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Abstract

Polyelectrolytes (PEs) represent a broad and interesting class of materials that are getting
an increasing attention in the scientific community. Quintessential roles of PEs range from
the information encapsulators (DNA, RNA) to the architects of cellular life (proteins) in
biological world and from the superabsorbers to the drug delivery agents in the artificial
world. However, despite extensive theoretical and experimental research, the understand-
ing of PE solutions has been relatively poor compared to their neutral counterparts. The
main difficulty in their theoretical treatment arises from the long-range nature of electro-
static interactions between the charged groups and ions, which becomes more prominent
issue for highly charged PEs, and puts forth challenges towards the theoretical rational-
ization of the subsequent counterion condensation and charge renormalization. Moreover,
the counter-intuitive footprint of PE–water thermodynamics, and the simultaneous pres-
ence of the divalent and the monovalent counterions in the solution, as is reminiscent of
many biological environments, escalates the complexity and richness of the problem. This
affects the subsequent complexations of the PE with other biologically relevant molecules
such as proteins, and thus the functions, applications of such complexes in biomedicine
and biotechnology.

In this thesis, we conducted a comprehensive analysis of the charge and hydration
structure of dendritic PEs in a monovalent salt using all-atom explicit-water molecular
dynamics (MD) computer simulations and semi-analytical theoretical approaches, and
investigated a competitive sorption of mono- versus divalent ions on globular PEs using
mean-field theoretical models, all-atom and coarse-grained (CG) simulations and calorime-
try experiments. Atomic specificity and explicit treatment of water in MD simulations
allows us to characterize the PE by calculating molecular distributions and to rationalize
the energetics of PE–water interaction. In particular, owing to the charged renormaliza-
tion of the PE induced by condensed counterions, we address the challenges of how to
obtain a well-defined effective charge and surface potential of the PE for practical appli-
cations using the implicit- and explicit-solvent approaches. We present a novel two-state
binding model as an extension of one component conventional Langmuir binding model,
to study the competitive ion sorption, ensuring a meaningful comparison between theory,
simulations and experiments.

This thesis lays out a systematic methodological demonstration of the PE electrostatic
characterization, explores PE–water thermodynamic signature, and shows a comprehen-
sive analysis of the competitive binding of divalent and monovalent counterions on the PE.
The theoretical and simulation analysis provides a deeper insight into the physicochemi-
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cal aspects of PE–counterion and PE–water interactions on the atomistic and mesoscopic
level, which has a potential to contribute in propelling a new perspective for the rational
design of PEs on a targeted application basis.

Keywords: Dendritic polyelectrolytes, Counterion condensation, Charge renormaliza-

tion, Competitive ion sorption, Effective charge, All-atom simulations, Hydration
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Zusammenfassung

Polyelektrolyte (PEs) bilden eine große und wichtige Klasse von Materialien, die in der
wissenschaftlichen Forschung immer mehr Beachtung findet. PEs haben wichtige Auf-
gaben sowohl in der biologischen Welt, z.B. bei der Informationskapselung (DNA, RNA)
oder beim Aufbau des zellulären Lebens (Proteine), als auch in der künstlichen Welt wie
bei Superabsorbern oder medizinischen Wirkstoffen. Trotz umfangreicher theoretischer
und experimenteller Untersuchungen sind PE-Lösungen im Vergleich zu ihren neutralen
Gegenstücken noch relativ schlecht verstanden.

Die größte Schwierigkeit bei ihrer theoretischen Beschreibung ergibt sich aus der lan-
gen Reichweite der elektrostatischen Wechselwirkungen zwischen den geladenen Gruppen
und den Ionen, was besonders für stark geladene PEs zum Problem werden kann und
die theoretische Behandlung der anschließenden Kondensation und Renormalisierung der
Gegenionen erschwert. Die Komplexität des Problems wird noch zusätzlich durch die
gleichzeitige Anwesenheit monovalenter und divalenter Gegenionen in der Lösung, was
vielen biologische Umgebungen entspricht, erhöht. Dies beeinflusst die Komplexierungen
der PEs mit anderen Biomolekülen wie z.B. Proteinen und damit die Funktionen und
Anwendungen solcher Komplexe in der Biomedizin und Biotechnologie.

In dieser Arbeit führen wir eine umfassende Analyse der Ladungs- und Hydratation-
sstruktur von dendritischen PEs in einem monovalenten Salz unter Verwendung von atom-
istischen Molekulardynamik (MD) Computersimulationen mit explizitem Wasser durch.
Die atomistische Auflösung und die explizite Behandlung des Wassers ermöglichen es,
die PEs anhand von Molekülverteilungen und PE-Wasser-Wechselwirkung zu charakter-
isieren. Insbesondere aufgrund der durch kondensierte Gegenionen induzierten Ladungsrenor-
malisierung der PEs befassen wir uns mit der Frage, wie eine genau definierte effek-
tive Ladung und ein genau definiertes Oberflächenpotential der PEs für praktische An-
wendungen unter Verwendung von impliziten und expliziten Lösungsmittelansätzen bes-
timmt werden können. Darüber hinaus untersuchen und klären wir die Physik hin-
ter der kompetitiven Adsorption der monovalenten und divalenten Gegenionen am PE
mit Hilfe theoretischer Mean-Field-Modelle, vergröberter und atomistischer (expliziter)
Wasser-Simulationen und Kalorimetrie-Experimenten. Wir präsentieren ein kompetitives
Zwei-Zustands-Bindungsmodell als Erweiterung des konventionellen einkomponentigen
Langmuir-Bindungsmodells, das einen aussagekräftigen Vergleich zwischen Theorie, Sim-
ulationen und Experimenten gewährleistet.

Diese Arbeit stellt eine systematische methodische Demonstration der elektrostatis-
chen Beschreibung von PE vor, untersucht die thermodynamische PE-Wasser Signatur
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und analysiert die kompetitiven Bindung von monovalenten und divalenten Gegenionen
an PEs. Die theoretische Analyse in dieser Arbeit bietet einen tieferen Einblick in die
physikalisch-chemischen Aspekte von PE-Gegenion- und PE-Wasser-Wechselwirkungen
auf atomistischer und mesoskopischer Ebene. Hiermit eröffnen wir neue Perspektiven für
das rationale Design von PEs für spezifische Anwendungen.

Stichwörter: Dendritischen polyelektrolyte, Gegenionskondensation, Effektive Ladung,

Ladungsrenormierung, Kompetitiven Adsorption, Atomistischen Simulationen, Hydra-

tion
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1 Introduction

Polyelectrolytes (PEs) have been principle components responsible for the conception of
life forms on earth. Majority of naturally occurring polymers ranging from the information-
encapsulating polymers such as DNA, RNA to the multi-functional polypeptide chain
linked protein molecules and glycosidic chain linked polysaccharides, that constitute the
design of organisms and their functions, are highly charged PEs. The existence of these
types of polymers originates from billions of years ago. In spite of the modest perfor-
mance in comparison to such naturally occurring highly charged PEs, human species
have achieved spectacular advancements in manufacturing the PE-based systems, with
technologically pertinent properties. Owing to the polymer science and technology, there
has been a revolution in the design, fabrication and processing of modern PEs, which form
the integral part of everyday life [1]. A plethora of artificially synthesized macromolecules
such as poly(styrene sulphonate) (PSS) and polyacrylic acid (PAA) are a part of highly
charged PEs. The industrial applications of these PEs range from colloidal stabiliza-
tion, flocculation, flow modification to super-absorbent gels (diapers being a prominent
example), leak protection, viscosity modification, etc. [2, 3]. Newer PEs with diverse
functionalities continue to emerge from the laboratories, helping towards the enhance-
ment of human health care and the sustainability of the planet, thereby paving the way
our civilization is being driven.

In spite of such advancements, there is a lack of full understanding of the PE behaviour.
Due to the overwhelming number of non-linearly coupled variables controlling the PE
phenomena, a theoretical description of PEs is one of the demanding tasks today, in both
the artificial and biological realms. The major actively interacting forces in a system of PE
solutions are evident also in a system of a single isolated PE molecule. Such systems are
furnished with long-range electrostatic forces (as a result of the charged groups on the PE
molecule, counterions and salt ions), dipolar interactions and hydrogen-bonding (water),
van der Waals interactions associated with the excluded volume effects, and the chemical
covalent bonds connecting the PE atoms together. The system endowed with the richness
and combination of such effects has a potential to exhibit wealth of functionalities.

The systems of PEs with ionic salts in polar solvents such as water, are important and
ubiquitous in biological as well as synthetic world [1, 2, 4, 5, 6, 7, 8]. The long-range
electrostatic interactions regulated by free ions and water in such environments play a
dominant role in shaping the structural and electrostatic characteristics of the PE, and
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the subsequent function of the system [1, 2, 4]. Such interactions are also prominent in a
general PE–ligand complexation processes, such as protein–ligand interactions. Although
the net protein–ligand interaction is complex, the often highly protonated state of the
protein molecule and the multivalent electrostatic charge on the ligand are responsible
for leading contribution of electrostatics in the overall interaction. As another example,
the protein–DNA interaction directing the genome information storage, is significantly
contributed by electrostatics [9], since the interaction sites on the protein are primar-
ily composed of charged patches [10]. Other preliminary examples include the interac-
tion of antibody–antigen, enzyme–inhibitor, potassium channel–peptide inhibitor and so
forth [11, 12]. These phenomena, apart from the ligand–substrate charge–charge interac-
tions, are also the result of hydrogen bonding, salt bridges and metal interactions [13].

The electrostatic attraction between the isolated PE molecule and the oppositely charged
counterions in the solution, leads to the counterion condensation on the molecule, thereby
significantly modifying its interaction with other charged molecules (e.g. proteins, DNA,
etc.) and its electric properties such as electrophoric mobility in external electric field [1,
6, 8]. Therefore, understanding the counterion condensation is of utmost importance in
order to understand the properties of PEs and their implications in biological and arti-
ficial environments [1, 14]. The basic idea is that a highly charged object exerts such
a long-range attraction onto its counterions that a proportion gets enacted upon a high
electrostatic coupling with the object, thereby condensing onto the surface and effectively
neutralizing an equivalent amount of the structural charge Z\mathrm{d} [15, 16]. The charged sub-
strate plus its confined counterions, may be considered as a single entity with an effective
(or renormalized) charge Z\mathrm{e}ff , which is significantly lower than the bare structural charge
Z\mathrm{d}. We then identify the difference Z\mathrm{d}  - Z\mathrm{e}ff as the amount of counterions “condensed"
onto the surface [17].

The phenomenon of counterion condensation and the effect of ionic strength on the
configurational properties of different types of PE molecules such as chains [7, 8, 14, 18,
19, 20, 21, 22, 23], brushes [24, 25, 26, 27, 28] and PE nanogels [29, 30, 31] have been
studied extensively in the past. Through the knowledge of the distribution of the salt
ions around the PE, e.g., measured in terms of the radial distribution function in simu-
lations and experiments, important properties such as charge–charge correlation, osmotic
compressibility and shear viscosity of the system can be derived [32]. Muthukumar, in his
extensive and comprehensive review of the experimental, theoretical and simulation based
research done on PE chains, described the effect of salt concentration, valency of counte-
rions, chain length and PE concentration on the counterion condensation [4, 33]. Besides
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Chapter 1. Introduction

the properties of a single isolated PE molecule, the ionic strength of the solution also
influences the interaction of PEs with other entities, such as adsorption on substrates [34,
35, 36, 37, 38, 39], formation of ultra-thin PE multilayer membranes [40, 41, 42, 43, 44],
structure and solubility of PE complexes [45, 46, 47, 48, 49] or coacervates [50, 51, 52,
53].

As an emerging class of functional PEs, PE nanogels [29, 30, 31] and dendritic or hy-
perbranched PEs [54, 55, 56, 57, 58] have attracted considerable interest in the scientific
community in the last years due to their multifaceted bioapplications, such as biological
imaging, drug delivery and tissue engineering [59, 60, 61]. Dendritic PEs (charged den-
drimers), are known as a group of synthetic macromolecules with a globular hyperbranched
(tree-like) topology emerging from the central core. The overall size, the total number
of branching chemical units and the total number of charged groups on the dendrimer
are associated with its generation index. The higher the generation of the dendrimer, the
higher is its size, total number of branching units it comprises of, etc. As an example,
a generation zero dendrimer contains a multi-functional core connected to one layer of
dendritic branching units via chemical bonds. The higher generations are then struc-
tured by creation of successive layers by iterative addition of branching units to those of
the layer underneath [12] cf. Fig. 1.1(a). The dendrimers possessing irregularities in the
structure in terms of linear defects are termed as hyperbranched dendrimers. Neverthe-
less, dendrimers in general can be synthesized on a kilogram scale and in a large range of
molecular weights, which is aided by their homogeneous structure. The multi-functional
groups on dendrimers, which are exemplified by the terminal segments predominantly
drive the dendrimer properties. The dendrimer becomes a PE soluble in a polar solvent,
if the terminal groups can be dissociated to acidic/basic forms.

Owing to the unique topological features, dendrimers facilitate a range of applica-
tions. Polyamidoamine (PAMAM) is the very first synthesized and now commercialized
charged dendrimer [12, 63]. They are the most studied dendrimer PEs for drug delivery
applications [64]. Cationic PAMAM, which contains primary amine groups, undergoes
electrostatic complexation with naturally occurring PEs such as DNA, siRNA and pro-
teins [65]. In particular, due to the excellent DNA complex forming ability of the PAMAM
dendrimers, they are widely used as commercial DNA transfection kits [66]. The com-
plexation with the dendrimer PEs is not always biocompatible. PAMAM dendrimers at
low pH conditions possess cationic amine groups and as a result, are generally haemolytic
and cytotoxic [67]. As an example, erythrocyte membrane protein molecules, upon the
interaction with PAMAM dendrimers (2nd, 3rd and 4th generations) undergo a change

3



(a)

(b) PETIM

Figure 1.1: (a) Schematic process of the growth of the dendritic structure in terms of generation. The
red and blue spheres indicate the core group of atoms and the branching chemical unit respectively. (b)
Chemical structure of different generations of poly(propyl ether imine) (PETIM) dendrimer [62]. Adapted
with permission from Kanchi et al. Copyright © 2015 American Chemical Society.
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Chapter 1. Introduction

in confirmation. Such biologically relevant issues have largely been unexplained in detail.
Compared to PAMAM, dendrimer PEs with lower cytotoxicity, called Poly(propyl ether
imine) (PETIM) dendrimers with oxygen or nitrogen cores have emerged as a new sub-
class of dendrimer since past two decades cf. Fig. 1.1(b) [62]. Another unique structural
feature of dendrimers is the presence of internal cavities, as a result of which, charged
dendrimers with the aid of electrostatic complexation, can successfully encapsulate other
charged molecules. This gives charged dendrimers an excellent basis to act as a drug
delivery platforms. The capture and release of drug molecules from charged dendrimers
can be controlled by studying their structural characteristics in detail. It has been found
that the spatial structure of charged dendrimers is sensitive to the solution ionic strength,
temperature and pH of the solution [60, 68, 69].

The important applications of dendritic macromolecules in general have initiated sub-
stantial efforts towards their detailed molecular-level characterization by theory and com-
puter simulations [60, 61]. A large number of fully atomistic computer simulations, for
example, of PAMAM-based dendrimers have been performed [70, 71, 72, 73, 74, 75, 76],
some of them with particular focus on solvent effects and structural features [77, 78, 79,
80, 81, 82, 83, 84]. On the other hand, to overcome the limitation of the system size
of atomistic simulations, coarse-grained (CG) monomer-resolved models which contain
various levels of specific chemical features have led to plentiful structural insight on larger
scales [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110].

One of the notable dendrimer PE species of vital importance are the hyperbranched
or dendritic polyglycerol sulphates (hPGS or dPGS), which are found to possess strong
anti-inflammatory properties [57, 58], can act as a transport vehicle for drugs towards
tumor cells [56, 111, 112], and can also be used as an imaging agent for the diagnosis
of rheumatoid arthritis [112]. Fig. 1.2(a) shows the chemical structure of G1-dPGS. As
shown, dPGS comprises of a carbon core, glycerol group (C3H5O–) as a branching unit
and sulphate (–OSO3) as the terminal monovalent negatively charged groups. dPGS
generations 0 to 3 are shown in Fig. 1.2(b), indicating spherically symmetric structural
growth of the scaffold. The anti-inflammatory properties of dPGS are attributed to its
strong binding affinity with the cell adhesion molecules such as L- and P-selectin proteins
situated at the endothelial cells, which diminishes the inflammatory response and reduces
the leukocyte extravasation associated with acute and chronic inflammatory diseases [113].
Another way the dPGS fights against inflammation is by acting as a drug delivery agent.
As an example, dPGS offers a delivery platform for the anticancer, tubulin-binding drug
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(a) (b)

dPGS

Figure 1.2: (a) Illustration of the dendritic PGS (dPGS) with an example of the chemical structure of
G1-dPGS along with counterions (Na+) of the respective sulphate groups. (b) Simulation snapshots of
dPGS from generations 0 to 3 [I].

Paclitaxel (PTX) with a linear, non saturable uptake kinetics in tumor cells [111]. This
wide variety of applications, thus, have proven dPGS to be a high potential candidate for
the use in medical treatments [55]. Hence, the understanding of dPGS interaction with in
vivo environment becomes important. The globular dendritic topology, terminated with
monovalent negatively charged sulphate groups, makes dPGS an excellent representative
model in the class of highly charged globular PEs [114, I], and thus in this dissertation,
dPGS fulfills such role.

For the case of (internally or surface) charged globular dendrimers such as dPGS, one
important focus in the literature has been set on the dominant role of condensed counteri-
ons (as introduced earlier) and the charge renormalization [15, 16, 17, 115, 116, 117, 118,
119, 120, 121] in modulating the conformation and effective charge of the dendrimers [106,
107, 108, 109, 110]. Indeed, as mentioned earlier, for highly charged PEs, electrostatic
effects naturally dominate the interactions with proteins and have complex dependencies
on the effective size, charge, flexibility, shape and charge heterogeneity of the interac-
tion partners [122, 123, 124, 125, 126, 127, IV]. However, a thorough understanding in
this area remains a challenge, due to the long-range nature of Coulombic interactions in
the dilute salt regime, where \kappa R\mathrm{m} \ll 1 (R\mathrm{m} is the radius of the PE) ensuring that the
interactions are highly non-linear [121]. Also it remains challenging to characterize the
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Chapter 1. Introduction

open-structure nanogel particles or dendrites such dPGS, which are partially penetrable
to ions and whose surface structure is not well defined, cf. Fig. 1.2 [128]. The resul-
tant challenges in simulations are the integration of very heterogeneous and long-ranged
charge distributions of all constituents as well as finding a reasonable or at least practical
definition for the surface potential and its precise location. Therefore, despite the large
body of studies on dendrimers, apart from a notable exception of the work by Maiti and
Messina [76], there have hardly been any simulation studies defining and determining
the effective surface potential (and its location) of charged dendrimers so far, despite
its significance for the electrostatic interaction with macromolecules or the response to
electric fields. Recently, Xu et al. thoroughly reconsidered and investigated the key elec-
trostatic features of charged dendrimers, based on previous works by Alexander et al. and
Belloni [15, 16], at hand of dPGS using CG computer simulations [114]. In these implicit-
solvent/explicit-salt Langevin dynamics simulations, dPGS was studied up to its sixth
generation, and it was argued that a systematic mapping of the long-range decay of the
calculated electrostatic potentials onto the Debye–Hückel form for simple charged spheres
serves as the most practical definition for their effective electrostatic properties seen in the
far-field regime. This scheme is widely known as the Alexander prescription [15, 17, 129,
130], that led to the determination of well-defined effective net charges and corresponding
radii, surface potentials, and surface charge densities of dPGS. The latter were found to
be up to one order of magnitude smaller than the bare values, consistent with previously
derived theories on charge renormalization [17, 120, 119] and weak saturation for high
dendrimer generations (charges). The surface potentials of dPGS were found to agree
with electrophoretic experiments, while still some tolerance in the comparison had to be
imposed to leave room for the hydration effects [114]. Nonetheless, based on this criterion,
a systematic electrostatic characterization of dPGS has been performed via CG [114] and
all-atom (AA) [I] simulations by defining the condensed (bound) ions.

This significant charge renormalization of dPGS in presence of salt is a direct culmi-
nation of the counterion condensation, and thus governs binding mechanisms of highly
charged PEs such as dPGS to proteins. It is already established that the interaction of
proteins with strongly charged linear PEs is resulted due to the renormalized charge on
the PE [131], where the binding of protein releases a few condensed counterions on the
PE, and the charged patch on the protein takes their place while acting as a multivalent
counterion for the PE [132, IV]. The other notable examples of such interactions are the
binding of dPGS with proteins such as human serum albumin (HSA) which is the most
abundant protein found in human blood plasma [133], lysozyme which is also available in
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abundant amounts and forms a part of innate immune system in animals [134], and cell
adhesion proteins such as L- and P-selectins [IV].

While the influence of a few released counterions and a subsequent entropic gain is
worth noting while discussing the driving forces behind the PE complexation, it is crucial
to focus on the role of water – the common environment for most biological phenomena,
in this process [135, 136, 137, 138]. Before the complexation, both of the PE molecules
are hydrated, stronger around the polar or charged groups. During the complexation, the
water molecules engaged in hydration and the hydrogen-bonding networks around the
PEs, undergo spatial and configurational rearrangements, yielding mutually compensat-
ing (and, frequently, canceling) enthalpic and entropic contributions to the free energy of
binding, the phenomenon widely known as the enthalpy–entropy compensation [134, 135,
136, 137, 138, 139, 140, 141, 142, 143, 144]. This role of water can be manifested as a
passive player or as a driving player in the complexation processes, and is a highly system
specific issue. It depends on the specific physicochemical properties of the environment
as well as on the biomolecular geometry of the binding patches. This hydration ther-
modynamics gives a more detailed knowledge and real perspective on the biomolecular
complexation processes. However it is challenging to explore and predict from a simula-
tion standpoint due to insufficient sampling issues and deeply coupled contributions from
water and solutes [138, 139].

The aqueous PE solutions in a biological environment often consist of ions of varying
charge valencies, some of which can act as counterions. PEs such as dPGS, considering
the variety of their medicinal applications as mentioned earlier, interact with physiological
ionic solutions. Thus, apart from monovalent counterions (e.g. Na+, K+, etc.) it is impor-
tant to study their interactions with the divalent metal cations, viz. magnesium(II) and
calcium(II) ions. Mg2+ is essential for the stabilization of proteins, polysaccharides, lipids
and DNA/RNA molecules, while Ca2+ is critical for bone formation and plays a key role in
signal transduction [145, 146]. Human serum blood contains approximately 0.75 - 0.95mM
Mg2+ ions, 1 - 4mM Ca2+ ions and around 150mM NaCl salt in a dissociated form. [147,
148] Thus, upon the administration of dPGS into the human biological environment, it is
imperative for the competitive sorption between the divalent (Mg2+/Ca2+) and monova-
lent (Na+) counterions to establish on the dPGS molecule, which can change the effective
charge, and subsequently the interaction properties of dPGS with other charged entities
such as proteins. The competitive sorption here essentially refers to the divalent counte-
rions binding to dPGS, thereby displacing the bound monovalent counterions when the
divalent salt is introduced in varying amounts to the dPGS solution with a monovalent
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Chapter 1. Introduction

salt. The basic physics behind this ion-exchange relies on the competition between the
electrostatic energy gain of the sorbed ions and the translational entropy of the free ions.
This microscopic mechanism has a potential to significantly alter the attributes of the
complexes of dPGS with other molecules, such as the protein corona around dPGS. Pro-
teins typically bind strongly to the macromolecular surface, thereby forming a protein
‘corona’, a dense shell of proteins that can entirely coat the macromolecule [149, 150,
151, 152, 153, 154, 155]. The alteration in the properties of this dPGS-protein corona
complex can change the biological immune response to it, its metabolic fate, and the
function of such complex in biomedical and biotechnological applications, since once the
dPGS is introduced in the solution whether its in vivo or in vitro, the solution environ-
ment does not ‘see’ dPGS but the protein corona. The competitive ion binding can be
observed in a wide variety of the biological and industrial ion-exchange processes such as
the alkaline-earth/alkali-metal ion-exchange onto PEs [156], desalination of saline water
to produce potable water [157], demineralization of whey, acid and alkali recovery from
waste acid [158] and alkali solutions [159] by diffusion dialysis [160], etc.

The competitive sorption of the divalent and monovalent counterions on the PEs such as
DNA, RNA and proteins has been studied in the past via X-ray scattering, conductometry
and potentiometry experiments [156, 161, 162, 163, 164, 165], AA [166, 167] and CG
simulations [8, 22, 168, 169, 170, 171]. Interactions of multivalent ions with PE solutions
have also been theoretically studied in the past, using well known methods such as the
Poisson–Boltzmann (PB) theory [172, 173, 174, 175, 176] and two-state models [177,
178, 179]. Since the traditional experimental techniques are unable to explore the ionic
local structural details surrounding the PE, PB theory – a mean-field approximation to
the spatial ionic density distribution within a continuum solvent model, has become a
well known tool that estimates the ionic structure and double-layer characterization in
electrochemistry, colloidal science or biological and geological physics [2, 180]. Hence,
today this model has becomes a standard by which PE electrostatic interactions are
treated. However, in spite of its extensive use, PB theory assumes a constant dielectric
constant throughout the domain and excludes ion–ion correlation effects, thus failing
to display the non-ideal microscopic picture of the system. Some of the other notable
studies that apply the models other than the PB theory, focus on the investigation of the
thermodynamic properties of PE systems [181], ionic and potential distributions [182],
accurate calculation of the PE effective charge [183], and the effect on the interaction
between PE macromolecules [184, 185, 186, 187].

In comparison, AA Molecular Dynamics (MD) simulations can serve as an "atomistic
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microscope" and offer a high spatially and temporally resolved data, that cannot be
accessed through experimental or theoretical means. The downside of AA simulations,
however, is that in order to have an accurate representation of the ionic effects, an ac-
curate and realistic effective, classical interaction potentials i.e. force-fields are needed.
The challenge, in particular, is to reproduce the required fine balance between ion–ion,
ion–water and water–water interactions. Especially, how to incorporate the notable con-
tribution from the polarization effects in the conventional non-polarizable force-fields, is
still an open question, which is largely relevant to the multivalent metal ions such as Mg2+,
Ca2+, etc. Today, most of the AA MD simulations are performed using non-polarizable
force-fields such as AMBER [188], CHARMM [189], GROMOS [190] and OPLS [191].
The term “non-polarizable force-fields" essentially means that these force-fields partially
incorporate the effects of electronic polarization and the screening of electrostatic in-
teractions through the effective charges on atoms and other empirical parameters [192].
Monovalent ions such as Na+ or K+ have been satisfactorily modeled in all of the afore-
mentioned force-fields, in terms of predictions of binding affinities with proteins [193], salt
solubilities, activity coefficients, and chemical potentials [194, 195, 196, 197, 198, 199].
However, these force-fields fail to model multivalent ions and usually overestimate ion–
protein and ion–peptide interactions [200, 201]. As an example, AMBER force-field uses
Joung–Cheatham [202] parameters for monovalent alkali metal ions, which are optimized
based on solvation free energies, lattice energies and inter-ionic distances of alkali-halide
crystals, and provide satisfactory results. However, there is a fairly common use of the
Åqvist parameters [203] adopted in AMBER for divalent metal cations, even though they
fail to reproduce thermodynamic or ion-specific effects at finite concentrations [204, 205,
206, 207, 208]. Especially the parametrizations for Mg2+ and Ca2+ ions in AMBER and
CHARMM force-fields result in significant artifacts such as unphysical cluster formations
with acetate, phosphate and chloride ions [208, 209]. On the other hand, due to the
deficiency of accurate parametrization for multivalent ions in the literature, some focus
has been directed towards correction strategies such as the implementation of polarizable
force-fields [210, 211, 212], numerical scaling of ionic charges to account for electronic
polarization effects (discussed in detail in Sec. 3.2.6.1) [192, 213, 214], and adjustments
of ionic sizes [204, 215, 216].
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2 Aims of the dissertation

PEs are identified not only as the molecular constituents that participate in the biological
mechanisms that shape the structure and function of life forms on earth, but also as a
part of the solution for modern day issues of healthcare and planet sustainability. Aque-
ous PE solutions with ionic salt are one of such systems most commonly found in both
the biological and artificial realms. However, in order to attain a grasp on the basis of
their functionalities and to replicate likewise systems for future purposes, it is important
to build an understanding over the physical processes and mechanisms responsible on
a molecular level, such as counterion condensation and hydration properties of the PE.
In this dissertation, we aim to explore such systems with the exemplification of the PE
as dendritic polyglycerol sulphate (dPGS), which has a huge potential in the medicinal
field in terms of its anti-inflammatory and drug delivering properties, owing to its high
charge, the unique ion-specific attributes of charged groups and the dendritic topology of
the molecule. Such prospect motivates the consideration and the development of compu-
tational tools such as AA MD simulations and theoretical methods. Two major themes
of the dissertation are (i) Employing AA, explicit water MD simulations in order to ra-
tionalize and obtain insights about the dPGS–counterion and dPGS–water interactions,
and their contribution to the electrostatic properties of dPGS and the thermodynamic
signature of water, respectively, and (ii) the theoretical rationalization of the compet-
itive binding of mono- and divalent counterions to dPGS, with the help of mean-field
continuum and discrete binding site models. The details of these research goals are as
follows:

Due to the high charge valency on dPGS, when the net inter-molecular interactions are
considered, electrostatics dominates over the excluded volume and other non-electrostatic
contributions. However, due to the non-linear nature of electrostatics, especially in a
dilute salt case which is reminiscent of the biological environments, it is challenging to
electrostatically characterize PEs such as dPGS. Recently, a systematic electrostatic char-
acterization of dPGS in terms of the determination of well-defined effective net charges
and corresponding radii, surface potentials, and surface charge densities of dPGS, has
been performed via CG simulations by defining the condensed (bound) ions based on the
Alexander prescription and the inflection point criterion [15, 16, 114]. The latter work was
based on a CG force field where the explicit action of water was neglected and the charged
atoms were clumped together in beads. Then always the questions remains, how do these
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results compare to fully resolved, explicit-water simulations and what are the details of
the water structural effects [84]? In the chapter 4, we aim to address this question with
a focus on electrostatic properties, and revisit the electrostatic dendrimer problem with
a fully atomistic representation of dPGS of generations 0 to 3 in an explicit-water and
electrolyte (NaCl) solution. The inclusion of water gives rise to larger complexity in the
problem, in particular due to explicit and local screening effects, which are absent in the
implicit-solvent simulations. We re-address the challenges of how to obtain a well-defined
effective charge and surface potential of dPGS for practical applications and compare
CG, implicit-, and explicit-solvent approaches. In addition, we seize the opportunity
and take a closer look at the solvent accessible area and volume in the dendritic interior
as well as the thermodynamics of water insertion into the dPGS environment [78, 137,
138]. Water insertion and release into and from the penetrable dendrimer may lead to
significant contributions in the thermodynamic signatures of binding of the dendrimers
to proteins [133].

As described earlier, dPGS, owing to its effective use in the medicinal treatments,
often comes in contact with in vivo aqueous biological environments such as intra- or
extracellular fluids, or human blood serum, which, apart from the monovalent NaCl salt,
also consist of the divalent metal cations viz. Mg2+ and Ca2+ that can act as counterions to
dPGS. Therefore, considering its significance in the medicinal and pharmaceutical field, in
order to mimic the physiological ionic environment, we aim to study this crucial interaction
of dPGS with divalent cations, in the presence of monovalent salt, which results in the
competitive sorption of mono- and divalent ions on dPGS. In the chapter 4, we deploy
AA MD simulations to study this phenomenon. The challenge for AA MD simulations,
however, is that the nature of inter-molecular interaction is highly sensitive to the choice
of the force-field employed. In particular, the parametrizations for divalent ions according
to the well-known non-polarizable force-fields fail in terms of incorporating the notable
contribution from their polarization effects. We aim to demonstrate the developments
in the parametrizations for divalent ions by comparing the quantitative performances of
force-fields optimized according to several latest works [191, 201, 208, 217, 218]. These
performances are quantified in terms of the ionic distributions and the distance-resolved
electrostatic potential profiles around dPGS.

While the AA simulations are able to provide useful physical insights on an atomistic
scale, it is important to interpret the culminations of these results on a mesoscale correctly
with the help of a suitable binding model. In the chapter 5, we thus aim to theoretically
analyze the competitive sorption of mono- and divalent ions on dPGS with the help
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Chapter 2. Aims of the dissertation

of mean field continuum and discrete binding site models, inform these models via the
coarse-grained computer simulation data, and use the models to predict the competitive
ion sorption for different salt concentrations and PEs of different sizes. We then aim to
utilize the developed models to fit and interpret the competitive ionic sorption isotherm
obtained from the isothermal titration calorimetry, in the chapter 6. Such knowledge can
help predict the biological immune response to the PE, its metabolic fate, and the efficacy
of the PE drug in different environments for biomedical and biotechnological applications.
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3 Basic principles and methods

This chapter introduces the basic theoretical principles, simulation methods and the ana-
lytical framework needed to study the systems in chapters 4, 5, and 6. We start with the
theoretical treatments in the section 3.1. The introduction to simulations, including the
basics, and advanced methods are described in the section 3.2.

3.1 Theoretical treatment

3.1.1 Basic statistical mechanics

Consider a canonical system of an electroneutral medium having a dielectric constant \varepsilon \mathrm{r},
containing a molecule with a fixed charge distribution c\mathrm{f}(r)e (where e is the electronic
charge) and N mobile point-particles (counterions and coions) having positions \vec{}ri, mass
m, momentum \vec{}pi, enclosed in a volume V and at temperature T . The Hamiltonian H

of the system is then the sum of the potential energy U and the kinetic energy K of the
system [3], i.e.,

H = K(\vec{}p1, \cdot \cdot \cdot , \vec{}pN) + U(\vec{}r1, \cdot \cdot \cdot , \vec{}rN)

=
N\sum 
i=1

| \vec{}pi| 2

2m
+

1

2

N\sum 
i=1

N\sum 
j=1, j \not =i

zizje
2

4\pi \varepsilon 0\varepsilon \mathrm{r}
\bigm| \bigm| \vec{}ri  - \vec{}rj

\bigm| \bigm| + N\sum 
i=1

zi

\int 
V

c\mathrm{f}(\vec{}r)e
2

4\pi \varepsilon 0\varepsilon \mathrm{r}| \vec{}ri  - \vec{}r| 
\mathrm{d}3r

(3.1)

where \varepsilon 0 is the permittivity of vacuum and zi is the charge valency of particle i. The
classical analog of the canonical partition function of the system is then given by

\scrZ =
1

h3NN !

\int 
\cdot \cdot \cdot 
\int 

\mathrm{e} - \beta H(\vec{}r1,\cdot \cdot \cdot , \vec{}rN , \vec{}p1,\cdot \cdot \cdot , \vec{}pN ) \mathrm{d}3r1 \cdot \cdot \cdot \mathrm{d}3rN \mathrm{d}3p1 \cdot \cdot \cdot \mathrm{d}3pN = \scrZ U\scrZ K

(3.2)

where h is the Planck constant and \beta  - 1 = k\mathrm{B}T is the thermal energy. The observables
– position \vec{}r and momentum \vec{}p, commute in the partition function \scrZ and hence can be
factored out. Thus, \scrZ U =

\int 
\cdot \cdot \cdot 
\int 
\mathrm{e} - \beta U(\vec{}r1,\cdot \cdot \cdot , \vec{}rN ) \mathrm{d}3r1 \cdot \cdot \cdot \mathrm{d}3rN is called the configurational

partition function and \scrZ \scrK = 1
h3NN !

