cosine distance. Since the embedding vectors are fairly
normalized and do not have significant variations in their
norms, this cosine value is a valid unit for their similarity
score calculation.

A. Additional Output Enhancements

Furthering our agenda, we needed a more practical way
to interpret our results, so we adopted different metrics and
visualization techniques, such as three dimensional T-SNE
[17] and Receiver Operating Characteristics curve [18], de-
scribed in the sections to follow. Also, in an effort to put the
classification model’s results into a practical perspective and
augment it’s value for the HelpDesk department, we devised
a method to threshold it’s output, in order to filter potential
mistakes. This approach was meant to restrict the model’s
predictions under a certain threshold, artificially introducing
a third class (not classified) to our model, and increasing the
overall value our project might add to the service department,
as will be explained in the results section.

IV. IMPLEMENTATIONS

During the course of our project we adopted an iterative
model of development. We had multiple phases which took
place sequentially, each contributing to upgrading the solution
to its final state. All phases are described in detail in [2]. In
the following we will describe a short summary iterations, to
better understand the evolution of the project.
In the Proof of concept phase (or experimental phase) we

wanted to test our NLP tools and methods and to do so
we implemented a basic Support Vector Machine [5] or a
Perceptron for the classification of movie reviews, from the
Internet Movie Database (IMDB) dataset.
After our first experiment with NLP techniques was success-

ful, we received the first batch of data to be classified based
on the Procedure Type. The data consisted of around 10000
mail tickets, that were received and solved from the Helpdesk.
The first models developed in the proof of concept phase,
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were used with the same configurations. The main difference
however, was the language of the datasets. If on our IMDB
reviews were all written in English, the received tickets were
all in German. For lemmatization in German, we relied on the
GermaNet [19] database, from the University of Tübingen.
The difference of context between the two sets (movie

reviews are more fluent then support tickets) made it harder to
distinguish between Service Requests and Incident. The per-
formance of the models were thus accordingly weaker, so we
had to use more developed technologies for our models. This
is where Keras [20] and LSTM-layers come into discussion.
Keras is an open-source neural-network library for Python,
designed for easy user-experience, as well as fast experiments
with deep neural networks and customizability. We used Keras
as a wrapper for the TensorFlow backend. The full architecture
of the network can be seen below in Figure 1.

Fig. 1. NN architecture

Following our success with the first batch, we received a
second batch of data and concatenated them both, resulting
in a total of 48775 tickets on which we ran our Procedure
Type classifier again, and in addition a Request Type classifier
with the same architecture. In order to avoid skewed classes
training [3] for the Request Type model, we selected only those
classes with a frequency of appearance of more than 1000
times, thus we were left with 22134 entries for our dataset,
spread around 12 different classes. Additionally, o enhance
resolution, we also added an extra LSTM-layer to each of the
models, identical to the first one.
After classifying tickets, tended to the embedding extrac-

tion matter, used for computing similarities. We took the
penultimate layer output from the Request Type model (the
added LSTM-layer, right before the output layer) for repre-
senting vector embeddings. After these embeddings have been
extracted, the cosine distance formula can now be used to
calculate ticket similarities. With the help of the T-Stochastic
neighborhood [17] algorithm, we plotted all extracted ticket
embeddings to visualize them . TSNE is a way to reduce multi-
dimensional data sets to 2 or 3-dimensional vectors, to be seen
in a vector space that is humanly perceptible. This reduction
in dimensionality is calculated based on likelihood between
multi-dimensional vectors.

In order to asses that our embeddings were working and the
similarity measure used was correct, we used alpha-clustering
algorithms to create ticket hubs in our plot to visually illustrate
similarities: two tickets were connected via a line each which
had the similarity (based on their network extraction) greater
than a predefined threshold α. We could thus see how refined
the classifiers got through training and how useful the cosine
distance measure can be in order to find similar tickets.

V. RESULTS AND ANALYSIS

The results and performances of all the models in each
iteration are presented thoroughly in [2]. We are going to
mention only the best performing models.

A. Procedure Type classifier

After augmenting it with a second LSTM-layer and training
on an extended dataset of roughly 48000 entries, the per-
formance of the Procedure Type classification model can be
viewed below in Table I, with it’s validation accuracy peaking
at 86.5%.

