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Abstract 36 

Learning to predict threat is important for survival. Such learning may be driven by differences between 37 

expected and encountered outcomes, termed prediction errors (PEs). While PEs are crucial for reward 38 

learning, the role of putative PE signals in aversive learning is less clear. Here, we used functional magnetic 39 

resonance imaging in humans to investigate neural PE signals. Four cues, each with a different probability of 40 

being followed by an aversive outcome, were presented multiple times. We found that neural activity only at 41 

omission - but not at occurrence - of predicted threat related to PEs in the medial prefrontal cortex. More 42 

expected omission was associated with higher neural activity. In no brain region did neural activity fulfill 43 

necessary computational criteria for full signed PE representation. Our result suggests that, different from 44 

reward learning, aversive learning may not be primarily driven by PE signals in one single brain region. 45 

 46 

Key words: aversive prediction errors, threat learning, axiomatic conditions, reinforcement learning, 47 

normative Bayesian learning, fMRI48 
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Introduction 49 

Learning from aversive experiences benefits long-term survival by improving an organism’s capacity to avoid 50 

threatening situations 1. Reinforcement learning theory prescribes how violations of prior expectation, 51 

termed prediction errors (PE), might drive associative cue-outcome learning 2. While neural PE signals in 52 

dopaminergic midbrain circuits are required for appetitive learning 3–5, the same is not established for 53 

aversive learning. During Pavlovian threat conditioning, also termed fear conditioning, neurons in 54 

periaqueductal gray (PAG) and lateral amygdala (LA) progressively reduce firing to an unconditioned 55 

stimulus (US), possibly due to progressive inhibition from central amygdala 6–8. This neural firing could 56 

correspond to positive PE signals, where we define “positive” as “more aversive than expected”, which 57 

corresponds here to US presentation. However, it is less clear where and how negative aversive PE signals 58 

(i.e., responses to US omission) are expressed. Recent studies suggest that dopaminergic midbrain regions 59 

encode negative PE signals to US omission, and that these signals are required for extinction of threat 60 

learning 9,10. However, it is as yet not known whether they  are also used for initial acquisition of threat 61 

learning, and to date there is no direct evidence of negative PE signals in PAG or LA. Furthermore, it is 62 

unclear which neural populations signal positive aversive PEs once US probabilities are learned, as 63 

established for appetitive PE signals 11. Finally, the pathways that convey putative PE signals from PAG to LA, 64 

and any intermediate relays, remain unknown 12. 65 

In a search for formal learning mechanisms, computational neuroimaging studies have committed to 66 

specific learning models and assumed a linear mapping of positive and negative PEs to neural signals. They 67 

then regressed model-derived PEs onto blood-oxygen-dependent (BOLD) signal and found correlation in 68 

striatum, a target region of reward PE-expressing midbrain neurons 13–16, but also insula, periaqueductal 69 

grey, substantia nigra/ventral tegmental area, ventromedial prefrontal cortex, dorsolateral prefrontal cortex, 70 

orbitofrontal cortex, anterior cingulate cortex, middle cingulate cortex, thalamus, and amygdala 13,16–21. BOLD 71 

signal in the amygdala has been found to correlate with unsigned PEs or associability in humans 14,15 as well 72 

as in mice 22. The limitation of this correlational approach is twofold: first, its sensitivity is reduced if the a 73 

priori chosen learning model does not correspond to the true learning model. Second, significant correlation 74 

between PE and neural signal can be driven by a strong relation only on some trials and no relation on 75 

others, such that the neural signal may not comply with computational requirements of reinforcement 76 

learning.  77 

To act as PE signal in any computational learning algorithm, previous work has identified three 78 

general criteria, or ‘axioms’, that must be fulfilled 23. PE signals that adhere to these axioms have been 79 

observed in appetitive Pavlovian conditioning 24,25 as well in aversive instrumental conditioning, and in 80 

learning to predict pain intensities 20. It remains unknown whether these criteria are also fulfilled by a single 81 

brain region in Pavlovian threat conditioning. 82 
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Here, we formally investigated neural PE signals to US outcomes that had previously been associated 83 

with predictive CS in an Pavlovian threat conditioning procedure. To this end, we used two distinct outcomes 84 

(US+: US delivered; US−: US omitted) and 4 conditioned stimuli (CS) with distinct rates of receiving the US+ 85 

(0%, 33%, 66%, 100%). This design allowed us to analyse PE signals after US occurrence as well as omission, 86 

without commitment to any particular learning model. We also sought to explore neural activity during 87 

learning of the CS-US associations. Here, we relied on a normative Bayesian learning model, which in 88 

previous work explained threat-conditioned responses better than various non-probabilistic reinforcement 89 

learning models 26,27.   90 

 91 

Results 92 

Explicit CS-US contingency knowledge 93 

Participants underwent delay threat conditioning with four visual conditioned stimuli (CS), which were 94 

geometric shapes of different color, each associated with a distinct US rate (0%, 33%, 66%, or 100%). 95 

Unconditioned stimulus (US) was an aversive electric shock to the right forearm, ending concurrently with 96 

the CS (Fig. 1A). Participants reported explicit knowledge of the CS-US contingencies after the maintenance 97 

phases of the experiment (200 trials, Fig. 1B, 2A). There was a significant linear effect of CS type on 98 

contingency estimates, and pairwise differences for CS(100%) > CS(66%), CS(66%) > CS(33%), and for 99 

CS(33%) > CS(0%) (Table 2). Results were similar in a behavioral experiment outside the scanner (164 trials) 100 

(Table 2).  101 

 102 
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 103 

Figure 1. A, Experimental design. A classical delay threat conditioning paradigm was used with colored 104 

shapes as conditioned stimuli (CSs), presented for 6.5 s. The CSs predicted an aversive electric shock (US) 105 

with different rates (0%, 33%, 66%, 100%). If the US occurred (US+ trials), it started 6 s into CS presentation 106 

and lasted 0.5 s, co-terminating with the CS. The inter-trial interval was 5-7 s long. B, Experimental phases. In 107 

the acquisition phase, each CS (triangle) was presented 6 times in a row. In the maintenance phase, each of 108 

these CSs was presented 44 times over four blocks. In the second acquisition phase, the task structure was 109 

the same as in the first acquisition phase but new CS shape (rectangle) and colors were presented. C, The 110 

necessary and sufficient conditions for full signed PEs. Comparisons of conditions are theoretically possible 111 

in both directions (i.e., the positive and negative signs on the y-axis are arbitrary) but based on previous 112 

work we a priori expected higher neural activity for higher PE (positive values after US+). Grey dashed lines 113 

depict the tested contrasts, which were tested either all in direction of the arrows, or all into the opposite 114 

direction. Using the a priori expected direction of comparisons, axiom 1 states that shock outcomes are 115 

associated with higher activity than no shock outcomes. Axiom 2 states that the more unexpected the 116 

outcome is, the higher the related BOLD activity regardless of outcome type (US+ or US−). Axiom 3 always 117 

states that activity is the same for fully expected outcomes regardless of outcome type.   118 

 119 

120 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.10.197665doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197665
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