\int 
\cdot \cdot \cdot 
\int 
\mathrm{e} - \beta K( \vec{}p1,\cdot \cdot \cdot , \vec{}pN ) \mathrm{d}3p1 \cdot \cdot \cdot \mathrm{d}3pN is the momentum

part of the partition function \scrZ , which is simply a product of N identical Gaussian
integrals.
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3.1. Theoretical treatment

The free energy of the system is given by

\beta \scrF =  - \mathrm{l}\mathrm{n}\scrZ (3.3)

The canonical probability density for the system to be at a certain configurational state [219,
220] is then expressed as

\scrP N(\vec{}r1, \cdot \cdot \cdot , \vec{}rN) =
\mathrm{e} - \beta U(\vec{}r1,\cdot \cdot \cdot , \vec{}rN )

\scrZ U

(3.4)

3.1.1.1 Radial distribution function (RDF)

Based on the probability density \scrP N given as Eq. (3.4), the N -particle distribution func-
tion P (N)(\vec{}r\prime , \vec{}r\prime \prime , \cdot \cdot \cdot , \vec{}rN \prime ) is then given by [219, 220]

P (N)(\vec{}r\prime , \vec{}r\prime \prime , \cdot \cdot \cdot , \vec{}rN \prime ) =\int 
\cdot \cdot \cdot 
\int 

\scrP N(\vec{}r1, \cdot \cdot \cdot , \vec{}rN)\delta (\vec{}r1  - \vec{}r\prime )\delta (\vec{}r2  - \vec{}r\prime \prime ) \cdot \cdot \cdot \delta ( \vec{}rN  - \vec{}rN \prime ) \mathrm{d}3r1 \cdot \cdot \cdot \mathrm{d}3rN
(3.5)

Similarly, the specific pair distribution function, i.e., the probability density of simul-
taneously locating particle 1 at \vec{}r\prime and particle 2 at position \vec{}r\prime \prime is given as [219, 220]

P (2)(\vec{}r\prime , \vec{}r\prime \prime ) =

\int 
\cdot \cdot \cdot 
\int 

\scrP N(\vec{}r1, \cdot \cdot \cdot , \vec{}rN)\delta (\vec{}r1  - \vec{}r\prime )\delta (\vec{}r2  - \vec{}r\prime \prime ) \mathrm{d}3r1 \cdot \cdot \cdot \mathrm{d}3rN (3.6)

The single particle distribution function P (1)(\vec{}r) is then defined as

P (1)(\vec{}r) =

\int 
\cdot \cdot \cdot 
\int 

\scrP N(\vec{}r1, \cdot \cdot \cdot , \vec{}rN)\delta (\vec{}r1  - \vec{}r) \mathrm{d}3r1 \cdot \cdot \cdot \mathrm{d}3rN (3.7)

The generic pair distribution function is related to P (2)(\vec{}r\prime , \vec{}r\prime \prime ) as

c2(\vec{}r\prime , \vec{}r\prime \prime ) = N(N  - 1)P (2)(\vec{}r\prime , \vec{}r\prime \prime ) (3.8)

Equivalently, P (1)(\vec{}r) is proportional to the number density (or generic singlet distribution
function) c1(\vec{}r) = c(\vec{}r)

P (1)(\vec{}r) =
c(\vec{}r)\int 

V
c(\vec{}r) \mathrm{d}3r

=
c(\vec{}r)

N
(3.9)
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Chapter 3. Basic principles and methods

Under the assumption that the distance r =
\bigm| \bigm| \bigm| \vec{}r\prime  - \vec{}r\prime \prime 

\bigm| \bigm| \bigm| between two particles is very large
(equivalent to the mean-field assumption), their spatial correlation becomes weak and
c2(\vec{}r\prime , \vec{}r\prime \prime ) becomes

c2(\vec{}r\prime , \vec{}r\prime \prime ) = c1(\vec{}r\prime ) c1(\vec{}r\prime \prime ) = c(\vec{}r\prime ) c(\vec{}r\prime \prime ) (3.10)

However, at a finite distance, this assumption is not valid. Hence, the generic pair distri-
bution function (in a homogeneous system described here) can be expressed as

c2(\vec{}r\prime , \vec{}r\prime \prime ) = c(\vec{}r\prime ) c(\vec{}r\prime \prime ) g(\vec{}r\prime , \vec{}r\prime \prime ) = c\mathrm{b}
2
g(\vec{}r\prime , \vec{}r\prime \prime ) (3.11)

where g(\vec{}r\prime , \vec{}r\prime \prime ) is defined as the pair correlation function which measures the extent of
deviation from Eq. (3.10) [220]. The second equality in Eq. (3.11) holds in the case of
a spatially homogeneous distribution of particles within the domain, where the uniform
number density c\mathrm{b} = c(\vec{}r\prime ) = c(\vec{}r\prime \prime ) is the bulk particle number density in the far-field.
This will be the key assumption behind all analysis methods mentioned in this work.

The function g(\vec{}r\prime , \vec{}r\prime \prime ) is only a function of a scalar distance r =
\bigm| \bigm| \bigm| \vec{}r\prime  - \vec{}r\prime \prime 

\bigm| \bigm| \bigm| . Hence

g(\vec{}r\prime , \vec{}r\prime \prime ) = g(r) is defined as the radial distribution function (RDF) and contains all
the essential information in deriving the inter-particle interactions. Another important
definition related to the RDF is the Potential of Mean Force (PMF), defined as the work
required to bring two selected particles from the infinite separation to the separation
distance r. Under the assumption of the two-body interaction in a system described here,
PMF is given as a Boltzmann inversion [221, 222] of g(r)

\beta V (r) =  - \mathrm{l}\mathrm{n} g(r) (3.12)

3.1.2 Theory of electrostatic interactions

3.1.2.1 Poisson–Boltzmann theory

Given the knowledge of the Hamiltonian (Eq. (3.1)), the PB equation free energy func-
tional can now be constructed using mean-field approximations to the N -particle distri-
bution function P (N) (Eq. (3.5)) and the method of variation in order to derive the PB
equation.

In statistical mechanics, the free energy \scrF of any system such as the one presented in the
section 3.1.1 at an arbitrary energy state with a probability \scrP 0, satisfies the inequality [3]
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\beta \scrF \leq \beta \langle H\rangle 0  - 
S0

k\mathrm{B}
(3.13)

where \langle H\rangle 0 =
\int \int 

\scrP 0H \mathrm{d}\vec{}r \mathrm{d}\vec{}p is the average total energy and H is the Hamiltonian.
S0 =  - k\mathrm{B}

\int 
\scrP 0 \mathrm{l}\mathrm{n}\scrP 0 \mathrm{d}\vec{}r is the system entropy at that state. Eq. (3.13) is termed in

the literature as the Gibbs–Bogoliubov inequality and it serves as an effective way of
deriving mean-field theories from a variational principle [223]. The equality in Eq. (3.13)
is satisfied if and only if the probability of the state equals the canonical probability as
expressed in Eq. (3.4). Eq. (3.5) is complicated to solve, due to the coupled (correlated)
particle positions \vec{}ri. The mean-field approximation eliminates these correlations between
the particles and it can be done in the present context by assuming the N -particle distri-
bution function P (N)(\vec{}r1, \cdot \cdot \cdot , \vec{}rN) (Eq. (3.5)) as a product of N single particle distribution
functions P (1)(\vec{}ri) (Eq. (3.9))

P (N)(\vec{}r1, \cdot \cdot \cdot , \vec{}rN)
mean-field -  -  -  -  - \rightarrow P (1)(\vec{}r1)P

(1)(\vec{}r2) \cdot \cdot \cdot P (1)( \vec{}rN) (3.14)

This assumed state of the system, if used as a trial state in the Gibbs–Bogoliubov in-
equality (Eq. (3.13)), gives the maximum value allowed for the free energy [3, 223]. The
canonical partition function \scrZ can now be factorized into an ideal (purely entropic) and
an excess contribution [224]. Hence, the Helmholtz free energy from Eq. (3.3) can be
rewritten as

\scrF \mathrm{P}\mathrm{B} = \scrF \mathrm{i}\mathrm{d} + \scrF \mathrm{e}\mathrm{x} (3.15)

where \scrF \mathrm{P}\mathrm{B} is the PB approximation of the Helmholtz free energy \scrF . Eq. (3.13) along
with the above conditions gives the upper limit for the free energy as

\beta \scrF \leq \beta \scrF \mathrm{P}\mathrm{B}

\bigl[ 
c(\vec{}r)

\bigr] 
(3.16)

where the \scrF \mathrm{P}\mathrm{B} is evaluated as

\beta \scrF \mathrm{P}\mathrm{B}

\bigl[ 
c\pm (\vec{}r)

\bigr] 
=\int 

V

\left\{   \sum 
i=\mathrm{f},+, - 

ci(\vec{}r)
\Bigl[ 
\mathrm{l}\mathrm{n}
\bigl( 
ci(\vec{}r)\Lambda 

3
\bigr) 
 - 1
\Bigr] 
+ \phi (\vec{}r)

\left[  1
2

\sum 
i=+, - 

zici(\vec{}r) + c\mathrm{f}(\vec{}r)

\right]  \right\}   \mathrm{d}3r
(3.17)
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where \phi (scaled by k\mathrm{B}T/e) is the dimensionless electrostatic potential and \Lambda indicates the
thermal de Broglie wavelength. The task now is to find the single particle number density
distribution c\pm (\vec{}r), which minimizes the density functional \scrF \mathrm{P}\mathrm{B}. The mean-field assump-
tion thus, leads to the variational problem of minimization of the density functional. The
PB equation thus, is a result of equating the functional derivative \delta \scrF \mathrm{P}\mathrm{B}[c\pm ]/\delta c\pm to zero,
along with (i) imposing the relationship between the charge density and the electrostatic
potential via the Poisson’s equation (mentioned below) and (ii) constraining the total
number of particles i to Ni. The constrain of the total particle number is achieved by
adding the term \beta \mu 0

\pm 
\bigl( 
c\pm (\vec{}r) - N\pm /V

\bigr) 
to the integrand in Eq. (3.17), where \mu 0

\pm is the
Lagrange multiplier. The functional derivative is then

\delta \beta \scrF \mathrm{P}\mathrm{B}

\bigl[ 
c\pm (\vec{}r)

\bigr] 
\delta c\pm (\vec{}r)

= \beta \mu 0
\pm + z\pm \phi (\vec{}r) + \mathrm{l}\mathrm{n}

\bigl( 
c\pm (\vec{}r)\Lambda 

3
\bigr) !
= 0 (3.18)

Eq. (3.18) indicates the model for a “charged ideal gas". The right hand side of the
equation has two quantities – one is the electrostatic energy of the mobile charges based
on their spatial distribution c\pm (\vec{}r)e in the presence of the potential created by itself (\phi ).
The second quantity is the entropy of the ideal gas with a density distribution c\pm (\vec{}r).
Eq. (3.18) can now be rewritten as

c\pm (\vec{}r) = \Lambda  - 3 \mathrm{e} - z\pm \phi (\vec{}r) - \beta \mu 0
\pm = c\mathrm{b}\pm \mathrm{e}

 - z\pm \phi (\vec{}r) (3.19)

where c\mathrm{b}\pm = \Lambda  - 3 \mathrm{e} - \beta \mu 0
\pm and \mu 0

\pm are the particle density and the chemical potential in the
bulk, respectively, where \phi = 0. c\mathrm{b}\pm or \mu 0

\pm can be determined by the constraint that the
number of particles in the ensemble is conserved, i.e.,

\int 
V
c\pm (\vec{}r) \mathrm{d}

3r = N\pm . Eq. (3.19)
indicates that the particle density locally depends on the Boltzmann factor.

The Poisson’s equation relating the net electrostatic potential and the particle density
distribution is given by

\nabla 2\phi (\vec{}r) =  - 4\pi l\mathrm{B}
\sum 

i=\mathrm{f},+, - 

zi ci(\vec{}r) (3.20)

where l\mathrm{B} = \beta e2/4\pi \varepsilon 0\varepsilon \mathrm{r} is the Bjerrum length. Combining Eqs. (3.19) and (3.20) leads to
the PB equation

\nabla 2\phi (\vec{}r) =  - 4\pi l\mathrm{B}

\left(  \sum 
i=+, - 

zic
\mathrm{b}
i \mathrm{e}

 - zi\phi (\vec{}r) + c\mathrm{f}(\vec{}r)

\right)  (3.21)
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The PB equation (3.21) is the second order partial differential equation and thus can be
analytically solved for selective cases, where the fixed charge distribution of the molecule
c\mathrm{f}(r)e is taken into account via the Neumann or Dirichlet boundary conditions, so that
c\mathrm{f}(r) \equiv 0 within the computational domain of interest [3]. c\mathrm{f}(r) will be later attributed
to the volume charge density of dPGS in the penetrable PB model, introduced in the
chapter 5.

Note that the PB theory, unlike the PMF (or the RDF) described in the section 3.1.1.1,
partially captures the enthalpic contribution to the inter-particle/inter-atomic interac-
tion by assuming it to be purely electrostatic in origin and approximates the entropic
contribution by treating the particles/atoms as an ideal gas. PMF, on the other hand,
includes both short and long-range enthalpic effects, as well as non-ideal contributions to
the entropic effects. Part of the short-range effects include the ion-specific effects, which
have been incorporated in the standard PB theory in the past [173, 180, 225, 226]. These
additional effects have been attempted to be captured and thus the standard PB model
described here is expanded in the penetrable PB model, introduced in the chapter 5.

Despite its simplicity, the PB equation has been proven to be extremely important
step forward as a mean-field approach in the understanding of the charged systems. The
description above shows how the particle–particle correlations are neglected in the the-
ory (assumption (3.14)). This assumption exclusively makes the solution for the theory
tractable, and even enables the exact analytical form of the solution to be evaluated
for systems containing only monovalent ions. However, it is also one of the significant
drawbacks of the theory, and can lead to errors in the systems of highly concentrated
electrolyte systems or systems involving multivalent ions. Assuming the ions modeled as
particles in this model, the absence of ion-specific interactions has a potential to result
in unrealistically high ion condensation and overestimated electrostatic screening on the
highly charged surface. Therefore, the PB approach is found to be most appropriate for
the systems having an electrolyte concentrations smaller than 0.2M [227]. For example,
PB equation relatively works well in the physiological conditions with ionic strengths of
approximately 0.1M [228].

3.1.2.2 Linearized PB equation: Debye–Hückel theory

For the case of the low magnitude of electrostatic potential \phi , a very vital approximation
to the Boltzmann ansatz (Eq. (3.19)) can be made. If | \phi | \ll 1, i.e. if | \psi | \ll k\mathrm{B}T

(or if | \psi | \ll 25mV), the PB equation (3.21) can be linearized (incorporating the fixed
charge distribution into the boundary conditions, as shown below), resulting in the famous
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Debye–Hückel (DH) theory [219, 229]

\nabla 2\phi (\vec{}r) =

\left(  4\pi l\mathrm{B}
\sum 
i

z2i c
\mathrm{b}
i

\right)  \phi (\vec{}r) = \kappa 2\phi (\vec{}r) (3.22)

where \kappa =
\surd 
8\pi l\mathrm{B}I is the inverse DH screening length, with I = 1

2
z2i c

\mathrm{b}
i as the total ionic

strength in the bulk of the electrolyte solution. In the case of a simple homogeneously
charged sphere with a bare charge valency Z, radius R, the boundary conditions can be
formulated as

\mathrm{d}\phi (r)

\mathrm{d}r

\bigm| \bigm| \bigm| \bigm| 
r=R

=  - Zl\mathrm{B}
R2

, \phi (r)| r\rightarrow \infty = 0 (3.23)

and the solution of Eq. (3.22) leads to the well known Yukawa potential [230]

\phi \mathrm{D}\mathrm{H} =
Zl\mathrm{B}

1 + \kappa R

\mathrm{e} - \kappa (r - R)

r
\sim \mathrm{e} - \kappa r

r
(3.24)

The behavior of Eq. (3.24) indicates that the interaction between any pair of ions at a
distance r decays exponentially due to the screening by the cloud of cations and anions
surrounding the ionic pair [228]. For r < \kappa  - 1, the Coulombic interaction is only slightly
screened (\sim r - 1), while for r > \kappa  - 1, it is exponentially screened.

The resultant ionic density distribution around the sphere in a DH context is given by

ci(r) = c\mathrm{b}i (1 - zi\phi \mathrm{D}\mathrm{H}) = c\mathrm{b}i

\Biggl( 
1 - ziZl\mathrm{B}

1 + \kappa R

\mathrm{e} - \kappa (r - R)

r

\Biggr) 
(3.25)

DH theory, being the linearized version of the PB theory, neglects any non-linear effects
arising from the short-range ion–sphere interactions, and thus is only valid in the case
of weakly charged spheres. Both DH and PB theories can be utilized to evaluate the
potential distribution also in a more realistic system, such as using the ionic number dis-
tribution profiles obtained as a result of simulations, which involve not only the monopole
contributions, but also the multipole contributions from the molecules [231].

3.1.2.3 Counterion condensation on linear PEs: Onsager–Manning–Oosawa

condensation

Ionic distribution around PEs has been a subject of considerable interest for a long time
in the PE community, starting with the pioneering work by Fuoss et al. [232] who studied
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3.1. Theoretical treatment

the counterion distribution around rod-like PEs using the PB theory. It was first realized
by Onsager and later analyzed by Manning [233] and Oosawa [234] that, in the limit of
the vanishing radius and infinite salt dilution, the rod-like PEs act as charged cylinders
with an associated logarithmic potential that may be strong enough to “condense" coun-
terions [235]. This consequently leads to the renormalization of bare charges of the PE
by the counterion charges. Below is a short mathematical description of how this concept
was introduced by Manning [233].

We consider a realistic situation where we have a linear PE of radius r0 with a line
charge density \lambda > 0, and length L immersed in a solvent characterized by a Bjerrum
length l\mathrm{B}. We assume a simplistic situation with no salt and only monovalent counterions
(z =  - 1) mobile within the domain cell, which is also characterized as cylindrical with
radius R and length L. Assuming the cell radius R to be smaller than the persistence
length of the PE, thereby neglecting the bending on the large length scale, a linear PE
can simply be referred to as a “charged rod". If the end effects are neglected, i.e., L\rightarrow \infty ,
cylindrical symmetry is acquired and the counterion distribution c is only a function of the
perpendicular distance from the charged rod, i.e., c = c(r). Taking these approximations
into consideration, the PB equation can be written for the region of r0 < r < R as,\Biggl( 

\mathrm{d}2

\mathrm{d}r2
+

1

r

\mathrm{d}

\mathrm{d}r

\Biggr) 
\phi (r) = \kappa 2\mathrm{e}\phi (r) (3.26)

where \kappa =
\sqrt{} 
4\pi l\mathrm{B}c(R) is an inverse of the Debye length and \phi (scaled by k\mathrm{B}T/e) is

the dimensionless potential assumed to be zero at r = R. We now introduce a new
dimensionless parameter and define it as Manning parameter [233, 236, 237, 238], which
will be useful later and is given as

\zeta =
\lambda l\mathrm{B}
e

(3.27)

which essentially indicates the number of charges within the Bjerrum length along the
rod, and is an alternative dimensionless way to measure \lambda . Given the following boundary
conditions

\mathrm{d}\phi (r0)

\mathrm{d}r
=  - 2\zeta 

r0
\mathrm{a}\mathrm{n}\mathrm{d}

\mathrm{d}\phi (R)

\mathrm{d}r
= 0 (3.28)
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The analytical solution for Eqs. (3.26) and (3.28) is given by [232, 236, 237, 239]

\phi (r) =  - 2 \mathrm{l}\mathrm{n}

\Biggl\{ 
\kappa r

\gamma 
\surd 
2
\mathrm{c}\mathrm{o}\mathrm{s}

\biggl( 
\gamma \mathrm{l}\mathrm{n}

r

R\mathrm{M}

\biggr) \Biggr\} 
(3.29)

where \gamma and R\mathrm{M} can be evaluated by substituting Eq. (3.29) to the boundary conditions
Eq. (3.28), resulting in the two coupled transcendental equations

\gamma \mathrm{l}\mathrm{n}
r0
R\mathrm{M}

= \mathrm{a}\mathrm{r}\mathrm{c}\mathrm{t}\mathrm{a}\mathrm{n}
1 - \zeta 

\gamma 
\mathrm{a}\mathrm{n}\mathrm{d} \gamma \mathrm{l}\mathrm{n}

R

R\mathrm{M}

= \mathrm{a}\mathrm{r}\mathrm{c}\mathrm{t}\mathrm{a}\mathrm{n}
1

\gamma 
(3.30)

The counterion radial density distribution is given by c(r) = c(R)\mathrm{e}\phi (r), where c(R) is the
bulk counterion density. The fraction of the counterions f(r) that can be found between
r0 and R is then given by

f(r) =
e

\lambda 

\int r

r0

c(r\prime )2\pi r\prime \mathrm{d}r\prime = 1 - 1

\zeta 
+
\gamma 

\zeta 
\mathrm{t}\mathrm{a}\mathrm{n}

\biggl( 
\gamma \mathrm{l}\mathrm{n}

r

R\mathrm{M}

\biggr) 
(3.31)

Note that f(R\mathrm{M}) = 1 - 1/\zeta , implying that at r = R\mathrm{M}, the fraction 1 - 1/\zeta of counterions
can be found, which also indicates that r0 \leq R\mathrm{M} < R. Owing to the importance of this
fraction in the Manning theory of counterion condensation, R\mathrm{M} is sometimes referred to
as the “Manning radius" [3].

The counterion density distribution around charged cylindrical rods shows a peculiar
characteristic which can be displayed under the following conditions. We take the limit of
infinitely dilution to the point that there is just one counterion. In the canonical ensemble,
its RDF is simply given by \mathrm{e} - \beta H(r)/

\int 
\mathrm{e} - \beta H(r) \mathrm{d}V where, upto the kinetic energy and the

additive constant, the Hamiltonian \beta H(r) = 2\zeta \mathrm{l}\mathrm{n}(r/r0), is the electrostatic energy of
the counterion, and the denominator is the electrostatic contribution to the statistical-
mechanical phase integral, which can be rewritten as\int 

\mathrm{e} - \beta H(r) \mathrm{d}V =

\int \infty 

r0

\mathrm{e} - 2\zeta \mathrm{l}\mathrm{n}(r/r0)2\pi r \mathrm{d}r = 2\pi r20

\int 1

0

x1 - 2\zeta \mathrm{d}x (3.32)

which diverges for \zeta < 1. This means that the radial density distribution cannot be nor-
malized, and that in the limit of infinite dilution, charged rods with \zeta < 1 cannot localize
counterions, while rods with \zeta > 1 can. With this result, Manning postulated that the
charged rods with \zeta > 1 “condense" a fraction 1  - 1/\zeta of total counterions, in turn, re-
ducing (or “renormalizing") \zeta to an effective value of 1, while the rest of the counterions
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remain “free" [233]. This concept has been widely knows as “Manning condensation" and
is proven to be an elegantly simple path to obtain qualitative insights into the physical
chemistry of the linear PEs. While so, the theory is still being contested within the sci-
entific community due to the flexibility of most of the industrial and biological PEs and
unclear understanding of the state of condensed counterions [177, 240, 241, 242, 243].

3.1.2.4 Counterion condensation around spherical objects

Relative to that in the cylindrical geometry, the notion of counterion condensation in the
spherical geometry is less clear. However, based on the variety of approximations pro-
posed, previous works more or less agree on the idea that counterions condense near the
spherical charged surface, renormalizing its original (bare) charge. The terminology “con-
densation" here should be used keeping in mind that, except in the cylindrical geometry,
there is no physical condensation (defined as the existence of a non-vanishing quantity of
counterions in a layer of vanishing thickness around the polyion) [17, 232, 244, 245]. The
decorated object (charged sphere plus captive counterions) thus acts as a single entity
with an effective charge valency Z\mathrm{e}ff lower than the bare valency Z\mathrm{d} [15, 117, 118, 119,
120]. This so-called charge renormalization effect has been extensively studied and wide
variety of theories have been developed for the effective charge and size of simple charged
spheres with smooth surfaces [16, 17, 115, 119, 120, 121]. The subsections below give
brief descriptions of the some of these works. The basic premise behind these approaches
is that, as far as the far-field effects from the colloid are concerned, the DH-like linearized
PB approaches, which are unable to explain the non-linear counterion condensation effects
in the vicinity of the colloid, can still be used if the structural bare charge valency Z\mathrm{d} of
the colloid can be replaced with the effective valency Z\mathrm{e}ff . Z\mathrm{e}ff is then attempted to be
estimated a priori.

3.1.2.4.1 Alexander prescription

Alexander et al. [15] proposed that the effective colloidal charge valency Z\mathrm{e}ff can be ob-
tained by asymptotically matching the solution \phi of full non-linear PB equation (Eq. (3.21))
(i.e., the local, radially symmetric electrostatic potential \phi in the long-range) to the so-
lution of the linearized PB (DH) form with an effective charge valency Z\mathrm{e}ff [246], given
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as [15, 16, 114, I]

\phi \mathrm{D}\mathrm{H}(r) = Z\mathrm{e}ff l\mathrm{B}
\mathrm{e}\kappa r\mathrm{e}ff

1 + \kappa r\mathrm{e}ff

\mathrm{e} - \kappa r

r
. (3.33)

where \phi \mathrm{D}\mathrm{H} is the dimensionless DH potential (scaled by k\mathrm{B}T/e) applicable to a smooth
charged sphere with valency Z\mathrm{e}ff and radius r\mathrm{e}ff (effective radius, discussed below). In
other words, in the long-range,

\mathrm{l}\mathrm{n}
\bigm| \bigm| r\phi (r)\bigm| \bigm| =

\kappa r\rightarrow \infty 
\mathrm{l}\mathrm{n}

\bigm| \bigm| \bigm| \bigm| Z\mathrm{e}ff l\mathrm{B}
\mathrm{e}\kappa r\mathrm{e}ff

1 + \kappa r\mathrm{e}ff

\bigm| \bigm| \bigm| \bigm|  - \kappa r (3.34)

where the right-hand side turns out to be a linear function with a negative slope defined
by the inverse Debye length \kappa . Eq. (3.34) applies, i.e., \phi \mathrm{D}\mathrm{H} approaches to \phi only for
the distance r > r\ast where non-linear effects, including the correlation and condensation
for ions, subside. In practice, an energy criterion (e.g. 50% of k\mathrm{B}T ) can be established
in order to compare \phi and \phi \mathrm{D}\mathrm{H} and evaluate r\ast . Thus, r\ast = r\mathrm{e}ff is eligible to serve as
the effective radius r\mathrm{e}ff of the sphere, i.e., the counterions residing within the distance
r \leq r\mathrm{e}ff are designated as condensed. Having found r\mathrm{e}ff , the effective charge valency Z\mathrm{e}ff

can be obtained from the y-intercept of Eq. (3.34), or from the total cumulative charge
distribution Z\mathrm{a}\mathrm{c}\mathrm{c}(r) (cf. Sec. 3.2.5.1 and Eq. (3.66)) as Z\mathrm{e}ff = Z\mathrm{a}\mathrm{c}\mathrm{c}(r\mathrm{e}ff). The effective
surface potential of the sphere obtained from simulations is defined as \phi \mathrm{e}ff = \phi (r\mathrm{e}ff) =

\phi \mathrm{D}\mathrm{H}(r\mathrm{e}ff).
In general, \phi (r) can be in principle directly evaluated from the simulations, i.e., re-

placing the Boltzmann ansatz for the concentration profiles of charged species ci(r) in
Eq. (3.21) with the respective radial density distributions obtained from the simulations,
as shown in the section 3.2.5.1, and also in the work by Xu et al. [114]. Apart from the
electrostatic contribution on the DH-level, this approach incorporates the electrostatic
and steric correlations among the charged species as well as the discrete solvent effects
in the vicinity of the macromolecule that contribute to Z\mathrm{e}ff and r\mathrm{e}ff . The reference for
Alexander prescription for further mentions in this thesis will be thus alluded to this
approach. An equivalent approach can also be seen in the section 3.1.2.4.3.

3.1.2.4.2 Inflection point criterion

As proposed by Belloni [16, 114, 117, 121], an effective radius r\mathrm{e}ff for a highly charged PE
can be defined as an inflection point in the plot of the total cumulative charge valency
Z\mathrm{a}\mathrm{c}\mathrm{c} (described in Eq. (3.66), Sec. 3.2.5.1) vs. the inverse radial distance 1/r. From the
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PB and counterion-condensation theory it follows that the condition

\mathrm{d}2Z\mathrm{a}\mathrm{c}\mathrm{c}(r)

\mathrm{d}
\bigl( 
1
r

\bigr) 2 \bigm| \bigm| \bigm| \bigm| 
r= r\mathrm{i}\mathrm{n}\mathrm{f}

= 0 (3.35)

leads to a radius definition r\mathrm{i}\mathrm{n}\mathrm{f} within which ions are assumed to be condensed and sepa-
rates the linear DH regime from the non-linear regime.

3.1.2.4.3 PMF method

Using simulations, the structure of the electrolyte solution surrounding the macromolecule/
colloid is analysed by calculating the RDFs of ions with respect to the center-of-mass
(COM) of the macromolecule gi(r), where i are the ionic species. Considering Eq. (3.12),
the PMF of the ions (or RDF) Vi(r) can be decomposed into short-ranged and long-ranged
contributions as [219, 247, 248]

Vi(r) = V \mathrm{s}\mathrm{r}
i (r) + V \mathrm{l}\mathrm{r}

i (r) (3.36)

where the short-range part V \mathrm{s}\mathrm{r}
i (r) includes all the non-linear effects due to specific macro-

molecule–ion interactions and ion–ion correlations. The long-range part V \mathrm{l}\mathrm{r}
i (r) can be

typically approximated by a dimensionless DH type of potential \phi \mathrm{D}\mathrm{H}(r) of the form [219,
229]

\beta V DH
i (r) = zi\phi DH(r) (3.37)

where zi is the charge valency of ionic species i. Eq. (3.37) can be rewritten similar to
Eq. (3.34) as [249]

\mathrm{l}\mathrm{n}
\bigm| \bigm| \bigm| \beta rV \mathrm{D}\mathrm{H}

i (r)
\bigm| \bigm| \bigm| =
\kappa r\rightarrow \infty 

\mathrm{l}\mathrm{n}

\bigm| \bigm| \bigm| \bigm| ziZ\mathrm{e}ff l\mathrm{B}
\mathrm{e}\kappa r\mathrm{e}ff

1 + \kappa r\mathrm{e}ff

\bigm| \bigm| \bigm| \bigm|  - \kappa r (3.38)

This construction was introduced by Kalcher and Dzubiella [249] for infinitely dilute
electrolyte systems, to calculate the short-ranged part of specific ion–ion interactions by
subtracting the linear DH fit from the full PMF. In the chapter 4, it will also serve as
a method to identify the location where the linear long-ranged DH decay crosses over to
non-linear behavior. This should be in principle one possible reasonable definition for an
effective size in the DH picture, r\mathrm{e}ff in Eq. (3.33), of the macromolecule with respect to
charge properties.
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3.1.2.4.4 Manning model

Manning [120] extended his famous standard counterion condensation theory on linear
PEs to charged spheres immersed in dilute salt solutions, giving results consistent with
the previous theories presented in different limits [116]. In this mean-field theory, the
free energy of a counterion is constructed, that points to the competition between the
electrostatic binding of the counterions and their entropy in the bulk. The free energy
is then minimized in order to optimize the unknown fraction of condensed counterions \Theta 

that is assumed at an outset. Considering an impenetrable sphere of radius r\mathrm{e}ff with N

unit charges e on the surface, immersed in an infinite solution of a bulk simple electrolyte
having an inverse Debye length \kappa , the electrostatic surface free energy of the sphere is
obtained by applying a standard charging procedure to the solution of the DH linearization
of the PB equation [250],

\beta G\mathrm{e}\mathrm{l} =
Nl\mathrm{B}(1 - z\Theta )2

2r\mathrm{e}ff(1 + \kappa r\mathrm{e}ff)
(3.39)

where z is the counterion valency. The lost entropy of N\Theta condensed counterions, with c
as the salt concentration, is then given by

\beta G\mathrm{t}\mathrm{r} =  - N\Theta \mathrm{l}\mathrm{n} c (3.40)

With the aim to explore the conditions for which the number of condensed counterions is
greater than zero, i.e., 1  - z\Theta \leq 1, the total free energy G\mathrm{t}\mathrm{o}\mathrm{t} = G\mathrm{e}\mathrm{l} + G\mathrm{t}\mathrm{r} is minimized
with respect to \Theta to derive the minimum surface charge density \sigma \mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t} needed to start the
counterion condensation in the asymptotic limit of \kappa r\mathrm{e}ff \ll 1 as [120]

\sigma \mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t} =  - e \mathrm{l}\mathrm{n} (\kappa r\mathrm{e}ff)
2\pi zl\mathrm{B}r\mathrm{e}ff

(3.41)

In the asymptotic limit of \kappa r\mathrm{e}ff \gg 1, \sigma \mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t} becomes [120]

\sigma \mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t} =  - e(1 + \kappa r\mathrm{e}ff) \mathrm{l}\mathrm{n}(\kappa l\mathrm{B})

2\pi zl\mathrm{B}r\mathrm{e}ff
(3.42)

Some of the other key works about the counterion condensation on spherical objects
have proposed the expressions for colloidal effective charge under different conditions.
Early approaches include the work by Ohshima et al. [115] who proposed approximate
solutions for non-linear PB equation for single spheres in the limit \kappa r\mathrm{e}ff \geq 1. Ra-
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manathan [118] in his extensive study on the PB equation around a single charged sphere
in the limit of \kappa r\mathrm{e}ff \ll 1, also derived Eqs. (3.41) and (3.42), and presented the dependence
of Z\mathrm{e}ff on the sphere size and salinity of the solution. Bocquet et al. [17], in the limit of
\kappa r\mathrm{e}ff \gg 1 put forward a simple method to estimate the effective charge of highly charged
colloidal objects, while Netz and Orland [119], using the field-theoretic formulation of the
variational theory, proved the existence of the effective charge on spheres and proposed
that in the limit of \kappa r\mathrm{e}ff \rightarrow 0, the effective charge density \sigma \mathrm{e}ff = Z\mathrm{e}ffe/4\pi r

2
\mathrm{e}ff of the sphere

explicitly depends upon its bare charge valency, Z\mathrm{d}.
As described in the introduction, the dPGS microscopic morphology consists of a

carbon-core surrounded by dendritic branches which are terminated by the charged sul-
phate groups (see Fig. 1.2). The spread of this topology in three dimensions, and the
presence of charged sulphate groups at the terminal positions of dendritic branches allow
dPGS to be modeled as a uniform sphere charged at the surface. However, there is a
significant void available within the structure for water molecules or ions to penetrate
in. Since defining the concepts of counterion condensation and effective charge to such
complex structure is challenging, we resort to the approaches mentioned in this section,
such as Alexander prescription [15], the inflection point criterion [16, 121, I], the PMF
method [249] (cf. chapter 4) and the Manning model [120] for the counterion condensation
on charged spheres (cf. chapter 5).

3.1.2.5 Donnan theory

The phenomenon of ion partitioning was studied a century ago by Donnan, in the area
of thermodynamic equilibrium involving ions and electrolytes, where two electrolyte solu-
tions are separated by a porous membrane freely permeable to small ions, but impermeable
to macromolecules, as shown in Fig. 3.1 [251]. This leads to interesting results, which in-
clude the electrostatic potential difference and different ionic densities between the two
phases. The description of membrane equilibrium by Donnan constitutes a relatively sim-
ple model, as a first development in understanding the gradients in ionic densities and
potentials in biological systems [252, 253].

Consider a system of salt ions partitioned in two compartments (with the right com-
partment as a reservoir) by a membrane permeable to small ions, while impermeable to
macroions, as shown in Fig. 3.1. All ions are considered as monovalent. All small cations
and anions can freely move across both phases (unlike the macroions, which are spatially
constrained to the left hand side, owing to their size), hence they are in an electrochem-
ical equilibrium. The confined domain for the macroions thus prompts the movement

28



Chapter 3. Basic principles and methods

  

+

-

-

-

+

+

+

+

+

+

+

+
+

-

-

-

-

-

-

-

Phase 1

ci ,1 ci ,2ϕ=ϕD ϕ=0

Phase 2

Figure 3.1: Illustration of a system exhibiting the Donnan equilibrium. The two electroneutral and
mutually exclusive phases (phase 1 and 2) are partitioned by a semipermeable membrane (permeable to
the small ions but not to the macroions). The concentrations of the ionic species are indicated as ci,1
and ci,2 (i = \pm ), while the electrostatic potentials are shown as \phi = \phi \mathrm{D} and \phi = 0, in the phases 1 and
2, respectively.

of cations to the left side in order to charge-neutralize them, resulting in the Donnan
potential (\phi \mathrm{D}) among the two partitions. The two partitions can now be seen as the two
mutually exclusive and electroneutral phases with the phase 1 at the Donnan potential
\phi = \phi \mathrm{D}, and the phase 2 at zero potential \phi = 0. Now, similar to Eq. (3.18) in the
PB theory, the balance of electrochemical potential for both mobile cations and anions is
performed resulting in

\mathrm{l}\mathrm{n} c\pm ,1 \pm \phi \mathrm{D} = \mathrm{l}\mathrm{n} c\pm ,2

=\Rightarrow c\pm ,1 = c\pm ,2 \mathrm{e}
\mp \phi \mathrm{D}

(3.43)

where \phi \mathrm{D} (scaled by k\mathrm{B}T/e) is the dimensionless Donnan potential. The electroneutrality
conditions in phase 2 (reservoir) results in c+,2 = c - ,2 = c2, and in phase 1,

c+,1  - c - ,1  - cm = 0 (3.44)

where cm is the macroion concentration in phase 1. Assuming a known reservoir concen-
tration c2 and thus, substituting Eq. (3.43) in Eq. (3.44), the Donnan potential is thus
given by [254]

\phi \mathrm{D} = \mathrm{l}\mathrm{n}
c2
c+,1

=  - \mathrm{l}\mathrm{n}

\Biggl( 
 - 
\sqrt{} 

1 + \chi 2 + 1

\chi 

\Biggr) 
(3.45)

where \chi =  - 2c2/cm. A scenario equivalent to the one described in Fig. 3.1, and that
deserves Donnan treatment, is that of an ionic solution surrounding an isolated single
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PE. The charged groups on the PE, similar to the macroions in phase 2 in Fig. 3.1,
are chemically bonded to the macromolecule core, and hence, cannot go into the solu-
tion. Thus the purpose of the "membrane" is served by the chemical bonds between the
charged groups and the macromolecule core. The salt ions, on the other hand, are free to
navigate throughout the system domain. This positional constraint on macromolecular
charged groups along with the electrostatic interaction between the charged groups and
the counterions leads to similar consequences as in the membrane equilibrium described
above, i.e., the Donnan potential across the macromolecule and bulk solution phases is
developed. The implementation of the Donnan theory in this context can be seen in the
chapter 5.