TABLE I
METRICS SCORES OF LSTM MODEL ON PROCEDURE TYPE

Class Precision Recall F1 score Accuracy
Service Request 91% 91% 0.91 86.5%Incident 72% 71% 0.72

B. Request Type Classifier

For the Request Type classification we used the same model
in the same training context. The performance results can be
viewed in Table II.

TABLE II
METRICS SCORES OF LSTM MODEL ON REQUEST TYPE

Class Precision Recall F1 score Accuracy
Other Installations 79% 89% 0.84

67%

VPN Renewal 66% 85% 0.74
Outlook/Exchange 58% 77% 0.66

Mail 71% 38% 0.50
Hardware Order 65% 63% 0.64
New Installation 67% 48% 0.56

Onsite Support RO 79% 79% 0.79
VPN Client Notebook 49% 53% 0.51

Password Recovery 85% 76% 0.80
Standard Accessory 53% 50% 0.51

Lync 72% 82% 0.77
VPN Client 50% 31% 0.38

C. Similarities Plots

Based upon the Procedure type model, we extracted embed-
dings as described above and plotted the TSNE graph as illus-
trated below. In Figure 2, each dot represents a ticket from a
sample of 1000 entries from our data set, that has been reduced
to a 2-dimensional point. Through the clustering algorithm, we
connected each 2 tickets with a similarity score greater than
0.6 with a line, thus creating two big hives of data. Upon a
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close look we discovered that these clusters represented the
accumulating points of our two classes: Service Request and
Incident, and our network would most of the time place an
entry inside the vectorial space of these 2 hives.

Fig. 2. Service Request vs. Incident clustering visualization

For the Request type, we applied the same algorithm leading
to similar results. We can see more clusters forming in Figure
3 and numerous similarity connections between tickets of the
same cluster.

Fig. 3. Request Type clustering visualization

D. Request Type Clustering

We also plotted all tickets from a class to a specific color, in
order to better identify the forming of clusters for the Request
Type agent. Upon closer inspection we noticed an interest-
ing phaenomenon: tickets from classes of similar semantic
grouped together. This can be visualized in Figure 4, where
strongly defined clusters contain points from 2 similar classes
that merge together: Outlook / Exchange with Mail, Hardware
Order with Standard Accessory which basically represent
hardware and accessories requests, VPN Client Notebook with
VPN Client and New Installation with VPN Renewal, which
have to deal with overall authorization certificate renewal and
creation.
This anomaly inspired us to retrain our model in a different

way: to combine every grouping class in one and so refine
the data in the hope of improving its performance. As shown
in Table III, the newly trained 8-class model achieved 80.8%
precision and much higher measurements in the preliminary
unmerged classes. The result was impressive. After this suc-
cess we computed the clustering analysis again, this time with

Fig. 4. Request Type clustering visualization: each class highlighted

merged classes. The results were significantly better, as seen
in Figure 5.

TABLE III
METRICS SCORES OF LSTM MODEL ON REQUEST TYPE MERGED

Class Precision Recall F1 score Accuracy
Other Installations 85% 88% 0.87

80.8%

VPN Renewal 82% 86% 0.84
Mail 78% 83% 0.81

Hardware Order 88% 95% 0.91
Onsite Support RO 80% 67% 0.73

VPN Client Notebook 69% 58% 0.63
Password Recovery 79% 76% 0.77

Lync 81% 68% 0.74

Fig. 5. Request Type clustering visualization: merged classes
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Fig. 6. Receiver Operating Characteristics Curve

VI. ENLARGING THE VIEW: ADDITIONAL FEATURES

Succeeding our work from [2], we aimed to provide a more
detailed perspective of what our models where capable of,
and how we could use them in our business scenario more
effectively. To do so, we extended our project with different
illustration and performance measurement techniques.

A. Receiver Operating Characteristics Curve

In addition to the metrics presented in [2], there is one
additional metric suitable for measuring the performance of
our binary classifier: the Receiver Operating Characteristics
curve [18], or ROC. ROC is a plot that measures the diagnostic
ability of a binary classifier. It does so by illustrating the trade-
off between the True positive rate (TPR) and the False positive
rate (FPR). These rates are calculated as follows, where P
represent all the positives in our data, TP the true positives
and FP the false positives. Also, this trade-off is a helpful
interpretation input for the business domain, as it gives an
in-depth prediciton of the model’s performance in a real-life
scenario.