 121 

Table 2. Explicit CS-US contingency knowledge statistics.  122 

Subjective ratings for fMRI experiment (N = 21, 200 trials) 

 CS(0%) CS(33%) CS(66%) CS(100%) 

Mean ± SD 14.8 ± 24.1 44.3 ± 17.7 55.4 ± 19.3 78.6 ± 31.7 

Repeated-measures ANOVA F df p η²p 

Subjective rating ~ CS type 25.99 3, 80 7.78e-12 0.49 

Linear contrast 75.88 1, 80 3.25e-13  

Paired t-test, one-sided T df p |d| 

CS(100%) > CS(66%) 4.06 20 0.0003* 0.44 

CS(66%) > CS(33%) 2.02 20 0.028* 0.22 

CS(33%) > CS(0%) 6.09 20 0.00003* 0.66 

Subjective ratings for behavioral outside-scanner experiment (N = 18, 164 trials) 

 CS(0%) CS(33%) CS(66%) CS(100%) 

Mean ± SD 7.6 ± 13.1 40.7 ± 25.4 67.5 ± 22.5 85.6 ± 26.5 

Repeated-measures ANOVA F df p η²p 

Subjective rating ~ CS type 44.03 3, 72 2.84e-16 0.65 

Linear contrast 129.07 1, 72 2.00e-16  

Paired t-test, one-sided T df p |d| 

CS(100%) > CS(66%) 2.30 17 0.0167* 0.26 

CS(66%) > CS(33%) 4.16 17 0.0003* 0.48 

CS(33%) > CS(0%) 4.67 17 0.00009* 0.54 

For paired t-tests, Holm-Bonferroni correction was applied over the three comparisons within each 123 
experiment. * p < 0.05 with corrected α-level.  124 
 125 

Pupil size responses 126 

To ensure implicit learning in this paradigm, we analyzed pupil data from a behavioral experiment outside 127 

the scanner. We were interested in how US expectation, while seeing one of four CSs with different US rates, 128 

was reflected in pupil size. Across the entire experiment, we found a significant linear effect (p < .05) of US 129 

expectation (Fig. 2B) with greater pupil dilation for higher US expectation between about 1-6 s after CS 130 

onset. Post-hoc pairwise comparisons further showed that the response to CS(66%) was more pronounced 131 

than for CS(33%) between about 0.5-6 s after CS onset, and greater for CS(33%) than for CS(0%) around 4-5 s 132 

after CS onset, while CS(100%) and CS(66%) did not differ significantly (Fig. 2B).   133 

 134 
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135 
  136 

Figure 2. US expectancy ratings and threat-conditioned pupil size responses for each CS. A, Explicit CS-US 137 

contingency knowledge as measured by US expectancy ratings after the maintenance phase of the 138 

experiment in the fMRI sample. The plot shows mean and standard errors of the mean as well as individual 139 

ratings (connected lines refer to individual participants). B, Average pupil size change from baseline in the 140 

outside-scanner sample, over trial time. Shaded areas depict the standard error of the mean. Grey horizontal 141 

markers below the time courses show the significant effect of CS type on pupil size, based on a cluster-based 142 

correction for multiple comparison across the entire CS-US interval. Markers on CS time courses show the 143 

significant clusters for the comparison of each CS type in relation to the previous one (CS(100%) > CS(66%), 144 

CS(66%) > CS(33%), CS(33%) > CS(0%)). There was one significant cluster approximately covering the CS-US 145 

interval (0-6 s) for CS(66%) > CS(33%) and two significant clusters at around 4-5 seconds after CS onset for 146 

CS(33%) > CS(0%). Location of the clusters is shown for illustration only and is not part of the statistical test.  147 

 148 

Neural representation of PEs: whole-brain analysis 149 

As a quality check, we observed an effect of US type (US+ > US−) on BOLD fMRI activity in the bilateral 150 

anterior and posterior insula, bilateral temporal, parietal and central operculum, right supramarginal gyrus, 151 

right superior temporal gyrus and left transverse temporal gyrus (voxel-wise FWE p < .05).  152 

In our primary analysis, we investigated fMRI data for parametric covariates of full signed PE signals, 153 

including positive (US occurrence) and negative (US omission) PEs, with a whole-brain univariate approach 154 

during the maintenance phase of the experiment. The PEs in this primary analysis were defined as the 155 

difference between the experienced outcome and the objective US rate of the CS. BOLD responses to the US 156 

were correlated with full signed PEs in bilateral superior medial prefrontal cortex and right middle-superior 157 

occipital gyrus and superior parietal lobule (p < .05 cluster-level FWE, Fig. 3A, Table 2). That is, more 158 

unexpected US+ outcomes were associated with higher BOLD activity, and more unexpected US− outcomes, 159 

i.e. omission of US, were associated with lower BOLD activity in these clusters (in accordance with Fig. 1C). 160 

However, examination of BOLD amplitude estimates extracted from individual conditions in our categorical 161 
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GLM suggested that this effect was driven by the influence of negative PEs, whereas condition averages did 162 

not show a linear relation between US+ expectation and BOLD signals for positive PEs (Fig. 3A; Table 4). 163 

Regarding BOLD responses to the CS, we found no evidence for an association with outcome expectation.  164 

To allow for a possibility that the brain represents positive and negative PEs in partly different 165 

regions, we analyzed each type of PE separately in an exploratory follow-up analysis. Consistently with our 166 

examination of full signed PE representation, we found that BOLD activity in multiple clusters significantly 167 

correlated with negative PEs. More unexpected US− outcomes were associated with lower BOLD activity in 168 

clusters approximately located around bilateral superior frontal gyrus, left angular gyrus and left posterior 169 

cingulate gyrus, partly overlapping with the smaller frontal cluster of the full PE model (Fig. 3B,D). Extracted 170 

condition averages from our categorical GLM showed a linear gradient of negative PEs, as expected. On the 171 

other hand, we found no evidence of BOLD activity association with positive PEs. Furthermore, we found no 172 

evidence for a positive relation of BOLD activity with unsigned PEs (absolute values of the full signed PEs). 173 

This analysis would also have revealed areas in which the slope of a BOLD activity relation with positive PEs 174 

would be steeper (more negative) than for negative PE (see Methods). However, we found a cluster in which 175 

slope of a BOLD activity relation with negative PEs was steeper (more negative) than for positive PE, located 176 

approximately around left superior frontal and bilateral medial frontal regions (Fig. 3C), and partly 177 

overlapping with the ventromedial part of the negative PE frontal cluster but not with the dorsomedial full 178 

signed PE cluster (Fig. 3C,D, Table 4). An alternative interpretation for this cluster is a negative correlation 179 

between unsigned PEs and BOLD activity in this region. Investigation of the extracted parameter estimates 180 

from the categorical GLM was in favor of the former interpretation: the slope of BOLD activity relation with 181 

PEs was flat rather than positive, as would be expected for an unsigned PE representation. 182 

In these PE models, we used the overall US rate to compute PEs, but participants would not have 183 

perfectly learned these at the start of the maintenance phase. To ensure this did not obscure representation 184 

of PEs, we investigated a full signed PE model based on prior mean (US expectation) from a normative 185 