3.1.3 Standard Langmuir isotherm

Consider a canonical ligand–substrate system with a volume V containing one substrate
unit (with negligible volume compared to V ) and n ligand molecules. The substrate
possesses N independent and identical binding sites, available for the binding with ligands.
Considering a state where N\mathrm{b} ligands are bound to the substrate, the extent of binding is
defined as the coverage \Theta = N\mathrm{b}/N . The corresponding degeneracy of the binding state
is then given by [254, 255, 256]

W =
\gamma N

\mathrm{b}
N !

N\mathrm{b}!
\bigl( 
N  - N\mathrm{b}

\bigr) 
!

(3.46)

W , in other words, is the combinatorial possibilities of distributing N\mathrm{b} identical and
indistinguishable ligands among N binding sites. \gamma is defined as the partition sum of a
single ligand in its bound state. The associated Boltzmann entropy is now defined as

S\mathrm{b}

k\mathrm{B}
= \mathrm{l}\mathrm{n}W (3.47)

The entropy per binding site is then given by

S\mathrm{b}

Nk\mathrm{B}
=  - \Theta \mathrm{l}\mathrm{n}\Theta  - (1 - \Theta ) \mathrm{l}\mathrm{n} (1 - \Theta ) + \Theta \mathrm{l}\mathrm{n}(v0/\Lambda 

3) (3.48)

where \gamma = v0/\Lambda 
3 is re-defined as the ratio of the effective configurational volume v0 to

the cube of thermal de Broglie wavelength \Lambda . The effective configurational volume v0
takes into consideration the vibrational and rotational degrees of freedom of a ligand in
its bound state, and can be computed via simulations. According to the convention in
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experiments, v0 = 1\mathrm{M} - 1 \simeq 1.6 nm3 is designated as the standard volume, corresponding
to the standard ligand concentration c\mathrm{s}\mathrm{t}\mathrm{d} = 1M [257, 258, 259]. More discussion in this
regard can be seen in the chapter 5.

The canonical ideal gas translational free energy of free ligands is given by

\beta \scrF \mathrm{t}\mathrm{r} = (n - N\mathrm{b})

\left[  \mathrm{l}\mathrm{n} \Biggl( (n - N\mathrm{b})\Lambda 3

V

\Biggr) 
 - 1

\right]  (3.49)

The total canonical Helmholtz free energy of the system is then given by

\beta \scrF = \beta \scrF \mathrm{t}\mathrm{r}  - 
S\mathrm{b}

k\mathrm{B}
+ \beta N\mathrm{b}\Delta \mu \mathrm{b}\mathrm{i}\mathrm{n}\mathrm{d} (3.50)

where \Delta \mu \mathrm{b}\mathrm{i}\mathrm{n}\mathrm{d} is defined as the total binding free energy of corresponding to the binding
of one ligand to its associated binding site. The free energy per binding site is then given
by

\beta \widetilde \scrF =
\beta \scrF 
N

=

\biggl( 
n

N
 - \Theta 

\biggr) \left[  \mathrm{l}\mathrm{n} \Biggl( (n - N\mathrm{b})\Lambda 3

V

\Biggr) 
 - 1

\right]  
+\Theta \mathrm{l}\mathrm{n}\Theta + (1 - \Theta ) \mathrm{l}\mathrm{n} (1 - \Theta ) - \Theta \mathrm{l}\mathrm{n}(v0/\Lambda 

3) + \beta \Theta \Delta \mu \mathrm{b}\mathrm{i}\mathrm{n}\mathrm{d}

(3.51)

The variation of the free energy \widetilde \scrF with respect to the number of bound ligands N\mathrm{b} results
in the expression for the standard Langmuir isotherm, in the form of a binding constant
K. K depends on the extent of binding \Theta and the independent variables such as the free
ligand concentration c\mathrm{b} = (n - N\mathrm{b})/V .

K = v0\mathrm{e}
 - \beta \Delta \mu \mathrm{b}\mathrm{i}\mathrm{n}\mathrm{d} =

\Theta 

c\mathrm{b}(1 - \Theta )
(3.52)

\Delta \mu \mathrm{b}\mathrm{i}\mathrm{n}\mathrm{d} in this standard Langmuir isotherm is resolved into the DH-level electrostatic and
ion-specific contributions, as well as the isotherm is extended to the heterogeneous binary
ligand binding in order to study the competitive ionic sorption in the chapter 5.

3.2 All-atom (AA) simulations

In this work, the systems of atomistically resolved dPGS surrounded by counterions and
salt ions immersed in an explicitly modeled water molecules, are simulated using the
GROMACS MD simulation package [260, 261, 262, 263] version 5.0.6. In MD, the classical
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3.2. All-atom (AA) simulations

Newtonian equations of motions are solved for a finite number of atoms, each with a point
charge and finite volume. Through pair-potentials, atoms interact with each other in a
periodic box of cubic volume V . The fundamental simulation results are obtained as time
trajectories of all atoms in the box and their interaction energies. The typical time scale
for the performed AA simulations is 100–200 nanoseconds.

3.2.1 Equations of motion

Consider a canonical system of N mobile atoms. Each atom j in the simulation box is
represented by mass mj, and a partial charge qj located at its center. The Hamiltonian
of the system is then given by

H =
N\sum 
j

\bigm| \bigm| \vec{}pj\bigm| \bigm| 2
2mj

+
N\sum 

i \not =j \not =k \not =l

V (rij, \theta ijk,\Phi ijkl) (3.53)

where the first term indicates the kinetic energy associated with the atom j and the
second term indicates the interactions between any two atoms i and j with respect to
their relative distance rij = | \vec{}ri  - \vec{}rj| (bonded atoms or non-bonded interactions), three
adjacent atoms i, j and k (angular interactions) as well as four adjacent atoms i, j, k and
l (dihedral interactions), as defined by the potential function V . The potential function
incorporates Lennard-Jones (LJ) and Coulomb electrostatic (non-bonded) potentials as
pair additive and centro-symmetric nonbonded interactions, and harmonic potentials for
intramolecular (bonded) interactions such as bonds, angles or dihedrals. The angular and
dihedral interactions depend on third or fourth adjacently bonded atoms, the identities
of which are founds via neighbour-lists. In order to mimic the macroscopic properties, or
the infinite bulk environment around each atom, periodic boundary conditions (PBC) are
employed for all atoms. The potential function V then is given as

V (rij, \theta ijk,\Phi ijkl) = V\mathrm{b}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{d}(rij, \theta ijk,\Phi ijkl) + V\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{b}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{d}(rij) (3.54)

V (rij, \theta ijk,\Phi ijkl) =
1

2
K\mathrm{b}

ij(rij  - r\mathrm{e}\mathrm{q})
2 +

1

2
K\theta 

ijk(\theta ijk  - \theta \mathrm{e}\mathrm{q})
2 (3.55)

+
1

2
K\Phi 

ijkl

\bigl[ 
1 + \mathrm{c}\mathrm{o}\mathrm{s}(n\Phi ijkl  - \gamma )

\bigr] 
(3.56)

+4\varepsilon ij

\left[  \Biggl( \sigma ij
rij

\Biggr) 12

 - 

\Biggl( 
\sigma ij
rij

\Biggr) 6
\right]  +

1

4\pi \varepsilon 0\varepsilon \mathrm{r}

qiqj
rij

(3.57)
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where the cross LJ parameters \sigma ij and \varepsilon ij are calculated using Lorentz–Berthelot combi-
nation rule for each single-particle LJ parameters, i.e., van der Waal radius \sigma j and the
depth of potential well \varepsilon j [264]. qi and qj are the partial charges of atoms i and j re-
lated to electrostatic Coulomb potential, \varepsilon 0 is the relative permittivity of a vacuum and
\varepsilon \mathrm{r} is a dielectric constant of a simulation medium. In view of atomistic simulations, the
background medium is vacuum, hence \varepsilon \mathrm{r} is set as 1. K\mathrm{b}

ij and K\theta 
ijk represent the bond and

angular force constants, along with r\mathrm{e}\mathrm{q} and \theta \mathrm{e}\mathrm{q} as the equilibrium bond length and angle
respectively. \theta ijk represents the angle between bonds i - j and j  - k. K\Phi 

ijkl indicates the
dihedral interaction parameter along with \Phi ijkl as the dihedral angle between ijk and jkl
planes and \gamma as the initial phase angle. In the simulations performed, the bond vibrations
are constrained using LINCS [265] algorithm. The total force on each atom j generated
according to the potential function V is then given by

\vec{}Fj = - 
N\sum 
i

\partial V (rij, \theta ijk,\Phi ijkl)

\partial rij
\^rij  - 

N\sum 
i \not =k

\partial V (rij, \theta ijk,\Phi ijkl)

\partial \theta ijk
\^\theta ijk

 - 
N\sum 

i \not =k \not =l

\partial V (rij, \theta ijk,\Phi ijkl)

\partial \Phi ijkl

\^\Phi ijkl

(3.58)

where \^a represents a unit vector in the direction of vector \vec{}a. An atomic trajectory can
thus be obtained by integrating Newton’s equation of motion

mj
\mathrm{d}2\vec{}rj
\mathrm{d}t2

= \vec{}Fj (3.59)

3.2.2 Force-field

One of the most crucial aspects to consider before performing the AA simulations for
production is the choice of the force-field. A classical force-field essentially refers to the
Hamiltonian function used to generate the potential energies and forces (as described in
Sec. 3.2.1), and the parametrization that constructs this Hamiltonian. This parametriza-
tion involves the empirical values of the interaction parameters such as the LJ parameters
and electrostatic charges for the non-bonded interactions, and the force constants for the
bonded, angular and dihedral interactions. There are multiple force-fields available in the
literature, and the choice of the force-field depends on the system properties one is inter-
ested in. This is why, pertaining to a specific system property of interest, it is important
to look for an accurate and reliable force-field. In the area of the AA simulations of biolog-
ical and synthetic PEs in explicit-water, some of the well known classical force-fields are
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Assisted Model Building and Energy Refinement (AMBER) [188] (widely used for pro-
teins and DNA), Chemistry at HARvard Molecular Mechanics (CHARMM) [189] (widely
used for both small molecules and macromolecules), Optimized Potential for Liquid Sim-
ulations (OPLS) [191] (known for the experimental properties of liquids, e.g., density and
heat of vaporization), GROningen MOlecular Simulation (GROMOS) [190] (united atom
force field optimized with respect to the condensed phase properties of alkanes), etc.

3.2.3 Numerical scheme: Leapfrog integrator

Eqs. 3.53, 3.58 and 3.59 collectively represent the equations of motion for each atom
within the simulation box. There exist several numerical discretization techniques to solve
this system of differential equations, out of which, GROMACS implements the leapfrog
algorithm which is a second-order method and is much more stable than the first-order
Euler method. After choosing the simulation time step \Delta t, which is in the range of 1 - 2 fs,
the positions of all atoms \vec{}rj are calculated as and with the known positions of atoms \vec{}rj
and velocities \vec{}vj at time t, the positions and velocities at time t+\Delta t are given according
to the leapfrog algorithm by

\vec{}vj

\biggl( 
t+

1

2
\Delta t

\biggr) 
= \vec{}vj

\biggl( 
t - 1

2
\Delta t

\biggr) 
+

\Delta t

mj

\vec{}Fj (t) (3.60)

\vec{}rj (t+\Delta t) = \vec{}rj (t) + \Delta t \cdot \vec{}vj
\biggl( 
t+

1

2
\Delta t

\biggr) 
(3.61)

The velocities at time t+ 1
2
\Delta t, \vec{}vj

\bigl( 
t+ 1

2
\Delta t
\bigr) 

are calculated using the force at time t, \vec{}Fj(t),
which in turn, is calculated using the positions at time t, \vec{}rj(t) and the velocities at time
t - 1

2
\Delta t, \vec{}vj

\bigl( 
t - 1

2
\Delta t
\bigr) 
. The positions at time t+\Delta t, \vec{}rj (t+\Delta t) are then evaluated using

\vec{}vj
\bigl( 
t+ 1

2
\Delta t
\bigr) 
.

3.2.4 Simulation techniques

3.2.4.1 Constant temperature simulations

Implementing the above MD equations in the microcanonical (NV E) ensemble cannot
conserve energy for long time simulations due to the energy leakage occurring as a result
of the time accumulation of numerical errors (or also called numerical friction) induced by
the discretization scheme, and also due to the interaction cut-off artifacts [266, 267, 268].
In comparison, it is easier to simulate canonical (NV T ) or isobaric-isothermal (NPT )
ensembles. Due to above mentioned reasons, the atomic velocities in these ensembles are

34



Chapter 3. Basic principles and methods

exerted upon by the numerical friction, rendering the total kinetic energy of the system
i.e., the system temperature to go down. Hence, to maintain the constant temperature,
the equations of motion are coupled with a thermostat. There are a number of ther-
mostat schemes available, some of which are Berendsen [269], Nosè–Hoover [270, 271],
Andersen [272], and velocity rescaling [273]. As as example, Berendsen algorithm as-
sumes the simulation box to be in a constant contact with a external heat bath having a
target temperature as T0.

\mathrm{d}T

\mathrm{d}t
=
T0  - T

\tau 
(3.62)

where \tau and T are the time constant and the current temperature of the simulation box,
respectively. Eq. (3.62) basically states that the difference between the system and the
target temperature decreases with time in an exponential manner, with a time constant
\tau . This relaxes the system faster and hence is considered to be more suitable for the
equilibration phase of the simulation protocol.

3.2.4.2 Constant pressure simulations

In the NPT ensembles, constant pressure is maintained in the simulation box by dynamic
adjustment of its size and rescaling of coordinates of all atoms (apart from the fixed
atoms). Analogous to the Berendsen temperature thermostat, the Berendsen barostat
considers coupling the system with a first order kinetic relaxation of the pressure as

\mathrm{d}P

\mathrm{d}t
=
P0  - P

\tau p
(3.63)

Thus, the Berendsen barostat, instead of manipulating the atom velocity, scales the box
vectors and atomic coordinates by a factor \mu , where \mu is a function of the characteristic
time scale \tau p and the instantaneous pressure P (t) of the system.

In spite of its stability and the ability to generate an average constant pressure, Berend-
sen is a weak pressure coupling algorithm and fails to generate true NPT ensemble. In
comparison, Parrinello–Rahman pressure coupling produces correct NPT ensemble [274,
275].

3.2.4.3 Particle mesh Ewald

In a nanometer sized simulation box, the number of atoms increases as \sim L3, where L is
the box length. The simulation of a large systems, say 10  - 20 nm sized box, causes one
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to indulge in costly computations, thus necessitating schemes of minimum computational
cost and minimum subsequent error. The computational cost of simulating N particles is
N2, which is undesirable for large systems. The effort of computing the particle trajectory
primarily goes into the calculation of particle-particle interaction energies, which include
short range interactions such as Van der Waal interactions and long range interactions
like Coulomb interactions. Van der Waal interaction decays as r - 6, where r is the inter-
particle distance. This allows an opportunity to minimize its computational cost by the
application of cut-off distance, i.e., maximum distance till which mutual interactions are
calculated. The Coulomb interactions, on the other hand, decay as r - 1, which is much
slower. Hence, implementing a cut-off distance scheme here would result in significant
errors in the particle trajectories. This motivates the division of the total interaction
space into the short-range (r < r\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{o}\mathrm{m}\mathrm{b}) and long-range (r > r\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{o}\mathrm{m}\mathrm{b}) part, where r\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{o}\mathrm{m}\mathrm{b}

is introduced as a Coulomb cut-off distance. Subsequently, the Coulomb interactions are
divided as

V (\vec{}r) \equiv V\mathrm{s}\mathrm{r}(\vec{}r) + V\mathrm{l}\mathrm{r}(\vec{}r) (3.64)

In Eq. (3.64), the short range part of the interaction V\mathrm{s}\mathrm{r}(\vec{}r) (applicable in r < r\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{o}\mathrm{m}\mathrm{b}) is
calculated in real space. The problem arises in the computation of the long-range part
V\mathrm{l}\mathrm{r}(\vec{}r) (applicable in r < r\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{o}\mathrm{m}\mathrm{b}), which is not convergent if summed up in real space.
Hence, this part is treated in a Fourier space, where a single sum of the wave vectors of the
reciprocal grid is used to evaluate the discretized PB equation, obtaining the electrostatic
potential. This sum over wave vectors converges faster and also requires small number
of wave vectors in order to maintain sufficient accuracy. One of the algorithms adopting
this idea to calculate long-range Coulomb interactions is Particle Mesh Ewald algorithm
(PME) [276, 277].

3.2.5 Analysis of simulation data

3.2.5.1 Electrostatic potential and cumulative charge

RDFs of charged species gi(r) (cf. Sec. 3.1.1.1) with respect to the macromolecule-COM,
obtained from simulations, provide the respective radial density distributions ci(r) us-
ing the relation ci(r) = c\mathrm{b}i gi(r). For all ionic species, ci(r) reaches the bulk number
density c\mathrm{b}i in the far-field. ci(r) can then be utilised to calculate the local charge ac-
cumulation (or running ion coordination) and electrostatic potential distribution around
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the macromolecule, using the Poisson’s equation (3.20) where the summation runs over
all atomic species i with a non-zero partial charge, which involve dPGS atoms and ions
for “implicit-water" integration (cf. Sec. 3.2.5.2.2) and all charged species including hy-
drogen and oxygen atoms of water for “explicit-water" integration (cf. Sec. 3.2.5.2.1).
Eq. (3.20) is numerically integrated twice to obtain \phi (r), which is then compared with
the dimensionless DH potential \phi \mathrm{D}\mathrm{H}, according to the Alexander prescription described
in the section 3.1.2.4.1, in order to calculate the effective radius r\mathrm{e}ff of the macromolecule.

In addition to the potential profile, the running coordination number of species i as a
function of the distance r from the macromolecule-COM is defined as,

N\mathrm{a}\mathrm{c}\mathrm{c},i(r) =

\int r

0

ci(r
\prime )4\pi r\prime 

2
\mathrm{d}r\prime (3.65)

This motivates the definition of total cumulative charge valency as

Z\mathrm{a}\mathrm{c}\mathrm{c}(r) =
\sum 
i

ziN\mathrm{a}\mathrm{c}\mathrm{c}, i(r) (3.66)

With that, the number of the bound ions and the effective charge valency of the dPGS
follow as N\mathrm{b}

i = N\mathrm{a}\mathrm{c}\mathrm{c},i(r\mathrm{e}ff) and Z\mathrm{e}ff = Z\mathrm{a}\mathrm{c}\mathrm{c}(r\mathrm{e}ff), respectively.

3.2.5.2 Implicit vs. explicit-water integration

In order to better scrutinize the explicit-water effects, the two approaches of calculating
the radial electrostatic potential and the total cumulative charge are compared using
the charge integration and mapping, as described in sections 3.2.5.1 and 3.1.2.4. The
comparison is based on the inclusion/exclusion of the radial density distributions of the
partial charges of water as follows:

3.2.5.2.1 "Explicit-water" approach

Here the partial charges of all the atoms are included in the simulation box, which include
the macromolecule atoms, counterions, coions and the partial charges of water molecules.
This basically assumes a multi-ingredient mixture of different charged species in vacuum,
thus taking the dielectric constant of unity (i.e., l\mathrm{B} = 56 nm at T = 300K) while calcu-
lating the electrostatic potential.
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3.2.5.2.2 "Implicit-water" approach

This approach assumes an implicit-water in terms of implementing the partial charges
in the Poisson’s equation for calculating the electrostatic potential (Eq. (3.20)), i.e., the
partial charges of water are excluded while calculating the potential; thereby the dielectric
constant of the medium is chosen as 72 [278] [i.e., l\mathrm{B} = 0.72 nm (corresponding to the
SPC/E water model used in the simulations) and at T = 300K]. The charge density
distributions of all other species (i.e., macromolecule atoms and ions) are deployed to
calculate the potential.

Note that the PMF method described in the section 3.1.2.4.3 is essentially an explicit-
water approach as it directly works on the ionic profiles, not integrated potentials. There-
fore, no approximation is made concerning the dielectric properties as in the implicit
approach to the potential.

3.2.5.3 Gibbs dividing surface and partial molar volume

In equilibrium conditions, the description of a macromolecule–water interface in terms
of the radial density distribution of water around the macromolecule-COM allows us
to consider the phase dividing surface as a separate thermodynamic system that is in
equilibrium with its adjoining macromolecule and water phases. This thermodynamic
interface, i.e., the radial Gibbs dividing surface [279, 280, 281, 282, 283, 284] (GDS)
assuming its spherical nature, is given by [285]

4\pi 

3
r3\mathrm{G}\mathrm{D}\mathrm{S} = K\mathrm{w} (3.67)

where K\mathrm{w} is the Kirkwood–Buff integral [205] and defines the excess volume of the solu-
tion [286] in the limit of an infinite dilution, given by

K\mathrm{w} = \Delta V\mathrm{e}\mathrm{x} =

\infty \int 
0

(1 - g\mathrm{w}(r))4\pi r
2 \mathrm{d}r (3.68)

where g\mathrm{w}(r) is the RDF of water molecules with respect to the macromolecule-COM. The
variation in volume when 1mol of solute is added to an infinite amount of solution, defines
the partial molar volume that is decomposed in an ideal solution contribution and the
excess volume \Delta V\mathrm{e}\mathrm{x} [287, 288, 289]. Using Kirkwood–Buff theory [205], an expression for
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the partial molar volume of macromolecule is given by

V \mathrm{d} = \Delta V\mathrm{e}\mathrm{x} + \kappa 0T k\mathrm{B}T (3.69)

where \kappa 0T is the isothermal compressibility of water at 300K. Eq. (3.69) essentially de-
scribes the effective volume occupied by the macromolecule on account of the displace-
ment of water by the molecule. The number of replaced water molecules then would be
\Delta nw = c\mathrm{b}\mathrm{w}V \mathrm{d}, with c\mathrm{b}\mathrm{w} as the bulk density of water.

3.2.5.4 Water penetration thermodynamics

The thermodynamic signature of the macromolecule–water association can be obtained by
the temperature-dependence of the PMF, thereby obtaining the distance-resolved profiles
of the free energy, enthalpy, and entropy at the atomistic level [138, 290, 291, 292].
Once the distance-resolved PMF is identified, V\mathrm{w}(r), from macromolecule-COM as the
macromolecule–water (Gibbs) free energy of association G\mathrm{w}(r), the corresponding entropy
can be determined via the temperature dependence of free energy,

S\mathrm{w}(r) =  - 
\biggl( 
\partial G\mathrm{w}(T, r)

\partial T

\biggr) 
N,P

(3.70)

The corresponding distance-resolved water enthalpy is then

H\mathrm{w}(r) = G\mathrm{w}(r) + TS\mathrm{w}(r) (3.71)

3.2.6 Further topics

3.2.6.1 Electronic continuum correction (ECC)

AA MD simulations have become an essential component of the tools used in the study of
biomolecular as well as synthetic systems. The time scales used in the simulation systems
studied today go up to microseconds [293] or even milliseconds [294], while containing over
a million atoms [295, 296, 297]. The atomistic trajectories are governed by the Hamil-
tonian Eq. (3.53) and the two-body interaction parameters needed in the Hamiltonian,
collectively called a force-field, are empirically optimized based on benchmarking certain
experimentally evaluated physical or chemical properties of the target system. Today,
most of the MD simulations are performed using non-polarizable force-fields (i.e., with
fixed atomic partial charges) such as AMBER [188], CHARMM [189], GROMOS [190] and
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OPLS [191]. These force-fields partially incorporate the effects of electronic polarization
and the screening of electrostatic interactions through the effective charges on atoms and
other empirical parameters [192]. In spite of these oversimplified parametrizations, the
above mentioned non-polarizable force-fields have accurately modeled complex molecular
systems [192, 298]. For instance, the hydration free energies and the properties of liquid
water have been modeled fairly accurately without incorporating electronic polarizability
in an explicit way [299, 300].

However, the implementation of non-polarizable force-fields in certain systems results
in serious inaccuracies. For instance, the unaccountability of electronic polarization in
the non-polarizable force-fields results in the failure in capturing the complex features
connected with the hydration of divalent ions such as Ca2+ [203, 216, 301, 302, 303, 304,
305, 306]. Owing to their high charge densities, the divalent cations such as Ca2+ and
Mg2+ are capable of powerfully polarizing surrounding water molecules [301], with even a
possibility of a potential charge transfer [307]. In a study of the interaction between the
Drude-2013 polarizable protein force-field and several biologically important ions such
as Na+, K+, Ca2+ and Cl - , it was concluded that the electronic polarization effects
accounted for as much as 30\% of the total protein–Ca2+ binding energy of complexation,
highlighting how traditional non-polarizable fixed charge force-fields cannot account for an
ion binding in a strongly polarizable microenvironments [297]. The exclusion of electronic
polarizability in the non-polarizable force-fields is also responsible for inaccurate structural
and ion-pairing description of electrolytes containing monovalent ions with high charge
densities, such as Li+ [308]. The polarizable force-fields with the dynamic atomic charges
are able to solve this issue, and are being actively explored [309, 310, 311, 312, 313, 314,
315]. However, the disadvantage of such force-fields is that they are computationally
much more expensive, since the self-consistency of polarization needs to be achieved at
all polarization sites, and at every MD time step [192]. As a result, polarizable force-
fields cannot sample the time scales as non-polarizable ones, which is crucial if one needs
to study, say biomolecular complexation phenomena, which occur at time scales from
nanoseconds to microseconds. Besides, the parameter space required for polarizable force-
fields is larger, in order to tune or to develop the parameters derived from quantum
mechanical calculations.

As an alternative to the polarizable force-fields, Leontyev and Stuchebrukhov proposed
a simple model, called molecular dynamics electronic continuum (MDEC), for account-
ing electronic polarization in the non-polarizable MD simulations [192]. MDEC model
works well both in high- and low-dielectric media and is a low-cost alternative to fully
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polarizable MD force-fields. The electronic polarization is, in essence, a distortion of the
electron cloud of the medium molecules, and under the linear response approximation, it
is considered to be an additive quantity [192]. The electronic subsystem of the medium
molecule is much swifter compared to the nucleic motion of the molecule, due to smaller
mass of electrons and high electron velocity. Therefore, electrons react instantaneously to
any perturbation in the form of change in the position of medium nucleus or the change in
external electric field. Hence, the total polarization is partitioned into the slow “inertial"
polarization, or also termed as nuclear polarization, which depends on the configuration
of medium nuclei, and fast “inertia-less" pure electronic polarization. The nuclear polar-
ization also includes that from their electronic subsystem, which is in equilibrium with its
corresponding nucleus position [192].

In the traditional non-polarizable force-fields, the pure electronic polarization part of
the total polarization is completely neglected, and the remaining electronic part of nu-
clear polarization is incorporated in terms of the effective partial charges and other non-
electrostatic parameters. For example, in a polar medium like water, the missing pure
electronic polarization effect, or in other words explicit polarizability, is corrected via the
modification of the solute–solvent electrostatic and Van der Waal interactions [192, 213].
Hence, to account for the consistency in the treatment of the electrostatic interactions
between the solute and solvent, effective charges that incorporate explicit polarizability
should be used for both [316]. Assuming the electronic polarization response as contin-
uum, the effective atomic charges are simply the actual charges scaled by 1/

\surd 
\varepsilon \mathrm{e}, where

\varepsilon \mathrm{e} is the part of the dielectric constant contributed by the electronic degrees of freedom
(\varepsilon \mathrm{e} = 1.78 for water) [192, 213, 316]. This adjustment in the atomic partial charges can
also be interpreted as an explicit initiation of the electronic dielectric continuum [214,
316], and in the chapter 4, this model will be referred to as the Electronic Continuum
Correction (ECC) model.

3.3 Coarse-grained (CG) simulations: Basics

AA MD simulations involve atomistically resolved degrees of freedom including those of
solvent molecules, which renders them as computationally costly. In this scenario, the
minimization of the computational effort and a broader perspective on the electrostatic
properties of the system can be achieved by coarse-graining the molecules, modeling the
solvent by a dielectric background continuum, and employing the Langevin dynamics (also
termed as stochastic dynamics (SD)) simulations. These simulations are then based on
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Figure 3.2: Atomistic and CG structure of the G0-dPGS molecule. We depict the atomistic subunits
C3H5,  - C3H5O - , and  - OSO3 corresponding to the CG bead types A,Bi, and Ci (i = s, l). Reprinted
with permission from Xu et al. [114] Copyright © 2017 American Chemical Society.

the Langevin equation of motion given as

mi
\mathrm{d}2\vec{}ri
\mathrm{d}t2

=  - mi\zeta i
\mathrm{d}\vec{}ri
\mathrm{d}t

 - \nabla iU + \vec{}Ri(t) (3.72)

where \zeta i is the relaxation rate of the ith CG bead. U is the system potential energy, which
includes harmonic bonded interactions between neighbouring beads, dihedral potentials
and inter-atomic Lennard-Jones (LJ) between all non-neighbouring beads. The force \vec{}Ri(t)

is a time dependent Gaussian noise process that mimics the solvent impacts and satisfies
the fluctuation-dissipation theorem

\beta 
\Bigl\langle 
\vec{}Ri(t) \cdot \vec{}Rj(t

\prime )
\Bigr\rangle 
= 2mi\zeta i\delta (t - t\prime )\delta ij (3.73)

Note that the solvent in Langevin dynamics is modeled as a continuous medium, thus the
electrostatic interaction should be scaled with static dielectric constant \varepsilon r. CG models
are typically used for molecular modeling of biomolecules at different resolutions [317,
318]. A wide range of coarse-grained models are available in the literature. Some of the
examples are the computational models of specific molecules such as proteins [317, 318],
nucleic acids [319, 320], lipid membranes [318, 321], carbohydrates [322] or water [323].
In the chapter 5, we study the competitive ion binding on dPGS using its CG model. The
example of CG G0-dPGS model is shown in Fig. 3.2.

3.4 Isothermal titration calorimetry (ITC) experiments

Macromolecular binding in the biological and physicochemical systems can be reliably
characterized by the isothermal titration calorimetry (ITC). ITC can directly provide the
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thermodynamic analysis of the binding in the form of the heat of binding, stoichiometry,
binding constant, Gibbs free energy, and entropy changes.

An ITC apparatus consists of two identical and highly thermally conductive cells which
are embedded in an adiabatic chamber [324]. A sample cell contains the macromolecule
solution (substrate), while the other cell, called the reference cell, contains the buffer or
water without the macromolecule. Constant heat is supplied to both cells initially. The
temperature within the sample cell is maintained by detecting its temperature difference
with the reference cell using sensitive thermocouple circuits and then by regulating the
power supply using the feedback mechanism. During the titration, the ligand solution in
a precise concentration is injected through a syringe into the sample cell. Based on the
exothermic or endothermic nature of the substrate–ligand binding process, the resultant
heat exchange takes place with the surroundings in the sample cell. The time-dependent
power supply needed for the sample cell to maintain its temperature same as that of the
reference cell is then recorded. The experimental raw data is the time series of peaks of
heat required to balance the temperature of the sample cell, with each peak representing
an injection process. The time integral of the peaks gives the heat exchange Q during the
titration.

The adsorption of a ligand on the macromolecule (substrate) is associated with the heat
exchange Q, which is measured in the ITC experiments vs. the total ligand concentration
c0. The ITC analysis of adsorption of one component ligand on the macromolecule is
given in previous works by Dzubiella [254, IV, 325]. Defining the total macromolecule
(substrate) concentration in the titration volume V as c\mathrm{d}, and introducing the molar ratio
x = c0/c\mathrm{d}, Q is given by [254, IV, 325]

Q(x) = c\mathrm{d}V

\int x

0

\mathrm{d}x\prime 
\partial H(N\mathrm{b}(x\prime ))

\partial x\prime 
(3.74)

where H(N\mathrm{b}) is the total heat exchanged per macromolecule on adsorption of N\mathrm{b} ligands
and N\mathrm{b}(x) depicts the binding isotherm, i.e., the number of bound ligands as a function
of the molar ratio x at a fixed temperature.

In order to track the changes in the heat exchange during the titration, differential
heat Q\prime (x) = \mathrm{d}Q/\mathrm{d}x is typically measured, as the ligand is incrementally supplied to the
solution. Q\prime (x) is given as

1

c\mathrm{d}V
Q\prime (x) =

\partial H(N\mathrm{b}(x))

\partial N\mathrm{b}

\partial N\mathrm{b}(x)

\partial x
(3.75)
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The function H(N\mathrm{b}) is typically not known due to the complex interactions governing
the ligand binding on the macromolecule, and it is in practice assumed to be linearly
proportional to N\mathrm{b}, i.e., H(N\mathrm{b}) = \Delta HN\mathrm{b}, where \Delta H (heat exchanged per bound ligand )
is constant and independent of the already bound ligands. This modifies Eq. (3.75) as

1

c\mathrm{d}V
Q\prime (x) = \Delta H

\partial N\mathrm{b}(x)

\partial x
(3.76)

Eq. (3.76) connects the differential heat exchange during the binding of the ligand to the
one component ligand binding model N\mathrm{b}(x).

In the chapter 6, we study a competitive sorption of Mg2+ and Na+cations on G2-dPGS
via ITC experiments. Owing to the different chemical identities of these counterions
(ligands), here we extend the one component ligand binding model described above to
a two component ligand binding model, in a preliminary fashion. For the case of two
ligands, which we designate here as ++ and + corresponding to Mg2+ and Na+ cations,
respectively, Eq. (3.76) changes as

1

c\mathrm{d}V
Q\prime (x) = \Delta H++

\partial N\mathrm{b}
++
(x)

\partial x
+\Delta H+

\partial N\mathrm{b}
+
(x)

\partial x

= (\Delta H++ + \lambda \Delta H+)
\partial N\mathrm{b}

++
(x)

\partial x

(3.77)

where x = c0
++
/c\mathrm{d} is the molar ratio of Mg2+ to that of dPGS in the solution. \lambda =

\partial N\mathrm{b}
+(x)

\partial N\mathrm{b}
++(x)

is the ratio of differential amount of bound Na+ to dPGS to that of Mg2+ counterions,
or simply called an exchange ratio. \lambda is negative due to the competitive ligand binding
and is assumed to be constant throughout the titration. Eq. (3.77) thus represents two
component ligand binding in terms of a pseudo one component ligand binding model with
a constant binding enthalpy \Delta H++ + \lambda \Delta H+ per bound Mg2+ cations to the dPGS.

