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Abstract 

 

Schooling may shape children’s abilities to control their attention, but it is unclear if this 

impact extends from control over visual objects to encompass multisensory objects, which 

are more typical of everyday environments. We compared children across three primary 

school grades (Swiss 1st, 3rd, and 5th grade) on their performance on a computer game-like 

audio-visual attentional control task, while recording their EEG. Behavioural markers of 

visual attentional control were present from 3
rd

 grade (after 2 years of schooling), whereas 

multisensory attentional control was not detected in any group. However, multivariate 

whole-brain EEG analyses (‘electrical neuroimaging’) revealed stable patterns of brain 

activity that indexed both types of attentional control – visual control in all groups, and 

multisensory attentional control – from 3rd grade onwards. Our findings suggest that using 

multivariate EEG approaches can uncover otherwise undetectable mechanisms of 

attentional control over visual and multisensory objects and characterise how they differ at 

different educational stages.  

 

 

Keywords: attentional control, multisensory, visual attention, schooling, EEG, N2pc, Electrical 

Neuroimaging   
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Lay Abstract 

 

We measured how visual and audiovisual distractors differ in capturing attention of 1st- to 

5th-graders while recording the children’s brain activity. Brain activity results showed that all 

children were sensitive to visual distraction, and from 3rd grade onwards, children were also 

sensitive to audiovisual distraction. These results deepen our understanding of how school 

children control their attention in everyday environments, which are made up of 

information that stimulates multiple senses at a time. 
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The start of school marks a transition from a less regulated, play-oriented environment to 

one with increasing demands for focused attention and ignoring distractors. The 

development of such attentional control mechanisms remains poorly understood, especially 

in real-world environments, and in the context of schooling experience.  

 

Most current knowledge about children’s attentional control has come from research on 

executive functions (EF; Miyake et al., 2000; Fiske & Holmboe, 2018), which are closely 

linked with attentional control (Bavelier & Green, 2019). Both EF’s and attentional control 

gradually improve over childhood (e.g., Cepeda et al., 2001; Donnelly et al., 2007; Trick & 

Enns, 1998). Such developmental progression has been linked to protracted structural 

changes in the prefrontal and parietal cortex (e.g., Casey et al., 2005; Gogtay et al., 2004; 

Tamnes et al., 2013) and changes in connectivity between these regions (e.g., Baum et al., 

2017; Hwang et al., 2011; Rohr et al., 2016). Arguably, such findings have helped us 

understand when and how children’s control skills compare to those of adults, rather than to 

map and understand how control skills function during various stages of childhood, when 

children are challenged by their educational environment in different ways. Though both 

approaches are important, we focus on the latter for two reasons.  

 

First, it has been suggested that the development of control skills need not be uniformly 

linear when the multisensory nature of the environment and the child’s schooling 

experience are taken into account. For example, Matusz and colleagues (2015) found that 

while 11-year-olds and young adults were distracted from a visual search task by audiovisual 

shape-sound stimuli, 6-year-olds were immune to such distraction. This suggested that 

young children’s limited attentional control skills could shield them from distraction in real-

world contexts, rather than making them perform worse than adults, as visual attentional 

research would typically suggest. Moreover, in some cases, 11-year-olds were more 

distracted by auditory-only distractors than either 6-year olds or adults. This suggested that 

distractibility, when not tested only in vision, can be qualitatively different at different levels 

of experience. In a recent educationally-relevant version of this study (Matusz et al, 2019a), 

similar developmental differences were observed for distraction by digits, which could be 

accounted for by differences in experience. That is, children with less schooling experience 

were less familiar with numerals, which in turn protected them from distraction by 

conjunctions of numerals presented as visual symbols and their familiar auditorily-presented 

names.  

 

Second, there may be links between the way in which children control their attention and 

school learning. That schooling is a catalyst for developing cognitive control is supported by 

reports of increases in IQ with education (e.g., Ceci, 1991; Brinch & Galloway, 2012) that 

were too rapid to be accounted by maturation alone (Cliffordson & Gustafsson, 2008). 