Bayesian learning model, which has been previously shown to reflect aversive learning in humans 27. We 186 

found very similar results to the full signed PE model, that is, larger PEs were associated with increased BOLD 187 

activity in a cluster approximately located around left medial superior frontal gyrus (peak voxel coordinates 188 

−6, 60, 25; peak T = 4.90, cluster-level FWE-corrected p = 0.014, cluster size 366 voxels; Supplementary 189 

Figure S1, Supplementary Table S1). 190 

 191 

Neural representation of PEs: region-of-interest analysis 192 

Whole-brain search may provide limited statistical power if full signed PE representations occurred in small 193 

regions. Hence, we investigated PE representations in a priori defined anatomical regions of interest. We 194 

used a formal Bayesian model selection approach to avoid multiple null hypothesis tests. Distinct from some 195 
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of our previous analysis, this approach seeks to simultaneously explain responses to US occurrence and US 196 

omission. Our analysis revealed that the symmetric full PE model was the best model (log BF > 3) for BA 9 197 

and ACC. The outcome-only (US+ vs. US−) model best explained the data (log BF > 3) for BA 44, BA 47, 198 

anterior insula and posterior insula (Fig. 4). There was no decisive evidence in any of the other regions.  199 

We applied the same analysis to the significant clusters from our whole-brain analysis, to facilitate 200 

interpretation (Supplementary Figure S2). The full signed PE cluster in superior frontal gyrus was best 201 

explained by a model including negative PE only (i.e., no expression of positive PE), and the full signed PE 202 

cluster in occipital and parietal areas was best explained by an asymmetric full PE model, which implies an 203 

encoding of positive PE but with different slope than negative PEs. Both unsigned PE clusters were best 204 

explained by a negative PE model which implies no expression of positive PE in these areas and speaks 205 

against any interpretation involving unsigned PE. 206 

 207 

Table 3. PE related BOLD activity during maintenance of threat associations.  208 

   Peak MNI coordinates   

Regressor Cluster anatomical region Cluster size x y z Peak T Cluster p 

Full signed PE 1. Superior frontal gyrus medial L,  

Superior frontal gyrus R 

356 −6 60 24 4.99 0.014 

 2. Middle & superior occipital gyrus R,  

Superior parietal lobule R 

266 36 −76 44 4.50 0.044 

Positive PE No significant cluster – – – – – – 

Negative PE 1. Superior frontal gyrus L, R 3,001 −2 60 24 7.68 4.23-11 

 2. Angular gyrus L 418 −58 −60 32 5.69 0.008 

 3. Posterior cingulate gyrus L 350 −8 −46 28 4.47 0.016 

Unsigned PE * 1. Superior frontal gyrus L 404 −22 52 32 7.09 0.007 

 2. Subcallosal area L,  

Superior frontal gyrus medial L,  

Medial frontal cortex R 

1,636 −2 14 −10 5.75 1.19e-07 

MNI, Montreal Neurological Institute. Statistical parametric maps were cluster-corrected at FWE p < 0.05, 209 
with initial threshold of p < 0.001 uncorrected. T: t-statistic (df = 20). Cluster p: corrected p-value. For full 210 
signed and positive PE models, the reported contrasts reflect higher BOLD activity related to larger PE 211 
(positive for US+, and larger for less expected US+) and lower BOLD activity for larger negative or unsigned 212 
PE, which also reflects an interaction between positive and negative PEs (see Fig. 1C). * The hypothesized 213 
contrast was for higher BOLD activity for larger unsigned PE, but here we report the exploratory finding in 214 
the opposite direction that yielded significant results. Opposite directions were tested for the other models 215 
too but there were no further significant findings. Anatomical labels (Neuromorphometrics, SPM12) are 216 
reported for the top 3 peak voxels within the cluster for approximate localization.  217 

 218 
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 219 
Figure 3. PE fMRI results. A, Full signed PEs correlated with BOLD activity in the dorsomedial prefrontal 220 

cortex (dmPFC) and superior parieto-occipital cortex. Average BOLD responses for each condition from the 221 

frontal cluster show a clear linear relationship with US expectation only for US− conditions. B, Negative PEs 222 

correlated with BOLD activity in the dmPFC and ventromedial PFC (vmPFC), angular gyrus and posterior 223 

cingulate cortex (PCC). C, Interaction of PE with outcome type in BOLD activity in vmPFC and rostral anterior 224 

cingulate cortex (rACC), indicating a representation of less expected outcomes in lower BOLD signal, or 225 

steeper (negative) BOLD relation for negative than positive PE. Statistical parametric maps were thresholded 226 

at p < 0.05 cluster-level FWE with initial threshold p < 0.001. Unthresholded SPMs are available online. BOLD 227 

estimates are shown for the cluster with the lowest corrected p-value for each PE model. D, Significant PE 228 

clusters and their overlap. The negative PE PFC cluster almost entirely overlaps with or encompasses the PFC 229 

signed PE cluster, whereas the PE interaction cluster extends also beyond the negative PE cluster. A-C, BOLD 230 

amplitude estimates are shown as mean and standard error of the mean. 231 
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 232 
Figure 4. Model comparison of PE and outcome-only models for BOLD signals from each anatomical region-233 

of-interest. Log Bayes Factors (BF) > 3 (dotted grey line) indicate moderate support for a model over the null 234 

model, whereas log BF < −3 denote moderate evidence for the null model, with values in between 235 

representing inconclusive evidence for any model. The orange line marks the evidence threshold (log BF 3) 236 

for moderate difference between the best model and other models. Full PE sym. = one intercept and slope 237 

parameter for both positive and negative PE; Full PE asym. = separate intercepts and slopes for positive and 238 

negative PE.   239 

240 
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 241 

Figure 5. Average BOLD amplitude estimates during maintenance for each experimental condition extracted 242 

from the anatomical ROIs. Left and right hemispheres are combined. BA = Brodmann Area. ACC = Anterior 243 

Cingulate Cortex. PAG = Periaqueductal Grey. SN = Substantia Nigra. VTA = Ventral Tegmental Area. Error 244 

bars are within-subject standard errors of the mean. See Table 4 for effect sizes of the axiomatic 245 

comparisons for these ROIs.  246 
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Table 4. Axiomatic comparisons for anatomical regions-of-interest and significant functional clusters 247 

during maintenance of threat associations. 248 

 Axiom 1 Axiom 2 Axiom 3 

US+ > US− US+ US− US+ > US− 

ROI CS(33%) CS(66%) CS(33%) >  

CS(66%) 

CS(66%) >  

CS(100%) 

CS(0%) >  

CS(33%) 

CS(33%) >  

CS(66%) 