In terms of numerical differences, Eq. (3.77) can be rewritten as

1

\eta 

\Delta Q

\Delta x
=

\Delta N\mathrm{b}
++
(x)

\Delta x
(3.78)

where \eta = c\mathrm{d}V (\Delta H++ + \lambda \Delta H+) is a constant. The incremental heat exchange \Delta Q is thus
directly proportional to that in the number of bound Mg2+ cations \Delta N\mathrm{b}

++
. Hence, assuming

the heat exchange corresponding to the k\mathrm{t}\mathrm{h} titration step (k = 1, 2, \cdot \cdot \cdot n) as \Delta Qk and the
respective differential number of bound ligands as \Delta N\mathrm{b}

++
(xk), the differential number of

bound Mg2+ cations in k + 1\mathrm{t}\mathrm{h} titration step are related to those from k\mathrm{t}\mathrm{h} titration step
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as

\Delta N\mathrm{b}
++
(xk+1) =

\Delta Qk+1

\Delta Qk

\Delta N\mathrm{b}
++
(xk) (3.79)

One important key assumption made here is that the amount of Mg2+ cations during the
first titration step (k = 1) are entirely bound to the dPGS. In other words, the entire
amount of Mg2+ cations introduced in the titration cell after the first titration step is de-
pleted from the bulk, i.e., \Delta N\mathrm{b}

++
(x1) = x1 = c0

++,1/c\mathrm{d}. The subsequent differential numbers
of bound Mg2+ cations are then evaluated using Eq. (3.79). The obtained Mg2+ binding
isotherm N\mathrm{b}

++
(x) is then compared with the theoretical binding models in the chapter 6.
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4 Charge and hydration structure of dendritic

polyelectrolytes: Molecular simulations of polyg-

lycerol sulphate

Macromolecules based on dendritic or hyperbranched PEs have been emerging as high
potential candidates for biomedical applications. In this chapter, the charge and solva-
tion structure of dendritic polyglycerol sulphate (dPGS) of generations 0 to 3 in aqueous
monovalent salt (sodium chloride) solution is studied using AA, explicit-solvent MD com-
puter simulations. The dPGS is characterized by calculating several important properties
such as molecular distributions, Solvent Accessible Surface Area (SASA), and the partial
molar volume. In particular, as the dPGS exhibits high charge renormalization effects, the
challenges of how to obtain a well-defined effective charge and surface potential of dPGS
for practical applications, are addressed. The implicit- and explicit-solvent approaches in
the results obtained from the AA simulations performed in this work with the CG simula-
tions in Xu et al., are compared. Consistent values are found for the effective electrostatic
size (i.e., location of the effective charge of a DH sphere) within all the approaches, de-
viating by mostly the size of a water molecule. The excess chemical potential of water
insertion into dPGS and its thermodynamic signature are also presented and rationalized.
Further, owing to the presence and significance of divalent ions in biological realm, dPGS
is electrostatically characterized in a solution mimicking an aqueous physiological solution
containing a mixture of divalent and monovalent salts (magnesium and sodium chloride).
Performances of several recently advanced non-polarizable force-fields for magnesium(II)
cations are quantitatively compared, and the competitive sorption isotherm of magne-
sium(II) and sodium cations on dPGS, along with the corresponding qualitative trends
in dPGS electrostatics are rationalized. Note that part of the descriptions and figures in
this chapter are taken almost directly from our previous publication [I].

4.1 dPGS in monovalent salt

4.1.1 Atomistic simulations method

Initial atomistic structures of all generations (n = 0  - 3) of the PGS dendrimers (cf.
Fig. 1.2(b)) were constructed using the Marvin software [Marvin 16.4.11.0, 2016, ChemAxon
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4.1. dPGS in monovalent salt

Figure 4.1: Simulation snapshot of the simulation box of 15.7 nm size, showing G1-dPGS with Na+
(violet spheres) and Cl - (green spheres) ions acting as counter- and co-ions, respectively. Water is also
shown in the background (not to scale).

(www.chemaxon.com)]. Na+ and Cl - ions were used as counterions and coions, respec-
tively. MD simulations were performed using the GROMACS 5.0.6 platform [260, 261,
262, 263], employing the General Amber Force Field (GAFF) [326, 327] for dPGS and
ions. Partial charges for dPGS atoms were calculated using AM1-BCC quantum mechan-
ical charge model [328], which is compatible with GAFF. The antechamber package [327,
329] from USCF Chimera software [330] was used to assign the partial charges which are
summarized along with the force-field parameters in Appendix A.1.1.

The structures were subject to a series of initialization and equilibration protocols.
First, the dendrimer was immersed in a cubic simulation box filled with the water molecules
of Simple Point Charge-Extended (SPC/E) model [331]. Pertaining to the aim of studying
the electrostatic potential distribution around dPGS dendrimer and in order to curb finite
size effects, large sizes of the boxes were used ranging from 13 nm for G1-dPGS to 26 nm
for G3-dPGS (cf. Table 4.1). The appropriate numbers of Na+ and Cl - ions are then
inserted to ensure electroneutrality and a bulk salt concentration of 25mM. The system
was then subject to energy minimization and 100 ns equilibration in the NPT ensemble
at 1 bar and 300K. The production MD simulations in the same NPT ensemble for each
of the dendrimers were subsequently performed for 150 ns. Bonds involving hydrogens
were constrained by the LINCS algorithm [332]. The electrostatic interactions were cal-
culated with the Particle Mesh Ewald method [277] using 1 nm as a short-range cut-off.
The short-range Lennard-Jones cut-off was set to 1 nm. The details of the simulation
conditions for all generations are summarized in Table 4.1 and the simulation snapshot
for G1-dPGS is shown in Fig. 4.1.
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dPGS dPGS atoms number of Box length number of number of

Generation water molecules (nm) cations anions

0 65 66,394 12.6 32 26

1 149 128,075 15.7 101 89

2 317 308,645 21.0 163 139

3 653 583,725 25.9 313 265

Table 4.1: System details for the simulations of the four different generations. The pressure and temper-
ature are fixed to 1 bar and T = 300K in the simulations, respectively, and the bulk salt concentration
is 25mM.

4.1.2 Density distribution functions

4.1.2.1 Terminal groups

Fig. 4.2 shows the atomic radial density distributions with respect to the dPGS-COM.
The radial density of the terminal sulphur is inhomogeneous and has pronounced peak(s)
as shown in Fig. 4.2(a). Excluded volume interactions along with bond constraints and
charge repulsion lead to shifts of the positions of maxima with generations to larger
distances. A single peaked distribution is found for generations G0 and G1 indicating
that most of the terminal sulphur atoms stay on the molecular surface. The breadth
of distribution increases with generation. For generations G2 and G3, the distribution
becomes bimodal with a minor peak at r = 0.6 nm. This indicates that fraction of
total sulphate groups reside in the interior of the dendrimer. This penetration of terminal
groups into the interior volume called "backfolding" has already been observed in previous
literature [333, 334, 335, 336]. The increase in the number of terminal sulphate groups
with higher generation leads to higher charge density in the dPGS corona [114], leading
to higher electrostatic repulsion that essentially leads to backfolding. The major peak
position of the distribution is used to define the "structural" or "intrinsic" dPGS radius r\mathrm{d}
(cf. Table 4.2). A monotonic increase in r\mathrm{d} with generation is observed, from r\mathrm{d} = 0.66 nm
for G0 to r\mathrm{d} = 1.4 nm for G3. These quantities are also compared to the standard radius
of gyration in Table 4.2.

With the knowledge of the intrinsic dPGS radius r\mathrm{d}, along with the bare charge va-
lency Z\mathrm{d}, estimates of the effective charge valency Z\mathrm{e}ff , the dPGS bare charge density
\sigma \mathrm{d} = Z\mathrm{d}e/4\pi r

2
\mathrm{d} and effective surface charge density \sigma \mathrm{e}ff = Z\mathrm{e}ffe/4\pi r\mathrm{e}ff

2 can be defined,
respectively. The number of terminal sulphate groups increases with generation, thus
increasing \sigma \mathrm{d}, on the other hand, the tendency of backfolding of the terminal groups also
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Figure 4.2: Radial density distributions ci(r) with respect to the dPGS-COM of (a) sulphur atoms of the
terminal sulphate groups, i = \mathrm{S}, (b) cations (counterions; i = Na+), (c) anions (coions; i = Cl - ), and
(d) water molecules for all four generations. In the inset of panel (c) the anion density profiles at larger
distances are shown, with the bulk density c\mathrm{b} - = 25mM marked by a dashed horizontal line. (d) Water
radial density distribution. The vertical dashed lines indicate the location of dPGS–water Gibbs dividing
surface r\mathrm{G}\mathrm{D}\mathrm{S} for each generation (cf. Sec. 3.2.5.3 and Table 4.3).

G0 G1 G2 G3

MW (kDa) 0.79 1.72 4.10 8.32

r\mathrm{d} (nm) 0.66 0.86 1.16 1.40

Z\mathrm{d}  - 6  - 12  - 24  - 48

\sigma \mathrm{d} (e \mathrm{n}\mathrm{m} - 2)  - 1.08  - 1.30  - 1.41  - 1.93

R\mathrm{g} (nm) 0.57 0.75 1.03 1.28

Table 4.2: Intrinsic parameters of atomistic dPGS. MW is the molecular weight of the molecule while
r\mathrm{d} and Z\mathrm{d} stand for the intrinsic radius (defined by the terminal sulphur peak position in the density
distribution (cf. Fig. 4.2(a)) and bare charge valency, respectively, leading to the bare dPGS surface
charge density \sigma \mathrm{d}. R\mathrm{g} is the radius of gyration.

50



Chapter 4. Charge and hydration structure of dendritic polyelectrolytes: Molecular
simulations of polyglycerol sulphate

increases with generation, thus hampering the growth of \sigma \mathrm{d}. Table 4.2 shows that the net
result is a monotonic increase in \sigma \mathrm{d} implying minor contribution of backfolding.

4.1.2.2 Counterions and salt

Fig. 4.2(b) shows the counterion density distributions which exhibit a single peak and
decay in the exponential (DH-like or Yukawa) fashion for r \gtrsim r\mathrm{d}, while reaching bulk
concentration at large distances. Whereas the electrostatic attraction of the terminal
sulphate groups drives counterions towards dPGS, excluded volume restricts their entropy.
This combined effect leads to the non-monotonic distribution. Co-ions, on the other
hand, as indicated in Fig. 4.2(c), are depleted from the dPGS interior due to electrostatic
repulsion.

4.1.2.3 Water

Apart from the open morphology of dPGS, which is favourable for the water uptake,
the electrostatic repulsion between like-charged terminal sulphate groups and their polar
nature facilitate their interaction with water. Hence, water penetrates into dPGS interior
as depicted in Fig. 4.2(d), which shows the radial density of water as a function of distance
from the dPGS-COM for all generations. The water density gradually rises as on going
radially outward from dPGS-COM and reaches its bulk value. It is seen that, besides the
water penetration into the dendrimer interior, the density profile starts to develop a peak
with increasing generation at the region around 0.6 nm. This could be attributed to the
backfolding of sulphate groups in the interior region of dendrimer, since water indulges
in a preferential interaction with sulphate groups due to their polar nature. The dashed
lines represent the locations of Gibbs dividing surfaces r\mathrm{G}\mathrm{D}\mathrm{S} (cf. Sec. 3.2.5.3) of individual
generations reported in Table 4.3. It can be seen that r\mathrm{G}\mathrm{D}\mathrm{S} increases almost linearly with
generation and is roughly 80\% of the bare radius r\mathrm{d} for all generations (cf. Table 4.2 and
4.3).

Another effective means to characterize dendrimer hydration properties is by calculating
the solvent accessible surface area (SASA) and the solvent excluded volume (VSE), which
can also be deduced by observing Fig. 4.2(d) that there is a significant water uptake by
dPGS molecules. Although the outer surface of dPGS is available for interaction with
water and ionic species, there still remains significant accessible internal surface area in a
dendrimer immersed in water. To evaluate the SASA and VSE, each dendrimer atom is
assumed as a sphere with the radius ri being the sum of the van der Waals radius of that
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G0 G1 G2 G3

r\mathrm{G}\mathrm{D}\mathrm{S} (nm) 0.53 0.69 0.88 1.12

\mathrm{S}\mathrm{A}\mathrm{S}\mathrm{A} (nm2) 9.56 16.60 34.38 61.16

V \mathrm{d} (nm3) 0.64 1.34 2.83 5.88

\Delta n\mathrm{w} 21.24 44.35 91.32 197.55

Table 4.3: dPGS–water interaction parameters. r\mathrm{G}\mathrm{D}\mathrm{S} stands for the Gibbs dividing surface (cf.
Sec. 3.2.5.3). \mathrm{S}\mathrm{A}\mathrm{S}\mathrm{A} is the SASA of dPGS evaluated with the probe radius of 0.15 nm which is approxi-
mately the radius of one water molecule [337]. V \mathrm{d} is the partial molar volume of dPGS (cf. Sec. 3.2.5.3)
and \Delta n\mathrm{w} denotes the corresponding number of water molecules replaced by dPGS.

atom, rvdW , and a water ‘probe’ radius rp, i.e., ri = rvdW + rp. The dendrimer is thus
assumed as a union of such fused spheres. The SASA is defined as the surface traced by
spherical solvent probe as it rolls around the van der Waals spheres of the dendrimer [77].
The values of the SASA for a typical probe radius of 0.15 nm (length scale of a water
molecule) for all generations are listed in Table 4.3.
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Figure 4.3: (a)
\surd 

SASA and (b) 3
\surd 

VSE as a function of probe radius rp. The linear behaviour in the high
rp range is extrapolated to rp = 0 (shown by dashed lines) to acquire the dendrimer surface area and
volume in the absence of internal pores and voids.

Fig. 4.3 plots
\surd 
\mathrm{S}\mathrm{A}\mathrm{S}\mathrm{A} and 3

\surd 
VSE as a function of probe radius for all generations. We

can see that both quantities increase with higher dendrimer generation and also increase
linearly with the probe radius (except for small probe radius) [77]. For small probe radius
we see deviations from linear behavior of

\surd 
\mathrm{S}\mathrm{A}\mathrm{S}\mathrm{A} due to the extra surface in the interior

of dendrimer, and 3
\surd 

VSE due to exclusion of the volume of interior voids. Assuming the
shape of the dendrimer to be spherical, we can estimate the exterior surface area and
the size of the dendrimer from these plots using linear regression. For such a case \mathrm{S}\mathrm{A}\mathrm{S}\mathrm{A}

and \mathrm{V}\mathrm{S}\mathrm{E} are given by 4\pi (RSA + rp)
2 and 4\pi (RVSE + rp)

3/3, respectively. The intercept
at zero probe radius leads to the estimate of surface area and volume of the dendrimer
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G0 G1 G2 G3

RSA (nm) 0.72 0.96 1.38 1.76

RVSE (nm) 0.65 0.87 1.19 1.50

\Sigma (nm2) 0.00 0.20 2.50 14.00

\Lambda (nm3) 0.00 0.02 0.07 0.09
Table 4.4: Results of SASA and VSE calculations for dPGS–water interaction (cf. Fig. 4.3). RSA and
RVSE stand for the radius of dPGS estimated via calculation of SASA and of VSE, respectively. \Sigma and
\Lambda define the surface area and volume of dPGS interior voids respectively.

excluding the voids and pores inside. The radii of the dendrimer RSA and RVSE found this
way are given in Table 4.4. The difference between the calculated points and regression
line gives the internal area \Sigma and volume \Lambda of the pores and interior voids, which are are
listed for different generations in Table 4.4 for a probe radius of 0.15 nm.

4.1.3 Electrostatic properties of dPGS

4.1.3.1 Effective size and charge: PMF method

We start the electrostatic characterization of dPGS by defining its effective size and charge
via the PMF method described in the section 3.1.2.4.3. The structure of the electrolyte
solution surrounding the dPGS is analysed by calculating the RDFs between the dPGS-
COM and ions/water gi(r) [i = +(Na+), - (Cl - ), water]. The long-range part of the
dPGS–counterion PMF V+(r) obtained by Boltzmann inversion of counterion radial num-
ber distribution g+(r) (Eq. (3.12)), is then quantitatively mapped onto the basic DH
theory (Eq. (3.38)). Note again that here no assumptions have to be made on the dielec-
tric constant of water. Fig. 4.4 shows the logarithm of a rescaled PMF, r\beta V+(r), as a
function of distance from dPGS-COM for all generations. It is seen that at large distances,
the profiles decay linearly for all generations with a slope \kappa = 0.52 \mathrm{n}\mathrm{m} - 1 corresponding
to salt concentration c\mathrm{b}

+
= 25mM. As opposed to the exponential behavior at large dis-

tances, the PMF reaches a maximum at smaller distances before it decreases to almost
zero close to the dPGS core. This highly non-linear behavior is expected to be attributed
to high electrostatic and steric correlations between dPGS atoms and counterions. As
shown in Fig. 4.4, the boundary can now be set between the long-range (r > r\mathrm{e}ff) DH-like
PMF V \mathrm{D}\mathrm{H}(r), which decays linearly and the short-range (r\mathrm{d} < r < r\mathrm{e}ff) PMF, which is
non-linear. As a criterion, r\mathrm{e}ff is defined as the shortest distance where the DH fit (mini-
mizing the root mean square deviation to the PMF) and PMF cross before the maximum
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Figure 4.4: The rescaled PMF V+(r) between dPGS and Na+ ions plotted for all generations. The dashed
lines are fits of Eq. (3.38) in the far-field. Their slopes determine the inverse Debye length \kappa = 0.52 \mathrm{n}\mathrm{m} - 1

corresponding to the bulk salt concentration c\mathrm{b}
+
= 25mM. The dotted vertical lines indicate the effective

radius of dPGS, r\mathrm{e}ff , which separates the non-linear short-range nature of electrostatic potential regime
from the long-range linear DH regime (see also text). The corresponding values such as effective dPGS
charge valency Z\mathrm{e}ff , the number of bound counterions N\mathrm{b}

+
, and effective charge density \sigma \mathrm{e}ff are summarized

in Table 4.5.

of the PMF [114]. This formulation treats the dPGS as homogeneously charged sphere
of effective radius r\mathrm{e}ff at which the effective surface charge valency Z\mathrm{e}ff can be defined.
Fig. 4.4 shows the location of r\mathrm{e}ff for each generation with vertical dotted lines. The
corresponding electrostatic properties are listed in Table 4.5.

4.1.3.2 Effective size and charge: Alexander prescription

The radial density distributions of charges can be now utilised to calculate the local charge
accumulation (or running ion coordination) and electrostatic potential profile around
dPGS. Following the "implicit-water" approach described in sections 3.2.5.1 and 3.2.5.2.2,
the total cumulative charge valency distribution Z\mathrm{a}\mathrm{c}\mathrm{c}(r), or in other words the local net
charge valency (Eq. (3.66)) is shown in Fig. 4.5(a). On probing away from dPGS-COM,
the charge build-up due to dPGS terminal groups and coions leads to more negative Z\mathrm{a}\mathrm{c}\mathrm{c}

close to dPGS. Subsequently, a reversal in its profile is seen at a distance where counte-
rion accumulation starts becoming dominant and the magnitude of Z\mathrm{a}\mathrm{c}\mathrm{c} tends to decrease
onwards. This so-called charge renormalization effect has been extensively studied and
wide variety of theories have been developed for the effective charge and size of simple
charged spheres with smooth surfaces [16, 17, 115, 120, 121]. A comparison of the cumu-
lative charge valency Z\mathrm{a}\mathrm{c}\mathrm{c} distributions of the implicit versus explicit-water integrations
agrees in the long-range decay. The explicit-route profiles are very noisy, however, due
to strong water fluctuations (see Appendix A.1.3). A comparison of implicit and explicit
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Figure 4.5: Using the "implicit-water" approach (including charge density distributions of all species
except water and assuming \varepsilon \mathrm{w} = 72), (a) net cumulative charge valency Z\mathrm{a}\mathrm{c}\mathrm{c}(r) as a function of distance
r from dPGS-COM, (b) Alexander prescription (cf. Sec. 3.1.2.4.1) showing the logarithm of the rescaled
electrostatic potential. The dashed lines are fits of Eq. (3.33) to the MD results in the far-field. (c)
Cumulative counterion coordination N\mathrm{a}\mathrm{c}\mathrm{c},+(r). The vertical dotted lines denote the effective radii of dPGS,
r\mathrm{e}ff , intersecting the curves in filled circles. Empty circles denote radii r\mathrm{i}\mathrm{n}\mathrm{f} according to the inflection
point criterion (cf. Sec. 3.1.2.4.2). The two circle types (corresponding to the Alexander prescription
and the inflection point criterion) thus indicate effective charge valency Z\mathrm{e}ff , effective potential \phi \mathrm{e}ff and
number of condensed counterions N\mathrm{b}

+
on the respective vertical axes in (a), (b), and (c), respectively.

approaches on the level of the electrostatic potential will be discussed later.
One of the aims of this chapter is to define the effective charge valency of the dendrimer

Z\mathrm{e}ff and effective surface potential \phi \mathrm{e}ff within the linear DH picture. The DH theory works
well in the far-field limit whereas the short-range non-linear effects arising from condensed
counterions are neglected and absorbed in the effective charge (as demonstrated, e.g., by
solutions of the full non-linear PB theory [15, 16, 17, 115, 118] discussed in Sec. 3.1.2.4).
Hence, instead of mapping to ionic PMFs, it was showed in the section 3.1.2.4.1 that
equivalently, a direct mapping of the long-range decay of the total electrostatic potential
onto the spherical DH form (Alexander prescription) may also serve as a practical defining
equation for the effective properties seen in the far-field and thus can quantify the diffusive
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4.1. dPGS in monovalent salt

double-layer behavior with high accuracy [114]. This tool can thus be used to define the
location r\mathrm{e}ff of the interface between the diffusive counterion layer in the DH sense and
the non-linear behavior of the correlated and condensed ions deep in the surface layer.

Adopting this approach and assuming an implicit-water with \varepsilon \mathrm{w} = 72 (l\mathrm{B} = 0.72 nm), a
logarithm of the rescaled potential

\bigm| \bigm| r\phi (r)\bigm| \bigm| is plotted as a function of distance from dPGS-
COM for all generations as shown in Fig. 4.5(b). At large distances, the profiles decay
linearly for all generations with the slope \kappa = 0.52 \mathrm{n}\mathrm{m} - 1, corresponding consistently to
the bulk salt concentration of c\mathrm{b}

+
= 25mM. Hence, it is possible in this approach to define

the effective electrostatic surface potential \phi \mathrm{e}ff as the potential at r\mathrm{e}ff (\phi \mathrm{e}ff = \phi (r\mathrm{e}ff) =

\phi \mathrm{D}\mathrm{H}(r\mathrm{e}ff)). As before, r\mathrm{e}ff is defined as the shortest distance where the DH fit (minimizing
the root mean square deviation to the PMF) and PMF cross before the maximum of the
PMF (cf. Sec. 3.1.2.4.1) [114]. The location of r\mathrm{e}ff for each generation is shown in Fig. 4.5
by vertical dotted lines. The intersection points in Figs. 4.5(a) and (c) denote Z\mathrm{e}ff and
the number of cumulative counterions at r\mathrm{e}ff , N\mathrm{b}

+
= N\mathrm{a}\mathrm{c}\mathrm{c},+(r\mathrm{e}ff), respectively. It is seen

that r\mathrm{e}ff increases with generation. Comparing Z\mathrm{e}ff values with the corresponding bare
charge valency Z\mathrm{d} values (cf. Tables 4.5 and 4.2) a significant charge renormalization can
be realized.

4.1.3.3 Effective size and charge: inflection point criterion

As described in the section 3.1.2.4.2, it is also customary to define the crossover radius
from diffusive to condensed ionic layers as an inflection point in the plot of Z\mathrm{a}\mathrm{c}\mathrm{c} vs. the
inverse radial distance 1/r [16, 114, 121]. Inflection points are shown in Fig. 4.5 as
empty circle symbols. The corresponding effective potential and the number of condensed
counterions can be read from circle symbols at the respective vertical axes in Figs. 4.5(b)
and (c), respectively.

4.1.3.4 Discussion

Table 4.5 summarizes the electrostatic attributes of dPGS stemming from their different
definitions. An increase in r\mathrm{e}ff and the magnitude of Z\mathrm{e}ff is observed with increasing dPGS
generation along with substantial charge renormalization. As an example, G3-dPGS has
a bare charge valency Z\mathrm{d} of  - 48 (cf. Table 4.2), which is effectively renormalized to
Z\mathrm{e}ff \sim  - 11 at larger distances r > r\mathrm{e}ff according to the Alexander prescription. A clear
trend in Z\mathrm{e}ff with respect to dPGS generation is observed, which shows that the counterion
condensation increases with generation due to corresponding higher charge density of
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Method Label G0 G1 G2 G3

PMF method [249]

r\mathrm{e}ff (nm) 1.05 1.63 1.94 2.47

Z\mathrm{e}ff  - 4.98  - 6.20  - 9.59  - 11.39

\sigma \mathrm{e}ff (e \mathrm{n}\mathrm{m} - 2)  - 0.36  - 0.18  - 0.20  - 0.14

Alexander
prescription [15]

r\mathrm{e}ff (nm) 1.15 1.70 2.10 2.57

Z\mathrm{e}ff  - 4.80  - 6.06  - 8.95  - 10.96

\sigma \mathrm{e}ff (e \mathrm{n}\mathrm{m} - 2)  - 0.29  - 0.17  - 0.16  - 0.13

\phi \mathrm{e}ff  - 1.56  - 1.30  - 1.78  - 1.52

Inflection
point [16]

r\mathrm{i}\mathrm{n}\mathrm{f} (nm) 1.09 1.43 1.94 2.36

Z\mathrm{i}\mathrm{n}\mathrm{f}  - 4.90  - 6.80  - 9.67  - 12.27

\sigma \mathrm{i}\mathrm{n}\mathrm{f} (e \mathrm{n}\mathrm{m} - 2)  - 0.33  - 0.26  - 0.20  - 0.17

\phi (r\mathrm{i}\mathrm{n}\mathrm{f})  - 1.72  - 1.82  - 2.12  - 1.86

Xu et al. [114]
CG simulation
(c\mathrm{b}

+
= 10mM)

r\mathrm{e}ff (nm) 0.70 1.60 1.90 2.40

Z\mathrm{e}ff  - 6.00  - 7.30  - 10.60  - 14.30

\sigma \mathrm{e}ff (e \mathrm{n}\mathrm{m} - 2)  - 0.97  - 0.23  - 0.23  - 0.20

\phi \mathrm{e}ff  - 4.20  - 2.12  - 2.37  - 2.22

Table 4.5: Electrostatic parameters of dPGS obtained using the PMF method [249], Alexander prescrip-
tion [15] and the inflection point criterion [16] evaluated at the bulk salt concentration of c\mathrm{b}

+
= 25mM.

Values from previous CG simulations by Xu et al. [114] are also compared. Here, r\mathrm{e}ff is the effective dPGS
radius. Z\mathrm{e}ff stands for the effective dPGS charge valency after charge renormalization due to counterions.
\sigma \mathrm{e}ff thus is the effective surface charge density while \phi \mathrm{e}ff = \phi (r\mathrm{e}ff) (or \phi (r\mathrm{i}\mathrm{n}\mathrm{f}) ) is the effective electrostatic
potential at r\mathrm{e}ff (or r\mathrm{i}\mathrm{n}\mathrm{f}).
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4.1. dPGS in monovalent salt

dPGS corona. This agrees with the consistent shift away from dPGS, in the inflection
point of the cumulative charge valency Z\mathrm{a}\mathrm{c}\mathrm{c} as shown in all panels of Fig. 4.5 and with the
plot of N\mathrm{a}\mathrm{c}\mathrm{c},+(r) in panel (c), where an increased deviation from DH behavior is observed,
thus indicating higher counterion condensation with generation. This also explains the
striking agreement between r\mathrm{e}ff values from the Alexander prescription and the PMF
method. Owing to the fact that the PMF method plots PMF calculated by Boltzmann
inversion of counterion RDF, while the Alexander prescription plots electrostatic potential
calculated by solving Poisson’s equation, the results show that the PMF between dPGS
and salt ions is predominantly of electrostatic nature.

Tables 4.2 and 4.5 show that the effective surface charge density \sigma \mathrm{e}ff is about an order
of magnitude lower than \sigma \mathrm{d} and also, unlike the trend of \sigma \mathrm{d} values with generation, \sigma \mathrm{e}ff
decreases with generation. Experiments on carboxyl-terminated dendrimers at almost
fully ionized state also found higher effective charge densities for a lower generation G2

than for G5 [338]. However, \sigma \mathrm{e}ff saturates to a fixed value for higher generations G5 and
G6 [114].

In their CG simulations at 10mM bulk salt concentration, Xu et al. [114] also found
that r\mathrm{e}ff and \sigma \mathrm{e}ff depend weakly on salt concentration, which allows us to compare them
with our simulations at c\mathrm{b}

+
= 25mM salt concentration. Within a reasonable error, both

r\mathrm{e}ff and \sigma \mathrm{e}ff evaluated from previous CG simulations by Xu et al. [114] are in a good
reasonable agreement with other approaches used in our work. An exception is seen for
the case of G0 where charge renormalization has not been observed in CG simulations. It
is also noticed that the trend in \sigma \mathrm{e}ff with respect to generation found in CG simulations
from Xu et al. is in agreement with those found using approaches employed here. Another
consequence of the charge renormalization is the weak dependence of \phi \mathrm{e}ff with generation,
which is observed in all approaches.

4.1.3.5 Comparison of implicit and explicit routes to the potential

Fig. 4.6 shows the comparison of the electrostatic potentials from explicit and implicit-
water integration approaches, described in the section 3.2.5.2. The long-range electrostatic
potential obtained from the explicit-water approach also exhibits the long-range DH be-
havior but with more statistical fluctuations and visible deviations from strict linearity.
The slope, i.e., the inverse Debye length, is in most cases consistently close to the expected
\kappa = 0.52 \mathrm{n}\mathrm{m} - 1, corresponding to c\mathrm{b}

+
= 25mM. It is found that the occurring wiggles and

deviations are caused by the large water fluctuations in the far-field regime, rendering
the integration prone to large errors (see also the electrostatic fields shown in the Ap-
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Figure 4.6: Comparison of electrostatic potential profiles with respect to distance from dPGS-COM from
implicit and explicit-water approaches, denoted by dashed and solid lines, respectively. The implicit-
water approach (same as Fig. 4.5(b)) only takes dPGS and ion charges in a uniform dielectric medium
(\varepsilon \mathrm{w} = 72) into account, while the explicit-water approach additionally includes partial charges of water
in vacuum permittivity (\varepsilon \mathrm{r} = 1).

pendix A.1.3). While the values of r\mathrm{e}ff from the implicit approaches are not contradicting
the explicit-route curves, no meaningful comparison can be made on a quantitative level.
Although the curves from the explicit-route seem consistently shifted to larger distances
by about the size of one water molecule, i.e., \simeq 0.3 nm. It is concluded that, after all,
all approaches give consistent values for the effective charge and size but within an un-
certainty window of the size of one water molecule. More accurate quantifications are
probably not so meaningful to attempt, as they are obviously hampered by systematic
uncertainties induced by continuum assumptions and microscale fluctuations.

4.1.4 Thermodynamic signature of dPGS–water interaction

In this section, the thermodynamic signature of dPGS–water association is calculated
using an approach based on the temperature dependence of the water PMF [137, 138].
As an illustrative example, a system of G2-dPGS in 25mM NaCl aqueous solution was
simulated at two different temperatures 283K and 310K, while keeping all other pa-
rameters constant and simulation protocol the same (cf. Sec. 4.1.1). The PMFs of the
dPGS–water interaction V\mathrm{w}(r) are evaluated using Eq. (3.12) for the two temperatures.
Using finite differences in Eq. (3.70), the entropy profile S\mathrm{w}(r) is evaluated, whereas the
enthalpy is determined using Eq. (3.71) at the mean temperature 296.5K. Fig. 4.7 shows
the distance-resolved profiles of the free energy in the form of the water PMF V\mathrm{w}(r).
Monotonically increasing PMFs with decreasing distance towards dPGS-COM indicate a
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Figure 4.7: Distance resolved thermodynamic signature profile for water binding to G2-dPGS. PMF V\mathrm{w}(r)
at T = 283K and T = 310K, entropic term  - TS\mathrm{w} and enthalpy H\mathrm{w} (both at 296.5K)of interaction have
been presented. The dashed vertical line is the bare radius r\mathrm{d} of G2-dPGS.

net repulsion between dPGS and water. The corresponding changes in the system en-
thalpy H\mathrm{w} and the entropic term  - TS\mathrm{w} of the dPGS hydration are also displayed. They
show at first an increase of H\mathrm{w} (and decrease of  - TS\mathrm{w}) until \sim 1 nm when approaching
from larger distances. Since this location corresponds to the high density of terminal
sulphate groups (cf. Fig. 4.2), this observation could be attributed to their ion-specific
(Hofmeister) effects due to their chaotropic nature [339, 340, 341, 342, 343]. Unlike the
kosmotropic divalent sulfates, the monovalent sulphates exhibit weaker interactions with
water than water with itself and thus disturb the hydrogen-bond network of surrounding
water. Consequently, this leads to water with a higher configurational freedom and thus
higher entropy, simultaneously resulting in enthalpic penalty for breaking water–water
hydrogen bonds. The increase of H\mathrm{w} until \sim 1 nm is then followed by a rapid exchange
of favourable/unfavourable compensating components at \sim 0.6 nm. The unfavourable V\mathrm{w}
is dominated by the entropic term with a counterbalancing enthalpy H\mathrm{w}. The molecular
origin of this effect could be credited to the dPGS interior environment rich of dPGS-
oxygens, which is favourable for additional hydrogen bonds. However, simultaneously
a steric hindrance of the dPGS core towards water and possibly localized dPGS–water
hydrogen bond formation results in an entropic penalty. Ultimately the entropic contri-
bution dominates the dPGS–water interaction in the interior, consequently resulting in
an unfavourable free energy. Surprisingly, despite significant chemical difference of the
dendrimers, very similar signatures were observed in explicit–water simulations of the
PAMAM dendrimer [78].

60



Chapter 4. Charge and hydration structure of dendritic polyelectrolytes: Molecular
simulations of polyglycerol sulphate

4.2 dPGS with protein in monovalent salt

Section 4.1 discusses various approaches of comprehensive structural and electrostatic
characterization of dPGS in an aqueous monovalent salt solution. This identification of
dPGS is essential in the context of its principle application in the medicinal field as an
anti-inflammatory agent for the acute and chronic inflammatory diseases, as discussed in
the section 1. The microscopic mechanism behind this effect traces back to the dPGS
inhibiting the binding between the leukocytes and the cell adhesion proteins situated on
the endothelial cells, such as L- and E-selectins [113]. Inflammatory diseases trigger the
dysregulated immune response from the body, in the form of the massive influx of the
leukocytes towards the inflammation sites, thereby contributing to further escalate the
inflammation. dPGS, by acting as a ligand to L- and E-selectins, prevents leukocyte-
selectin binding and thus the inflammation.

Motivated by the clear identification dPGS atomistically [I] and in CG fashion [114],
along with the applications of its binding with proteins, Xu et al. (our other work) [IV], at-
tempted to quantitatively understand the dPGS–protein interaction in a monovalent salt
at a physiological ionic strength, with the help of CG, AA MD simulations and calorimetry
experiments. It was demonstrated that the complexation of proteins and highly charged
dendritic macromolecules, especially at physiological ionic strength, is largely dominated
by the entropic counterion release mechanism [IV]. The counterion release mechanism
here refers to the purely entropic effect that a few counterions condensed on the dPGS
are liberated when the protein binds, whereupon an oppositely charged protein patch be-
comes a multivalent counterion for the dPGS. Implicit-water, explicit salt CG simulations
of G3-dPGS with L-selectin in 150 mM NaCl are performed to calculate PMF profiles,
binding free energies and release counterions. It was found that approximately 3–4 Na+

counterions are released when G3-dPGS and L-selectin undergo complexation [IV]. AA,
explicit-water MD simulation of G3-dPGS and L-selectin was performed in identical con-
ditions, in order to supplement the CG results.

4.2.1 Atomistic simulation method

The final complex structure of G3-dPGS and L-selectin was simulated via a standard,
AA MD simulations built on the Optimized Potentials for Liquid Simulations ‘All-Atom’
(OPLS-AA) [191] force-field as included in GROMACS and the extended simple point
charge (SPC/E) water model. We assigned the partial atomic charges for the G3-dPGS
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inner core according to the OPLS-AA force-field. The missing charges on sulphate atoms
in the OPLS are taken according to AA simulations on G0 and G1 from Xu et al. that
agree with recent work [344] which has been applied, for instance, the simulations of
sodium dodecyl sulphate micelles [345]. The initial configurations of G3-dPGS are con-
structed in a vacuum with the program ChemDraw [346]. The equilibrated structure of
G3-dPGS is obtained after a 30 ns equilibration in the isobaric NPT ensemble at con-
ditions of P = 1 bar and T = 293 K. The partial charges for L-selectin were taken at
physiological pH, resulting in a net charge of zero. The protein initial structure refers
to the Protein Data Bank with Number 3CFW consistent with CG simulation. A cutoff
distance 1 nm for both the PME summation and van der Waals interactions was used in a
cubic box of side-length 10.7 nm. For the atomistic simulation, the condensed counterions
of the G3-dPGS are defined as those within the distance r\mathrm{e}ff = 2.4 nm with respect to
the dPGS-COM [114]. The difference of the condensed counterions between the unbound
and bound state leads to the released counterions number. The bound state was obtained
via AA MD simulations by placing the dPGS initially close to the binding patch observed
in the CG simulations and let the system bind and equilibrate within 30 ns. The final
statistics were generated from a canonical NV T simulation with a working trajectory of
30 ns.

