
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

The coherent electromagnetic field by a particulate media - numerical implementation
in a planar geometry

Gustavsson, Magnus; Kristensson, Gerhard; Wellander, Niklas

2021

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Gustavsson, M., Kristensson, G., & Wellander, N. (2021). The coherent electromagnetic field by a particulate
media - numerical implementation in a planar geometry. Paper presented at
Bremen Workshop on Light Scattering 2021, Bremen, Germany.

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/9e980f17-0f79-4a7f-a21f-2f852b0fc05b


The coherent electromagnetic �eld by a particulate
media � numerical implementation in a planar

geometry

Magnus Gustavsson(1), Gerhard Kristensson(2), and Niklas Wellander(1)

(1) Swedish Defence Research Agency, FOI, SE-581 11 Linköping, Sweden.
(2) Department of Electrical and Information Technology, Lund University,

P.O. Box 118, SE-221 00 Lund, Sweden.

1 Introduction

Electromagnetic scattering by randomly located particles is frequently encountered
in science in terrestrial and atmospheric research, biomedical and life sciences, as-
trophysics, nanotechnology, just to mention a few topics. The theory is reviewed
in [4�7]. The e�ective wave number approach is most commonly employed to solve
the problem, and the e�ective wave number is obtained by solving a determinant
relation. The new method presented in [1] solves the coherent transmitted and re-
�ected �elds from a �nite or an in�nite slab containing randomly located scatterers
by the solution of a system of integral equations in the depth variable. In this paper,
we present some numerical solutions with this method and also a comparison with
the e�ective wave number method.

2 Theory

A plane wave impinges at normal incidence on the slab, z ∈ [0, d], containing spher-
ical dielectric particles of radius a. The domain of possible locations of local origins,
[z1, z2] = [a, d− a], is slightly smaller than the extent of the slab.

The transmitted and re�ected coherent parts (ensemble average) of the total
electric �eld on either side of the slab are

E±(r) =
3f

2(ka)3

∑
n

i−l+τ−1An(±ẑ)k

∫ z2

z1

e±ikz′fn(z′) dz′e±ikz,

{
z > d

z < 0

The summation over the multi-index n = {τ, σ,m, l} is over τ = 1, 2, σ = e, o,
m = 0, 1, 2, . . . , l, and l = 1, 2, 3 . . ., and the vector-valued functions An(k̂i) are
the vector spherical harmonics, see [3] for more details. The volume fraction of the
spheres is denoted f . The coe�cients fn(z) are the solution to a system of linear,
one-dimensional integral equations in z, viz.,

fn(z) = eikz
∑
n′

Tnn′an′ + k

∫ z2

z1

∑
n′

Knn′(z − z′)fn′(z′) dz′, z ∈ [z1, z2]

The kernel entries, Knn′(z), can be computed analytically for the hole correction in
terms of a series of spherical waves [2]. The particles are completely characterized by
the transition matrix Tnn′ , which for a spherical particle is diagonal in its (pairwise)
indices. The expansion coe�cients of the plane wave in terms of regular spherical
vector waves are denoted an, see [3].
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Figure 1: The transmissivity T (coherent part) as a function of the electrical size
ka for a slab thickness of d = 100a and constant volume fraction f = 0.1. The
dashed line is the result obtained by the Bouguer-Beer law (B-B) computed with a
slab thickness of 98a. The insert shows the �ne ripple that occurs at low frequencies.

3 Numerical results

In Figure 1, we compare the transmissivity as a function of ka with the transmissivity
computed with Bouguer-Beer law (B-B) for a slab with thickness 98a. The slab
contains non-magnetic dielectric spheres of radius a and εr = 1.332.

There is a �ne ripple in the transmissivity at low frequencies that is non-visible
on the scale of the �gure and hidden in the line thickness. This is illustrated in
the insert in Figure 1. The e�ect diminishes at higher frequencies. The reason for
this ripple is interference e�ects between the front and trailing end discontinuities
in particle densities at z = a and z = d− a. The period of the oscillation ∆(ka) is

∆(ka) = 2π
k

Re keff

a

2D

where keff is the e�ective wave number computed from the transmission data. The
e�ective wave number is also compared with the existing technique of computation
by the zeros of a determinant relation [5]. In Figure 2, the re�ection coe�cient in the
complex plane is compared with the re�ection coe�cient for a homogeneous slab.
Both the amplitude and the phase of the coherent re�ection coe�cient r(ka) and
the re�ection coe�cient of the homogenized slab agree perfectly at low frequencies.
The homogenized slab has its left-hand sided located at z = a, and an additional
phase of 2ka is added to compensate for this o�set. This is an additional numerical
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Figure 2: The black curve shows the complex-valued re�ection coe�cient, r(ka),
in the complex plane as a function of the electrical size ka ∈ [0, 0.1] for a slab of
thickness d = 100a and volume fraction f = 0.1. The dashed curve shows the
re�ection coe�cient for a homogenized slab with thickness 98a and left-hand side
location at z = a.

veri�cation that the correct location of the homogenized slab is [a, d − a] if the
original slab is located at [0, d].
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