Another line of support has come from evidence on strong improvements in EF skills during 

the period when most children enter formal schooling (‘5-to-7-year shift’; e.g., Burrage et al., 

2008; Roebers et al., 2011). Recently, Brod et al. (2017) showed that children with one year 

of schooling experience had better behavioural EF skills, and greater recruitment of right 

posterior parietal cortex than kindergarteners. However, the influence of schooling on 

attentional control in multisensory contexts has yet to be directly investigated.  
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Systematically investigating the development of multisensory attentional control skills 

during primary school is important insomuch as classroom settings in which learning occurs 

are multisensory in nature. Multisensory processes, like visual attentional processes, show 

developmental progression (Murray et al., 2016). Starting in infancy, young brains are 

sensitive to congruency across the senses (Lewkowicz & Turkewitz, 1980; Bahrick & Lickliter, 

2000), but processes that rely on integrating different sensory inputs into a single product 

(multisensory integration) seem to mature much later (8 and 10-11 years; Gori et al. 2008, 

2012; Barutchu et al. 2009, respectively). Studying attentional control and distraction 

engaged by multisensory as well as visual objects could have important implications for 

education. Distraction by unisensory content has been demonstrated to hinder learning 

(visual: Fisher et al., 2014; Godwin & Fisher, 2011; auditory: Massonnié et al., 2019). 

Meanwhile, proficiency in visually-assessed EF/attentional control skills has been linked with 

academic achievement (e.g., Gawrilow et al., 2014; Bull et al., 2008; Isbell et al., 2019). 

Further, learning multisensory letter-sound mappings has been shown to be crucial for the 

development of specific reading networks (Brem et al., 2010), and can predict reading 

outcomes years later (Bach et al., 2013).  

 

The present study investigated attentional control processes in primary school children who 

took part in a previous study of ours (reference post-review). Here, our focus was elucidating 

attentional control mechanisms at different stages of schooling. We investigated the 

following research questions in a largely exploratory fashion: 1) How do children process 

task-irrelevant multisensory distractors vis-à-vis visual distractors, and what are the brain 

mechanisms governing such processes? 2) How do these mechanisms differ across different 

levels of school experience? We investigated the behavioural and brain mechanisms of 

attentional control using a child-friendly version of a multisensory spatial cueing paradigm, 

during which EEG was recorded. We analysed the traditional EEG correlate of attentional 

selection (“N2pc component”) and enriched the understanding of the underlying brain 

mechanisms using multivariate analyses. We expected older children to show visual 

attentional control behaviourally; we had no strong hypotheses for multisensory attentional 

control or the underlying EEG mechanisms. 

 

  Methods 

 

Participants 

We tested 92 children from local primary schools. In the local school system, children enter 

formal education at age 4, the first two years of which are considered kindergarten. By 3rd 

grade (ages 6-7) children sit at desks and receive more structured classroom instruction. In 

total, we tested 26 children from 5th grade (10 male, Mage: 8y 10mo, SD:: 5mo, range: 8y 1mo 

– 10y 1mo), 38 from 3rd grade (18 female, Mage: 6y 10mo, SD:: 4mo, range: 6y 1mo, 7y 9mo), 

and 28 from 1st grade (13 female, Mage: 5y, SD:: 4mo, range: 4y – 5y 7mo; for full details see 

Supplementary Online Materials, SOMs). All research procedures were approved by the local 

ethics committee. 

 

Stimuli and procedure 

Participants were tested in the local hospital in an experimental session lasting 1h–

1h30mins, where their performance was assessed along with a simultaneous EEG 

measurement. The paradigm was a multisensory variant of Folk et al.’s (1992) spatial cueing 
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paradigm (Matusz & Eimer, 2011, Exp.2) adapted to children by presenting it as a diamond-

search game (see Fig.1).  