4.2.2 Discussion

Compared to the CG simulation, we find that the number of released counterions as well
as the structure of the complex is virtually the same, regardless of the inclusion of the
explicit solvent and atomistic structure, cf. Fig. 4.8. We find 3.3 liberated counterions in
the AA simulation and 3.6 for the CG simulation [IV]. However, the CG model, where
each amino acid is replaced by a simple bead, to some extent brings small deviations to
the surface geometry as compared to the fully atomistic protein structure: we find that
in the AA simulations two more amino acids R14 and K8 of L-selectin can interact with
the dPGS, cf. Fig. 4.8(b) and (d). Nevertheless, apparently this deviation in the binding
interface does not much affect the mean number of released ions. This clear mechanistic
picture described in Xu et al. [IV] behind the dPGS–protein complexation as well as its
predictive value for the calculation of binding affinities are important for the rational
optimization of dendritic PEs as potential drugs and nanocarrier systems, which define
their overall biological identity in vivo by their interactions and coating with proteins [150,
151, 152, 153].
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Figure 4.8: (a,c) Snapshots of the L-selectin/G3-dPGS binding complex: CG versus AA MD simulations.
Green colored beads or regions depict domains of positive charge. (b,d) The corresponding snapshots of
the L-selectin binding patch. The responsible basic amino acids shown to be interactive with dPGS are
labeled and highlighted. Reprinted with permission from Xu et al. [IV]. Copyright © 2018 American
Chemical Society.

4.3 dPGS in a mixture of mono- and divalent salts

When a highly charged globular macromolecule, such as a dendritic polyelectrolyte or
charged nanogel, is introduced into a physiological electrolyte solution, monovalent and
divalent counterions from the solution sorb into the macromolecule in a certain ratio and
thereby almost electroneutralize it. For charged macromolecules in biological media this
ratio can be decisive for the desired function. As discussed earlier, the divalent ions play a
critical role in the structure and function of the PE systems. dPGS, in particular, owing
to its medicinal applications, is naturally exposed to the biological fluid environments
and thus prone to undergo an interaction with its constituents. For example, divalent
ions such as Mg2+ and Ca2+ are essential components of the human serum blood as well
as intra- and extracellular fluids. Thus, having performed a comprehensive electrostatic
characterization of dPGS in a monovalent (NaCl) salt, we now turn our attention to
the quantitative rationalization of the competitive sorption of Mg2+ and Na+ cations on
dPGS, which can significantly alter the biological footprint of dPGS, via its consequential
interactions with biomolecules such as proteins (e.g. L-selectin, cf. Sec. 4.2). The basic
physics behind this ion-exchange relies on the competition between the electrostatic energy
gain of the sorbed ions and the translational entropy of the free ions. However, the ion-

63



4.3. dPGS in a mixture of mono- and divalent salts

specific interactions between the charged terminal sulphate groups and the counterions,
in the form of the steric or hydration effects can play a pivotal role in characterizing the
dPGS electrostatic features such as effective charge. The impact of such effects can be
studied in detail via AA, explicit-water MD simulations which offers a highly resolved
spatial and temporal data.

However, as discussed in the section 1, identifying or optimizing an accurate non-
polarizable force-field for divalent cations is a challenge, due to their ability to polarize
the surrounding media, especially polar solvents such as water. While the conventional
non-polarizable force-fields struggle to reproduce divalent ion properties, there have been
several recent attempts to incorporate corrections in their parametrization [201, 208, 217,
218]. Current section describes the results of the AA, explicit-water MD simulation of the
system containing G2-dPGS along with Na+ and Mg2+ counterions (with Cl - as coions)
by employing these force-fields in order to evaluate the dPGS–counterion interaction. We
compare the performances of the force-fields in terms of their effect on dPGS electrostatic
properties such as effective charge, surface potential, the number and the composition
of condensed counterions (divalent vs. monovalent). The description of the force-fields
employed is as follows–

4.3.1 Mamatkulov et al. force-field

Currently available non-polarizable force-fields [203, 347, 348, 349] fail to reproduce sev-
eral thermodynamic properties of ionic solutions at finite concentrations. The reason for
it is that they were developed to reproduce only a single-ion thermodynamic properties
such as the solvation free energy, the first peak of the ion–water RDF, crystal lattice
parameters, etc., which makes them, in principle, credible only in simulations at low
salt concentrations. As an example, mainstream force-fields such as CHARMM, GRO-
MOS, and AMBER fail to model ion-specific effects in ion channels [216]. Mamatkulov
et al. [217] offer a divalent cation force-field obtained by concurrent optimization with re-
spect to the solvation free energy and the activity coefficient of an ion, to ensure accurate
representation of the ion–water and ion–ion interaction potentials at finite ion concentra-
tions. Similar procedure is applied to optimize the force-field for sulphate (SO2 - 

4 ) ions, in
combination with the SPC/E water model [216, 350, 351, 352]. The optimization of the
ionic force fields is done in two consecutive steps. First, the cation solvation free energy is
determined as a function of the LJ parameters. The peak in the ion–water RDF is used
as a check of the structural properties of the ions. Second, the activity derivatives of the
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electrolytes MgY2, CaY2, activity derivatives are determined for the restricted set of LJ
parameters which reproduce the exact BaY2, SrY2 are determined through Kirkwood–
Buff solution theory, where Y = Cl - , Br - , I - . The optimal ion parameters are those that
match the experimental activity data and therefore simultaneously reproduce single-ion
and ion-pair thermodynamic properties.

4.3.2 Naleem et al. (Kirkwood–Buff integral) force-field

Similar to Mamatkulov, Fyta, and Netz, Naleem et al. [201] offer an alkaline earth metal
ion force-field optimized in order to ensure a reasonable balance between ion–ion, ion–
water and water–water interactions. Taking SPC/E water model, the force field parame-
ters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for
aqueous solutions and thereby the experimental activity derivatives, partial molar vol-
umes, and excess coordination numbers. The strong polarization of the medium by the
divalent cations is taken into account by increasing their degree of solvation, which is
achieved by scaling of the ion and water oxygen interaction strength. Apart from the
fact that this force-field gives confidence in the underlying ion–ion, ion–water and water–
water interactions, it is also able to reasonably reproduce experimental properties such as
diffusion constants, dielectric decrements, and excess heats of mixing.

4.3.3 Yoo et al. force-field

As discussed in the section 1, MD simulations of Mg2+ ions with DNA have resulted
in considerable artifacts on employing AMBER and CHARMM force fields [208, 209].
Yoo et al. performed the DNA simulations with Na+, Mg2+ counterions along with
Cl - coions and attempted to correct the imperfections in the standard parametrization
in the CHARMM force-field, via systematic optimization of the cation–anion specific
interaction parameters, in particular, monovalent cation–anion LJ \sigma parameters (referred
to as NBFIX corrections) in order to match the resultant osmotic pressure with that
obtained from experiments [208].
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Figure 4.9: Simulation snapshot of the Mg-hexahydrate complex Mg(H2O)2+6 from current analysis.
Mg2+ cation is represented by the pink sphere at the center along with six surrounding water molecules
in the complex. The model is adopted from Yoo et al. [208]

In the case of Mg2+, their reparametrization scheme focused on the six water molecules
from the first solvation shell of the ions. Even though a Mg2+ ion and those six water
molecules are not covalently bonded, they considered Mg-hexahydrate complex
(Mg(H2O)2+6 ) to remain intact within the time scale of their MD simulations, since the
lifetime of a water molecule within the first solvation shell of Mg2+ is found to be
\sim 10\mu \mathrm{s} [353]. From a simulation standpoint, in order to distinguish these six water
molecules of the first solvation shell of Mg2+ from bulk water and thereby enable applica-
tion of NBFIX corrections to the oxygens of the first solvation shell water, each Mg2+ ion
and the six surrounding water molecules were collectively treated as Mg(H2O)2+6 complex,
as shown in Fig. 4.9.

4.3.4 Electronic continuum correction (ECC)

Divalent cations such as Mg2+ represent a considerable challenge for the empirical non-
polarizable force-field calculations since they strongly polarize the medium around and
even trigger charge-transfer effects [301, 354, 355]. One of the promising ways of improving
this scenario is the use of ECC, which considers the fast electronic polarization in a mean
field way [214, 301]. Numerically, ECC is implemented via scaling the ionic charges [214].
This approach has been used in previous works to dramatically improve the description of
ion pairing in calcium chloride [301], calcium acetate [356] and magnesium chloride [218]
ionic solutions. This approach has been applied here by using the GAFF force-field and
rescaling the charges dPGS sulphate groups by ECC, while Mg2+, Na+ and Cl - ions have
been treated by ECCR charge rescaling, which means along with scaling the charges,
decreasing the ion size by scaling LJ \sigma parameters [301]. The radius of each ion needs
to be further slightly decreased, compared with the original full charges model, in order
to maintain the appropriate ion–water distances [218]. The detailed description of the
concept of ECC can be found in the section 3.2.6.1.
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Apart from the above mentioned force-fields, we also apply OPLS [191] force-field, used
by Aryal and Ganesan [357], who studied Mg2+, K+ and water diffusivities in a charged
sulphated copolymer membrane. The interaction between the sulphate charged groups
and Mg2+ in their system, resembles to that in our system of G2-dPGS with Mg2+ ions.

4.3.5 Atomistic simulations methods

The protocol for all simulations in this study is the same as the one described in the
section 4.1.1, except the application of the force-fields and the corresponding compatible
atomic partial charges. Mamatkulov [217] and Kirkwood–Buff Integral (KBI) (Naleem
et al. [201]) force-fields are specifically designed for ions, hence the parametrization for
dendritic polyglycerol (dPG) part in dPGS, i.e., the core scaffold of the dPGS without
the terminal sulphate groups, has been kept intact according to the GAFF force-field.
Electronic continuum correction (ECCR) essentially rescales the atomic partial charges
of dPGS and the surrounding ions, therefore GAFF force-field parametrization has been
retained for this simulation as well.

Mg2+, Na+, and Cl - ions in the system are referred to with subscripts ++, + and  - ,
respectively. The G2-dPGS is accompanied by the corresponding number of Na+ coun-
terions N\mathrm{s} = 24 electrically neutralizing the macromolecule. The number of salt ions i
(i = ++,+, - ) in a simulation box volume V is denoted as ni, while the corresponding
total salt concentrations are denoted as c0i = ni/V . Bulk concentrations c\mathrm{b}i (i = ++,+, - )
are calculated from the radial density distributions in far-field after the equilibration. Ma-
matkulov, KBI and ECCR force-fields have been applied to both the cases of c0

++
= 15 mM

and 30 mM, while OPLS and Mg(H2O)2+6 force-fields are employed only for the case of
c0

++
= 30 mM. c0 - is fixed close to 150 mM for all simulations, in order to mimic physio-

logical ionic composition, and c0
+

is adjusted in order to maintain electroneutrality in the
simulation box. All simulations have box sizes \sim 10 nm and are performed till \sim 80–
100 ns.

4.3.6 Density distribution functions

Fig. 4.10 shows the radial density distributions dPGS sulphur atoms (representing the
COM of the terminal sulphate groups), Mg2+ and Na+ ions with respect to the dPGS-
COM, and as calculated according to several force-fields. Similar to the case of the
monovalent salt in Fig. 4.2(a), the radial density of the terminal sulphur is inhomogeneous
with pronounced peaks as a result of the excluded volume interactions along with bond
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Figure 4.10: The quantitative comparison (in nm - 3) of radial density distributions of dPGS sulphur,
Mg2+ and Na+ between charge rescaled (ECCR [218]) and non-polarizable force-fields (Mamatkulov et
al. [217], KBI [201], OPLS [357] and Mg(H2O)2+6 [208]). The reference used for the distributions is the
dPGS-COM. The profiles are shown for the Mg2+ salt concentrations c0++ = 15 mM and 30 mM.

constraints and charge repulsion, however, the peak location varies depending on the
force-field. According to ECCR approach, the rescaled charges on the sulphate groups
are  - 0.75e, which indicates lower intramolecular sulphate–sulphate repulsion as compared
to non-rescaled charges ( - 1e), leading to enhanced backfolding effect and shrinking of
the dPGS size. It can be seen that this peak location does not change for ECCR, KBI
and Mamatkulov force-fields, on going from c0

++
= 15 mM to 30 mM. Looking at the

c0
++

= 30 mM case, the overall peak location for sulphur distribution ranges \sim 0.7  - 
1.2 nm, which is somewhat lower than that for the case of monovalent salt (1.2 nm). This
could be attributed to the introduction of Mg2+ ions bridging the oppositely charged
sulphate groups and increasing the inter-sulphate group attraction. As discussed in the
section 4.1.2.1, the major peak position of the sulphur distribution is used to define the
intrinsic dPGS radius r\mathrm{d}. The values of r\mathrm{d} according to different force-fields are given in
Table 4.6.

Fig. 4.10 further shows the radial number density distributions of Mg2+ ions c++(r)
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c0
++

c0
+

c\mathrm{b}
++

c\mathrm{b}
+

n++ r\mathrm{d} r\mathrm{e}ff

ECCR[218]
14.98 162.17 11.77 142.37 9 1.01 1.44

30.45 132.77 23.55 114.12 18 1.00 1.52

Mamatkulov[217]
15.87 168.34 7.87 149.02 9 1.40 1.93

28.23 163.07 17.35 143.46 16 1.37 1.93

KBI[201]
15.10 163.75 5.23 148.32 9 1.10 1.75

31.33 132.54 15.50 127.87 18 1.08 1.75

OPLS[357] 33.34 142.53 24.80 113.35 18 1.07 1.62

Mg(H2O)2+6 [208] 30.55 131.28 22.25 116.91 18 1.12 1.43

Table 4.6: The summary of structural and electrostatic parameters of G2-dPGS evaluated from the
simulations employing non-polarizable and charge rescaled (ECCR) force-fields. c0i (i = ++ (\mathrm{M}\mathrm{g}2+),
+(\mathrm{N}\mathrm{a}+) and  - (\mathrm{C}\mathrm{l} - )) denotes total salt concentration while c\mathrm{b}i denotes the bulk concentration measured
from the density distribution of the respective species in far-field. n++ is the total number of Mg2+ ions
in the simulation box and r\mathrm{d} is the dPGS bare radius calculated as radius of gyration of the sulphur
atoms with respect to dPGS-COM. r\mathrm{e}ff and Z\mathrm{e}ff correspond to the effective radius and the effective
charge valency of G2-dPGS respectively, calculated using the Alexander prescription (cf. Sec. 3.1.2.4.1).
Concentrations and radii are expressed in mM and nm, respectively.

according to different force-fields. While the distributions in the short-range differ based
on a force-field, all distribution decay in an exponential (DH-like or Yukawa) fashion.
Looking at both c0

++
= 15 mM and 30 mM cases, it can be clearly seen that the KBI

profiles largely overestimate the magnitude, compared to ECCR and Mamatkulov ones.
In c0

++
= 15 mM case, KBI shows a clear single-peak distribution with the peak loca-

tion coincident with that of the corresponding sulphur distribution, which indicates that
dPGS–Mg2+ interaction is largely dominated by the interaction of Mg2+ cations with the
dPGS sulphate groups, implying electrostatics playing a major role in the interaction.
ECCR and Mamatkulov profiles, on the other hand, display much lower magnitude, indi-
cating overall lower Mg2+ intake by dPGS. In the case of ECCR, Mg2+ with its rescaled
charge of 1.5e represents enhanced electronic polarization of surrounding water, decreas-
ing its interaction strength with sulphate groups. The case of c0

++
= 30 mM shows the

diversity of the Mg2+ density distribution around G2-dPGS, according to different force-
fields. This further highlights the earlier discussed issue regarding the parametrization of
divalent ions in the molecular simulations. Except OPLS, all the force-fields show mostly
a single-peak distributions. The double-peak OPLS profile shows the attractive interac-
tion between Mg2+ and the bonded oxygen atoms in the dPGS core, which is also slightly
echoed by ECCR profile.
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Na+ density distribution c+(r) is further shown in Fig. 4.10. For both the cases of
c0

++
= 15 mM and 30 mM, ECCR and KBI profiles show enhanced Na+ penetration in

the dPGS interior. In the ECCR scaling of Na+ ions, apart from charge rescaling, their
ionic radii are also reduced, compared with the original full charges model, in order to
retain proper Na+–water distance. The reduced sizes enable Na+ ions to penetrate the
dPGS core. Another reason for this profile according to ECCR approach is the significant
backfolding of the sulphate groups in the dPGS core, attracting more Na+ ions in that
region.

4.3.7 Electrostatic properties of G2-dPGS

Adopting the implicit-water approach (cf. Sec. 3.2.5.2.2), Fig. 4.11 displays Z\mathrm{a}\mathrm{c}\mathrm{c}(r) pro-
files around G2-dPGS-COM, for all force-fields, and are represented in the form of the
cumulative charge normalized by the G2-dPGS bare charge Z\mathrm{e}ff/Z\mathrm{d}. Note that the defini-
tion of Z\mathrm{a}\mathrm{c}\mathrm{c} here (Eq. (3.66)) additionally incorporates Mg2+ cations apart from Na+ and
Cl - ions according to its definition in the case of monovalent salt (cf. Sec. 4.1.3.2).

The magnitudes and locations of the peaks of the profiles vary depending on the force-
field, however, similar to the case of monovalent salt, we observe the charge renormaliza-
tion effect in action for all force-fields, as we see the gradually increasing charge build-up
of the dPGS atoms (mostly sulphate groups) with r, eventually getting dominated by the
charge accumulation due to the counterions. As a result, the profile attain a maximum
and then they exponentially decline to zero at bulk. It is worth noting that, compared
to the case of c0

++
= 15 mM, Z\mathrm{a}\mathrm{c}\mathrm{c} magnitude in c0

++
= 30 mM case decreases, indicating

that the increase in c0
++

further charge renormalizes the dPGS. Adopting the Alexander
prescription, Fig. 4.12 displays the natural logarithm of electrostatic potential profiles in
a rescaled form \mathrm{l}\mathrm{n}

\bigm| \bigm| r\phi (r)\bigm| \bigm| . The values of the effective radii r\mathrm{e}ff and charges Z\mathrm{e}ff are then
obtained, corresponding to each force-field and are listed in the Tables 4.6 and 4.7 respec-
tively. Table 4.7 additionally shows the values of the effective potentials \phi \mathrm{e}ff , as well as
the number of condensed ions on G2-dPGS, N\mathrm{b}

++
and N\mathrm{b}

+
. The slope of \mathrm{l}\mathrm{n} | r\phi | profile in

the far-field gives the inverse of the Debye length \kappa in the bulk. The different slopes thus
show the different ionic strengths measured in the bulk due to ion-partitioning, owing to
the canonical ensemble, which is a unique attribute of the force-field. The corresponding
bulk concentrations of Mg2+ and Na+ cations c\mathrm{b}i are listed in Table 4.6. This issue can
be circumvented by increasing the simulation box size so that the condensed counterions
do not make a change in their bulk concentration.
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Figure 4.11: The accumulated charge valency distribution Z\mathrm{a}\mathrm{c}\mathrm{c}(r) as a summation of all the charged
species (dPGS atoms and all ions), excluding water i.e. “implicit-water" approach. (cf. Sec. 3.2.5.2.2).
For the sake of better comparison, Z\mathrm{a}\mathrm{c}\mathrm{c} is scaled by bare charge valency of G2-dPGS Z\mathrm{d} ( - 18 for ECCR
due to the charge rescaled sulphate groups and  - 24 for non-polarizable force-fields). The plots are
compared for the total Mg2+ salt concentrations c0

++
= 15 mM and 30 mM.
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Figure 4.12: The logarithm of the rescaled electrostatic potential plotted against the distance r from the
dPGS-COM, according to the Alexander prescription, using the implicit-water approach. The long-range
profiles are then fitted to the DH theory, in order to obtain effective electrostatic parameters for dPGS.

For both cases of c0
++

= 15 mM and 30 mM, the Mg2+ condensation is found to be
insignificant according to ECCR approach, possibly because the charge rescaling "lu-
bricates" the electrostatic interactions. Same result is observed for Mg(H2O)2+6 force-
field, which is attributed to the enhanced electrostatic multipole contribution by water
molecules which are a part of the Mg(H2O)2+6 complex.

Valuable insights about the competitive ion binding to dPGS can be derived by per-
forming AA MD simulations with a fixed and reasonable force-field, at a wide range of
Mg2+ concentrations. The above analysis shows the diverse set of structural and elec-
trostatic parameters of G2-dPGS in a mixture of Na+ and Mg2+ cations, exhibited by
different force-fields implemented. While there is a lack of experimental results verifying
these results, we intend to satisfy our purpose to study the competitive sorption isotherm
of Mg2+ and Na+ cations on dPGS, and to extract corresponding qualitative trends in the
electrostatic and structural properties of dPGS, by fixing the force-field from Mamatkulov
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c\mathrm{b}
++

(mM) Z\mathrm{e}ff \phi \mathrm{e}ff N\mathrm{b}
++

N\mathrm{b}
+

ECCR[218]
11.77  - 5.92  - 1.22 0.88 12.67

23.55  - 5.43  - 1.04 3.32 9.31

Mamatkulov[217]
7.87  - 9.06  - 1.17 3.47 8.02

17.35  - 8.98  - 0.81 4.61 5.75

KBI[201]
5.23  - 5.75  - 0.74 5.41 7.97

15.50  - 3.52  - 0.38 8.30 4.64

OPLS[357] 24.80  - 3.57  - 0.43 4.20 12.65

Mg(H2O)2+6 [208] 22.25  - 8.96  - 1.82 2.77 6.05

Table 4.7: The electrostatic parameters of G2-dPGS in a mixture of Na+ and Mg2+ cations according
to different force-fields, obtained using the Alexander prescription. \phi \mathrm{e}ff refers to the surface (effective)
potential, while N\mathrm{b}

i , (i = ++ (\mathrm{M}\mathrm{g}2+), +(\mathrm{N}\mathrm{a}+)) is the number of condensed counterions of species i.

et al. for our further analysis.

4.3.8 G2-dPGS properties using Mamatkulov et al. force-field

In this section, we investigate the competitive sorption of Mg2+ and Na+ ions on G2-dPGS
for different Mg2+ concentrations, with the help of AA, explicit-water MD simulations by
employing Mamatkulov force-field. For different Mg2+ bulk concentrations c\mathrm{b}

++
(7, 17, 33

and 97 mM), the bulk concentration of Cl - ions c\mathrm{b} - are maintained close to that in the
physiological fluid, i.e., \sim 150 mM. Considering the total charge on G2-dPGS, its Na+

counterions, Mg2+ and Cl - ions in the simulation box, the concentration of Na+ ions from
the salt is adjusted in order to maintain the electroneutrality.

Fig. 4.13 shows the simulation results, in terms of the radial number density distri-
butions ci(r) of dPGS sulphur, Mg2+ and Na+ counterions, the running coordination
numbers of Mg2+ and Na+ counterions (N\mathrm{a}\mathrm{c}\mathrm{c},++(r) and N\mathrm{a}\mathrm{c}\mathrm{c},+(r)), and the running total
cumulative charge valency distribution Z\mathrm{a}\mathrm{c}\mathrm{c}(r) (normalized with the G2-dPGS bare charge
valency Z\mathrm{d} =  - 24) with the reference of G2-dPGS-COM. The single-peak density distri-
bution of dPGS sulphur atoms c\mathrm{s}(r) shows to be indifferent to the amount of Mg2+ ions
in the solution, implying that, according to Mamatkulov force-field, the intramolecular
bonded, angular and dihedral interactions of sulphur with the neighbouring dPGS atoms
is stronger than the non-bonded electrostatic and specific interaction of the sulphate group
with ions. Mg2+ and Na+ density distributions (c++(r) and c+(r), respectively) show a
high accumulation close to the sulphate groups, with a global maximum at distances
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Figure 4.13: Radial density distributions around G2-dPGS with Mg2+ and Na+ ions, according to Ma-
matkulov force field, plotted for different bulk concentrations of Mg2+ cations c\mathrm{b}

++
. ci (i = s (sulphur),

++ (\mathrm{M}\mathrm{g}2+), and +(\mathrm{N}\mathrm{a}+)) indicate the radial number density distributions. N\mathrm{a}\mathrm{c}\mathrm{c},i denotes the running
coordination number of species i, while Z\mathrm{e}ff/Z\mathrm{d} denotes the ratio between the effective and bare charge
of G2-dPGS. All distributions are plotted with the reference as dPGS-COM.

r \sim 1.7 nm slightly larger than the sulphate peak (peaking roughly at \sim 1.1 nm), i.e.,
the strongest bound ‘condensed’ Mg2+ and Na+ counterions are distributed more on the
surface layers of the dPGS. At larger distances, r \sim 2 - 3 nm, a DH like decay is observ-
able. Adding more Mg2+ ions, Na+ distribution gradually diminishes, Mg2+ distribution
gradually increases in magnitude as expected from the exchange of Na+ with Mg2+ ions
within the dPGS, which is also seen in the running coordination numbers of Mg2+ and
Na+ ions, N\mathrm{a}\mathrm{c}\mathrm{c},++(r) and N\mathrm{a}\mathrm{c}\mathrm{c},+(r). However, the Na+ distribution also peaks at distances
distinctively smaller than the location of the sulphate peak, roughly at 0.5  - 0.6 nm, for
low c\mathrm{b}

++
(7 and 17 mM). This could be attributed to more interior binding of Na+ ions

with the glycerol oxygens in the dPGS core. N\mathrm{a}\mathrm{c}\mathrm{c},++(r) distribution displays a point of
inflection at r \sim 2 nm indicating counterion condensation (cf. Sec. 3.1.2.4.2) [16]. This
point of infection also exists for N\mathrm{a}\mathrm{c}\mathrm{c},+(r), however, is not vividly distinguishable due to
the large concentration of Na+ ions in the simulation box. This clearly shows the stronger

73



4.3. dPGS in a mixture of mono- and divalent salts

c\mathrm{b}
++

c\mathrm{b}
+

n++ n+ r\mathrm{d} r\mathrm{e}ff Z\mathrm{e}ff \phi \mathrm{e}ff N\mathrm{b}
++

N\mathrm{b}
+

0.00 160.11 0 93 1.39 1.78  - 15.35  - 1.68 – 8.65

7.73 149.03 9 98 1.40 1.93  - 9.06  - 1.17 3.47 8.02

17.35 143.46 16 95 1.37 1.93  - 8.98  - 0.81 4.61 5.75

33.16 148.80 27 95 1.39 1.95  - 8.30  - 0.47 5.42 4.89

97.33 154.02 67 93 1.40 1.95  - 7.04  - 0.21 6.71 3.56

Table 4.8: The summary of structural and electrostatic parameters of G2-dPGS evaluated from applying
Alexander prescription to the results obtained from simulations employing Mamatkulov et al. [217] force-
field. c\mathrm{b}i (i = ++ (\mathrm{M}\mathrm{g}2+),+(\mathrm{N}\mathrm{a}+) and  - (\mathrm{C}\mathrm{l} - )) denotes the bulk concentrations measured from the
magnitude of the respective number density distribution in the long-range. ni is the total number of salt
ions i in the simulation box and r\mathrm{d} is the dPGS bare radius calculated as radius of gyration of the sulphur
atoms with respect to dPGS-COM. r\mathrm{e}ff and Z\mathrm{e}ff correspond to the effective radius and the effective charge
valency of G2-dPGS respectively. Concentrations and radii are expressed in mM and nm, respectively.

net binding affinity of Mg2+ ions with G2-dPGS, compared to that of Na+ ions. Z\mathrm{a}\mathrm{c}\mathrm{c}/Z\mathrm{d}

profile shows a decreases in magnitude with increasing c\mathrm{b}
++

, implying higher charge renor-
malization of dPGS. Z\mathrm{a}\mathrm{c}\mathrm{c}(r) profile is then utilized to calculate the effective sizes r\mathrm{e}ff of
G2-dPGS, as well as effective charge Z\mathrm{e}ff , potential \phi \mathrm{e}ff , and the number of condensed
counterions N\mathrm{b}

i for different c\mathrm{b}
++

, the values of which are given in the Table 4.8.
Table 4.8 shows that r\mathrm{e}ff \sim 1.93 nm for all c\mathrm{b}

++
, except for the monovalent case (c\mathrm{b}

++
=

0 mM). It can be clearly seen that, with increasing c\mathrm{b}
++

, N\mathrm{b}
++

increases while N\mathrm{b}
+

decreases,
indicating ion-exchange. The values of \phi \mathrm{e}ff suggest that increasing c\mathrm{b}

++
leads to the neu-

tralization of G2-dPGS charge, even possibly leading to the charge reversal for higher c\mathrm{b}
++

than reported here, which is also found in literature [183, 200].
The AA MD simulations performed here provide insightful observations regarding the

ionic structure around dPGS, effective charge and size of dPGS, composition of the con-
densed counterions, and the impact of c\mathrm{b}

++
on these attributes of the system. However,

due to the lack of experimental means to produce and evaluate suitable benchmark prop-
erties, it is challenging to conclude about the quantitative aspects of these results. Future
experiments in this area, hence, could be directed towards this subject in order to provide
meaningful inferences. An important point to make here is also that it is vital to interpret
these simulations results correctly, i.e., recognizing the physicochemical effects that drive
the competitive ion partitioning and quantifying the respective energy contributions with
reasonable assumptions. A carefully tested and benchmarked theoretical binding model
not only can fix this issue, but also circumvents the disadvantage of needing computational
resources in simulations to acquire sufficient sampling. Taking this into consideration, we
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aspire to build the theoretical models capturing the competitive ionic sorption on highly
charged PEs (with the example of dPGS) in the next chapter.

4.4 Concluding remarks

In summary, AA, explicit-water MD simulations of dendritic polyglycerol sulphate are con-
ducted. dPGS is a biomedically important PE and can be viewed as a representative of a
class of highly charged dendritic macromolecules. Beyond some general characterization
of ionic and hydration structure, in particular an electrostatic (surface) characterization
of the dPGS was conducted in a monovalent salt (NaCl) in terms of the determination
of effective charge, effective radius and surface potential using the Alexander prescription
and the inflection point criterion. By comparing these several routes among each other,
but also implicit versus explicit-routes of integration towards the electrostatic potential,
very consistent numbers are found, within the uncertainty of the size of a water molecule.
It is thus concluded that the CG models developed for the highly charged dPGS with
explicit ions [114] are quite accurate from the electrostatic point of view and will thus
serve in future simulations. We also extend the simulations to the physiologically relevant
systems of dPGS in a mixture of divalent and monovalent salts (MgCl2 and NaCl). Sev-
eral recently developed force-fields for Mg2+ cations were tested for our system and the
competitive sorption isotherm of Mg2+ and Na+ cations on dPGS, along with correspond-
ing qualitative trends in the electrostatic and structural properties of dPGS were studied.
Such study will serve the interpretations of the dPGS and related dendritic PEs’ action in
biological context (e.g., interacting with proteins [IV] or membranes) to understand and
optimize their proven selective binding properties and efficacy in the medical treatment
of inflammatory diseases.
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5 Competitive sorption of monovalent and di-

valent ions by highly charged globular macro-

molecules

As per the discussion initiated in the section 4.3, a highly charged globular macromolecule,
e.g., a dendritic PE or charged nanogel, in a physiological electrolyte solution containing
mixed, monovalent and divalent counterions, gets almost charge neutralized with a certain
composition of condensed counterions, i.e., a certain ratio between the sorbed mono- and
divalent ions. This ratio can play a crucial role for charged macromolecules in biological
media for their desired function. A theoretical prediction of such a sorption ratio is
challenging because of the competition of electrostatic (valency), ion-specific, and binding
saturation effects. In this chapter, we devise and discuss a few approximate mean-field
continuum and discrete binding site models to predict such an equilibrium sorption ratio
by extending and combining established electrostatic binding theories such as Donnan,
Langmuir, Manning as well as PB approaches, to systematically study the competitive
sorption between mono- and divalent counterions to the macromolecule. We compare
and fit our models to CG computer simulation data of the competitive ion uptake by the
globular PE dendritic polyglycerol sulphate (dPGS). The latter has a high potential to
serve in macromolecular carrier applications in biological systems and at the same time
constitutes a good model system for a highly charged macromolecule. We finally use the
simulation-informed models to extrapolate and predict electrostatic features such as the
effective charge as a function of the divalent ion concentration for a wide range of dPGS
generations (sizes). Note that the descriptions and figures in this chapter are taken almost
directly from our previous publication [II].

The theoretical models presented here are generally formulated for globular charged
macromolecules and include ion-specific effects in a parametric way and can thus be
straightforwardly modified or adapted to other charged globules, where mono-/divalent
ion-exchange plays a role. In particular, we begin with the simple Donnan model, modified
for ion-specific uptake, assuming that the electrostatic potential and the ionic concentra-
tions are constant within the macromolecule phase and the bulk phase [358, 359, 360].
Despite being simple, still, for the mixed case of monovalent and divalent ions the re-
sulting composition is a non-trivial result. We continue with the mean-field PB model,
widely used in colloidal science and electrochemistry [2, 250, 361, 362, 363], and with
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the limitations well known and discussed, in particular the neglect of electrostatic and
steric correlations [173, 183, 364, 365, 366], or ion-specific sorption effects [180, 225, 226,
367, 368, 369, 370, 371, 372, 373]. The model has also been implemented to address the
problem of competitive counterion binding in a mixed salt for the cases of linear PEs such
as DNA [174, 374, 375, 376, 377] and planar geometries [378]. We also devise a two-state
approximation model for an ion condensation around a charged globule. The two-state
approach was firstly used in the Oosawa–Manning model [233, 234] for the counterion
condensation around PE chains, according to which, counterions in a solution can be
classified into two categories: ‘free’ counterions, which are able to explore the whole solu-
tion volume V and the ‘condensed’ (or ‘bound’) counterions, which are localized within a
small volume surrounding the PE macromolecule. An equivalent model for an impenetra-
ble sphere with a surface charge was developed by Manning (cf. Sec. 3.1.2.4.4), where the
number of condensed counterions on the macromolecule per bare unit surface charge is
obtained by a free energy minimization, pointing to the competition between electrostatic
binding of counterions to the macromolecule and their dissociation entropy [120]. We
extend this model by introducing a discrete binding site model by considering the finite
configurational volume of the ion in the condensed state and that the macromolecule has
a finite number of charged binding sites by adopting the mixing entropy from the works of
McGhee and von Hippel [379]. Ion-binding models in the same spirit have been developed
in the past to describe the ionization equilibrium of linear PEs in monovalent salt [23,
380, 381], multivalent salt [382] and in mixtures of mono- and divalent salts [178]. All our
models are compared to molecular simulations and used to study systematically the key
electrostatic features of a highly charged globule, such as the effect of competitive sorp-
tion on the variation of the number of condensed monovalent and divalent counterions,
effective charge, and its variation with divalent ion concentration.

5.1 Coarse-grained computer simulations

5.1.1 Simulation methods, force-fields, and systems

The CG monomer-resolved models of the dPGS macromolecule have been developed pre-
viously [114] and maintain the essential dPGS structural and electrostatic features with
affordable computing expense. In brief, the dPGS branching units (C3H5O–) and inner
core (C3H5–) (both of which are a part of the glycerol chemical group, respectively), and
the terminal sulphate groups (–OSO3) are individually represented by the CG segments
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(a) c0++ = 0.98mM (b) c0++ = 3.75mM (c) c0++ = 14.94mM (d)

Figure 5.1: Panels (a), (b) and (c) show CG simulation snapshots of G2-dPGS in a mixture of ions
at the divalent cation (DC) concentrations of 0.98mM, 3.75mM and 14.94mM, respectively, while the
monovalent salt concentration c0+ is at 150.37mM. The red beads depict the charged terminal sulphate
groups (–OSO3), which represent the binding sites of dPGS, the gray beads depict the neutral glycerol
(C3H5O–) branching units, and yellow, blue and green spheres refer to DCs, monovalent cations (MCs)
and monovalent anions, respectively. (d) Snapshot of the whole simulation box containing the CG model
of G2-dPGS and a mixture of salts of MCs and DCs. The box is cubic with a side length L = 30 nm.
The sizes of spheres/beads in all panels are not to scale.

of specific type. The gross number of the CG segments is equal to the dendrimer poly-
merization Ng = 3 \times 2n+1  - 2 of generation index n. Only the terminal segments are
charged with  - 1e (where e is the elementary charge), leading to the dPGS bare valency
| Zn| = 3\times 2n+1. The CG segments are connected by bonded and angular potentials both
in harmonic form. In the previous work [114] we only studied monovalent ions. Here
we extend it to study the competitive uptake of mono- and divalent ions for generations
2 and 4. The bare charge valencies of the G2-dPGS are thus Z\mathrm{d} = Zn=2 =  - 24 and
Z\mathrm{d} = Zn=4 =  - 96. Snapshots are shown in Fig. 5.1.

The non-bonded interactions between CG beads are described by the LJ potential
together with the Lorentz–Berthelot mixing rules. In particular, the energy parameter
\epsilon \mathrm{L}\mathrm{J} = 0.1 k\mathrm{B}T and the diameter \sigma \mathrm{L}\mathrm{J} = 0.4 nm are set identical for all ions (mono- and
divalent) and thus any ion-specific effects are not explicitly included. In our simulations
we place the dPGS in the center of a periodically repeated cubic box with a volume of V
(side-length of L = 30 nm). The solvent is implicitly assumed as a dielectric continuum
with a dielectric constant \varepsilon \mathrm{w} = 78. The CG simulations employ the stochastic dynamics
(SD) integrator in GROMACS 4.5.5 as in our previous work [114].