CS(100%) > 

CS(0%) 

 d d d d d d d 

BA 8 0.45 0.12 0.46 −0.28 0.64 0.10 −0.26 

BA 9 0.58 0.43 0.34 0.03 0.37 0.24 −0.13 

BA 10 0.39 0.38 0.15 0.07 0.35 0.18 −0.11 

BA 11 0.05 0.25 −0.32 −0.09 0.62 −0.03 −0.09 

BA 44 1.07 0.95 0.17 0.14 0.02 0.18 0.98 

BA 45 1.20 0.82 0.31 0.17 0.22 0.14 0.68 

BA 46 0.55 0.54 0.09 0.17 0.03 0.16 0.36 

BA 47 0.83 0.77 0.02 0.10 0.42 −0.15 0.54 

ACC 0.50 0.63 0.11 −0.01 0.44 0.31 0.09 

Amygdala 0.10 0.22 −0.03 −0.21 0.16 0.09 0.25 

Anterior insula 0.91 1.06 −0.16 −0.02 −0.11 0.01 1.17 

Posterior insula 1.15 1.36 −0.22 −0.12 0.22 0.002 1.41 

Dorsal striatum 0.60 0.61 0.11 0.12 0.08 0.11 0.29 

Ventral striatum 0.16 0.17 0.11 −0.31 0.29 −0.24 0.13 

PAG 0.54 0.22 0.05 0.23 0.12 −0.31 0.55 

SN/VTA 0.48 0.48 0.17 −0.02 0.14 −0.004 0.42 

Thalamus 0.88 0.75 0.18 0.18 0.15 0.12 0.43 

Full PE cluster 1 0.38 0.75 0.21 0.08 0.47 0.39 −0.40 

Full PE cluster 2 0.53 0.20 0.41 0.33 0.65 0.12 −0.39 

Negative PE cluster 1 0.30 0.56 0.21 0.18 0.61 0.36 −0.77 

Negative PE cluster 2 0.60 0.20 0.41 0.04 0.89 −0.23 −0.37 

Negative PE cluster 3 0.54 0.45 0.44 −0.11 0.88 0.23 −0.49 

Unsigned PE cluster 1 0.29 0.36 0.25 −0.37 0.64 0.35 −0.32 

Unsigned PE cluster 2 −0.12 0.24 −0.26 −0.28 0.65 0.19 −0.28 

d = Cohen’s d effect sizes for paired observations. As a common approximate guideline, effects of |d| < 0.2 249 
are considered small or negligent, d ≈ 0.5 medium, and d > 0.8 large. Axioms 1 and 2 are supported if d is 250 
large and positive, and axiom 3 is supported if |d| is small. 251 
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Necessary and sufficient conditions for full signed PE model 252 

We next evaluated whether BOLD responses in any brain region fulfill three criteria, or ‘axioms’ (Fig. 1C), to 253 

represent PE signals in a learning-theoretic sense. In a whole-brain analysis, there were no significant 254 

clusters fulfilling the conjunction of axioms 1 (i.e., higher activity for US+ than US− outcome) and 2 (i.e., 255 

higher activity for more unexpected US+ outcomes and for more expected US− outcomes). Axiom 1 was 256 

fulfilled in four large clusters approximately in the left central operculum/posterior insula, right parietal 257 

operculum/superior frontal gyrus, and bilateral middle cingulate gyrus/left superior frontal gyrus, and right 258 

cuneus (Table 3). However, axiom 2 was not fulfilled in any region at the whole-brain level.  259 

For region-of-interest analysis, we extracted effect sizes for each axiomatic comparison. We focus 260 

here on reporting the results on regions that showed significance or decisive model evidence in favor of full 261 

signed prediction errors in our previous analyses, but full results are found in Table 4. In the first significant 262 

full signed PE cluster from our whole-brain search, as well as in anatomical BA 9 and in anatomical ACC, 263 

there was at best a very small difference between CS(66%) and CS(100%) when US occurred (both regions 264 

Cohen’s d ≤ 0.08); thus axiom 2 was clearly not fulfilled in these regions. The first full signed PE cluster also 265 

did not fulfill axiom 3 (equivalence of fully expected outcomes, Fig. 1C; d = −0.40). The second significant full 266 

signed PE cluster from our whole-brain search only showed a very small difference between CS(66%) and 267 

CS(33%) at US omission (d = 0.12), and did not fulfill axiom 3 (d = −0.39). Overall, as Table 4 shows, no region 268 

had at least small-to-medium effect sizes (d > 0.20) for all tests for axioms 1 and 2. 269 

 270 

Bayesian expectation uncertainty, surprise and model update 271 

In an exploratory analysis, we investigated whether any brain regions encoded quantities from a normative 272 

Bayesian learning model during two acquisition phases (first and last 24 trials). In the above PE analyses, we 273 

only included the maintenance phase where participants had already been exposed to 24 CS-US pairings. 274 

However, we were also interested in looking at initial threat learning, which is more commonly investigated 275 

in both animal and human Pavlovian threat conditioning experiments and was previously shown to be better 276 

explained by the normative Bayesian model rather than non-probabilistic reinforcement learning27. We 277 

found that expectation uncertainty positively correlated with activity in 6 large clusters across the brain; 278 

decreasing uncertainty over experienced CS-US pairings was associated with lower BOLD activity (e.g., 279 

cluster 1: bilateral thalamus, VTA/SN; T(21) = 10.24, p = 0.000014, 1012 voxels; Fig. S3; see Supplementary 280 

Table S2 for full results). Moreover, higher surprise to an experienced US outcome was associated with lower 281 

BOLD responses to the CS on the next trial in the left postcentral and precentral gyri (T(21) = 4.88, p = 0.027, 282 

244 voxels; see Table S2). Next to the two acquisition phases, we also looked at Bayesian learning during the 283 

maintenance of threat associations, where surprise was positively associated with BOLD activity in the left 284 

superior frontal gyrus (T(21) = 5.76, p = 0.003, 390 voxels; Table S2). Furthermore, larger model update (KL 285 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.10.197665doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197665
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

divergence) from the preceding trial correlated with lower BOLD activity in bilateral medial precentral gyrus, 286 

bilateral postcentral gyrus, bilateral anterior insula, left posterior insula, right parietal operculum, left middle 287 

cingulate cortex and right fusiform gyrus (e.g., cluster 1 in left anterior insula, caudate and putamen: T(21) = 288 

7.89, p = 0.00001, 747 voxels; see Table S2 for full results). This activity was mostly driven by activity in the 289 

first rather than the second acquisition phase. Finally, larger model update based on the experienced 290 

outcome on the current trial was associated with higher BOLD responses after the US in the left middle 291 

occipital gyrus (T(21) = 6.75, p = 0.032, 297 voxels; Table S2).  292 

 293 

Discussion 294 

Survival in biological environments requires learning associations between predictive cues and potential 295 

threatening outcomes. It has been suggested that such aversive learning is driven by prediction error (PE) 296 

signals, similarly to reward learning 28. Here, we used human BOLD fMRI to investigate neural representation 297 

of PEs after Pavlovian threat conditioning and under continuing reinforcement. We found no systematic 298 

evidence for symmetric neural PE signals. Instead, we discovered regions that express PE signals only when 299 

US was omitted and not when US occurred. Such asymmetric PE representation cannot on their own be used 300 

to learn unbiased estimates of US 29.  301 

Our primary analysis revealed that BOLD activity in dorsomedial PFC and posterior parietal cortex 302 

correlated with signed PE. However, our secondary analyses provided several arguments why these BOLD 303 

signals are unlikely to represent full signed PEs. First, average BOLD estimates from significant PE clusters did 304 

not fulfill all of the axiomatic criteria for PE representation 20,23,24. Specifically, although participants could 305 

learn the US probabilities, the extracted BOLD signals did not show large differences across levels of US 306 

expectation after US occurrence for both US occurrence and US omission (axiom 2). In a supplementary 307 