 

---FIG.1 HERE--- 

 

Participants searched for a target diamond of a predefined colour, to respond as quickly and 

accurately as possible to the target’s orientation (horizontal or vertical; randomly 

determined on each trial) by pressing one of two horizontally aligned round buttons (Lib 

Switch, Liberator Ltd.) fixed onto a tray bag on their lap. Each diamond was preceded by a 

spatially uninformative cue, which could match the target colour (e.g., blue cue for blue 

target), or have a target-nonmatching colour that was not present before (e.g., red cue for 

blue target). On half of all trials, the colour change coincided with the onset of a pure sine-

wave tone (2000Hz), resulting in four cue conditions: TCCV (target colour-cue, Visual), NCCV 

(nontarget colour-cue, Visual), TCCAV (target colour-cue, AudioVisual), NCCAV (nontarget 

colour-cue, AudioVisual). Thus, visual attentional control was assessed through the presence 

of task-set contingent attentional capture (TAC), i.e., attentional capture by target-matching 

(TCC) but not nonmatching cues (NCC) (Folk et al., 1992; Yantis & Jonides, 1990). Attentional 

control by multisensory stimuli was assessed through the occurrence of multisensory 

enhancements of attentional capture (MSE), i.e. increases in attentional capture for 

audiovisual cues (AV) regardless of their target-matching (Matusz & Eimer, 2011). Full details 

of the paradigm and procedure are reported in SOMs. 
 

EEG acquisition and preprocessing 

Continuous EEG data sampled at 1000Hz was recorded using a 129-channel HydroCel 

Geodesic Sensor Net connected to a NetStation amplifier (Net Amps 400; Electrical 

Geodesics Inc., Eugene, OR, USA). Impedances were kept <50kΩ, and electrodes were 

referenced online to Cz. Preprocessing involved: offline filtering (0.1 Hz high-pass, 40 Hz low-

pass, 50 Hz notch, and a second-order Butterworth filter with a linearly computed –12 

dB/octave roll-off with forward and backward passes to eliminate phase-shift), 

segmentation into epochs around cue onset (-100ms to 500ms), semi-automated rejection 

of transient noise, eye movements, and muscle artefacts. Artefact rejection criteria were 

�150 ��, along with visual inspection (e.g., Melinder et al., 2010; Shimi et al., 2014). 

Artefact-contaminated electrodes were interpolated using three-dimensional splines (Perrin 

et al., 1987; average numbers of epochs removed, and electrodes interpolated in SOMs). 

Cleaned epochs were averaged, baseline corrected to the 100ms pre-cue time interval, and 

re-referenced to the average reference. An additional 50Hz notch filter was applied due to 

persistent environmental noise even after initial filtering. Only data from trials with correct 

responses and from blocks with >50% accuracy were used for statistical analyses.  

 

Analyses of the EEG focused on Event Related Potentials (ERPs). The above steps were done 

separately for ERPs from the four cue conditions, as EEG/ERP analyses were anchored to the 

cue array, and separately for cues in the left and right hemifield. To analyse cue-elicited 

lateralised ERPs, data from both hemiscalps had to be anchored to the same ‘reference’ 

side. We thus changed the labels of single-trial data from all conditions with cues presented 

on the left so that they represent activity over the right hemiscalp, resulting in a set of 

veridical “cue-on-the-right” data and mirrored “cue-on-the-right” data. Next, these two 

types of data were averaged together, creating a single lateralised average ERP. As a result, 
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we obtained 4 different cue ERPs. All preprocessing and analyses were conducted using 

CarTool (available at www.fbmlab.com/cartool-software/; Brunet et al., 2011).  

 

Data analysis design 

Behavioural analyses. Analyses were focused on mean reaction time (RT) attentional 

capture effects, following related adult (e.g., Folk et al., 1992) and child (e.g., Gaspelin et al., 

2015) literature. We calculated attentional capture effects by subtracting the mean RTs for 

trials where the cue and target were in the same vs. different location, separately for the 

four cue conditions. RT data cleaning is described in SOMs. RT data were submitted to a 

mixed-design four-way ANOVA with one between-subject factor of Age (5th-graders vs. 3rd-

graders vs. 1st-graders), and three within-subject factors: Cue Colour (target colour-cue - TCC 

vs. nontarget colour-cue - NCC), Cue Modality (Visual - V vs. AudioVisual - AV), and Cue-

Target Location (Same vs. Different). All analyses were conducted using SPSS for Macintosh 

26.0 (Armonk, NY: IBM Corp). Detailed behavioural results were reported as part of a study 

where the emergence of adult visual and multisensory attentional control skills over 

childhood was investigated (Turoman et al. 2020). Therefore, here we only reported the 

most relevant behavioural results. 