All simulations are performed in the canonical ensemble. The divalent cations (DCs),
monovalent cations (MCs) and monovalent anions in the system are referred to with
subscripts ++, + and  - , respectively. The dPGS is accompanied by the corresponding
number of monovalent counterions N\mathrm{s} (24 for G2-dPGS and 96 for G4-dPGS) electrically
neutralizing the macromolecule and having the same chemical identity as the MCs of the
salt. The number of salt ions i (i = ++,+, - ) is denoted as ni, while the corresponding
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total salt concentrations are denoted as c0i = ni/V . Bulk concentrations are defined as
c\mathrm{b}i = (ni  - N\mathrm{b}

i )/(V  - v\mathrm{e}ff) (for i = ++, - ) and c\mathrm{b}
+
= (n+ + N\mathrm{s}  - N\mathrm{b}

+
)/(V  - v\mathrm{e}ff), where

v\mathrm{e}ff = 4\pi r3\mathrm{e}ff/3 is the volume enclosed by the effective radius r\mathrm{e}ff of dPGS and N\mathrm{b}
i is the

number of ions i condensed (bound) on the dPGS. The definitions of both r\mathrm{e}ff and N\mathrm{b}
i are

adopted from the Alexander prescription (cf. Sec. 3.1.2.4.1).
The simulations are performed at the DC concentrations c0

++
of 0.98, 2.95, 3.75, 9.96 and

14.94mM. G2-dPGS simulation snapshots for different c0
++

values are shown in Fig. 5.1(a)–
(c), while the whole simulation box is displayed in Fig. 5.1(d). The MC concentration
c0

+
is fixed at 150.37mM and the monovalent anion concentration is adjusted in a way to

ensure electroneutrality in the simulation box. The total ionic strength I = 1
2

\sum 
i z

2
i c

\mathrm{b}
i (i =

+,++, - with the charge valency zi) ranges from 150.5mM to 195mM. The corresponding
Debye screening length \kappa  - 1 =

\surd 
8\pi l\mathrm{B}I (where l\mathrm{B} is the Bjerrum length) ranges from 0.8 nm

(c\mathrm{b}
++

= 0 and c\mathrm{b}
+
= 150.5mM) to 0.7 nm (c\mathrm{b}

++
= 14.94 and c\mathrm{b}

+
= 150.5mM). As a reference,

we also perform CG simulations in the limit of only monovalent salt, with concentrations
c0

+
of 10.02, 25.06 and 150.37mM.

5.1.2 Simulation results: Radial density distributions

The dPGS structure and its response to the addition of the DCs, is examined by the den-
sity distribution of the terminal sulphate beads c\mathrm{s}(r) as a function of the distance r from
the dPGS-COM for different DC concentrations c0

++
, as shown in Fig. 5.2. Interestingly,

the presence of DCs does not lead to a notable change in the dPGS structure. Instead,
the c\mathrm{s}(r) profiles in the operated range of c0

++
and for both G2-dPGS and G4-dPGS are

reasonably coincident. Fig. 5.2(a) shows that for G2-dPGS, a single-peak distribution is
found, indicating that most of the sulphate beads reside on the molecular surface. How-
ever, in Fig. 5.2(b), a bimodal distribution is seen for G4-dPGS with a small peak at
r \simeq 0.6 nm. This backfolding phenomenon, contributing to a dense-core arrangement due
to the dense macromolecular shell [60], is also found in our previous works [114, I] and
has been detected for other terminally charged CG dendrimer models [97, 98, 106, 107].
After the major peak, c\mathrm{s}(r) gradually subsides to zero. The location where the charge
density c\mathrm{s}(r) falls to 150mM, which we set as the physiological NaCl concentration, is
defined as the bare (intrinsic) radius of dPGS r\mathrm{d} 1, shown as vertical dashed blue lines in
Fig. 5.2. The r\mathrm{d} values for G2-dPGS and G4-dPGS are obtained as 1.40 nm and 2.11 nm,
respectively. Fig. 5.2(b) also shows that a slight shift in the location of the major peak
1r\mathrm{d} in our previous works (chapter 4) is defined as the location of the major peak of the sulphate density
distribution [114, I].
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and an enrichment of the lower peak appears as c0
++

increases, indicating a slow shrinking
of the dPGS molecule due to the condensation of DCs (see Fig. 5.3).
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Figure 5.2: Radial density distributions c\mathrm{s}(r) of the terminal sulphate groups of dPGS as a function of the
distance r from the COM of (a) G2-dPGS and (b) G4-dPGS, obtained from the CG computer simulations.
The curves are plotted for different DC concentrations c0++ (see legend). The blue vertical dashed lines
denote the dPGS bare radius r\mathrm{d} (1.4 nm for G2-dPGS and 2.1 nm for G4-dPGS) defined as the location
where c\mathrm{s}(r) falls to the physiological threshold of 150mM. The monovalent cation concentration c0+ is
fixed to 150.37 mM.

0 1 2 3
r (nm)

0.0

0.2

0.4

0.6

0.8

c i
 (n

m
3 )

(a)

G2

0.98 mM
2.95 mM
3.75 mM
9.96 mM
14.94 mM

++ +

0 1 2 3 4
r (nm)

0.0

0.4

0.8

1.2

c i
 (n

m
3 )

(b)

G4

0.98 mM
2.95 mM
3.75 mM
9.96 mM
14.94 mM

++ +

Figure 5.3: Radial density distributions ci(r) (i = +,++) of counterion species i as a function of the
distance r from the COM of (a) G2-dPGS and (b) G4-dPGS. The curves are plotted for different DC
concentrations c0++ (see legend). The solid and dotted lines depict the density distributions of DCs and
MCs, respectively.

Figs. 5.3(a) and (b) show the cation density distributions ci(r) (i = +,++) for G2-dPGS
and G4-dPGS, respectively. Let us focus first on G2 in Fig. 5.3(a). The MC distribution
c+(r) shows a high accumulation of counterions close to the sulphate groups, with a global
maximum at distances r \sim 1.2 nm slightly larger than the sulphate peak (peaking roughly
at \sim 1 nm). This means that the most strongly bound ‘condensed’ MCs are distributed
more on the surface layers of the dPGS. At larger distances, r \sim 2 nm, a DH like decay
is observed. Adding more DCs, the MC distribution gradually diminishes, as expected
from the exchange of MCs with DCs within the dPGS. However, interestingly, the DC
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distribution peaks at distances distinctively smaller than the location of the sulphate
peak, roughly 0.5  - 0.6 nm shifted towards the dPGS center away from the peak of the
MC distribution. This more interior binding might be attributed to different binding
mechanisms between DCs and sulphate, e.g., bridging of two sulphate groups by one DC,
which might be sterically favored closer to the dPGS core. These subtle structural effects
may have important consequences in the context of the counterion-release mechanism
driving the dPGS–protein binding [IV], which should be interesting for future studies.
The ion profiles for G4 shown in Fig. 5.3(b) show qualitatively the same behavior but
are broader and double-peaked because of the significant sulfate backfolding as previously
presented in Fig. 5.2(b).

It is worth noting that simulations of DCs in general are more challenging than for
MCs only. DC are more heavily hydrated than MCs (e.g., Mg2+ and Na+ ions) [383,
384], therefore future studies should scrutinize the ionic size used in the implicit solvent.
Furthermore, quantum mechanical charge transfer effects as a result of the ion-induced
powerful electronic polarization of the surrounding media [385], which are much more
prevalent in the case of DCs [301, 307] than MCs, may also be subsumed in ionic sizes in
the implicit water. These model details may subtly change the density profiles shown in
Figs. 5.3(a) and (b). However, the effects on total competitive uptake should be relatively
minor as they are dominantly driven by valency and electrostatic correlations, and size
effects are typically of second order importance.

Using the density distributions of the charged entities shown above, the electrostatic
properties of dPGS can be studied in the presence of the mixture of DCs and MCs. The
analysis methods described in the section 5.1.3 are used to define the effective radius r\mathrm{e}ff ,
charge valency Z\mathrm{e}ff and potential \phi \mathrm{e}ff of dPGS.

5.1.3 Structural and electrostatic properties of dPGS

Same as the analysis done for the section 4.3.7, the implicit-water approach described in
the section 3.2.5.2.2 is used to calculate the electrostatic potential \phi (scaled by k\mathrm{B}T/e)
with the charged species in the system as dPGS sulphate beads (s), DCs (++), MCs (+)
and monovalent coions ( - ). Then the Alexander prescription [15, 17, 129, 130, 386] (cf.
Sec. 3.1.2.4.1) is used to calculate the effective radius r\mathrm{e}ff , charge valency Z\mathrm{e}ff , potential
\phi \mathrm{e}ff of dPGS and the number of condensed counterions N\mathrm{b}

i (i = ++,+). The value of
r\mathrm{e}ff for dPGS in the simulations for G2 and G4 was found to be 1.65 nm and 2.40 nm,
respectively, under the operated concentration range in the mixture of DCs with MCs as
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G2 G4

c0
++

c0
+

n++ r\mathrm{d} r\mathrm{e}ff Z\mathrm{e}ff \phi \mathrm{e}ff r\mathrm{d} r\mathrm{e}ff Z\mathrm{e}ff \phi \mathrm{e}ff

0.00

150.37

0

1.06 1.65

 - 10.09  - 1.26

1.65 2.40

 - 20.04  - 1.27

0.98 16  - 8.85  - 1.15  - 17.75  - 1.14

2.95 48  - 7.40  - 0.98  - 14.21  - 0.93

3.75 61  - 6.84  - 0.85  - 12.25  - 0.77

9.96 162  - 6.33  - 0.75  - 10.11  - 0.62

14.94 243  - 5.86  - 0.68  - 9.65  - 0.55

Table 5.1: The structural and electrostatic parameters of G2-dPGS (having the bare charge valency
Z\mathrm{d} =  - 24) and G4-dPGS (Z\mathrm{d} =  - 96) measured from the CG simulations. r\mathrm{e}ff , Z\mathrm{e}ff , \phi \mathrm{e}ff are the effective
radius (expressed in nm), the charge valency and the dimensionless potential of the dPGS, respectively,
as a function of the DC concentration c0++ (expressed in mM), evaluated via simulations. The simulation
box is cubic with a side length of 30 nm. The salt concentration of MCs c0+ is set to 150.37 mM.

well as in the monovalent limit, as shown in Table 5.1. These values are different than
the ones obtained in our previous work [114], which operates at c0

+
= 10mM, unlike the

current work where c0
+
= 150.37mM. The newly obtained r\mathrm{e}ff values in this work are then

used as an input for the Manning–McGhee–von Hippel (MMvH) model, as discussed in the
section 5.2.4, to describe the competitive sorption. It is thus implicitly assumed that r\mathrm{e}ff
does not depend on the sorption of DCs, within the operated range of DC concentrations.
The same prescription will be used to define r\mathrm{e}ff (denoted as r\mathrm{P}\mathrm{B}\mathrm{e}ff ) from the solutions of
the Penetrable Poisson–Boltzmann (PPB) model, as discussed in the section 5.2.3. The
results for r\mathrm{P}\mathrm{B}\mathrm{e}ff are also shown in Table 5.2. Z\mathrm{e}ff and \phi \mathrm{e}ff obtained from simulations, which
are shown in Table 5.1, indicate strong decrease in magnitude with higher c0

++
, indicating

enhanced dPGS charge renormalization.

5.2 Theoretical models

5.2.1 Basic model

In our theoretical models, the macromolecule is represented as a perfect sphere with
the bare radius r\mathrm{d}, the bare charge valency Z\mathrm{d}, the effective radius r\mathrm{e}ff and the effective
charge valency Z\mathrm{e}ff , enclosed in a spherical domain of radius R and volume V , as shown in
Fig. 5.4. The total number of charged monomers in the macromolecule is N\mathrm{s}, each of which
is negatively charged with a charge valency z\mathrm{s}. All ionic species and the macromolecule are
assumed to be in an aqueous bath with an implicitly modeled solvent, having a uniform
dielectric constant \epsilon \mathrm{w} = 78 at a temperature T = 298K.
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Figure 5.4: Schematic of a theoretical model representing the system shown in Fig. 5.1(d). The com-
putational cell domain (blue) is assumed to be spherical with the same volume as that of the simulation
box, V , and with a uniform dielectric constant of water \epsilon \mathrm{w} = 78. dPGS is assumed to be a perfect
sphere (orange) at the center of the domain. The dPGS bare and effective charge valencies are Z\mathrm{d} and
Z\mathrm{e}ff , respectively. r\mathrm{d} is the bare radius of dPGS, while r\mathrm{e}ff , the effective radius, representing the distance
separating the electric double layer regime (r > r\mathrm{e}ff) from the non-linear counterion ’condensation’ regime
(r < r\mathrm{e}ff).

5.2.2 Competitive, ion-specific Donnan model (DM)

The arguably simplest model for competitive uptake is the Donnan model (cf. Sec. 3.1.2.5).
The Donnan equilibrium assumes two strictly electroneutral and mutually exclusive re-
gions, i.e., the macromolecule region with the Donnan radius set to be the bare radius
r\mathrm{d} taken from simulations (i.e., with a bare macromolecular volume v\mathrm{d} = 4\pi r3\mathrm{d}/3) and
total homogeneously distributed bare charge of valency Z\mathrm{d} = z\mathrm{s}N\mathrm{s} with a concentration
c\mathrm{s} = N\mathrm{s}/v\mathrm{d} of charged groups of the macromolecule, and the bulk region outside the
molecule with a bulk ion concentration c\mathrm{b}i (i = +,++, - ). Charge neutralization of the
macromolecule by the counterions leads to the Donnan potential, which is a potential
having a constant non-zero value in the macromolecule region. The potential in the bulk
region is set to zero. The equilibrium distribution (partitioning) of ions among the regions
results in the concentrations of ionic species i as c\mathrm{m}i and c\mathrm{b}i in the macromolecule and bulk
regions, respectively. These concentrations are related via the partition coefficient \scrK i,
given by

\scrK i =
c\mathrm{m}i
c\mathrm{b}i

i = ++,+, - (5.1)

Neglecting ion–ion correlations, an approximate expression for \scrK i can be obtained using
the condition that the equilibrium electrochemical potential of ion i is equal in both the

84



Chapter 5. Competitive sorption of monovalent and divalent ions by highly charged
globular macromolecules

macromolecule and bulk regions, implying that

\mathrm{l}\mathrm{n} c\mathrm{b}i = zi\phi \mathrm{D} + \mathrm{l}\mathrm{n} c\mathrm{m}i + \beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i (5.2)

where \phi \mathrm{D} is the dimensionless Donnan potential (scaled by k\mathrm{B}T/e) in the macromolecule
region and \beta  - 1 = k\mathrm{B}T is the thermal energy. With \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i we account for additional non-
electrostatic effects that can drive the sorption, e.g., dispersion and hydrophobic forces
in the net ion–macromolecule interaction, and is termed the ion-specific binding chemical
potential of the condensed ion. The inclusion of \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i has been considered in previous
work, for example, as a term reflecting the steric ion–ion packing effects in a Donnan
model for ion binding by PEs or charged hydrogels [360, 367, 368].

Eq. (5.2) with the help of Eq. (5.1) then leads to

\scrK i =
c\mathrm{m}i
c\mathrm{b}i

= \mathrm{e} - \beta \Delta \mu \mathrm{b}\mathrm{i}\mathrm{n}\mathrm{d}, i = \mathrm{e} - \beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i\mathrm{e} - zi\phi \mathrm{D} (5.3)

where \Delta \mu \mathrm{b}\mathrm{i}\mathrm{n}\mathrm{d}, i is the total transfer chemical potential for ion i from the bulk to the
macromolecule region. This allows us to define the intrinsic partition ratio for ionic
species i as

\scrK \mathrm{i}\mathrm{n}\mathrm{t}, i = \mathrm{e} - \beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i i = +,++ (5.4)

and the Donnan partition ratio as a contribution from pure electrostatic interaction be-
tween the ion and the macromolecule environment as

\scrK \mathrm{e}\mathrm{l}, i = \mathrm{e} - zi\phi \mathrm{D} i = +,++ (5.5)

The electrostatic component of total binding chemical potential of a counterion i is then
defined as \beta \Delta \mu \mathrm{e}\mathrm{l}, i =  - \mathrm{l}\mathrm{n}\scrK \mathrm{e}\mathrm{l}, i = zi\phi \mathrm{D}. Eq. (5.3) can then be conveniently shortened as

\scrK i = \scrK \mathrm{e}\mathrm{l}, i \scrK \mathrm{i}\mathrm{n}\mathrm{t}, i (5.6)

where \scrK i is shown as a composition of intrinsic and electrostatic effects.The signature
assumption behind the Donnan model is the electroneutrality in the macromolecule region
expressed as

z\mathrm{s}c\mathrm{s} +
\sum 
i

zic
\mathrm{b}
i \scrK i = 0 (5.7)
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Solving Eq. (5.7) for \phi \mathrm{D} enables us to evaluate the net partition coefficient \scrK i. Eq. (5.7)
has no closed solution for multivalent ions, but it exists for the case of only monovalent
ions in the system, (i = \pm ) and is given (as shown in Eq. (3.45)) as [254]

\phi \mathrm{D} =  - \mathrm{l}\mathrm{n}

\Biggl( 
 - 
\surd 
1 + \chi +\chi  - + 1

\chi +

\Biggr) 
(5.8)

where \chi i = 2\scrK \mathrm{i}\mathrm{n}\mathrm{t}, i c
\mathrm{b}
i /z\mathrm{s}c\mathrm{s}. Note that \chi i < 0, since the valency of charged groups z\mathrm{s} is

negative. Using Eqs. (5.3), (5.6) and (5.8), for the monovalent-only case, the number of
ions of species i(= \pm ) partitioned into the macromolecule region is then given as

N\mathrm{b}
\pm = c0\pm v\mathrm{d} \scrK \mathrm{i}\mathrm{n}\mathrm{t},\pm 

\Biggl( 
 - 
\surd 
1 + \chi +\chi  - + 1

\chi +

\Biggr) \pm 1

(5.9)

To evaluate the competition between MCs and DCs in the Donnan model we evaluate
Eqs. (5.3) and (5.7) numerically, cf. section 5.2.5.

Because of the electroneutrality assumption, the Donnan prediction for the amount
of counterion sorption by the macromolecule in the monovalent-only case is given by
N\mathrm{b}

+
= | Z| +N\mathrm{b}

 - . For highly charged macromolecules, i.e., \chi i \rightarrow 0, Eq. (5.9) trivially gives
N\mathrm{b}

+
\simeq | Z| . For the competitive sorption case, however, it can give a useful orientation with

little effort. The Donnan model should become quantitative for high salt concentrations
(\kappa r\mathrm{d} \gg 1) for which the electroneutrality assumption is then well justified.

5.2.3 Ion-specific penetrable Poisson–Boltzmann (PPB) model

We now put forward a penetrable PB (PPB) model in which the charge profiles can be
resolved in r, the radial distance from the macromolecular center. Since our charged
macromolecules we have in mind (dPGS above and similar) are polymer-based with open
structures and typically internally smeared out charge distributions, we opted (as in the
Donnan model) for a penetrable model instead of a PB model for surface adsorption as
typically used in studies of colloidal charge renormalization [115, 128, 387]. Based on the
parametrization described in the basic model (Sec. 5.2.1), we assume the macromolecule
as a perfect penetrable sphere with a charge valency Z\mathrm{d} = z\mathrm{s}N\mathrm{s} and radius r\mathrm{d}, as shown in
Fig. 5.4. r\mathrm{d} is taken from the dPGS internal charge distribution obtained from simulations,
cf. section 5.1.2 and Fig. 5.2. The charged monomers of the macromolecule, thus, have a
uniform number distribution c\mathrm{s} = N\mathrm{s}/v\mathrm{d} (where v\mathrm{d} = 4\pi r3\mathrm{d}/3) within the volume v\mathrm{d}. c\mathrm{s} is
applicable only within the macromolecule domain, i.e., c\mathrm{s}(r) = c\mathrm{s}

\bigl( 
1 - H(r  - r\mathrm{d})

\bigr) 
, where
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H(r) is the Heaviside-step function. As an improvement to the standard PB model, here
we also consider a contribution of the intrinsic non-electrostatic ion-specific interaction
\Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i between the ion and the macromolecule [180, 225], analogous to Eq. (5.2) in the
Donnan model above. Assuming the electrostatic potential far away from the macro-
molecule, \phi (r \rightarrow R) = 0, we first balance the chemical potential for each ion, between
the bulk regime far from the macromolecule and the regime at the finite distance r from
the center of the macromolecule

\mathrm{l}\mathrm{n} c\mathrm{b}i = zi\phi (r) + \mathrm{l}\mathrm{n} ci(r) + \beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i(r), (5.10)

which is similar to Eq. (5.2), but in a distance-resolved manner. \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i is considered
on a local level, i.e., \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i(r) = \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i

\bigl( 
1 - H(r  - r\mathrm{d})

\bigr) 
. The Boltzmann ansatz then

becomes

ci(r) = c\mathrm{b}i \mathrm{e}
 - zi\phi (r) - \beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i(r) (5.11)

The distance-resolved electrostatic potential can be calculated from Eq. (5.11) together
with the Poisson’s equation as

\nabla 2\phi (r) =  - 4\pi l\mathrm{B}

\left(  \sum 
i

zici(r) + z\mathrm{s}c\mathrm{s}(r)

\right)  i = ++,+, - (5.12)

which establishes the PPB model including ion-specific binding effects. The boundary
conditions used are (\mathrm{d}\phi /\mathrm{d}r) (r \rightarrow 0) = 0 and (\mathrm{d}\phi /\mathrm{d}r) (r \rightarrow R) = 0.

An effective radius for dPGS is calculated independently for this model (labeled r\mathrm{P}\mathrm{B}\mathrm{e}ff )
using the Alexander prescription (cf. Sec. 3.1.2.4.1) on the obtained potential \phi , the
same recipe used to calculate r\mathrm{e}ff from simulations, cf. section 5.1.3. The values of r\mathrm{P}\mathrm{B}\mathrm{e}ff

for G2-dPGS and G4-dPGS are obtained as 1.42 nm and 2.36 nm, respectively, under the
operated range of c0

++
and at c0

+
= 150.37mM. The r\mathrm{P}\mathrm{B}\mathrm{e}ff values are thus found to be close to

those obtained from the simulations, as shown in Table 5.2. The effective surface potential
of the macromolecule is then given by \phi \mathrm{P}\mathrm{B}

\mathrm{e}ff = \phi (r\mathrm{P}\mathrm{B}\mathrm{e}ff ). The number of bound ions of species
i within r\mathrm{e}ff , is then given by

N\mathrm{b}
i =

\int r\mathrm{e}ff

0

ci(r) 4\pi r
2 \mathrm{d}r i = +,++ (5.13)

The corresponding effective charge valency Z\mathrm{P}\mathrm{B}
\mathrm{e}ff is calculated using Eq. (3.66). The PPB
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equations are solved numerically, cf. section 5.2.5.
The PPB model operates in terms of the volume sorption of ions in the macromolecule

with no entropic penalty, i.e., the PE acts as an infinite reservoir able to uptake unlimited
amount of counterions. However, there is an upper limit to the amount of counterions that
can be sorbed by the real-world PEs, owing to the steric constraints [173, 226, 363, 366].
Taking it into consideration, we present a variant of the PPB model assigning the entropic
penalty to the binding counterions. This entropic cost is incorporated in a Langmuir form,
thus, naming the model as the Penetrable Poisson–Langmuir (PPL) model, presented in
Appendix B.1.

5.2.4 Manning–McGhee–von Hippel (MMvH) binding model

In this section, we introduce a model based on a discrete two-state (condensed or free)
perspective for the counterions, built to capture the essential physics of PE–ion binding in
an accurate but minimalistic fashion. The model is an extension of ideas by Manning [120]
(cf. Sec. 3.1.2.4.4), in which ion-condensation on charged spherical surfaces was described
on a mean-field free energy level as a competition between the charging (Born) self-energy
of the macromolecule in salt solution and the entropy cost of binding for one-component
counterions. Here, we extend this model to the case of mixtures of MCs and DCs, including
binding saturation for a fixed number of binding sites like in Langmuir isotherms. The
extension of the latter to binary binding of one or two binding sites by mono- or divalent
solutes, respectively, was put forward buy McGhee and von Hippel [379]. Therefore, we
name the model Manning–McGhee–von Hippel binding model (MMvH).

Following Manning [120], we treat the macromolecule as an impenetrable sphere of ra-
dius r\mathrm{e}ff and charge valency Z\mathrm{d} = zsN\mathrm{s} taken from simulations, and extend the Manning’s
model into a discrete binding site model, where the N\mathrm{s} charged monomers act as a finite
collection of discrete binding sites for both the MCs and DCs. For the case of the DCs,
two adjacent charged monomers can collectively act as a single binding site for a DC. The
resulting combinatorial ways to arrange the bound MCs and DCs lead to mixing entropies
worked out by McGhee and von Hippel [379]. Pertaining to the canonical ensemble, we fix
the total number of salt ions ni, the corresponding concentrations c0i (i = ++,+, - ), the
number of monovalent counterions N\mathrm{s} to the macromolecule, the total number of binding
sites on the macromolecule and the total domain volume V . The coions in this model
simply serve the function of maintaining electroneutrality in the total domain and their
explicit sorption is neglected.
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A counterion i (= +,++) is assumed to bind to the macromolecule and to occupy
fi consecutive (spatially adjacent) charged terminal groups of the macromolecule. We
designate f+ = 1 and f++ = 2 for MCs and DCs, respectively, implying that, in a bound
state, one MC occupies only one charged terminal group, while one DC occupies two
consecutive charged terminal groups, owing to the fact that each terminal group has a
charge valency z\mathrm{s} =  - 1. Consider at a given state, N\mathrm{b}

+
MCs and N\mathrm{b}

++
DCs are bound to the

macromolecule. The binding density, i.e., the number of bound counterions per charged
terminal group is then N\mathrm{b}

+
/N\mathrm{s} and N\mathrm{b}

++
/N\mathrm{s} for MCs and DCs, respectively. By multiplying

with fi, we then define the fraction of the binding sites occupied by the counterions, i.e.,
coverages \Theta + = f+N

\mathrm{b}
+
/N\mathrm{s} = N\mathrm{b}

+
/N\mathrm{s} and \Theta ++ = f++N

\mathrm{b}
++
/N\mathrm{s} = 2N\mathrm{b}

++
/N\mathrm{s}. Thus, the total

number of binding sites on the macromolecule available for MCs, is N+ = N\mathrm{s}/f+ = N\mathrm{s},
and those available for DCs, is N++ = N\mathrm{s}/f++ = N\mathrm{s}/2. The effective charge valency of the
macromolecule is then Z\mathrm{e}ff =  - N\mathrm{s}+N

\mathrm{b}
+
+2N\mathrm{b}

++
=  - N\mathrm{s}(1 - \Theta +  - \Theta ++). The total Helmholtz

free energy \scrF \mathrm{t}\mathrm{o}\mathrm{t} depends on the coverages \Theta + and \Theta ++ and the ionic concentrations c0i .
The coverages can then be obtained by minimizing \scrF \mathrm{t}\mathrm{o}\mathrm{t} simultaneously with respect to
\Theta + and \Theta ++. The total Helmholtz free energy \scrF \mathrm{t}\mathrm{o}\mathrm{t} is given by the expression

\scrF \mathrm{t}\mathrm{o}\mathrm{t} = \scrF \mathrm{e}\mathrm{l} + \scrF \mathrm{t}\mathrm{r} + \scrF \mathrm{m}\mathrm{i}\mathrm{x} + \scrF \mathrm{i}\mathrm{n}\mathrm{t} (5.14)

where the four additive contributions, \scrF \mathrm{e}\mathrm{l}, \scrF \mathrm{t}\mathrm{r}, \scrF \mathrm{m}\mathrm{i}\mathrm{x} and \scrF \mathrm{i}\mathrm{n}\mathrm{t} are defined respectively as
(i) electrostatic (Born) self-energy of charge renormalized macromolecule, (ii) ideal gas
entropy of free ions in the bulk regime, (iii) mixing entropy of the condensed counterions in
the macromolecule, and (iv) the non-electrostatic ion-specific binding free energy between
the condensed counterion and the corresponding binding site on the macromolecule.

The Born charging self-energy of the macromolecule immersed in an electrolyte solution
associated with the Debye screening length \kappa  - 1, refers to the work required to charge the
macromolecule from its electroneutral to a certain charged state. Following Manning,
such a charged state is associated with the effective charge Z\mathrm{e}ff e, corresponding to the
sum of the intrinsic bare charge of the macromolecule Z\mathrm{d} and its captive, neutralizing
counterions [120]. Thus, the expression for the Born charging free energy of the macro-
molecule (or the self energy of the charge renormalized macromolecule) per monovalent
binding site is thus expressed as (cf. Sec. 3.1.2.4.4)

\beta \scrF \mathrm{e}\mathrm{l} =
Z2

\mathrm{e}ff l\mathrm{B}
2N\mathrm{s}r\mathrm{e}ff(1 + \kappa r\mathrm{e}ff)

=
\zeta 

2
(1 - \Theta +  - \Theta ++)

2 (5.15)
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where \zeta /2 is the Born free energy per monovalent binding site in the absence of counterion
condensation, and \zeta is given for surface charging by [224]

\zeta =
N\mathrm{s}l\mathrm{B}

r\mathrm{e}ff(1 + \kappa r\mathrm{e}ff)
(5.16)

Considering the effective volume of dPGS v\mathrm{e}ff to be very small compared to the total
volume V (v\mathrm{e}ff \ll V ), the bulk concentrations of MCs and DCs are given by

c\mathrm{b}
+
= c0

+
+
N+(1 - \Theta +)

V

c\mathrm{b}
++

= c0
++

 - N++\Theta ++

V

(5.17)

owing to the depletion of the ions in the bulk due to partitioning. c\mathrm{b}
+

above is calculated
considering the monovalent counterions remaining in the solution, in the salt-free limit.
We assume that no anions are bound to the macromolecule binding sites, hence their bulk
concentration is assumed to be the same as their salt concentration, i.e., c\mathrm{b} - = c0 - .

The ideal gas free energy of free cations in the bulk, normalized by the number of
monovalent binding sites N\mathrm{s}, is given as

\beta \scrF \mathrm{t}\mathrm{r} =  - S\mathrm{i}\mathrm{d}

N\mathrm{s}k\mathrm{B}
=

\sum 
i=+,++

\Biggl( 
ni  - N\mathrm{b}

i

N\mathrm{s}

\Biggr) \Bigl( 
\mathrm{l}\mathrm{n} c\mathrm{b}i\Lambda 

3
i  - 1

\Bigr) 

=
\sum 

i=+,++

\biggl( 
ni  - Ni\Theta i

N\mathrm{s}

\biggr) \left[  \mathrm{l}\mathrm{n}\Biggl( c0i\Lambda 3
i  - 

Ni\Theta i\Lambda 
3
i

V

\Biggr) 
 - 1

\right]  (5.18)

where \Lambda i and ni are the thermal (de Broglie) wavelength and the number of salt ions i.
The bound DCs and MCs can occupy the binding sites on the macromolecule in differ-

ent proportions, and can distribute among the occupied sites in multiple ways at a certain
bound coverages \Theta + and \Theta ++. We exert constraints to such possibilities of binding com-
positions and configurations, such that, (i) one bound DC can only bind to two adjacent
monovalent binding sites, (ii) all non-overlapping configurations between the bound ions
are possible, (iii) there are no designated binding sites for DCs, and (iv) the position of
the bound DC can be shifted by a single adjacent monovalent binding site. The number
of possible combinatorial binding arrangements under these constraints, adopted from the
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work by McGhee and von Hippel [379], is given by

W =
\gamma 
N\mathrm{b}

+
+ \gamma 

N\mathrm{b}
++

++ (N\mathrm{s}  - N\mathrm{b}
++
)!

N\mathrm{b}
+
!N\mathrm{b}

++
!(N\mathrm{s}  - 2N\mathrm{b}

++
 - N\mathrm{b}

+
)!

(5.19)

where we define \gamma i = v0i /\Lambda 
3
i in terms of the effective configurational volume v0i in the

bound state [325]. v0i takes into account the rotational and vibrational degrees of freedom
of a bound counterion i. We now define the free energy associated with the partition
function W , normalized by the number of monovalent binding sites N\mathrm{s}, as the free energy
of mixing of the bound ions per binding site,

\beta \scrF \mathrm{m}\mathrm{i}\mathrm{x} =  - S\mathrm{m}\mathrm{i}\mathrm{x}

N\mathrm{s}k\mathrm{B}
=  - 1

N\mathrm{s}

\mathrm{l}\mathrm{n}W

\simeq \Theta +\mathrm{l}\mathrm{n}\Theta + +
\Theta ++

2
\mathrm{l}\mathrm{n}
\Theta ++

2
 - 
\biggl( 
1 - \Theta ++

2

\biggr) 
\mathrm{l}\mathrm{n}

\biggl( 
1 - \Theta ++

2

\biggr) 
+ (1 - \Theta +  - \Theta ++)\mathrm{l}\mathrm{n}(1 - \Theta +  - \Theta ++) - \Theta +\mathrm{l}\mathrm{n}

v0
+

\Lambda 3
+

 - \Theta ++

2
\mathrm{l}\mathrm{n}
v0

++

\Lambda 3
++

(5.20)

where the Stirling approximation has been used for the logarithm of the factorials. This
description of condensed counterion entropy is different than the ion-binding models pro-
posed in previous works for linear PE [23, 380, 381] in terms of the localization of coun-
terions within volume v0i .

We express this intrinsic interaction \scrF \mathrm{i}\mathrm{n}\mathrm{t} by the intrinsic binding chemical potential
\Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i of each bound ion i. The sum of such interactions for all bound ions, normalized
by the total number of monovalent binding sites gives

\beta \scrF \mathrm{i}\mathrm{n}\mathrm{t} =
1

N\mathrm{s}

\Bigl( 
N\mathrm{b}

+
\beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, + +N\mathrm{b}

++
\beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, ++

\Bigr) 
= \Theta +\beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, + +

\Theta ++

2
\beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, ++

(5.21)

The equilibrium coverages \Theta i are then obtained by the minimization condition

\partial 

\partial \Theta i

\scrF \mathrm{t}\mathrm{o}\mathrm{t}
!
= 0 i = +,++ (5.22)

This leads to the relation

\Delta \mu \mathrm{t}\mathrm{r}, i +\Delta \mu \mathrm{e}\mathrm{l}, i +\Delta \mu \mathrm{m}\mathrm{i}\mathrm{x}, i +\Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i = 0 i = +,++ (5.23)

where \Delta \mu \mathrm{t}\mathrm{r}, i denotes the translational entropy change associated with one ion i when it
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transfers from the bulk environment to the bound state in the macromolecule. \Delta \mu \mathrm{e}\mathrm{l}, i

is the electrostatic binding chemical potential and \Delta \mu \mathrm{m}\mathrm{i}\mathrm{x}, i is the mixing chemical poten-
tial. Eq. (5.23), similar to the PPB (Eq. (5.10)) and DM (Eq. (5.2)) models, indicates
the counterion chemical potential components contributing to its condensation on the
macromolecule. The expressions for the constituent chemical potential contributions in
Eq. (5.23) are given by

\beta \Delta \mu \mathrm{t}\mathrm{r}, i =  - \mathrm{l}\mathrm{n} c\mathrm{b}i v
0
i i = +,++

\beta \Delta \mu \mathrm{e}\mathrm{l}, i =  - zi\zeta (1 - \Theta +  - \Theta ++) i = +,++

\beta \Delta \mu \mathrm{m}\mathrm{i}\mathrm{x}, i =

\left\{         
\mathrm{l}\mathrm{n}

\Theta ++ (2 - \Theta ++)

4(1 - \Theta +  - \Theta ++)2
i = ++

\mathrm{l}\mathrm{n}
\Theta +

(1 - \Theta +  - \Theta ++)
i = +

(5.24)

Using Eqs. (5.23) and (5.24) leads to the final form of the MMvH model, given by

K++ = v0
++
\scrK \mathrm{i}\mathrm{n}\mathrm{t}, ++\mathrm{e}

2\zeta (1 - \Theta + - \Theta ++) =
\Theta ++(2 - \Theta ++)

4c\mathrm{b}
++
(1 - \Theta +  - \Theta ++)

2 (5.25)

K+ = v0
+
\scrK \mathrm{i}\mathrm{n}\mathrm{t}, +\mathrm{e}

\zeta (1 - \Theta + - \Theta ++) =
\Theta +

c\mathrm{b}
+
(1 - \Theta +  - \Theta ++)

(5.26)

where Ki are the equilibrium binding constant associated with the binding of ion i to its
corresponding binding site on the macromolecule. The relationship between Ki, the total
binding chemical potential \Delta \mu \mathrm{b}\mathrm{i}\mathrm{n}\mathrm{d}, i and the total partition ratio \scrK i is given as

\beta \Delta \mu \mathrm{b}\mathrm{i}\mathrm{n}\mathrm{d}, i =  - \mathrm{l}\mathrm{n}
Ki

v0i
=  - \mathrm{l}\mathrm{n}\scrK i i = +,++ (5.27)

Or in other words, referring back to Eq. (5.6),

\scrK i = \scrK \mathrm{i}\mathrm{n}\mathrm{t}, i \scrK \mathrm{e}\mathrm{l}, i = \scrK \mathrm{i}\mathrm{n}\mathrm{t}, i \mathrm{e}
zi\zeta (1 - \Theta + - \Theta ++) (5.28)

where the electrostatic contribution of the total partition ratio is defined as

\scrK \mathrm{e}\mathrm{l}, i = \mathrm{e} - \beta \Delta \mu \mathrm{e}\mathrm{l}, i = \mathrm{e}zi\zeta (1 - \Theta + - \Theta ++) i = +,++ (5.29)

From Eq. (5.27), for a given magnitude of Ki, the absolute magnitude of \Delta \mu \mathrm{b}\mathrm{i}\mathrm{n}\mathrm{d}, i depends
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on v0i , which we calculate from our simulations and predict respective values of \Delta \mu \mathrm{b}\mathrm{i}\mathrm{n}\mathrm{d}, i.
Finally, we consider the limit of the MMvH model for vanishing DCs (MCs only).