Bayesian model comparison (Fig. S1), these BOLD signals were better or equally well explained by models 308 

that separated BOLD responses for unexpected US omission (negative PE) and US occurrence (positive PE). 309 

Second, a whole-brain search for negative PEs revealed significant BOLD activity in the dorsomedial and 310 

ventromedial PFC as well as rostral ACC that entirely encompassed, as well as extended beyond, the 311 

prefrontal full signed PE-encoding cluster. Meanwhile, no significant BOLD activity was associated with 312 

positive PEs only, over and above a constant representation of the US. Third, in a cluster in the vmPFC and 313 

rostral ACC, the encoding of positive and negative PEs was significantly different. This cluster expressed 314 

negative PEs more strongly than positive PEs.  315 

Next, we explored whether any a priori anatomical regions of interest expressed PE signals. Formal 316 

model comparison revealed decisive evidence that averaged BOLD signals in BA 9 and ACC were better 317 

explained by full signed PE-encoding than alternative models, including some asymmetric models. In other 318 

areas, including PAG, Bayesian model comparison either supported outcome-encoding only, or the evidence 319 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.10.197665doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197665
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

was inconclusive or weak. Despite the full signed PE model winning the model comparison for two regions, 320 

there was no conclusive evidence that extracted BOLD signals from these or any other region fulfilled all of 321 

the axiomatic criteria for full signed PE-encoding.  322 

Notably, some formal reinforcement learning models build on unsigned (absolute) rather than 323 

signed PEs 14,30. In our design, testing for the negative association of unsigned PEs to BOLD signal was 324 

formally equivalent to testing the slope difference between positive and negative PEs. Data from the 325 

significant prefrontal cluster in this analysis, which partly overlapped with the negative PE cluster, was best 326 

explained by expression of negative but not positive PEs, rather than unsigned PE. Also, we did not observe 327 

unsigned PE signals with increased BOLD signal for any unexpected outcome.   328 

During learning, we found that BOLD activity in a wide network of brain regions correlated with US 329 

expectation uncertainty. Uncertainty decreases over trials, but the representation of uncertainty found here 330 

cannot be explained by a general decrease in BOLD signal over time due to non-cognitive phenomena, as 331 

each cue in the initial learning phase was presented six times in a row. Nevertheless, a decrease in BOLD 332 

activity might also reflect factors such as attention or stimulus novelty. We also found that BOLD signals in 333 

various brain regions during CS presentation were negatively correlated with surprise and model update 334 

based on the US outcome for the previous CS of the same type. These exploratory findings might give clues 335 

for future investigations into normative models of probabilistic threat learning.  336 

Using different designs, previous human neuroimaging studies have reported both positive and 337 

negative PEs in aversive learning to be represented in the same or in different brain regions 17,19,20,31. 338 

Specifically, Roy et al. (2014) found that BOLD activity in PAG fulfilled all of the axiomatic criteria for full 339 

signed PE signals during instrumental and pain intensity conditioning. They also found that US expectation, 340 

but not axiomatic PE, was represented in the vmPFC, and positive PEs in the dmPFC. While instrumental and 341 

Pavlovian conditioning may engage distinct learning algorithms 32, there are also important differences 342 

between the Pavlovian conditioning experiments by Roy et al. (2014), and our study. Specifically, these 343 

authors used cues predicting different heat pain intensity, rather than different probability of presenting the 344 

same stimulus as in the present study; they did not include fully predicted outcomes, and to derive PE they 345 

fitted a temporal difference learning model to participants’ choices, which commits a priori to a specific 346 

learning model.   347 

What could underlie the differential expression of positive and negative PE in our study? A first 348 

possible reason is to be found in biophysical relations. Negative PEs in our study correspond to better-than-349 

expected outcomes. We note that many dopaminergic midbrain neurons encode better-than-expected 350 

outcomes in increased firing rates, and worse-than-expected outcomes in reduced firing rates, and this 351 

reduction is often less pronounced than the increase 33, despite variability between individual neurons 29. 352 

Assuming an asymmetry in neural firing changes, and a constant noise level in the fMRI measurement, it 353 
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might be more difficult to detect the smaller firing reduction than the larger firing increase. However, 354 

different from reward learning, there is currently no electrophysiological or voltammetric evidence for 355 

differential encoding of aversive PE in firing rates of the same neurons: those populations that respond to US 356 

occurrence have not been shown to be responsive to US omission 7,34.  357 

As a second possible reason, biased PE encoding in individual neurons can, when integrated on the 358 

population level, afford probabilistic learning 29. This study addressed variability of reward PE encoding bias 359 

in neurons within one region, but the same mechanism could also act across regions. The potential 360 

asymmetry in electrophysiological PE signatures in PAG 12,34 with expression of positive but not negative PEs 361 

could be the flipside of negative but not positive PE signals in our study, and integration over two such 362 

biased regions could enable a reinforcement learning algorithms to achieve an unbiased estimate of US 363 

probability. We note that our fMRI sequence was not specifically optimized for PAG coverage, which might 364 

explain why we did not pick up positive PE representation here. Recent rodent studies have also shown that 365 

dopaminergic VTA neurons encode negative PE signals that are important for threat extinction 9,10, further 366 

suggesting divergent positive and negative PE neural signaling in the aversive domain.  367 

As a final reason, some learning algorithms use teaching signals that are distinct from PE signals. For 368 

example, the normative Bayesian learner exploited in this and previous work 27 requires only a categorical 369 

representation of the US to update its predictions. This raises the question whether the negative PE-370 

encoding regions identified here are truly part of a learning system, or whether they encode an output signal 371 

that drives behavior after US omission. For example, mPFC has an important role in fear and extinction 372 

memory consolidation 35 and in signaling safety to the amygdala to diminish fear responses 36. The negative 373 

PE signals in the vmPFC in our study could reflect phasic safety signals in response to upward changes in 374 

environmental circumstances, consistent with previous studies 37,38.  375 

As a general limitation of the mass-univariate fMRI approach used here and in previous work, it is 376 

possible that PEs are represented by neural populations that are sparse 39, or that differ in sign and have an 377 

interleaved spatial organization, as has for example been shown for reward value representation in 378 

orbitofrontal cortex 40, CS+ representations in amygdala 41,42, or biased PE signals in dopaminergic midbrain 379 