 

EEG analyses. We combined an analysis of the N2pc component, a traditional marker of 

attentional selection of potential targets (Eimer 1996; Eimer et al., 2009), with a more novel 

electrical neuroimaging (EN) approach. Combining such EN measures with established ERP 

correlates of cognitive processes can help elucidate the cognitive and brain mechanisms 

underlying multisensory attentional control (Matusz et al. 2019b). As no reliable N2pcs were 

found in any of the tested age groups, here we report only the EN analyses of the cue-

elicited N2pc’s (Full details of the N2pc analysis design and results are reported in SOMs). 

 

Electrical neuroimaging (EN) encompasses a set of multivariate, reference-independent 

analyses of global features of the electric field at the scalp, providing robust, directly 

neurophysiologically interpretable results about differences between sets of conditions, 

groups or timepoints (Lehmann & Skrandies 1980; Murray et al., 2008; Tivadar & Murray 

2019). Detailed, tutorial-like explanations of EN measures and how they capture the 

mechanisms underlying the N2pc are given in both Matusz et al. (2019b), and Murray et al. 

(2008). We also provide a concise description of the measures and how they were derived 

for the present study in SOMs. Briefly, in order to obtain global EN measures of lateralised 

N2pc effects, now the contralateral-ipsilateral difference ERPs created for N2pc analyses 

were mirrored onto the other hemiscalp, constructing ‘fake’ 129-electrode datasets. From 

these ‘fake’ datasets, Global Field Power (GFP) and topographical measures were extracted 

in order to investigate whether modulations of cue-elicited lateralised ERPs by visual and 

multisensory control mechanisms were a result of differential response strength within 

statistically indistinguishable brain generators, or differential recruitment of underlying brain 

generators, respectively. 

 

For GFP analyses, each age group’s mean GFP values over the respective N2pc time-windows 

were extracted from group-averaged ‘fake’ ERPs per condition and submitted to separate 

two-way repeated measures ANOVAs (rmANOVAs) with factors: Cue Colour (TCC vs. NCC) 

and Cue Modality (V vs. AV). For topographical analyses, topographical map durations (in 

milliseconds) over each group’s N2pc time-window were submitted to separate three-way 

rmANOVAs, with factors: Cue Colour, Cue Modality , and Map (different levels due to 
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different numbers of maps in each age group: 9 in 5
th

-graders, 5 in 3
rd

-graders, and 8 in 1
st

-

graders). 

 

Results 

 

Behavioural analyses 

A significant main effect of Age, F(2, 89)=32.8, p<0.001, ηp²=0.4 revealed that mean RTs sped 

up from 1st graders (1309ms) through 3rd graders (1107ms) to 5th graders (836ms). Each age 

group was reliably faster than its preceding group (all p’s<0.001, see SOMs). Although Age 

did not interact with other factors (all F's<2, p’s>0.1), RT data were analysed per age group 

in order to investigate in more detail multisensory distraction effects across age groups.  

 

Fifth-graders showed a reliable task-set contingent attentional capture (TAC) effect, as 

demonstrated by a 2-way Cue-Target Location x Cue Colour interaction, F(1, 25)=19.5, 

p<0.001, ηp²=0.4, which was driven by significant capture effects for TCC (56ms), but not 

NCC distractors (6ms; Fig.2A). However, 5th-graders showed no evidence for a reliable 

multisensory enhancement (MSE) effect (Cue-Target Location x Cue Modality, F(1, 25)=1.4, 

p=0.3; Fig.2B). Similarly, 3
rd

-graders also showed TAC, evidenced by a Cue-Target Location x 

Cue Colour interaction, F=6.4, p=0.02, ηp²=0.2, which was driven by reliable capture effects 

elicited by TCC (55ms), but not NCC distractors (7ms). Again, however, there was no 

evidence for MSE in 3rd-graders (Cue-Target Location x Cue Modality, F(1, 37)=2.1, p=0.2; 

Fig.2B). In the youngest group, there was no evidence for either TAC (Cue-Target Location x 

Cue Colour, F(1, 27)=1.4, p=0.2), or MSE (Cue-Target Location x Cue Modality, F(1, 27)=0.4, 

p=0.5) (Fig.2D).  

