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Orbit characteristics Max. degree

88° 200x200km 70

88° 400x400km 45

112° 400x400km (SSO) 18

88° 400x1400km 19

Maximum spherical harmonic degree of 
gravity field recoverable for low Callisto 

orbits, with different inclinations and 
altitudes for a duration of 90 days
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▪ Sun synchronous orbits (SSO): constant angle 
between Sun and orbital plane, but with an 
important polar gap and highly dependent on the 
gravity field knowledge at low altitude.

⚫ Orbit propagations in a full force model, as well as the whole gravity field recovery process were 
done using a development version of the Bernese GNSS Software [6].

▪ Repetitive Ground Track Orbits (RGTO): defined 
by an integer triplet (N,P,Q) [4], fixed phase grid 
defined for N*P+Q orbit revolutions during P 
Callisto days [5].

Introduction and Background

⚫ Gan De is a Chinese exploration mission under study, that would fly to Jupiter in the 2030’s [3]. 
An orbiter would be injected into a Low Callisto Orbit to perform an extensive characterization 
of its surface and interior, investigate its degree of differentiation and search for the possible 
existence of an internal ocean. 

⚫ After an extended tour of the Jupiter system, a first polar elliptic orbit is foreseen for capture 
around Callisto. Then two polar circular orbits could be used for science investigation. A first 
one for at least 6 months, and a  second one with lower altitude, with the possibility of regular 
manoeuvres to counteract orbit decay.

⚫ Here, more specific orbits are also investigated due to their relevance for mission design:
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Set of orbits and simulation setup

-3rd body perturbations: 
Sun, planets, Galilean moons

-Jupiter gravity field: J2 to J6

-Tides from Jupiter: k2 = 0.0

Altitude Inc. RGTO SSO

200x200km 88° No No

200x200km 88° (146,1,0) No

197x197km 88° (146,5,1) No

395x395km 88° (131,1,0) No

401x401km 112° No Yes

400x1400km 88° No No

*    :  Generated with a full coverage of 3 Deep Space Network stations
**  : Coefficients are estimated freely in only one iteration
***: Tests have been made with degraded a priori gravity field, requiring then several iterations

Initial condition

Daily normal equations
Stacked normal equation 

(90/200 days)
k2 and gravity field solution **

90/200 days propagation
from 01-May-2031

Generalized orbit determination 
(Celestial Mechanics Approach [2])

Reference Callisto gravity field:
-d/o 2:  Anderson et al (1998) [1]
-d/o 3 to 50/90: scaled Moon’s field

2-way Doppler
X-band obs. *

Daily initial
conditions

σobs = 0.1 mm/s
at τ= 60s

σp = 50 m
σv = 1 mm/s

Set of 6 orbits under study. All have a 45°𝛽𝐸𝑎𝑟𝑡ℎ
angle (between orbital plane and Earth)

(***)

Simulation flow chart
(for each orbit)

Comparison:ΔതC𝑛𝑚, ΔതS𝑛𝑚, Δg𝜃,𝜙
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Gravity field recovery

Difference (solid) and error(dashed) degree amplitudes 

(Mn =
σm=2
n (ΔഥCnm

2 +ΔതSnm
2 )

2n+1
). For 200km orbits, the gravity  

field was estimated up to d/o 90

Weighted RMS of geoid height differences Δg𝜃,𝜙 for 90/200 

days (
σ𝜃,𝜙 𝑐𝑜𝑠(𝜃)Δg𝜃,𝜙

2

𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒
) and k2 Love number formal error 

for 90 days mission computed using an a priori d/o 50 field.

▪ 22° polar gap is omitted for the Sun Synchronous Orbit
▪ With face-on orbit, the gravity field recovery is worse. As an example, the (146,1,0) orbit leads to a 

larger weighted RMS of geoid height difference for 𝛽𝐸𝑎𝑟𝑡ℎ=90° (153cm) than for 𝛽𝐸𝑎𝑟𝑡ℎ=45° (88cm).
▪ Using a d/o 40 truncated gravity field with the 200km (146,1,0) orbit, 4 iterations on the gravity 

field solution are needed to reach the solution computed with a full d/o 50 a priori gravity field.
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Conclusions

▪ A highly eccentric orbit over a time span of 90 days can already improve the 
knowledge of Callisto’s gravity field (up to d/o 19 for a 400x1400km orbit). 
However, as the eccentricity increases significantly with time, such an orbit is not 
stable for more than 3 months.

▪ Sun synchronous orbits suffer from a large polar gap, the recovery of zonal 
coefficient is then largely impacted, just as Love number k2 recoverability.

▪ For all non-Sun synchronous orbits, 𝛽𝑆𝑢𝑛 does not vary much (max. 1.2°/month). A 
SSO for maximum illumination might then not be compulsory.

▪ Low altitude polar orbits are the best suited for gravity field recovery. At 400km 
altitude, one can expect to recover the gravity field up to d/o 45 after 90 days.

▪ Lower orbits are even more beneficial, but will require manoeuvres to increase the 
orbit lifetime. Repetitive Ground Track Orbits are well suited to efficiently plan 
station keeping manoeuvres.

▪ For 200km polar orbits a sensitivity up to d/o 70 was found after 90 days. In the 
case of Callisto, the effect of low density ground tracks (for RGTO) is negligible.
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