29. Multivariate analysis of high-resolution fMRI might be more appropriate to delineate such 380 

representations 43–45.  381 

To conclude, we found no evidence of full signed PE signals in any brain region but show that BOLD 382 

signals in a ventromedial prefrontal region may encode only negative and not positive PE. We speculate this 383 

may be due to biophysical asymmetries, integration of biased PE signals across regions, or learning 384 

algorithms that do not require PE signaling.  385 

386 
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Methods 387 

Participants 388 

Twenty-one participants (6 women and 15 men; mean age ± SD: 25.5±4.2) were recruited from the general 389 

and student population for the fMRI experiment and 19 participants (14 women, 5 men, mean age 24.7±3.7 390 

years) for the behavioral experiment. One participant in the behavioral experiment was excluded due to 391 

pupil data quality (see details below). Participants reported that they had no history of neurological and 392 

psychiatric illnesses and gave written informed consent. The study protocol, including the form of taking 393 

consent, was in accordance with the Declaration of Helsinki and approved by the governmental research 394 

ethics committee (Kantonale Ethikkommission Zürich, 2016-00097).  395 

 396 

Procedure/experimental paradigm 397 

The assignment of CS color to US rate was randomly determined for each participant. US started 6 seconds 398 

after CS onset, lasted 0.5 seconds, and co-terminated with the CS. The intertrial interval was randomly 399 

drawn from {5 s, 6 s, 6 s, 7 s}, i.e., 6 s was twice as likely as the other values. During CS presentation, 400 

participants were instructed to indicate CS color with a key press, in order to maintain attention during the 401 

task. Before the experiment started, participants trained the CS color-key press mapping (for fMRI: inside the 402 

scanner) until 80% accuracy over at least two presentations of each CS was reached. Participants were 403 

explicitly informed that after training, all CS may be followed by US but received no information about CS-US 404 

contingencies. To exclude potential confounds for fMRI analysis, there was no evidence that reaction times 405 

and accuracy depended on CS condition (see Table 1). 406 

 407 

Table 1. Reaction time and accuracy statistics for the fMRI experiment.  408 

 CS(0%) CS(33%) CS(66%) CS(100%) 

Reaction time (Mean ± SD), ms 1046±212 1044±268 1086±269 1011±248 

Accuracy (Mean ± SD), % correct 99.2±2.7 99.2±2.1 98.9±2.4 99.2±2.8 

One-way repeated-measures ANOVA F df p  

Reaction time ~ CS type 0.081 3, 76 0.97  

Accuracy ~ CS type 0.142 3, 76 0.935  

Reaction time and accuracy data from trials with reaction times shorter than 200 ms (0.2% of all trials over 409 
all participants) were excluded. Trials with incorrect or missed responses were excluded from reaction time 410 
analyses. Repeated-measures ANOVA was conducted with the ‘aov’ function in R.  411 

 412 

During the first acquisition phase, participants were presented with 4 blocks of 6 consecutive trials 413 

of the same CS, in order to facilitate learning of the CS-US contingencies (24 trials in total). CS were triangles 414 

with different colors (RGB: 255, 0, 255; 0, 255, 255; 255, 255, 0; 255 255 255). Reinforcement was balanced 415 
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over these 6 trials per CS such that the rate of reinforcement exactly matched the overall rate. Order of the 416 

blocks was randomly determined for each participant. In the following maintenance phase, participants were 417 

presented 176 trials (44 trials per CS) of the same CSs, now in pseudo-random order, reinforced randomly at 418 

constant rate per CS and divided into four blocks. The third phase served to increase power for analysis of 419 

the acquisition process. This phase had the same structure as the first, but new CS shape (rectangles) and 420 

colors (RGB: 128, 0, 128; 0, 128, 128; 128, 128, 0; 128, 128, 128). Therefore, new CS-US associations had to 421 

be learned, with the same US rates. The experiment was presented using Cogent 2000 (version 1.32, 422 

vislab.ucl.ac.uk) on Matlab. The visual presentation was projected onto a 42 cm x 33 cm size screen (1024 x 423 

768 pixel resolution) at approximately 73 cm distance from the participants’ eyes.  424 

 425 

Delivery of the unconditioned stimuli 426 

US was delivered with a constant current stimulator (Digitimer DS7A, Digitimer, Welvyn Garden City, UK) 427 

through a pin-cathode/ring-anode configuration on the right forearm. US intensity was individually 428 

calibrated for each participant (fMRI: outside the scanner) before the experiment. First, a clearly unpleasant 429 

intensity was determined with an ascending staircase procedure. After that, participants gave subjective 430 

ratings (0 = felt nothing to 100 = very unpleasant) for 14 random intensities below the initial threshold. The 431 

intensity corresponding to a rating of 85 was chosen as the US intensity for the experiment (3.3±0.8 mA, 432 

range 1.5─5.5).  433 

 434 

Subjective recollection of US probability 435 

Participants rated their explicit knowledge of the CS-US contingencies once after the maintenance phase for 436 

the first set of CS, and once after the second acquisition phase for the second set of CS, using a 437 

computerized visual analogue scale anchored with "0%" and "100%". The initial position of the slider was set 438 

to the middle of the scale. Contingency ratings were analyzed with a one-way repeated-measures ANOVA 439 

with the ‘aov’ function in R (version 3.6.1) 46 with RStudio (version 1.2.1335) 47, including CS type as a factor 440 

with four levels. Partial eta squared were computed with the ‘etasq’ function of R package heplots 48. 441 

Moreover, we computed pairwise one-sided paired t-tests for CS(100%) > CS(66%), CS(66%) > CS(33%), and 442 

CS(33%) > CS(0%) with Holm-Bonferroni multiple comparisons correction over the three comparisons.  443 

 444 

Pupil size recording and analysis 445 

Due to technical limitations, no psychophysiological trial-by-trial learning indices were available in the MRI 446 

environment. To ensure learning in this paradigm, we conducted a separate experiment (N = 19, 164 trials 447 

with 24 trials of acquisition and 140 trials of maintenance) on an independent sample outside the MRI 448 

scanner. Gaze direction and pupil area were recorded with an EyeLink 1000 system (SR Research, Ottawa, 449 
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ON, Canada) from both eyes of each participant at 500 Hz. For each participant, we used the eye with fewer 450 

missing data for analysis. The size of the visual presentation was 32 cm x 23 cm (1280 x 1024 pixel 451 

resolution). The center of the screen was at approximately 70 cm distance from the participants’ eyes and 452 

the eye-tracking camera was at approximately the same distance. Calibration of gaze direction was done on 453 

a 3-by-3-point grid in the EyeLink software. EyeLink data files were converted and imported into the 454 

Psychophysiological Modelling (PsPM) toolbox (version 4.0.1, bachlab.github.io/PsPM/) in MATLAB2018a for 455 

further preprocessing and analysis. Blink and saccade periods were detected by the EyeLink online parsing 456 

algorithm and excluded from pupil data during import into PsPM. Data points for which gaze direction 457 

deviated more than 5° visual angle from the center of the screen were excluded 49,50. Raw pupil size data was 458 

filtered with a unidirectional first order Butterworth low pass filter with 25 Hz cut off frequency and 459 

downsampled to 50 Hz. Missing data were linearly interpolated for further analysis. One participant was 460 

excluded from further pupil size analysis based on a criterion of having more than 75% trials with more than 461 

75% missing data points during 11 seconds following CS onset due to invalid fixations, saccades or blinks.  462 