 

 

---FIG.2 HERE--- 

 

EEG analyses 

Separate 2 x 2 rmANOVAs on the average GFP values over each age group’s N2pc time-

window revealed no significant main effects or interactions in the 5th- and 1st-graders 

(p’s>0.1), while in 3rd-graders, the main effect of Cue Colour only trended (F=3.07, p=0.09, 

ηp²=0.08). Full results can be found in SOMs. 

 

Segmentation of the post-cue period per age group resulted in the following: in 5
th

-graders, 

14 clusters explained 91.5% of GEV, in 3rd-graders, 11 clusters explained 88.3% of GEV, and 

in 1st-graders, 11 clusters explained 84.9% of GEV in the group-averaged difference ERPs. 

Next, the fitting procedure revealed the template maps that characterised each age group’s 

N2pc time window: in 5th-graders, there were 9 template maps over 144-290ms post-cue, in 

3rd-graders there were 5 template maps over 151-275ms post-cue, and in 1st-graders, there 

were 8 template maps over 110-302ms post-cue. The fitting time-windows differ slightly 

from N2pc time-windows, as we included template the maps that appeared to characterise 

cue-elicited N2pc’s. For example, if the duration of a map was longer than the N2pc-based 

cut-off, we extended the fitting time-window beyond the cut-off and until the end of the 

map duration. 

 

In 5th-graders, a 2 x 2 x 9 rmANOVA revealed a main effect of Map, F=2.7, p=0.009, ηp²=0.1, 

confirming the presence of stable patterns of lateralised N2pc-like ERP activity in 5th-graders. 
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Hereafter, we did not follow up this main effect with post-hoc tests, as it was not 

informative as to the presence of TAC or MSE in topography. To help differentiate 

topographic maps between groups, map numbers were given a prefix indicating the group 

they belonged to, i.e., ‘5’ for 5th-graders, ‘3’ for 3rd-graders, and ‘1’ for 1st-graders. There was 

a 2-way interaction between Map and Cue Colour, F(8, 200)=3.4, p=0.001, ηp²=0.1, which was 

driven by modulations in the durations of three maps: Map54, Map56, and Map59 (Fig.3A, 

left panel). Specifically, Map56 was present for a longer portion of the N2pc time-window in 

response to TCC distractors (28ms) than NCC distractors (8ms), t(25)=3.7, p=0.005. 

Meanwhile, Map54 was present longer in response to NCC distractors (20ms) than for TCC 

distractors (7ms), t(25)=3.4, p=0.008, and Map59 was also present longer for NCC (16ms) than 

TCC distractors (9ms), t(25)=3, p=0.04 (Fig.3A, left panel). Hereafter, map duration differences 

that were not reported were not statistically significant (p’s > 0.1). The Map x Cue Modality 

interaction was also significant, F(8, 200)=2.4, p=0.02, ηp² =0.1, and was driven by modulations 

of durations of Map52 and Map53 (Fig.3A, right panel). Here, Map53 was present longer for 

AV cues (29ms) than for V cues (13ms), t(25)=3.7, p=0.007, while Map52 was present longer 

for V cues (17ms) than for AV cues (5ms), t(25 =3.1, p=0.03.  Finally, the 3-way Map x Cue 

Colour x Cue Modality interaction was also significant, F(8, 200)=2.2, p=0.048, ηp² = 0.1. For 

brevity, we report the post-hoc analyses in SOMs. Taken together, not only did 5
th

 graders’ 

topography show reliable TAC and MSE, but also the interaction of these factors.  

 

In 3rd-graders, there was also a main effect of Map, F(3.2, 117.6)=9.8, p<0.001, ηp²=0.2, as 

revealed by a 2 x 2 x 5 rmANOVA. Like in 5th graders, the 2-way Map x Cue Colour interaction 

was significant, F(2.9 107)=2.8, p=0.04, ηp²=0.1, and was driven by Map35 being longer for TCC 

(21ms) than NCC distractors (5ms), t(37)=3.7, p=0.002 (Fig.3B, left panel). The Map x Cue 

Modality interaction was also significant F(3.1, 114.3)=8, p<0.001, ηp²=0.2, and was driven by 

modulations of Maps 31–34. Here, Map32 was present longer for AV cues (44ms) than for V 

cues (26ms), t(37)=3.5, p=0.002, and Map34 was also present longer for AV cues (37ms) than 

for V cues (21ms), t(37)=3.2, p=0.01. Conversely, Map31 was present longer for V cues (43ms) 

than for AV cues (26ms), t(37)=3.5, p=0.004, and Map33 was present longer for V cues (16ms) 

than for AV cues (6ms), t(37)=2.8, p=0.006. Again, the 3-way Map x Cue Colour x Cue Modality 

interaction was significant, F=3.2, p=0.03, ηp²=0.1, and its follow-up analyses are presented 

in SOMs. 