Without DCs, we have

\beta \Delta \mu \mathrm{t}\mathrm{r} =  - \mathrm{l}\mathrm{n} c\mathrm{b}
+
v0

+

\beta \Delta \mu \mathrm{e}\mathrm{l} =  - \zeta (1 - \Theta +)

\beta \Delta \mu \mathrm{m}\mathrm{i}\mathrm{x} = \mathrm{l}\mathrm{n}
\Theta +

(1 - \Theta +)

(5.30)

Combining Eqs. (5.23) and (5.30) leads to the Manning–Langmuir model (ML)

K+ = v0
+
\scrK \mathrm{i}\mathrm{n}\mathrm{t}, +\mathrm{e}

\zeta (1 - \Theta +) =
\Theta +

c\mathrm{b}
+
(1 - \Theta +)

(5.31)

The McGhee–von Hippel combinatorics here reduces to the standard one-component
Langmuir picture, i.e., the right-hand-side of Eq. (5.31) reflects the Langmuir isotherm.
The standard Langmuir model is thus extended to include charging free energies by ion
condensation (charge renormalization) and ion-specific binding. From another perspec-
tive, it extends the Manning model for the counterion condensation on spheres [120, 121]
to include ion-specific effects as well as the saturation of binding sites in terms of the
translation entropy of the condensed ions.

Future extensions of the MMvH model could include an extra level of competition
between adsorbed ions explicitly, namely through a non-linear term in Eq. (5.20) (of the
type used in the regular solution theory or the Flory–Huggins approximation in polymer
theories) that describes the interaction between two adsorbed ions in proximal positions
(sites). The effects of this generalization in a different context can be found in a study
on ion induced lamellar-lamellar phase transition in charged surfactant systems. [388] In
general, this type of competition results in non-continuous adsorption equilibria and could
be interesting in the present context.

5.2.5 Numerical evaluation

The PPB model, with the assumption of the uniform intrinsic macromolecular volume
charge distribution c\mathrm{s}(r)e and with the knowledge of the bare radius r\mathrm{d} of the macro-
molecule inherited from simulations, generates the distance-resolved number density pro-
files of charged species, similar to Fig. 5.3. Hence, it performs the same analysis as that
for simulations (cf. Sec. 5.1.3), to calculate the effective radius r\mathrm{e}ff and other electrostatic
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properties of the macromolecule, such as Z\mathrm{e}ff , \phi \mathrm{e}ff , etc. The Donnan model (DM) also as-
sumes uniform sulfate charge density c\mathrm{s}(r)e and requires the knowledge of the electroneu-
trality radius, which is taken as r\mathrm{d} from simulations as an input parameter, similar to the
PPB model. The MMvH (ML) model, on the other hand, assumes the macromolecule as
a hard sphere with a uniform surface charge distribution. The effective radius of the hard
sphere r\mathrm{e}ff is taken from simulations as an input parameter. The results from the DM,
PPB and MMvH (ML) models and simulations are compared in terms of the coverages
\Theta i (i = ++,+), which are defined as \Theta i = N\mathrm{b}

i /Ni, where N\mathrm{b}
i is the number of condensed

counterions i and Ni is the corresponding number of binding sites available on dPGS,
defined in the section 5.2.4. Since the PPB model deals with a volume sorption, while
the DM model deals with the ion partitioning between two electroneutral phases, “cover-
age" \Theta i in these cases are interpreted as a load or an extent of neutralization of dPGS.
For the DM, PPB and MMvH (ML) models, the intrinsic partition coefficients \scrK \mathrm{i}\mathrm{n}\mathrm{t}, i for
both ions (i = ++,+) are unknowns and taken as fitting parameters in order to match
the coverages from the simulations, which are described in the section 5.1.1. Regarding
the PPB and DM models, we make a further assumption that intrinsic non-electrostatic
ion–binding site interaction for the MCs is identical to that for the monovalent anions,
i.e., \scrK \mathrm{i}\mathrm{n}\mathrm{t}, + = \scrK \mathrm{i}\mathrm{n}\mathrm{t},  - .

Mathematically, the PPB model represents a boundary-value problem having a second
order differential equation (Eq. (5.12)) non-linear in the electrostatic potential paired
with the boundary conditions, while the MMvH model (Eqs. (5.25) and (5.26)) represents
two non-linear simultaneous equations in coverages \Theta + and \Theta ++. Both PPB and MMvH
models are evaluated self consistently for the potential and coverages, respectively. To
solve Eq. (5.12), we employ the solve_bvp function in the SciPy library (version 1.3.1)
from Python (version 3.7.4), which solves a boundary-value problem for a system of
ordinary differential equations using the fourth order collocation algorithm [389]. The bulk
concentration c\mathrm{b}i is obtained using the law of conservation of mass in an iterative manner,
cf. Appendix B.1.0.1. Eqs. (5.25) and (5.26) are solved using fsolve function from the
SciPy library, which is also used to evaluate the DM model (Eq. (5.7)) representing the
single non-linear equation in the Donnan potential \phi \mathrm{D}.

The effective configurational volume v0i of bound counterions, used in the MMvH model
is assumed to be equal for both counterions, i.e., v++ = v+ = v0. It is worth considering
that the volume v0 depends on the precise nature of the bound state and it is infeasible to
have its knowledge in experiments due to unknown microscopic details, although it can
be computed using simulations [IV, 390]. According to the convention in experiments,
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the standard volume is defined as v0 = 1\mathrm{M} - 1 \simeq 1.6 nm3, corresponding to the standard
concentration c\mathrm{s}\mathrm{t}\mathrm{d} = 1M [257, 258, 259]. In this case, the total binding chemical potential
\Delta \mu \mathrm{b}\mathrm{i}\mathrm{n}\mathrm{d}, i can be referred to as the standard binding energy \Delta G0 [258, 259].

5.3 Results and discussion

5.3.1 Monovalent limit: Theoretical comparison and best fit to

simulations
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Figure 5.5: Model predictions [PPB (Eq. (5.12)) and ML (Eq. (5.31))] of the coverage \Theta + of MCs in
the monovalent limit, as a function of the MC concentration c0+, compared with simulations (circle and
square symbols). (a) For the case of G2-dPGS, the dotted lines represent the results for vanishing intrinsic
binding chemical potential \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},+, while the solid lines show the results obtained by fitting \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},+ to
the simulations (yellow circles). The fitted \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},+ values obtained for the PPB and ML models are
 - 0.45 k\mathrm{B}T and  - 1.81 k\mathrm{B}T , respectively. The ML model uses the configurational volume v0 = 1.04 M - 1

as obtained from our previous CG simulations [IV]. (b) Comparison of binding coverages obtained by
ML and PPB models for G2-dPGS and G4-dPGS. The dashed lines denote the model results fitted to
G4-dPGS simulations (yellow squares). The fitted values of \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},+ obtained for PPB and ML models are
 - 0.56 k\mathrm{B}T and  - 1.85 k\mathrm{B}T , respectively, fairly close to those obtained for G2-dPGS. The configurational
binding volume for G4 is fixed to v0 = 0.57 M - 1 and is obtained from our previous simulations [IV].

Considering the monovalent limit as reference case, we now start with the application
of aforementioned theoretical binding models. Fig. 5.5(a) shows the predictions of the
PPB and ML (monovalent-only limit of MMvH) models for the variation of the binding
coverage of MCs, \Theta +, as a function of the MC concentration, c0

+
. It can be observed that \Theta +

increases sharply for a small increase in c0
+

from 0 to \sim 10mM, while it increases gradually
for larger c0

+
. This is attributed to the combined contribution of the electrostatics and

an entropy of a bound counterion, facilitating condensation. In the low c0
+

regime, the
bare charge of G2-dPGS is weakly renormalized, and some of the dPGS binding sites are
unoccupied. This leaves a high propensity of condensation for new incoming counterions.
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This can be conveniently explained via the ML model. Referring to Eq. (5.31), the
increase in the condensation of MCs at the limit of low c0

+
, \mathrm{l}\mathrm{i}\mathrm{m}c0+\rightarrow 0 \mathrm{d}\Theta +/\mathrm{d}c

0
+

is directly
proportional to the total binding constant K+, while at high c0

+
, \mathrm{l}\mathrm{i}\mathrm{m}c0+\rightarrow \infty \mathrm{d}\Theta +/\mathrm{d}c

0
+
= 0.

This implies that at low c0
+
, the resultant low coverage \Theta + leads to a high electrostatic

driving force for condensation as well as entropy of a bound counterion, thus a high
amount of condensation. On the other hand, at high c0

+
, the macromolecule charge is

almost entirely renormalized and most of the binding sites are occupied, resulting in
hardly any increase in condensation.

Comparing the coverage profiles from PPB and ML models that neglect ion-specific
effects, i.e., with \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, + = 0 (dotted curves), we find that the PPB coverage values
are close to the ML values in the low c0

+
regime, however, attain higher values than

the ML counterpart at high c0
+
. This is attributed to the effects of discrete binding sites

incorporated in the ML model, in the form of the configurational volume v0 (here, we used
v0 = 1.04 M - 1 obtained from our previous simulations [IV]). The PPB model, on the
other hand, assumes the condensed ions as point charges, leaving no entropic penalty for
new incoming counterions as they condense on the binding sites. Another reason is that
the PPB model also incorporates, to some extent, the non-linear effects in the electrostatic
interactions, which are not considered in the DH-level Born energy used in the ML model.
Both models, however, underestimate the simulations if we do not include corrections via
\Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, +. The reason is likely the approximative treatments of the electrostatic energy
in both models, PPB and ML, which are mean-field and do not include the discrete
nature of the charged binding sites and the complex spatial charge correlations inside the
macromolecule. The DM model, in addition to these assumptions, takes the macroscopic
view of macromolecule and bulk phases in a segregated form. The model then predicts the
ion partitioning while imposing electroneutralities of phases. In that respect, for highly
charged macromolecules like dPGS, the DM model predicts N\mathrm{b}

+
\simeq N\mathrm{s}, implying \Theta + \simeq 1.

This plot is not shown, since it does not provide a useful insight for us in the context
of counterion condensation. The case of salt concentration c0

+
= 0 is referred to as the

counterion-only case, and gives \Theta + \sim 0.28 for the PPB model. Note that \Theta + in this limit
is system specific, since the size of the simulation box/computational domain determines
the counterion concentration and subsequently the coverage. The coverage \Theta + in the ML
model in this limit is undefined, since the electrostatic binding energy of MCs depends
on the screening length \kappa  - 1, which is undefined in this model in the absence of the salt.

In the next step, \Theta + values for PPB and ML models are fitted (bold curves in Fig. 5.5(a))
to the simulation results for G2-dPGS in the monovalent limit by allowing ion-specific ef-
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fects in the counterion–macromolecule binding, i.e., \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},+ as a fitting parameter. The
values of \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},+ are found to be  - 0.45 k\mathrm{B}T and  - 1.81 k\mathrm{B}T for PPB and ML models,
respectively. Recall that the simulations have not really included ion-specific effects in
terms of specific hydration phenomena, etc., still, they include excluded-volume, disper-
sion attraction, and importantly, all electrostatic charge–charge correlations, not captured
in the mean-field theories. Hence, the ion-specific fitting parameters can be viewed in gen-
eral as correction factors, including all ionic contributions that are beyond the mean-field
treatment of the PPB and ML models. The larger fitting parameter for ML than PPB
(in the absolute value) may indicate the higher level of approximations in the ML model.
Having the models now informed using the benchmark data from simulations, they can
be utilized to predict the binding at other ion concentrations.

Fig. 5.5(b) shows the numerical fitting of \Theta + values (dashed curves) to those obtained
from G4-dPGS simulations. The values of \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},+ as a fitting parameter are  - 0.56 k\mathrm{B}T

and  - 1.85 k\mathrm{B}T for PPB and ML models, respectively, which are close to those obtained
for G2-dPGS, within the error difference of \sim 0.1 k\mathrm{B}T . The ML model fits better to both
G2-dPGS and G4-dPGS CG results than the PPB model at large c0

+
, which may indicate

that the dPGS charge in the simulations acts more as finite binding sites, as assumed in
the ML model.

5.3.2 Divalent case: Theoretical comparison and best fit to sim-

ulations

We now aspire to use the obtained \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, + to inform the MMvH and PPB models with the
help of the reference data obtained from simulations, in order to capture the competitive
ion binding in a mixture of MCs and DCs. The models fitted to the benchmark data can
then be used to predict the binding coverages \Theta ++ and \Theta + for different dPGS generations
and salt concentrations. In practice, we perform the numerical fitting of \Theta ++ and \Theta +

obtained from the MMvH and PPB models to those from simulations, by fixing \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, +

for MCs obtained from the monovalent-only case, and then subsequently fitting \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, ++

for DCs. The values of \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, + for MCs obtained from the monovalent limit are, for a
given binding model (ML or PPB), found to be approximately independent of the dPGS
generation (with \sim 0.1 k\mathrm{B}T as margin of error). Therefore, \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, + is averaged over
generations (G2 and G4), as shown in Table 5.3. Fig. 5.6 depicts the behavior of MMvH,
PPB and the DM model in terms of the binding coverages \Theta i, in a mixture of DCs
and MCs. The MMvH model uses the effective configurational volumes v0 = 1.04 M - 1
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Figure 5.6: Coverages \Theta + and \Theta ++ on G2-dPGS and G4-dPGS obtained from the application of all
models (MMvH, PPB, DM) as a function of the DC concentration c0++ in a mixture of DCs and MCs.
The MC concentration, c0+ = 150.37 mM. Model \Theta i are fitted to simulations using the intrinsic binding
chemical potentials \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i as fitting parameters. The values of \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i are obtained to be  - 2.73 k\mathrm{B}T
(G2-dPGS) and  - 2.98 k\mathrm{B}T (G4-dPGS) for MMvH model, whereas  - 1.77 k\mathrm{B}T (G2-dPGS) and  - 1.98 k\mathrm{B}T
(G4-dPGS) for PPB model. The effective configurational volumes v0 used in the MMvH model are
1.04 M - 1 and 0.57 M - 1 for G2-dPGS and G4-dPGS, respectively, and are obtained from our previous
simulations [IV]. The yellow circle and square symbols denote the coverages \Theta + and \Theta ++, respectively,
obtained from simulations.

and 0.57 M - 1 for G2-dPGS and G4-dPGS, respectively, as obtained from our previous
simulations [IV]. At low DC concentration, i.e. in the monovalent limit, MCs act as the
only counterions to the macromolecule, resulting in the highest MC coverage \Theta +. In this
limit at c0

+
= 150.37mM, both MMvH and PPB models show \Theta + \simeq 0.57 for G2-dPGS, and

\Theta + \simeq 0.8 for G4-dPGS. As c0
++

increases, more DCs bind to the macromolecule and more
of the previously bound MCs get released into the bulk. Table 5.2 shows the resultant
effective charge valency Z\mathrm{P}\mathrm{B}

\mathrm{e}ff and potential \phi \mathrm{P}\mathrm{B}
\mathrm{e}ff of G2-dPGS and G4-dPGS evaluated by the

PPB model. Quantitatively consistent with the Z\mathrm{e}ff and \phi \mathrm{e}ff obtained from simulations,
Z\mathrm{P}\mathrm{B}

\mathrm{e}ff and \phi \mathrm{P}\mathrm{B}
\mathrm{e}ff show a strong decrease in magnitude with a higher c0

++
, depicting higher

dPGS charge renormalization.
Corresponding to the fitting of binding coverages \Theta i on G2-dPGS and G4-dPGS binding

sites, as shown in Fig. 5.6, the resulting \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, ++ values are calculated as  - 2.73 k\mathrm{B}T

(G2) and  - 2.98 k\mathrm{B}T (G4) for the MMvH model, whereas  - 1.77 k\mathrm{B}T (G2) and  - 1.98 k\mathrm{B}T

(G4) for the PPB model. Table 5.3 shows the values of \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, ++ averaged over G2-dPGS
and G4-dPGS cases. It can be observed that both \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, ++ and \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, + values from
the MMvH model exceed (in magnitude) those from the PPB model across the whole
c0

++
\sim 0  - 25mM range. This can again be attributed to higher approximations in the

electrostatic partition coefficient designed in the MMvH model, based on the DH charging
free energy, as compared to that from the PPB model, incorporating non-linear effects in
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G2 G4

c0
++

r\mathrm{P}\mathrm{B}\mathrm{e}ff Z\mathrm{P}\mathrm{B}
\mathrm{e}ff \phi \mathrm{P}\mathrm{B}

\mathrm{e}ff r\mathrm{P}\mathrm{B}\mathrm{e}ff Z\mathrm{P}\mathrm{B}
\mathrm{e}ff \phi \mathrm{P}\mathrm{B}

\mathrm{e}ff

0.00

1.42

 - 11.72  - 1.32

2.36

 - 23.60  - 1.56

0.98  - 9.79  - 1.12  - 20.03  - 1.38

2.95  - 8.89  - 0.88  - 15.54  - 1.05

3.75  - 8.29  - 0.83  - 14.34  - 0.97

9.96  - 7.03  - 0.57  - 8.86  - 0.60

14.94  - 6.36  - 0.46  - 6.13  - 0.44

Table 5.2: The structural and electrostatic parameters of G2-dPGS and G4-dPGS measured from the ion-
specific penetrable PB (PPB) model (see Sec. 5.2.3). r\mathrm{P}\mathrm{B}

\mathrm{e}ff , Z\mathrm{P}\mathrm{B}
\mathrm{e}ff and \phi \mathrm{P}\mathrm{B}

\mathrm{e}ff are the effective radii (expressed
in nm), charge valencies and potentials of the dPGS, evaluated as a function of the DC concentration
c0++ (expressed in mM). The MC concentration c0+ is set to 150.37 mM.

Model \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i (k\mathrm{B}T )
++ +

DM 5.13 3.37

PPB  - 1.87  - 0.50

MMvH (v0 CG)  - 2.85  - 1.83

MMvH (v0 Std.)  - 2.86  - 1.44

Table 5.3: The values of the intrinsic component of the binding chemical potential \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i (i = +,++)
for the dPGS counterions for the Donnan (DM), PPB and MMvH models, obtained by the simultaneous
numerical fit of the CG simulation coverages \Theta + and \Theta ++ to those obtained from the models (See
Fig. 5.6). The \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i values for a particular counterion species are averaged over G2 and G4 dPGS
generations. The MMvH model results are calculated for the configurational volume of a counterion in
the bound state v0 obtained from simulations and for v0 = 1M - 1, which is the standard value typically
considered in experimental evaluations of the standard binding energy [257]. The values of v0 obtained
from the simulations are 1.04 M - 1 and 0.57 M - 1 for G2 and G4-dPGS, respectively [IV].

the electrostatic potential in the macromolecule vicinity. The standard intrinsic chemical
potentials \Delta \mu 0

\mathrm{i}\mathrm{n}\mathrm{t}, i after fitting the MMvH model \Theta i with those from simulations are also
given in Table 5.3.

Unlike the other models, we simultaneously fit both \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, + and \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, ++ to perform
numerical fitting of \Theta + and \Theta ++ obtained from the DM model with the simulation data.
As shown in Table 5.3, the values of \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, + and \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, ++ for the model turn out large and
positive compared with those from other models, since the DM model tries to neutralize
the entire dPGS charge via the electroneutrality condition in the dPGS phase. The DM
fits for \Theta + differ to an extent with those from simulations, while those for \Theta ++ are found to
be reasonably good. The DM, however, provides better fits for \Theta + in the case of G4-dPGS
as compared to G2-dPGS. This is attributed to the bigger size of G4-dPGS, which better
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satisfies the criterion \kappa r\mathrm{d} \gg 1, under which the DM electroneutrality condition holds
comparatively well.
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Figure 5.7: MMvH model predictions in a mixture of DCs and MCs. (a) The variation in the effective
charge of dPGS with dPGS generation as a function of c0++. (b) The effect of the dPGS generation on
the ratio of the effective charge to bare charge Z\mathrm{e}ff/Z\mathrm{d} of dPGS as a function of c0++. The inset shows the
smaller range of DCs concentrations, close to the physiological concentration range for the DCs (Ca2+

and Mg2+ cations). (c) The variation in the total number of condensed counterions N\mathrm{b}
\mathrm{t}\mathrm{o}\mathrm{t} = N\mathrm{b}

+ +N\mathrm{b}
++,

normalized by the total number of MC binding sites N\mathrm{s}, plotted as a function of c0++ for different dPGS
generations. (d) Predicted values of binding coverages \Theta + and \Theta ++ for MCs vs. DCs competitive binding
on G6-dPGS. The MC concentration c0+ is fixed to 150.37mM. The intrinsic binding chemical potentials
for DCs and MCs are fixed to the values averaged over generations (G2 and G4), \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},++ =  - 2.85 k\mathrm{B}T
and \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},+ =  - 1.83 k\mathrm{B}T , which are taken from simultaneous fitting of both coverages \Theta i (i = +,++)
to simulations (See Table 5.3). The configurational binding volume v0 is fixed to 0.80 M - 1, the mean of
the binding volumes obtained for G2 and G4-dPGS from our previous simulations [IV].

Having established the model frameworks by informing \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i by fitting the coverages
\Theta i to those from simulations and averaging the values of obtained \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i over generations
(See Table 5.3), we finally utilize their predictive ability to explore the electrostatic char-
acterization of dPGS for different generations and salt concentrations. As an example,
Fig. 5.7(d) shows the MMvH model predictions for the binding coverages \Theta + and \Theta ++ for
the case of a competitive ion binding on G6-dPGS, similar to Fig. 5.6 on G2-dPGS and
G4-dPGS. We also study the effective charge valency Z\mathrm{e}ff of dPGS along with the compo-
sition of condensed ions on the molecule. Figs. 5.7(a) and 5.7(b) show the variation of the
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effective charge valency Z\mathrm{e}ff of G2-dPGS and its normalized form Z\mathrm{e}ff/Z\mathrm{d}, respectively,
as a function of the DC concentration c0

++
, as predicted by the MMvH model. It can be

clearly seen from Fig. 5.7(a) that the introduction of DCs leads to a net charge renormal-
ization of dPGS, which further decreases its Z\mathrm{e}ff . The inset shows that, with reference to
the monovalent limit, the dPGS effective charge is 30  - 35\% further renormalized upon
introducing DCs in the range of 1  - 4mM, which is close to the physiological concen-
tration range for calcium(II) ions. Fig. 5.7(b) shows that the fraction of the bare dPGS
charge that gets renormalized increases with the dPGS generation. The inset shows the
variation for c0

++
varying from 0mM to 10mM. The rate of dPGS charge renormalization

with respect to c0
++

is the highest at the low c0
++

regime and subsides as c0
++

increases,
since the charge renormalized dPGS results in lower electrostatic binding chemical poten-
tial \Delta \mu \mathrm{e}\mathrm{l}, i. The reduced amount of renormalization is not attributed to the ion packing,
which is evident from Fig. 5.7(c) showing the total number of condensed ions (including
both DCs and MCs) per dPGS sulphate group. As c0

++
increases, the total number of

condensed ions decreases, indicating that the ion packing effects diminish as c0
++

increases.
The decrease in the amount of renormalization thus predominantly has electrostatic ori-
gin. Fig. 5.7(a) shows that 80  - 90\% of the dPGS bare charge is renormalized as c0

++

increases from 0  - 100mM, however, the total number of condensed counterions effec-
tively decreases, according to Fig. 5.7(c). This in effect would significantly hamper the
binding affinity of protein with dPGS. It has been well established through our previous
works that the dPGS–protein complexation is dominantly influenced by the release of a
few MCs that were highly confined due to heavy charge renormalization [IV]. The in-
troduction of DCs, however, decreases the confinement of these condensed counterions,
thus less counterions to be released during dPGS-protein binding. In addition, the heavy
charge renormalized dPGS leads to lower electrostatic contribution to its overall binding
affinity with the protein or any other multivalent ligand.

5.4 Conclusion

In this chapter, we have addressed the biologically and industrially relevant problem of the
competitive sorption of mono- vs. divalent counterions into a highly charged globular PE,
with direct comparison to CG simulations of the dendritic macromolecule dPGS. Beyond
simple Donnan and ion-specific penetrable PB models, we introduced a two-state discrete
binding site model (MMvH) applicable for heterogeneous ligand systems (counterions with
mixed valencies/stoichiometries). The broad classification of surrounding counterions as
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“bound" and “free" gives the MMvH model a computationally unique advantage over the
PPB model, which involves the calculation of the distance-resolved counterion density
profiles. The fitting results with simulations highlight the key differences in the MMvH
and PPB models. Although being on a mean-field level, the PPB model incorporates
non-linear electrostatic effects, which become more prominent near the surface of dPGS,
delivering a relatively accurate picture of the dPGS-counterion electrostatic binding affin-
ity, compared to the MMvH model, which approximates dPGS-counterion electrostatic
interaction on a linearized PB (DH) level by absorbing these non-linear electrostatic ef-
fects into the effective charge valency Z\mathrm{e}ff of dPGS. On the contrary, the MMvH model
provides more accurate values of the extent of counterion adsorption \Theta at high concen-
trations (i.e., in the binding site saturation regime) than the PPB model. The reason
is that the MMvH model assumes discrete binding sites, whereas the PPB model treats
dPGS charge as continuum and allows an unlimited uptake of counterions, which is not
realistic.

Future extensions of the MMvH model could include an extra level of competition
between adsorbed ions explicitly, namely through a non-linear term in Eq. (5.20) (of the
type used in the regular solution theory or the Flory–Huggins approximation in polymer
theories) that describes the interaction between two adsorbed ions in proximal positions
(sites). The effects of this generalization in a different context can be found in a study
on ion induced lamellar-lamellar phase transition in charged surfactant systems [388]. In
general, this type of competition results in non-continuous adsorption equilibria and could
be interesting in the present context.

The simplest presented model, the Donnan model (DM) extended for ion-specific effects,
is also useful for a quick, qualitative prediction of the adsorption ratio. Per construction it
should become more accurate for large globules and/or large salt concentrations (for which
the globule size becomes larger than the DH screening length), where the electroneutrality
condition is better justified.

The models presented in this work can be used to accurately extrapolate and predict the
competitive ionic sorption in experiments for a wide range of salt concentrations and salt
compositions. They can be also easily generalized to more ionic components and valencies.
The electroneutrality radius required for the DM model and the intrinsic macromolecular
charge distribution required for the PPB model as an input parameter (in the form of
the bare radius r\mathrm{d}), are taken from simulations. However, they can also be derived by
measuring the form factors from, e.g., neutron scattering [391, 392]. The MMvH (or ML
in the monovalent case) model requires the effective radius r\mathrm{e}ff of the macromolecule as
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an input parameter, which besides simulations, can also be derived from independent
experiments such as electrophoresis and fitting structure factors (of non-dilute colloidal
suspensions) by Derjaguin–Verwey–Landau–Overbeek (DLVO) interactions [361, 393]. As
we showed, r\mathrm{e}ff can also be obtained using PB models and related theories provided the
intrinsic macromolecular charge distribution is available.
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6 Competitive ion sorption: Isothermal titra-

tion calorimetry vs. theory

The isothermal titration calorimetry (ITC) is one of the essential and widely used tools
in the area of substrate–ligand interactions, such as PE–protein [IV], PE–ion pairs [394,
395] etc. ITC mechanism greatly facilitates the direct observation of the biological macro-
molecular interactions and allows one to explore their thermodynamics in terms of the
heat of complexation/binding [396]. However, a suitable binding model is required to
analyse the data and to interpret it correctly, which then gives highly accurate values of
several important quantities such as the binding affinity (binding constant) K [134, 257,
325, 397, 398, 399, IV]. The underlying mechanism behind the PE–ligand binding involves
a complex interplay between the electrostatic, solvation and steric effects. Previous works,
interestingly, seem to indicate that most of the energy contributions related to the change
in the solvation of the PE and ligands as a result of the binding, cancel out (the phe-
nomenon well known as the enthalpy–entropy cancellation [134, 136, 142, 400, 401, 402])
and that the binding constant is mainly determined by the electrostatic effects [133, 134,
403, IV]. This justifies the suitability of the electrostatic binding models described in the
previous chapter to the ITC data, in order to derive meaningful interpretation. Previous
chapter presents several key binding models that describe the competitive ion uptake by
highly charged globular PEs such as dPGS. The models are fairly transferable to other
simulation or experimental studies on this phenomenon. In this chapter, we present a
particular study of the competitive binding of Mg2+ and Na+ cations on the G2-dPGS via
ITC. The ITC data in the form of the heat exchange during the titration is then mapped
to the amount of Mg2+ uptake by dPGS using the two component ligand binding model
presented in section 3.4 and fitted with the penetrable PB (PPB) and Manning–McGhee–
von Hippel (MMvH) models presented in the previous chapter. The intrinsic binding
chemical potentials \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i (i = ++ (\mathrm{M}\mathrm{g}2+), +(\mathrm{N}\mathrm{a}+)), obtained as fitting parameters are
then interpreted. Also the challenges faced in the experimental measurements and the
fitting of the binding models to the experimental data are addressed.

6.1 Parameters in the ITC experiment

The dPGS is obtained by the sulphation of a fractionated hyperbranched polyglycerol [404,
405]. Synthetic dPGS is a dendritic polymer with low polydispersity, compared to the

105



6.1. Parameters in the ITC experiment

perfect dendrimers discussed in previous chapters. Second generation of dPGS (G2-dPGS)
has been used for the analysis. Table 6.1 gives the details about the synthetic G2-dPGS
sample used in the current ITC experiments, in terms of its number-averaged total molec-
ular weight M\mathrm{n},\mathrm{d}\mathrm{P}\mathrm{G}\mathrm{S}, number-averaged core weight M\mathrm{n},\mathrm{d}\mathrm{P}\mathrm{G}, etc. The Degree of Sulphation
(DS) can be determined from the weight percentage of sulfur [405, 406].

dPGS G2

M\mathrm{n},\mathrm{d}\mathrm{P}\mathrm{G} (\mathrm{k}\mathrm{D}) 2.6

M\mathrm{n},\mathrm{d}\mathrm{P}\mathrm{G}\mathrm{S} (\mathrm{k}\mathrm{D}) 6.5

DS (\%) 97

N\mathrm{s} 34

r\mathrm{d} (\mathrm{n}\mathrm{m}) 1.41

r\mathrm{e}ff (\mathrm{n}\mathrm{m}) 1.65

Table 6.1: Properties of dPGS. DS: degree of sulphation determined from elemental analysis. N\mathrm{s}

represents the number of terminal sulphate groups. M\mathrm{n},\mathrm{d}\mathrm{P}\mathrm{G} is the number-averaged molecular weight of
the dPG core. The number-averaged molecular weight M\mathrm{n},\mathrm{d}\mathrm{P}\mathrm{G}\mathrm{S} was calculated from the respective dPG
core and sulphate groups. The bare radius r\mathrm{d} of G2-dPGS (perfect version) is taken from simulations (cf.
Table. 5.1 in Chapter 5). The effective radius r\mathrm{e}ff of G2-dPGS is then calculated using the Alexander
prescription [15, 17, 129, 130] (cf. Sec. 3.1.2.4.1).

ITC experiments were conducted on a Microcal VP-ITC instrument (Microcal, Northa-
mpton, MA, USA), with a cell volume of 1.43 ml and a syringe volume of 280\mu l. All
samples (including both the titrant and the analyte) used in the measurements were
prepared in a buffer solution of 10 mM MOPS and a known NaCl concentration c0

+
in order

to derive a fixed ionic strength after the final injection of the MgCl2 titrant. Therefore, c0
+

remains constant throughout the titration. The titrant and analyte are aqueous solutions
of MgCl2 (with a known concentration c0

++, \mathrm{t}) + NaCl/MOPS and G2-dPGS (with a known
concentration c\mathrm{d}) + NaCl/MOPS, respectively. The pH of each solution was fixed to 7.2.

Three separate titration runs were carried out for different sets of c0
++, \mathrm{t}, c

0
+

and c\mathrm{d} values,
which are shown in Table 6.2. The table also shows the Mg2+ concentration c0

++, \mathrm{f} in the cell
at the end of the titration run. For each titration run, MgCl2 buffer solution was titrated
with 35 successive injections of 8\mu l each into the cell containing the dPGS solution. The
stirring rate of 307 rpm was set with a time interval of 300 s between each injection. The
measurements were performed at 30° C. Before each experiment all samples were degassed
and thermostatted for several minutes at 1° C below the experimental temperature.

Three separate isotherms corresponding to three separate titrations depicting the com-
petitive ion sorption of Mg2+ and Na+ cations on dPGS are then obtained from ITC
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experiments in the form of the heat exchange signal Q(x) as a function of the molar ratio
x = c0

++
/c\mathrm{d}. The two component ligand binding model described in section 3.4 is then

used to map the ITC isotherms Q(x) to the number of condensed Mg2+ cations N\mathrm{b}
++
(x).

PPB MMvH

Titration c0++,\mathrm{f} c0++,\mathrm{t} c0+ c\mathrm{d} \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},+ \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},++ \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},+ \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},++

(mM) (mM) (mM) (mM) (k\mathrm{B}T ) (k\mathrm{B}T ) (k\mathrm{B}T ) (k\mathrm{B}T )
1 0.8 5.0 9.10 0.0200

1.85 1.28 1.58 0.592 1.7 10.0 6.40 0.0389

3 2.5 15.2 4.00 0.0638

Table 6.2: The total Mg2+ concentration in the titrant (c0++,\mathrm{t}), in the cell at the end of the titration
(c0++,\mathrm{f}), Na+ concentration c0+ and G2-dPGS concentration c\mathrm{d}, in the solution during the three titration
runs. Concentration of MOPS is maintained at 10 mM, rendering the total ionic strength of the buffer as
c0+ + 10 mM. The table also shows the intrinsic binding chemical potentials \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i (i = +,++) for the
dPGS counterions for the PPB and MMvH models, obtained by the numerical fitting of N\mathrm{b}

++
with those

obtained from ITC (cf. Fig. 6.3 and Sec. 6.3.2).

6.2 Application of PPB and MMvH models

The ITC-obtained binding isotherms N\mathrm{b}
++
(x) are then fitted with the PPB and MMvH

models introduced in sections 5.2.3 and 5.2.4, respectively, using \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, + and \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, ++ as
fitting parameters. It is worth noting that, according to the fitting protocol implemented
in chapter 5, first \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, + is obtained by fitting the CG binding coverages to those obtained
from the model in the monovalent limit, and then while fixing the obtained \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, +,
\Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, ++ is obtained in the divalent case by fitting the MC and DC coverages. In the case
of ITC, however, Na+–G2-dPGS binding isotherm in the monovalent limit is unavailable.
Therefore, the ITCN\mathrm{b}

++
(x) is fitted to that obtained from the model using the simultaneous

fitting of \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, + and \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, ++. The bare radius r\mathrm{d} of G2-dPGS (perfect version) is taken
from simulations (cf. Table. 5.1 in Chapter 5). The effective radius r\mathrm{e}ff of G2-dPGS is
then calculated (cf. Table 6.1) using the Alexander prescription [15, 17, 129, 130] (cf.
Sec. 3.1.2.4.1) and comes out to be approximately constant during each titration step.
This result is consistent with that obtained for the PPB model and CG simulations in
Chapter 5. r\mathrm{e}ff is then used to calculate the number of bound ions N\mathrm{b}

i to the dPGS for the
PPB model (cf. Eq. (5.13) in Chapter 5), and is also used as an input parameter for the
MMvH model. The MMvH model, being the canonical model, inherently conserves the
amount of ionic species in the solution after partitioning. Similarly, the PPB model is a
cell model and the ionic bulk concentrations c\mathrm{b}i are obtained as a result of the partitioning,
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Figure 6.1: (a) Real-time data of the rate of ITC heat exchange during the dPGS–Mg2+titration obtained
at 5 mM NaCl, 10 mM MOPS buffer with p\mathrm{H} = 7.2 at 298K. The blue and orange peaks represent the
heat exchange during the sorption and the Mg2+ solvation/dilution, respectively. (b) The corresponding
titration isotherm (blue squares) and Mg2+ solvation (orange squares) obtained by integrating the peaks
in panel (a), i.e., in the form of the incremental heat exchange per mol of Mg2+ ions added into the
solution \Delta Q(x)/\Delta n++. (c) The dPGS–Mg2+binding isotherm for the three titration runs, represented
in terms of the number of bound Mg2+ cations N\mathrm{b}

++
(x). N\mathrm{b}

++
(x) are obtained by transforming the binding

isotherms \Delta Q(x)/\Delta n++, which in turn are obtained by subtracting the Mg2+ solvation isotherms from
the titration isotherms, like in panel (b).

in an iterative manner, as shown in Appendix B.1.0.1. Further details about the model
assumptions are given in section 5.2.5 of chapter 5.