Pupil size has been suggested to relate to US prediction 27, but it is unclear how this relation evolves 463 

during CS presentation. A previous psychophysiological model for analysis of threat-conditioned pupil size 464 

responses was optimized for discriminative (one CS+ vs. one CS−) threat conditioning 50. This is why we here 465 

took a data-driven approach to analyze the relation between pupil size and US probability, using a cluster-466 

level random permutation test 51. This analysis was performed in R (version 3.5.2) 46 and RStudio (version 467 

1.0.136) 47. First, we tested for a linear relation between CS type and pupil size by conducting a linear 468 

regression for every time point (in 0.1 s bins) during CS presentation until US onset, 6 s after CS onset. The 469 

resulting coefficient and p-values were compared against values derived from 1000 regressions with 470 

randomly shuffled trial labels in a permutation test, under the null hypothesis that trial labels are 471 

exchangeable. To account for multiple comparison across time, we applied cluster-level correction for 472 

family-wise error 51,52. This test controls the false positive rate for the statement that there is any effect 473 

somewhere within the correction window, and thus makes no a priori assumption about the location of an 474 

effect. Importantly, for this test, the temporal cluster extents are only descriptive and not controlled for the 475 

error rate. Next, we conducted post-hoc t-tests with permutation to investigate differences between the 476 

four CS conditions over the interval between CS and US onset.  477 

 478 

fMRI data acquisition and preprocessing 479 

Data were acquired using a 3 T Prisma MRI scanner (Siemens, Erlangen, Germany) with a 64-channel head 480 

coil. T2
*-weighted multi-echo echo-planar images (EPI) were acquired using a custom-made 2D EPI sequence 481 

53. The in-plane resolution was 3 mm isotropic and the size of the acquisition matrix was 64 x 64 (FOV 192 482 

mm). 40 axial slices were acquired in ascending order, with a nominal thickness of 2.5 mm and inter-slice gap 483 
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of 0.5 mm (effective thickness 3 mm). The volume TR was 3.2 s and the flip angle 90°. Parallel imaging was 484 

used with an acceleration factor of 2 along the phase-encoding direction and images were reconstructed 485 

using GRAPPA 54. In order to avoid signal dropouts in the EPI images and achieve maximal BOLD sensitivity in 486 

all brain areas, a multi-echo EPI acquisition was used 55 with the following echo times: TE = 17.4/35/53 ms . 487 

There were 6 fMRI runs in the experiment, with 24 trials in the first run, 44 trials in each of runs 2─5 and 24 488 

trials in run 6, summing up to a total of 224 trials. Phase and magnitude B0 field maps were acquired at the 489 

beginning of the experiment (TE 10 and 12.46 ms, TR 1020 ms, FOV 192 mm, 64 transversal slices of 2 mm 490 

thickness). A high-resolution structural scan was obtained at the end of the scan session (MP-RAGE; TR 2000 491 

ms, TE 2.39 ms, inversion time 920 ms, 1 x 1 x 1 mm voxel size, flip angle 9°, FOV 256 mm, 176 sagittal 492 

slices).  493 

During fMRI, we collected respiratory and cardiac data to correct for physiological noise in the fMRI 494 

analysis, using the scanner's in-built breathing belt and a strapped photoplethysmograph on the left index 495 

finger. Data were recorded with a PPG100C MRI amplifier and a BIOPAC MP150 system.  496 

We used SPM12b (Wellcome Trust Centre for Neuroimaging, London) and MATLAB2016a 497 

(Mathworks, Sherborn, MA, USA) to preprocess and analyze fMRI data. Preprocessing of the structural 498 

imaging data included field inhomogeneity correction and segmentation. Preprocessing of the functional 499 

images started with the combination, for each volume, of the EPI images acquired at different echo times 500 

using a simple summation. Because the first echo has very good sensitivity for high-dropout regions and the 501 

two others give better sensitivity for other regions, this process leads to maximal BOLD sensitivity to all brain 502 

areas 55. This was followed by correction of image distortions using the SPM FieldMap toolbox 56 and the B0 503 

field map data, slice-time correction, motion correction (realignment), as well as co-registration with the T1-504 

weighted structural images, spatial normalization to the Montreal Neurological Institute (MNI) template, and 505 

spatial smoothing with an 8 x 8 x 8 mm FWHM Gaussian filter. Serial autocorrelations were estimated using 506 

SPM 12's FAST model 57. Cardiac and respiratory signals were used for physiological noise correction with the 507 

RETROICOR method 58 as implemented in the PhysIO toolbox for SPM 59. In total, 18 physiological noise 508 

regressors (cardiac: 3 orders, respiratory: 4 orders, interaction: 1 order) and 6 head motion regressors from 509 

the realignment were used as nuisance parameters in the analyses. The third run of one participant was 510 

excluded from the fMRI analyses due to head motion in the beginning of the run leading to a severe artefact 511 

affecting all volumes within the run.  512 

In all analyses, we performed standard random effects analyses at the group level. First-level 513 

contrast images from each participant were entered into one-sample t-tests against zero and statistical 514 

parametric maps were created with cluster-level family-wise error (FWE) correction at p < 0.05 with initial 515 

cluster-forming threshold p < 0.001 60. For illustration, functional results were overlaid on a normalized mean 516 

anatomical (grey and white matter only) image of our sample of participants. Anatomical location of clusters 517 
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was defined based on the Neuromorphometrics labels in SPM12 for the top three peak voxels within the 518 

cluster with highest T-values. Importantly, there is no anatomical specificity for activity within any of the 519 

clusters due to the cluster-level correction. The anatomical labels are included to give the reader an 520 

approximation of the location of the entire cluster.  521 

 522 

Mass univariate whole-brain analysis of PE signals 523 

The first level GLMs for each participant modelled cue (CS) and outcome (US) events as stick functions and 524 

included parametric modulators of these events as well as nuisance regressors. The CS-US interval of 6 525 

seconds was chosen to reduce design matrix collinearity: the correlation of them modelled hemodynamic 526 

responses to CS and US event was Pearson’s r = −0.06. As parametric modulators, we included expectation 527 

of the US outcome for CS events, and PE (computed from this expectation) for US events. US expectation 528 

was formalized in the primary analysis as the overall US rate (0%, 33%, 66%, or 100%) for the CS presented 529 

on that trial (primary analysis) and in a supporting analysis as the prior expectation of the US+ probability 530 

from a normative Bayesian learning model, which in a previous study provided the best description of trial-531 

by-trial conditioned skin conductance and pupil size responses across several samples 27. Notably, US 532 

expectation from these two approaches is almost identical during the maintenance phase. The US outcome 533 

was defined as either 1 (US+) or 0 (US−). For primary and exploratory follow-up analysis, we constructed 534 

separate GLMs with the following different PE terms: (1) full signed PE (outcome−expectation for both US+ 535 

and US− trials, primary analysis), (2) positive PE (outcome−expectation for US+ trials only), (3) negative PE 536 

(outcome−expectation for US− trials only), and (4) unsigned PE (|outcome−expectation| for all trials). 537 

Analysis (4) can also be interpreted as a test for slope differences between negative and positive PEs. These 538 

four different PEs were calculated with both definitions of expectation. For each contrast, we examined 539 

correlated BOLD activity with a one-tailed one-sample t-test against zero. Our a priori expectation was that 540 

higher positive PEs (positive values after US+) would relate to higher BOLD signal and higher negative PEs 541 