 

In 1
st

-graders also a 2 x 2 x 8 rmANOVA revealed a main effect of Map, F(4.7, 127.2)=4, p=0.003, 

ηp²=0.1. Like in the older groups, the Map x Cue Colour interaction was significant, F(7, 

189)=4.2, p<0.001, ηp²=0.1, driven by modulations in the durations of Maps 13-15. Map13 was 

present longer for TCC cues (47ms) than NCC cues (13ms), t(27)=4.3, p=0.003. Conversely, 

Map14 was present longer for NCC cues (52ms) than TCC cues (27ms), t(27)=3.1, p=0.007, as 

was Map15 (19ms vs. 5ms), t(27)=2.8, p=0.05. Unlike in the older groups, however, map 

presence was not modulated by Cue Modality (F(7, 189)=0.9, p=0.4). That said, the 3-way Map 

x Cue Colour x Cue Modality interaction was significant, F(7, 189)=2.2, p=0.04, ηp²=0.1, and its 

follow-up analyses are presented in SOMs. 

 

---FIG.3 HERE--- 

 

 

Discussion 
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We investigated how attentional control skills develop using a rigorous paradigm that 

incorporated the multi-stimulus and multisensory characteristics of real-world contexts, 

such as the classroom. We compared first-graders, third-graders and fifth-graders on how 

they attend to visual objects and to more naturalistic, audiovisual objects. We enriched 

behavioural and classical EEG/ERP analyses with multivariate analyses. 

 

Top-down visual attentional control is present even at school entry 

In behaviour, robust task-set contingent attentional capture (TAC) was observed in 3rd grade 

and continued into 5
th

 grade. However, EN topographical analyses demonstrated distinct 

stable patterns of global brain activity that were sensitive to TAC already at school entry. 

 

In older groups, EN results clarified the brain mechanisms underlying the behaviourally- 

observed TAC. In 3rd-graders, behavioural TAC may emerge from enhancement of target-

matching (TCC) distractor processing, via recruitment of brain networks that preferentially 

process goal-relevant information. Meanwhile, in 5th-graders, TAC may be driven by a 

combination of enhanced processing of target-matching information and suppressed 

processing of nonmatching (NCC) information. This is supported by one map predominating 

the processing of target-matching distractors, and two maps predominating the processing 

of target-nonmatching distractors. It cannot be ascertained if increased presence of NCC-

preferring maps indexed the inhibition of NCC information, however, this is suggested by the 

concomitant behavioural inhibition of NCC distractors. Consistently, in a study isolating N2pc 

to visual distractors, a similar pattern of results was found in adults (Hickey et al., 2009). 

Though the relationship between topographic map modulations and distractor processing is 

not clear-cut, it is clear that differential brain network engagement, and not differences in 

brain response strength, are the mechanism that guides TAC in children. 

 

In 1st-graders, EN revealed nascent visual attentional control processes. Despite no 

behavioural TAC, 1st-graders showed two maps that were preferentially recruited by target 

nonmatching cues, and one map recruited for target-matching cues. This mirrors the TAC-

related findings in 5th-graders. These results support Gaspelin et al.’s (2015) findings that 

TAC is present as early as age 4 and extend them with novel mechanistic insights. Indeed, 

most studies on control processes in 4-year-olds utilised only behavioural measures (e.g., 

Burrage et al., 2008; Roebers et al., 2011, but see Brod et al., 2017). That separable sets of 

brain networks are preferentially active in response to potentially goal-relevant and goal-

irrelevant information even earlier than the 5-to-7-year shift is the first finding of its kind.  