TPR =
TP

P

FPR =
FP

P

The curve is computed by changing our classifier’s threshold
of prediction (0.5 by default) to all values of the interval [0, 1]
and calculating TPR and FPR on the validation data, based on
this new thresholds. Figure 6 illustrates the plot of these values
for the model. The ideal ROC curve will be very close to
hugging the upper-left corner of the plot ((1, 0) point), so the
better the classifier, the closer this curve will be to this corner.
To measure the diagnostic performance of a model based on
it’s ROC curve, we have the Are Under the Curve (AUC) [21]
measure, computed by integrating the function of the ROC
curve on the [0, 1] interval, and represents the probability that
our classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative one. After calculating
and integrating our curve, we were left with an AUC value
of 0.923, which is pretty close to 1, thus showing remarkable
performance of the model.

50 60 70 80 90 100

50

60

70

80

90

100

Confidence Threshhold (%)

Selected tickets (%)
Resulted Accuracy (%)

Fig. 7. Confidence score trade-off

B. Confidence Threshold

After obtaining an accuracy of 86.5%, we we’re informed
that this number is comparable to the actual efficiency of the
Helpdesk department in sorting tickets (empirically measured).
This is due to the fact that working in the context of a real life
problem, sometimes definitive separation decisions can not be
taken. Semantics are sometimes vague in real life, and this
tells us that not all tickets are completely separable in 2 or
more classes. Following our work from [2], this is the reason
we came up with the idea of building a confidence threshold.
A confidence threshold is a margin of estimation we impose

to our predictor: every input that yields a prediction probability
under said confidence threshold, gets left unclassified. Until
now, as the model is a binary classifier with one output,
everything predicted over 50% was assigned to one class, and
everything under 50% was assigned to the other. This means
that our basic predictor is making decision with a confidence
threshold of 50%: so everything gets classified. We wanted to
see what happens when we raise this margin: consequentially,
the total number of classified tickets will decrease, but the
total accuracy will increase. We plotted the evolution of these
two numbers in Figure 7, that represents the trade off of
classifying more tickets vs. obtaining a higher accuracy. Here
we can see the effects this confidence threshold will have on
the classification process, and the Service department can take
an informed business decision of what threshold to use, in
order to optimize the process.

C. Comparing Results

By adding this concept of a confidence threshold, we are
artificially adding a new class to our model, so we now have
3 classes: Service Request, Incident and Not Classified. To put
these numbers from Figure 7 into perspective, let’s visualize
the distribution of classification impacted by this confidence
threshold. Figure 8 compares the standard, or conventional
output of our previous model (confidence threshold 50% -
so just the binary model) with the improved, confidence-
conditioned model (confidence threshold 60% and 70%).
We can see the percent of incorrectly classified tickets falling,

although we now encounter unclassified entries: it is preferable
to have less wrongly classified tickets, with the drawback of
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Fig. 8. Ticket classification based on confidence threshold

unclassified tickets, rather then having classified all tickets, but
with many labeled incorrectly. This is because the workload
for wrongly labeled tickets greatly exceeds the workload for
simply unclassified tickets, since the former imply returning
to previous service-desk levels.

D. 3D Clustering Representation

Following our goal to extend the interpretation of our results
from [2], we plotted the data in 3D as well, for a better point
of view. This allowed us to have a more detailed look as to
how our categories clustered together, and consequently how
well was our Doc2Vec embedding method able to capture the
semantics of the tickets. These plots can be seen in Figures 9
through 12.

VII. CONCLUSION

Our numerous results achieved in these experiments are a
good indicator that there are plausible ways of aiding the ticket
solving process. By classifying tickets in their corresponding
categories, we can considerably reduce the time a ticket
spends in pending status, thus allowing the Service department
to focus more on solving requests instead of sorting them.
Furthermore, by computing ticket similarities we can provide
a connected platform of solved requests that will benefit
operators in finding the solution quicker. Our idea of extracting
output from hidden layers proved to be a trustworthy method
of computing Doc2Vec embeddings, and are able to correctly
represent relevant features of our data. We think the proposed
methods of automation are very viable and can be successfully
and sustainably integrated in the workflow of the Helpdesk
department.

Fig. 9. Request Type clustering visualization: merged classes

Fig. 10. Request Type clustering visualization: merged classes
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