(negative values after US−) to lower BOLD signal, based on previous work on instrumental aversive 542 

conditioning and parametric threat learning 20. Regarding analysis (4), we assumed that unsigned PEs would 543 

relate to higher BOLD signals, based on previous work 14.  544 

Next, we conducted follow-up analyses of the averaged signal from significant clusters and a-priori 545 

anatomical regions (see section on region-of-interest analysis), as well as a follow-up whole-brain analysis, to 546 

determine whether BOLD signal in any detected cluster, or in any voxel, would fulfill the necessary and 547 

sufficient conditions for representing PEs (Fig. 1C) 23. To this end, we computed an additional GLM agnostic 548 

to the parametric values of PE (“categorical GLM”), where we modelled the 4 different CS, and the 6 549 

different US types (one for each possible CS-US pairing), in separate conditions. For the voxel-wise whole-550 

brain analysis, we conducted a conjunction null test (logical “AND”) on the significance of all relevant 551 
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condition contrasts in both directions for the outcome and expectancy conditions (Fig. 1C, axiom 1 and 2). 552 

We defined conjunctions separately for the full PE model (all 6 possible contrasts), positive PE (US+ trials 553 

only), negative PE (US− trials only), and unsigned PE (no differentiation between US+ and US− trials, only 554 

unexpectedness counts). We did not explicitly test for the condition that fully expected outcomes should 555 

elicit similar BOLD activity (Fig. 1C, axiom 3). This requires a test of equivalence, which was not necessary 556 

since the results for the other axioms were already negative.  557 

 558 

Mass univariate region-of-interest analysis for PEs 559 

We next analyzed whether BOLD signal in the significant cluster from our primary analysis, and in different 560 

anatomical regions-of-interest (ROI), fulfilled necessary and sufficient criteria to represent PEs. Anatomical 561 

masks for thalamus, anterior and posterior insula, and anterior cingulate cortex were created from the WFU 562 

PickAtlas AAL library 61,62. Frontal cortex ROI masks were created separately for Brodmann Areas 8─11 and 563 

44─47 (dilation level 1 in 2D). For amygdala, we binarized probabilistic masks from Abivardi and Bach (2017) 564 

(combined basolateral and centrocortical divisions) which are based on manual segmentation of N = 50 565 

datasets from the Human Connectome Project 64. The binarization threshold was set at 0.5 to obtain mask 566 

volumes (mm3, in final normalized functional space) within 1 SD of the mean native space volumes reported 567 

in Abivardi and Bach (2017). For periaqueductal grey (PAG), we used the high-resolution probabilistic 568 

anatomical mask for young people (linear option) from the ATAG atlas 65. The probabilistic PAG mask was 569 

binarized at a threshold of 0.13, which best retained the anatomical shape of the PAG when inspected 570 

qualitatively with respect to a normalized mean image of the participants’ anatomical scans. We used high-571 

resolution anatomical masks from the recent Reinforcement Learning Atlas 66 for ventral striatum (nucleus 572 

accumbens), dorsal striatum (caudate nucleus and putamen), and dopaminergic midbrain (substantia nigra 573 

pars reticulata/compacta and ventral tegmental area). The anatomical ROIs were defined in the MNI space, 574 

co-registered to the functional space, and used in the analyses at the group level. Moreover, to explore the 575 

results from the GLMs, we extracted parameter estimates from clusters with significant activity associated 576 

with each different type of PE (cluster-level corrected FWE p < 0.05 with p < 0.001 initial threshold, see Table 577 

3 for the clusters and their statistics).  578 

For each anatomical ROI and significant functional cluster, we extracted the average BOLD amplitude 579 

estimates from the categorical GLM for the six US outcome conditions in the maintenance trials. For the a 580 

priori anatomical ROIs, we investigated whether the average BOLD signals fulfilled the axioms by computing 581 

paired Cohen’s d effect sizes (‘cohensD’ function of lsr package in R) 67 for the following comparisons: Axiom 582 

1): US+ > US− for US expectation conditions CS(33%) and CS(66%), (2) Axiom 2):different levels of US+ 583 

expectation: CS(0%) > CS(33%) and CS(33%) > CS(66,%) for US−, and CS(33%) > CS(66%) and CS(66%) > 584 

CS(100%) for US+ trials, and Axiom 3) CS(100%) > CS(33%) (see Fig. 1C; 7 effect size computations in total). 585 

Moreover, we created linear mixed effects models (‘lme’ function in the nlme package in R) 68 on the BOLD 586 
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amplitude estimates for (1) full signed PEs, (2) positive PEs, (3) negative PEs, (4) unsigned PEs, (5) US+/US− 587 

outcome, and (6) null model. Each model included PE or outcome values as the fixed effect. To account for 588 

potential asymmetry between positive and negative PEs, we also included a full PE model with separate 589 

fixed effects for positive and negative PEs, allowing different intercepts and slopes. The null model only 590 

contained a constant value 1 as the intercept. Each model included a participant intercept as a random 591 

factor, allowing for a different intercept but not slope for each participant (1|Participants). All models were 592 

estimated using the maximum likelihood (ML) method to allow extraction of model evidence metrics. To 593 

formally compare the different models, we computed Bayes factors with Bayesian Information Criterion 594 

approximation for frequentist linear regression models with R package bayestestR 69,70. For the functional 595 

clusters, we conducted post-hoc effect size computations for the axioms with Cohen’s d for paired 596 

observations similarly to the tests for the anatomical ROIs (Fig. 1C).  597 

 598 

Whole-brain analysis for the normative Bayesian model 599 

A previous modelling study revealed that the trial-by-trial trajectory of skin conductance and pupil size 600 

responses in a discriminative threat conditioning paradigm was best explained by a beta-binomial normative 601 

Bayesian learning model 27. Thus, we explored whether quantities from that model relate to BOLD activity. In 602 

our GLM, CS responses were parametrically modulated by (1) expectation of shock outcome based on prior 603 

belief, (2) uncertainty of the prior belief about the outcome, (3) entropy of the prior, (4) model update from 604 

the previous trial of the same CS type, and (5) surprise about the outcome of the previous trial of the same 605 

CS type; and US activity was modulated by (1) outcome (US+ or US−), (2) model update on the current trial, 606 

and (3) surprise about the outcome of the current trial. All parametric modulators were serially 607 

orthogonalized. We looked at these model quantities separately for the combined acquisition phases, and 608 

the maintenance phase, as well as over the whole experiment. For each model quantity, we examined its 609 

relation of BOLD activity with two one-tailed one-sample t-tests against zero. For definition of the quantities 610 

above, please see Supplementary Information. 611 

 612 

Data availability 613 

Group-level unthresholded SPMs, ROI masks and mean beta values relevant to the results are available at 614 

doi.org/10.5281/zenodo.3939294. Pupil data are available upon acceptance. Remaining data are available 615 

from the authors upon reasonable request.  616 

 617 

Code availability 618 

The code for the experiment, analysis and figures are available at gitlab.com/kojala/threatlearning_fmri. 619 
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