 

Attentional control over multisensory objects develops after two years of schooling  

Behavioural analyses did not detect MSE in any group. However, in the older groups, EN 

revealed distinct brain networks over 200ms post-stimulus, recruited by visual and 

audiovisual distractors. The presence of topographical, but not behavioural, modulations by 

MSE is important for two reasons. First, this finding supports the idea that salient 

multisensory stimuli, even when task-irrelevant, can control attention independently of top-

down goal-relevance influences (Matusz & Eimer, 2011). No evidence for behavioural MSE 

could be explained by behavioural (but not EN measures) being ‘contaminated’ by 

processing speed and motor response processes, which develop slowly over time (e.g. Kail & 

Ferrer, 2007) Second, this finding suggests that multisensory distraction may emerge earlier 

than previously thought. Studies using exclusively behavioural measures have suggested that 

optimal multisensory integration (Gori et al., 2008, 2012), and even interference by 
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multisensory objects (Matusz et al., 2015; 2019a) occur later than the ages we tested here 

using EN (6-7 years). Thus, distraction from multisensory objects emerges already after two 

years of schooling, and 6-7-year-olds are not protected from it, as suggested by research on 

multisensory interference. 

 

First-graders showed no evidence for topographic modulations by MSE. If anything, the 

addition of sound to visual distractors seemed to have had a disruptive effect on ERPs 

overall, as shown by suppressed contralateral ERP responses. It may be that in 1st-graders, 

but not older children, attentional resources are separably allocated to vision and audition 

(e.g., Welch & Warren, 1980), although evidence for such an account has been mixed 

(Jacoby et al., 2012). It remains unclear how children at school-entry processed the 

additional distractor sound. We are currently testing an additional auditory-only condition in 

our paradigm to address this issue. 

 

Implications for education 

Our study demonstrated that with less than a year of schooling experience, children showed 

a brain-network-level sensitivity to the goal-relevance of visual stimuli, while children with 

two additional years of schooling showed a sensitivity to the (audio)visual nature of stimuli. 

This corroborates the idea of schooling experience as a “neurocognitive developmental 

institution” (Baker et al., 2012), although our study design could not ascertain whether 

schooling influenced attentional control independently of experience-unrelated 

(maturation-like) development. Further, our findings suggest that the unisensory distraction 

by classroom clutter in children as young as 5 (Fisher et al., 2014) and noise in ages 5-8 

(Massonnié et al., 2019) may be further compounded by children’s sensitivity to distraction 

by audiovisual objects from age 6 onwards. Simultaneously, children with little school 

experience are protected from multisensory distraction. Therefore, in classrooms, but not 

kindergartens, there may be merit in minimising the risks of multisensory distraction by 

reducing decoration or use of new technologies – unless they are goal-relevant, i.e., related 

to the subject of instruction.  
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Figure legends 

 

 

 
Fig.1. Experimental trial sequence for the child-friendly version of Matusz & Eimer (2011, Experiment 2). Each 

trial was composed of a series of consecutive arrays: the base array, cue array, fixation array, and target array. 

The cue array, to which EEG/ERP analyses were anchored to, involved one of the four differently coloured 

elements of the base array changing colour. The colour change was randomised and not spatially predictive of 

the location of the subsequent target (same cue-target location on 25% of trials). Here, a target-nonmatching 

(or nontarget colour) cue is shown, with an accompanying tone, constituting a NCCAV trial. The white circles 

around the target blue diamond and preceding target-nonmatching red cue serve to highlight the cue and 

target in the current figure and did not appear in the experimental task.  
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Fig.2. Bars coloured according to the figure legend in the image represent mean behavioural RT attentional 

capture, and error bars represent the standard error of the mean. From 3rd grade onwards, behavioural RT 

capture was larger for TCC than NCC, whereas enhancements of capture by sound presence were not 

significant.  
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Fig.3. Results of the two-way interactions of the topographical EN analyses. Bars represent map durations over 

each group’s time-window, where black and black-outlined bars represent the interaction with Cue Colour, and 

grey and grey-outlined bars represent the interaction with Cue Modality. Error bars represent the standard 

errors of the mean. Template maps that were significantly modulated by Cue Colour are highlighted in shades 

of green, while maps that were modulated by Cue Modality are highlighted in shades of purple.  
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