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1 Introduction

Electromagnetic scattering by randomly located particles is frequently encountered
in science in terrestrial and atmospheric research, biomedical and life sciences, as-
trophysics, nanotechnology, just to mention a few topics. The theory is reviewed
in [4-7]. The effective wave number approach is most commonly employed to solve
the problem, and the effective wave number is obtained by solving a determinant
relation. The new method presented in [1] solves the coherent transmitted and re-
flected fields from a finite or an infinite slab containing randomly located scatterers
by the solution of a system of integral equations in the depth variable. In this paper,
we present some numerical solutions with this method and also a comparison with
the effective wave number method.

2 Theory

A plane wave impinges at normal incidence on the slab, z € [0, d], containing spher-
ical dielectric particles of radius a. The domain of possible locations of local origins,
[21, 22] = [a,d — a], is slightly smaller than the extent of the slab.

The transmitted and reflected coherent parts (ensemble average) of the total
electric field on either side of the slab are

3f T ) 2 iz z>d
E*(r) = Wzl " 1A"(iz)k/ () e {z <0
n #1

The summation over the multi-index n = {r,0,m,l} is over 7 = 1,2, 0 = ¢,0,
m = 0,1,2,...,1, and | = 1,2,3..., and the vector-valued functions An(i{:i) are
the vector spherical harmonics, see [3| for more details. The volume fraction of the
spheres is denoted f. The coefficients f,(z) are the solution to a system of linear,

one-dimensional integral equations in z, viz.,
. z2
fu(2) = ¥ Z T Qo + k:/ Z Ko (z = 2" fu(2) A2/, 2z € [21, 2]
n' zZ1 n'

The kernel entries, K,,,/(z), can be computed analytically for the hole correction in
terms of a series of spherical waves [2]. The particles are completely characterized by
the transition matrix T,,,/, which for a spherical particle is diagonal in its (pairwise)
indices. The expansion coefficients of the plane wave in terms of regular spherical
vector waves are denoted a,, see [3].



107" 1

0.999

1074 1

0.998

ka
0.05 0.1 0.15 0.2 0.25 03,7
7

1077 1

10—10 4

10-13 1 B-B

10—16 4

1019 + + t t +>

Figure 1: The transmissivity 7' (coherent part) as a function of the electrical size
ka for a slab thickness of d = 100a and constant volume fraction f = 0.1. The
dashed line is the result obtained by the Bouguer-Beer law (B-B) computed with a
slab thickness of 98a. The insert shows the fine ripple that occurs at low frequencies.

3 Numerical results

In Figure 1, we compare the transmissivity as a function of ka with the transmissivity
computed with Bouguer-Beer law (B-B) for a slab with thickness 98a. The slab
contains non-magnetic dielectric spheres of radius a and ¢, = 1.332.

There is a fine ripple in the transmissivity at low frequencies that is non-visible
on the scale of the figure and hidden in the line thickness. This is illustrated in
the insert in Figure 1. The effect diminishes at higher frequencies. The reason for
this ripple is interference effects between the front and trailing end discontinuities
in particle densities at z = a and z = d — a. The period of the oscillation A(ka) is

k a

A(ka) =2 Re keﬁ ﬁ

where k.g is the effective wave number computed from the transmission data. The
effective wave number is also compared with the existing technique of computation
by the zeros of a determinant relation [5]. In Figure 2, the reflection coefficient in the
complex plane is compared with the reflection coefficient for a homogeneous slab.
Both the amplitude and the phase of the coherent reflection coefficient r(ka) and
the reflection coefficient of the homogenized slab agree perfectly at low frequencies.
The homogenized slab has its left-hand sided located at z = a, and an additional
phase of 2ka is added to compensate for this offset. This is an additional numerical
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Figure 2: The black curve shows the complex-valued reflection coefficient, r(ka),
in the complex plane as a function of the electrical size ka € [0,0.1] for a slab of
thickness d = 100a and volume fraction f = 0.1. The dashed curve shows the
reflection coefficient for a homogenized slab with thickness 98a and left-hand side
location at z = a.

verification that the correct location of the homogenized slab is [a,d — a] if the
original slab is located at [0, d].
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