6.3 Results and discussion

6.3.1 Analysis by ITC

Fig. 6.1(a) and (b) show the experimental results with an example of those obtained
from the titration run 1. Fig. 6.1(a) shows the heat flow in the form of the titration
peaks (blue) and the heat exchanged as a result of the dilution/solvation of an equal
amount of Mg2+ ions (orange), with time. It can be seen that the titration peaks are
endothermic, while the Mg2+ dilution peaks are exothermic. Integration of these peaks
leads to the heat exchange per mol of Mg2+ ions added to the cell \Delta Q(x)/\Delta n++, as a
function of the total molar ratio of Mg2+ ions and dPGS molecules n++/n\mathrm{d}\mathrm{P}\mathrm{G}\mathrm{S} in the cell,
as shown in Fig. 6.1(b). In order to precisely capture the physics of dPGS–Mg2+ binding,
the Mg2+-dilution heat is then subtracted from the titration heat to obtain the Mg2+–
dPGS sorption isotherm \Delta Q(x)/\Delta n++, which is then transformed into the isotherm in
the form of the number of bound Mg2+ ions N\mathrm{b}

++
(x) per dPGS molecule, as shown in

Fig. 6.1(c). Fig. 6.1(c) shows the ITC-obtained N\mathrm{b}
++
(x) for the three titration runs. It

can be seen that the increase in the Mg2+ binding to dPGS is the highest at low c0
++

,
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Figure 6.2: The binding isotherm N\mathrm{b}
i (x) (i = ++,+) (i.e., the number of bound counterions on G2-

dPGS) obtained from the application of the PPB model (lines) and from ITC (symbols) as a function
of the titration steps measured in terms of the number of moles of Mg2+ ions per mol of G2-dPGS
n++/n\mathrm{d}\mathrm{P}\mathrm{G}\mathrm{S} in the solution. PPB obtained N\mathrm{b}

++
are independently evaluated with the intrinsic binding

chemical potentials \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i = 0. Three titration runs are performed, which are addressed with the final
Mg2+ concentrations at the end of the titrations c0++,\mathrm{f} = 0.8mM, 1.7mM and 2.5mM. Na+ and dPGS
concentrations during the runs are shown in the Table 6.2.

while it subsides as c0
++

increases. N\mathrm{b}
++
(x) also does not increase with the increase in

the total Mg2+ concentration c0
++, \mathrm{f} . This could be attributed to the limitations in the

measurement of the heat exchange in the VP-ITC calorimeter during the titration. It
is worth noting that the dPGS–Mg2+ interaction here is an example of a low binding
affinity. The calorimetric measurements depend on the number of bound Mg2+ ions, and
the distinction between the solutions with the Mg2+ concentrations c0

++, \mathrm{f} within the range
of 0.8 and 2.5mM is, unfortunately, too subtle for the VP-ITC calorimeter.

6.3.2 Application of binding models

We now compare the binding isotherms N\mathrm{b}
++
(x) obtained from the ITC experiments with

the PPB model. Fig. 6.2 shows the ITC-obtained N\mathrm{b}
++
(x) for the three titration runs (also

shown in Fig. 6.1(c)), along with N\mathrm{b}
i (x) for both Mg2+ and Na+ ions obtained from the

PPB model at identical conditions. The PPB model here neglects the ion-specific effects,
i.e., \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i = 0. It can be observed that the increase in the Mg2+ sorption and Na+ des-
orption, i.e., \mathrm{d}N\mathrm{b}

++
/\mathrm{d}x and \mathrm{d}N\mathrm{b}

+
/\mathrm{d}x respectively, is the highest at low Mg2+ concentrations

c0
++

. This can be accredited to the combined effect of the electrostatics of Mg2+–dPGS
binding, and the entropy gain in the release of previously bound Na+ cations in the
bulk, facilitating the Mg2+ condensation. In the low c0

++
(or x = n++/n\mathrm{d}\mathrm{P}\mathrm{G}\mathrm{S}) regime,

Na+ cations act as the only counterions to the dPGS (monovalent limit). In this case, the
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dPGS charge is weakly renormalized and some of the dPGS binding sites are available
for binding. This incentivizes the newly binding Mg2+ cations to occupy these binding
sites. Simultaneously, owing to the high density of the binding sites that are occupied
with Na+ cations, it is entropically favourable for the release of the bound Na+ cations
into the bulk and replacement of the corresponding freed binding sites with the newly
binding Mg2+ cations. Fig. 6.2 shows that the amount of Na+ cations getting desorbed
from dPGS is more than that of newly binding Mg2+ cations, i.e., \Delta N\mathrm{b}

+
/\Delta N\mathrm{b}

++
> 1, indi-

cating the net gain in the total ionic entropy, facilitating Mg2+ condensation. Therefore,
as c0

++
increases, more Mg2+ cations bind to the dPGS and more of the previously bound

Na+ cations get released into the bulk. In the large c0
++

regime, however, the dPGS charge
is highly renormalized and fewer binding cites are occupied with Na+ cations, resulting
in the decrease in the condensation \mathrm{d}N\mathrm{b}

++
/\mathrm{d}x and the desorption \mathrm{d}N\mathrm{b}

+
/\mathrm{d}x. As can be seen

in Fig. 6.2, PPB model indicates that N\mathrm{b}
++
(x) increases and N\mathrm{b}

+
(x) decreases with the

increase in c0
++, \mathrm{f} (different titration runs), i.e., increase in the amount of Mg2+ ions per

dPGS molecule in the solution. Fig. 6.2 illustrates fairly close comparison of the PPB
with the ITC isotherms for different titration runs. Approximately 8  - 10 Mg2+ cations
are condensed and 14  - 16 previously condensed Na+ cations are released in the bulk,
respectively, at the end of the titrations. The comparison between the PPB and ITC
isotherms is then attempted to be improvised by numerically fitting them using the in-
trinsic ion-specific binding chemical potentials of the cations \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i (i = ++,+) used in
the PPB model, as fitting parameters.

Fig. 6.3 shows the PPB isotherms numerically fitted with the ITC isotherms. N\mathrm{b}
++
(x)

in particular in the low c0
++

regime are more accurately fitted. In the low c0
++

limit, where
only Na+ cations act as counterions, 12 Na+ cations are bound to dPGS, resulting in the
corresponding effective charge valency of the dPGS Z\mathrm{e}ff as  - 22. The variation in Z\mathrm{e}ff is
discussed in detail in Fig. 6.4(a). The PPB isotherm suggests that approximately 8.5 - 9.5

Mg2+ cations are condensed and 10.8 - 11.5 previously condensed Na+ cations are released
in the bulk, respectively, at the end of the titrations. Approximately 50\% ion-exchange
occurs as the molar ratio x reaches 6, indicating that most portion of the ion-exchange
occurs during the first few titration steps. The PPB fitting parameters are obtained
as \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, + = 1.85 k\mathrm{B}T and \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, ++ = 1.28 k\mathrm{B}T (cf. Table 6.2). Apart from the PPB
model, we also perform the numerical fitting of ITC isotherms with that obtained from
the MMvH model. The respective fitting parameters are obtained as \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, + = 1.58 k\mathrm{B}T

and \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, ++ = 0.59 k\mathrm{B}T (cf. Table 6.2).
Fig. 6.4(a) shows the binding isotherms obtained from the fitted PPB and MMvH
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Figure 6.3: The binding isotherm N\mathrm{b}
i (x) (i = ++,+) obtained from the application of the PPB model

(lines) and from ITC (symbols) as a function of the titration steps measured in terms of the num-
ber of moles of Mg2+ ions per mol of G2-dPGS n++/n\mathrm{d}\mathrm{P}\mathrm{G}\mathrm{S} in the solution. Three titration runs are
performed, which are addressed with the final Mg2+ concentrations c0++ at the end of the titrations
c0++,\mathrm{f} = 0.8mM, 1.7mM and 2.5mM. Na+ and dPGS concentrations during the runs are shown in the
Table 6.2. PPB obtained N\mathrm{b}

++
are fitted to those obtained from ITC using the intrinsic binding chemical

potentials \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},+ = 1.85 k\mathrm{B}T and \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},++ = 1.28 k\mathrm{B}T .

models in the form of Z\mathrm{e}ff . It can be seen that the dPGS is effectively charge renormalized
at the end of the titration. However, as expected, considering the isotherms shown in
Fig. 6.3, \mathrm{d}Z\mathrm{e}ff/\mathrm{d}x decreases as c0

++
increases. Both model isotherms perform reasonably

close to each other. In the monovalent limit, i.e., at c0
++

= 0, Z\mathrm{e}ff according to the
PPB model converges to  - 22, while it meets  - 21.5 according to the MMvH model. This
difference could be attributed to the non-linear effects considered in the PPB electrostatic
interactions (resulting in higher condensed ions), which are not incorporated in the DH-
level Born energy used in the MMvH model (cf. Chapter 5). Taking into account the bare
charge valency of the G2-dPGS used in this study as  - 34 (cf. Table 6.1), the extent of the
total charge renormalization of dPGS at the end of the titration ranges from 53  - 57\%,
considering both models.

Fig. 6.4(b) shows the binding isotherms in terms of the composition of the Mg2+ and
Na+ cations in the condensed state plotted as a function of that in the bulk, evaluated by
the PPB model, which can be interpreted as a “phase diagram" of the counterions. It can
be observed that, at the start of the titration, i.e., at c0

++
\sim 0, the rate of enrichment of

Mg2+ cations binding to dPGS vs. that of Na+ cations is high, which is expected looking
at Fig. 6.3 and also due to a high resultant depletion of Mg2+ cations in the bulk. As c0

++

increases, c\mathrm{b}
++

also increases and less Mg2+ cations bind to dPGS per released Na+ cation
from its bound state, resulting in the decrease in the slopes of the composition curves in
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Figure 6.4: (a) Comparison of effective charge valency Z\mathrm{e}ff profiles predicted from MMvH and PPB
models. The profiles are obtained using the Na+ and Mg2+ bound ions from Fig. 6.3. The profiles are
calculated as a function of the titration steps measured in terms of the number of moles of Mg2+ ions
per G2-dPGS molecule n++/n\mathrm{d}\mathrm{P}\mathrm{G}\mathrm{S} in the solution. (b) A “phase diagram" depicting the composition of
bound counterions on dPGS as a function of their composition in the bulk, evaluated by the PPB model.

Fig. 6.4(b).

6.4 Conclusion

In this chapter, we have presented a study of the competitive ion binding on a highly
charged globular polyelectrolyte with the exemplification of Mg2+ and Na+ ion-exchange
on the G2-dPGS, studied using ITC. ITC measurements carried out at a range of dPGS,
Na+and Mg2+ concentrations indicate a high Mg2+ sorption in a low c0

++
range, while

the saturation in binding occurs at a high c0
++

range. The ITC binding isotherm is then
compared and fitted with the theoretical binding models, viz., the PPB and the MMvH
models, presented in chapter 5. There is a rapid ion-exchange during the initial stages
of the titration, while the exchange slows down at the later stages when the dPGS is
significantly charge renormalized. We ascertain that this ion-exchange is driven by Mg2+–
dPGS electrostatic interaction, as well as the entropic gain due to the simultaneous release
of previously bound Na+ cations, while the energetic effects due to solvation/desolvation
are canceled out [134, 136, 142, 400, 401, 402].

However, it is clear that the biomolecular complexation/binding processes involving
PE–ion, PE–PE systems are complex, and the ITC attempts to observe these processes,
however, only indirectly by probing into the incremental heat exchange occurring during
the binding equilibrium. In that sense, theoretical binding models such as the PPB and
MMvH models take into account the microscopic interaction details, and thus are helpful
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in meaningfully complimenting the ITC results. This perspective can help in the possible
developments of more intricate binding models that are directly applicable to fit the ITC
results.
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7 Summary of the thesis and outlook

7.1 Summary of the thesis

Dendritic PEs are known to be the emerging class of functional PEs, having attracted con-
siderable interest in the scientific community in the last years, due to their versatility in
bioapplications. In this thesis, we conducted a systematic characterization of the electro-
static and hydration properties of the dendritic PEs in a monovalent salt, and described a
competitive sorption of mono- vs. divalent counterions into highly charged globular PEs,
with the exemplification of dPGS. The electrostatic properties of dPGS are quantified
in terms of its effective charge and size, which are described with the help of both the
simulations and well-established theoretical frameworks such as the Debye–Hückel theory
and the concept of counterion condensation. Also, several theoretical models based on the
standard PB, Donnan, Manning, Langmuir models are devised and discussed to describe
the effective charge of dPGS during the competitive ionic sorption.

In particular, in the chapter 4, owing to the charged renormalization of dPGS induced
by the condensed counterions, we address the challenges of how to obtain a well-defined
effective charge and surface potential of the dPGS for practical applications using the
implicit- and explicit-solvent approaches applied to the explicit-water, AA MD computer
simulations. Atomic specificity provides us a deeper insight into the effective pair inter-
action between dPGS and counterions, and allows us to characterize dPGS by calculating
the molecular distributions. Furthermore, explicit treatment of water allows us to ob-
serve the equilibrium properties of the hydration structures around charged species, and
rationalizing the energetics of dPGS–water interaction. To electrostatically characterize
dPGS, we discuss well-known methods in the literature which are constructed for simple
charged hard spheres with smooth surfaces, viz., Alexander prescription on the electro-
static potential and on the counterion PMF obtained from simulation and the inflection
point criterion. We find that the charge renormalization effect on dPGS strengthens with
the generation, and consequently, effective charge has much weaker dependence on the
dPGS generation than the bare charge. It is concluded that all approaches give consistent
values for the effective charge and size but within an uncertainty window of the size of one
water molecule. Furthermore, the nature of the dPGS–water interaction was studied. The
PE–water interaction depends very specifically on the physicochemical properties of the
interaction environment. It was found that there is a net repulsion between the dPGS and
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water, which can be attributed to the hydrophobic dPGS scaffold and weakly attractive
sulphate–water interaction compared to water–water interaction, due to the chaotropic
nature of the monovalent sulphate groups.

Having completed the systematic depiction of the dPGS electrostatics in a monovalent
salt, the growing number of its bioapplications highlight the importance to study its
interactions with a mixture of mono- and divalent counterions, available in the in vivo
environment, and the resultant competitive ion sorption. In the chapter 4, we thus perform
the explicit water, AA MD simulations of dPGS with Na+, Mg2+, and Cl - ions. Given
that the conventional non-polarizable AA force-fields struggle to model multivalent ions,
owing to their ability to polarize surrounding media [200, 201, 204, 208], we evaluate the
performances of several recently advanced divalent ion force-fields optimized to ensure a
reasonable balance between ion–ion, ion–water and water–water interactions [201, 208,
217, 218] and their effect on the dPGS electrostatic attributes. While it is challenging
to conclude the simulation results in a quantitative way due to the unavailability of the
suitable benchmark properties from experiments, qualitative trends show that the effective
charge and potential reach a saturation level as Mg2+ concentration increases, while the
effective size remains unchanged.

In the chapter 5, we tackle the same problem of the competitive ion sorption via theoret-
ical modeling in a more generic fashion by representing dPGS as a part of highly charged
globular PEs. We modify a few existing electrostatic binding theories such as Donnan,
Langmuir, Manning and Poisson–Boltzmann approaches and present a few transferable
ion binding models. We then inform these models via the coarse-grained computer simu-
lation data, and use the models to predict the competitive ionic sorption for different salt
concentrations and PEs of different sizes. Such knowledge can help predict the biological
immune response to the PE, its metabolic fate, and the efficacy of the PE drug in different
environments for biomedical and biotechnological applications. In particular, we present
the novel two-state discrete binding site model for a binary heterogeneous ligand system
with a reasonable accuracy and a computational advantage over the standard PB theory
and simulations.

In the chapter 6, we now use the opportunity to utilize the binding models presented
in the chapter 5 to quantitatively rationalize the isotherms of the competitive binding of
Mg2+ and Na+ cations to dPGS, obtained via ITC experiments. Here, the ITC obtained
information in the form of the heat signals as a function of the Mg2+ concentration are
mapped to the number of bound counterions and the effective charge of dPGS. It is found
that there is a rapid ion-exchange during the initial stages of the titration. The driving
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force behind this is attributed to the presence of unoccupied dPGS binding sites and the
entropy gain in the release of Na+ cations. The ion-exchange slows down in the later
stages of titration, when the dPGS is significantly charge renormalized.

7.2 Outlook

7.2.1 Multivalent ion force-field

In principle, AA, explicit water MD simulations have a great advantage over the standard
electrostatic binding models (e.g. Donnan, PB, etc.) in unraveling the physics of the bind-
ing features and complex biological systems by enabling one to probe into unprecedented
time and length scales. However, as discussed before, this comes with a critical part of
the simulation setup– the choice of an accurate, reliable and reproducible force-field for
the system, which depends on the system properties of interest. This issue is particularly
pressing in the case of classical non-polarizable force-fields designed for multivalent ions.
As shown in the chapter 4, we tested several recently developed force-fields for divalent
cations and observed diverse set of results in terms of the dPGS electrostatic attributes. In
future works, therefore, focus could be directed towards more elaborate strategies such as
the implementation of polarizable force-fields [210, 211, 212], which have been extensively
developed in a simple and efficient form, since the past decade.

7.2.2 Improvements in binding models

In the chapter 5, we presented several approximate binding models (MMvH and PPB
models in particular) capturing the competitive ionic sorption on highly charged globular
PEs, which can provide reliable predictions of PE properties in experiments. There is
also a considerable room for improvement in these models, particularly in the modeling of
electrostatic charging free energy of the PE. The MMvH model treats the macromolecular
charging on a DH level, while the PPB model incorporates non-linear electrostatic effects
arising at the macromolecular surface, and between sulphate groups and counterions. Both
models, however, are on a mean-field level, and thus neglect the complex spatial charge
correlations inside the PE. Other non-electrostatic effects such as steric correlations are
considered in the MMvH model, however on the two-body level. The PPB model, on the
other hand, assumes the ions as point charges, neglecting the steric contributions. These
approximations consequently cause the corrections due to the electrostatic and steric
correlations to be collectively incorporated in the intrinsic counterion binding chemical
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potential \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i, when the models are fitted to simulation results, rendering it difficult
to separate these effects from the single ion-specific effects during binding. Some of the
other effects that both models do not incorporate are the fluctuations arising from the
interactions among the free ions in the bulk, and the fluctuations in the dielectric constant
of the medium near the PE. Future binding models can thus improve these models in this
respect, in order to refine and accurately depict the physics of competitive ionic sorption.
The MMvH model can also be extended to the mixture of different species of ligands
binding to the same PE. Mathematical formulations in that regard can be derived with
reference to the work by McGhee and von Hippel [379]. One of the purposes behind the
development of the presented models, however, was to capture the essential physics behind
the competitive binding in a minimalistic fashion, which both models indeed comply with.
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A Charge and hydration structure of dendritic

polyelectrolytes: Molecular simulations of polyg-

lycerol sulphate

A.1 dPGS with monovalent salt

A.1.1 Forcefield parameters

GAFF force-field [326, 327] is employed to characterize atomistic interaction properties
in all simulations. The bonded and nonbonded parameters for atoms in the system are
displayed in the Tables A.1–A.4 below. Partial charges are summarized in Fig. A.1.

A.1.2 Calculation of atomic partial charges

While the restrained electrostatic potential (RESP) [407, 408] at HF/6-31G* is the default
charge approach applied in the Amber protein force fields [326], this charge scheme needs
to run ab initio optimization at HF/6-31G* level which prevents it from being used in
handling large molecules such as dPGS. Alternatively, the partial charges for dPGS atoms
were calculated from AM1-BCC quantum mechanical scheme [328] which is much cheaper
than HF/6-31G* RESP and compatible with GAFF [326]. The antechamber package [327,
329] from USCF Chimera software (Ver. 1.11.2) [330] is used to assign the partial charges.
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Appendix A. Charge and hydration structure of dendritic polyelectrolytes: Molecular
simulations of polyglycerol sulphate

Atomtype \sigma (nm) \epsilon (kJ mol - 1) Description

C 0.340 0.458 sp3 carbon

CS 0.340 0.458 sp3 \alpha -carbon to sulphate

OS 0.300 0.711 ether and ester oxygen

OB 0.300 0.711 sulphate oxygen connecting sulphate to dPG

O 0.296 0.878 sulphate oxygen

S 0.356 1.046 sulphate sulfur

H1 0.247 0.066 hydrogen connected to \alpha -carbon to sulphate

HC 0.265 0.066 hydrogen connected to carbon

NA 0.333 0.011 Na+ ion

CL 0.440 0.418 Cl - ion
Table A.1: Atom identities and corresponding nonbonded LJ parameters used for dPGS molecule and
ions in the simulation for GAFF forcefield.
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Figure A.1: The atomistic structure and AM1–BCC partial charges (in units of e) for one of the three
repeating main branches of G1-dPGS (cf. Fig. 1.2(a)). All accompanying hydrogens of carbons are
assigned a partial charge of 0.045e each.
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A.1. dPGS with monovalent salt

Bonds kbij(kJ mol - 1 nm - 2) bij(nm)

C–C 253 634.0 0.154

C–CS 253 634.0 0.154

CS–CS 253 634.0 0.154

C–OS 252 295.2 0.144

CS–OB 252 295.2 0.144

OB–S 297 064.0 0.157

S–O 452 792.0 0.146

C–HC 282 252.6 0.109

CS–H1 281 081.1 0.109

Table A.2: Bond parameters for atoms in dPGS

Angles k\theta ijk(kJ mol - 1) \theta ijk(°)

C–C–C 528.86 110.63

C–C–CS 528.86 110.63

C–CS–CS 528.86 110.63

C–C–OS 418.40 109.50

CS–C–OS 567.35 108.42

C–CS–OB 567.35 108.42

CS–CS–OB 567.35 108.42

C–OS–C 519.65 113.41

CS–OB–S 496.22 109.55

OB–S–O 624.25 107.84

O–S–O 624.25 119.82

H1–CS–OB 425.09 108.82

H1–CS–CS 388.27 110.07

H1–CS–C 388.27 110.07

H1–CS–H1 328.02 109.55

HC–C–HC 329.70 108.35

HC–C–C 388.27 110.05

HC–C–CS 388.27 110.05

HC–C–OS 425.93 108.70

Table A.3: Angular parameters for atoms in
dPGS
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Appendix A. Charge and hydration structure of dendritic polyelectrolytes: Molecular
simulations of polyglycerol sulphate

Dihedrals \phi s(°) k\phi (kJ mol - 1) Mult \mathrm{i}plicity (n)

C–C–C–OS 0.00 0.651 3

CS–CS–C–OS 0.00 0.651 3

C–CS–CS–OB 0.00 0.651 3

OS–C–C–OS 0.00 0.651 3

OS–C–CS–OB 0.00 0.651 3

OB–CS–CS–OB 0.00 0.651 3

C–OS–C–C 180.0 0.418 2

C–OS–C–CS 180.0 0.418 2

C–CS–OB–S 0.00 1.604 3

CS–CS–OB–S 0.00 1.604 3

CS–OB–S–O 180.0 5.020 2

HC–C–C–HC 0.00 0.620 3

HC–C–CS–H1 0.00 0.620 3

H1–CS–CS–H1 0.00 0.620 3

HC–C–C–C 0.00 0.670 3

H1–CS–CS–C 0.00 0.670 3

HC–C–CS–CS 0.00 0.670 3

HC–C–OS–C 0.00 1.604 3

H1–CS–OB–S 0.00 1.604 3

HC–C–C–OS 0.00 1.046 1

H1–CS–C–OS 0.00 1.046 1

H1–CS–CS–OS 0.00 1.046 1

HC–C–CS–OS 0.00 1.046 1

HC–C–CS–OB 0.00 1.046 1

H1–CS–CS–OB 0.00 1.046 1

Table A.4: Dihedral parameters for atoms in dPGS
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A.1. dPGS with monovalent salt

A.1.3 Explicit vs. implicit water integration: Cumulative charge

and electrostatic fields

Figs. A.2 and A.3 show the comparison of explicit and implicit water approaches in
terms of the ratio of the net cumulative charge and the dielectric constant Z\mathrm{a}\mathrm{c}\mathrm{c}(r)/\varepsilon \mathrm{r} and
the resultant electrostatic field eE(r) as a function of the distance from dPGS-COM, for
all generations. Evidently, explicit-water profiles consist of a spacially correlated noise
which stems from the integrated noise from the radial charge density of water. This
radial charge density is obtained by summing the individual charge densities of hydrogen
and oxygen atoms of water. Given an illustrative example of an electroneutral system,

Figure A.2: Comparison of the ratio of the net cumulative charge distribution and the dielectric constant
with respect to dPGS-COM between implicit and explicit-water. \varepsilon \mathrm{r} = 72 for the implicit water approach
while for explicit-water, \varepsilon \mathrm{r} = 1.

suppose we have \langle N\rangle positive and negative charges each. The difference of positive and
negative charges on average is zero. However their statistical uncertainty (noise) scales
as \sim 

\sqrt{} 
\langle N\rangle , which indicates that higher the charge density, higher is the uncertainty.

This effect can normally be seen in the systems with large number of water molecules.
Since dPGS is a highly charged molecule, we used significantly large sizes of simulation
box (listed in Table 4.1) in order to ensure that the bulk regime is reached and thus the
electroneutrality in the long-range. However the downside of this strategy is an increase
in the statistical uncertainty in the charge calculations of water while implementing an
explicit-water approach, due to consequently large number of water molecules in the box.
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Appendix A. Charge and hydration structure of dendritic polyelectrolytes: Molecular
simulations of polyglycerol sulphate

This effect can be nullified by more time averaging, thus performing longer simulations.

Figure A.3: Comparison of electrostatic field profiles with respect to dPGS-COM between implicit and
explicit-water.
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B Competitive partitioning of mono- versus di-

valent ions in highly charged macromolecules

B.1 Ion-specific Penetrable Poisson–Langmuir (PPL)

model

The PPB model (cf. Sec. 5.2.3) operates in terms of the volume sorption of ions in the
macromolecule, i.e., the PE acts as an infinite reservoir able to uptake unlimited amount
of counterions. However, there is an upper limit to the amount of counterions that can
be sorbed by the real-world PEs, owing to the steric constraints [173, 226, 363, 366].
Taking it into consideration, we here present a modification to the PPB model assigning
the entropic penalty to the binding counterions. Several such modifications have been
suggested in the past in terms of the Stern layer modifications [409, 410] of the PB
approach, the numerical solutions of the hypernetted chain integral equations [411], and
using analytical modifications in the PB theory assuming finite size of ions [173, 226, 363,
366]. We incorporate the entropic cost for the binding ions here in a Langmuir form,
thus, naming the model as the PPL model describing the competitive ion binding. We
assume the macromolecule as a perfect penetrable sphere with a charge valency Z\mathrm{d} = z\mathrm{s}N\mathrm{s}

and radius r\mathrm{e}ff , as shown in Fig. 5.4. r\mathrm{e}ff is taken from the simulations, cf. section 5.1.3.
The charged monomers of the macromolecule, thus, have a uniform number distribution
c\mathrm{s} = N\mathrm{s}/v\mathrm{e}ff (where v\mathrm{e}ff = 4\pi r3\mathrm{e}ff/3) within the volume v\mathrm{e}ff . We now balance the chemical
potential for each ion, between the bulk regime far from the macromolecule and the regime
at the finite distance r from the center of the macromolecule

\mathrm{l}\mathrm{n} c\mathrm{b}i = \beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i(r) + \beta \Delta \mu \mathrm{e}\mathrm{x}\mathrm{c}\mathrm{l}(r) + zi\phi (r) + \mathrm{l}\mathrm{n} ci(r) (B.1)

where the meanings of the terminologies are described in the section 5.2.3. \Delta \mu \mathrm{e}\mathrm{x}\mathrm{c}\mathrm{l} is a
chemical potential associated with the ion-ion packing effects leading to the Boltzmann
ansatz as

ci(r) = c\mathrm{b}i \mathrm{e}
 - zi\phi (r) - \beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i(r) - \beta \Delta \mu \mathrm{e}\mathrm{x}\mathrm{c}\mathrm{l}(r) (B.2)

where the distance-resolved profiles of the intrinsic ion-specific effects \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i(r) and
\mu \mathrm{e}\mathrm{x}\mathrm{c}\mathrm{l}(r) are expressed in terms of the Heaviside step function as \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i(r) =
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macromolecules

\Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i

\bigl( 
1 - H(r  - r\mathrm{e}ff)

\bigr) 
and \mu \mathrm{e}\mathrm{x}\mathrm{c}\mathrm{l}(r) = \mu \mathrm{e}\mathrm{x}\mathrm{c}\mathrm{l}

\bigl( 
1 - H(r  - r\mathrm{e}ff)

\bigr) 
. \Delta \mu \mathrm{e}\mathrm{x}\mathrm{c}\mathrm{l} is treated on a \scrB 2

(two-body) level in the limit of low bound ion packing fraction \eta , and is expressed as
\beta \Delta \mu \mathrm{e}\mathrm{x}\mathrm{c}\mathrm{l} = 8\eta , representing the free energy of transferring one hard sphere to an envi-
ronment of hard spheres (condensed counterions) only interacting via excluded volume
effects, and with a packing fraction \eta [254]. We assume that the excluded volume interac-
tion between same species of ions is the same as that for different species, i.e., the second
virial coefficient \scrB 2, ii = \scrB 2, ij = \scrB 2. Hence \eta can be expressed as

\eta =
N b

\mathrm{t}\mathrm{o}\mathrm{t}\scrB 2

4v\mathrm{e}ff
(B.3)

where N\mathrm{b}
\mathrm{t}\mathrm{o}\mathrm{t} is the total number of condensed counterions to the macromolecule, i.e., N b

\mathrm{t}\mathrm{o}\mathrm{t} =\sum 
iN

\mathrm{b}
i and the number of condensed counterions of species i, N\mathrm{b}

i is given by

N\mathrm{b}
i =

\int r\mathrm{e}ff

0

ci(r)4\pi r
2 \mathrm{d}r (B.4)

The partition coefficient associated with ion-ion excluded volume interactions, \scrK \mathrm{e}\mathrm{x}\mathrm{c}\mathrm{l} can
be given as

\scrK \mathrm{e}\mathrm{x}\mathrm{c}\mathrm{l} = \mathrm{e} - \beta \Delta \mu \mathrm{e}\mathrm{x}\mathrm{c}\mathrm{l} = \mathrm{e} - 8\eta (B.5)

In the limit of a small packing fraction, i.e., \eta \rightarrow 0, Eq. (B.5) can be approximated as

\scrK \mathrm{e}\mathrm{x}\mathrm{c}\mathrm{l} \simeq 1 - 8\eta = 1 - 2\scrB 2

\sum 
i

c\mathrm{m}i = 1 - 2\scrB 2

\sum 
iN

\mathrm{b}
i

v\mathrm{e}ff
(B.6)

where c\mathrm{m}i = N\mathrm{b}
i /v\mathrm{e}ff is the number density of ion i in a bound state. The number density

profile ci(r) can then be expressed as

ci(r) =

\left\{     c
\mathrm{b}
i \mathrm{e}

 - zi\phi (r) - \beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i(r)
\bigl( 
1 - 2\scrB 2

\sum 
i c

\mathrm{m}
i

\bigr) 
r < r\mathrm{e}ff

c\mathrm{b}i \mathrm{e}
 - zi\phi (r) r \geqslant r\mathrm{e}ff

(B.7)

The distance-resolved electrostatic potential can be calculated from the PB equation as

\nabla 2\phi (r) =  - 4\pi l\mathrm{B}

\left(  \sum 
i

zici(r) + z\mathrm{s}c\mathrm{s}(r)

\right)  i = ++,+, - (B.8)
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B.1. Ion-specific Penetrable Poisson–Langmuir (PPL) model

where the number density of charged monomers of the macromolecule, c\mathrm{s}, is expressed
in terms of the Heaviside step function as c\mathrm{s}(r) = c\mathrm{s}

\bigl( 
1 - H(r  - r\mathrm{e}ff)

\bigr) 
. After solving

Eq. (B.8) and using the boundary conditions as (\mathrm{d}\phi /\mathrm{d}r) (r \rightarrow 0) = 0 and \phi (r \rightarrow R) = 0,
we use Eqs. (B.4) and (B.7) to express c\mathrm{m}i as

c\mathrm{m}i =
1

v\mathrm{e}ff

\int r\mathrm{e}ff

0

ci(r)4\pi r
2 \mathrm{d}r

= c\mathrm{b}i \mathrm{e}
 - \beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i

\left(  1 - 2\scrB 2

\sum 
i

c\mathrm{m}i

\right)  1

v\mathrm{e}ff

\int r\mathrm{e}ff

0

\mathrm{e} - zi\phi (r)4\pi r2 \mathrm{d}r

= c\mathrm{b}i \scrK \mathrm{i}\mathrm{n}\mathrm{t}, i\scrK \mathrm{e}\mathrm{l}, i

\left(  1 - 2\scrB 2

\sum 
i

c\mathrm{m}i

\right)  
(B.9)

where \scrK \mathrm{i}\mathrm{n}\mathrm{t}, i = \mathrm{e} - \beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t}, i and

\scrK \mathrm{e}\mathrm{l}, i = \mathrm{e} - \beta \Delta \Phi i =
1

v\mathrm{e}ff

\int r\mathrm{e}ff

0

\mathrm{e} - zi\phi (r)4\pi r2 \mathrm{d}r (B.10)

. Summing up the LHS in Eq. (B.9) for all ionic species i gives

\sum 
i

c\mathrm{m}i =
\sum 
i

c\mathrm{b}i \scrK \mathrm{i}\mathrm{n}\mathrm{t}, i\scrK \mathrm{e}\mathrm{l}, i

\left(  1 - 2\scrB 2

\sum 
i

c\mathrm{m}i

\right)  
=\Rightarrow 

\sum 
i

c\mathrm{m}i =

\sum 
i c

\mathrm{b}
i\scrK \mathrm{i}\mathrm{n}\mathrm{t}, i\scrK \mathrm{e}\mathrm{l}, i

1 + 2\scrB 2

\sum 
i c

\mathrm{b}
i \scrK \mathrm{i}\mathrm{n}\mathrm{t}, i\scrK \mathrm{e}\mathrm{l}, i

(B.11)

Eq. (B.7) can then be rewritten as

ci(r) =

\left\{       
c\mathrm{b}i \scrK \mathrm{i}\mathrm{n}\mathrm{t}, i \mathrm{e}

 - zi\phi (r)

1 + v0
\sum 

i c
\mathrm{b}
i \scrK \mathrm{i}\mathrm{n}\mathrm{t}, i\scrK \mathrm{e}\mathrm{l}, i

r < r\mathrm{e}ff

c\mathrm{b}i \mathrm{e}
 - zi\phi (r) r \geqslant r\mathrm{e}ff

(B.12)

where v0 = 2\scrB 2, i.e., the excluded volume treatment is set to be equivalent to Langmuir
treatment, where the bound ion is considered as ideal gas particle having a configurational
freedom (volume) of 2\scrB 2, allowing it to freely move around in one of the Ni bounding
boxes for respective condensed counterions.
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macromolecules

B.1.0.1 Calculation of bulk concentration

The bulk concentration of divalent and monovalent counterions c\mathrm{b}i is updated during each
injection in the following way.:

1. Solve PB equation (Eq. (B.8)) (Unknown parameter c\mathrm{b}i is guessed from the outcome
of previous concentration input/ITC injection.)

2. Find c0++ and iterate

Total known molar concentration of Mg2+ per molar concentration of dPGS: c0
++

The total amount of Mg2+ is conserved within the titration volume V (spherical cell
of radius R).\int R

0

c++(r)4\pi r
2\mathrm{d}r = c\mathrm{b}

++

\int R

0

e - 2\phi (r) - \beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},++(r)4\pi r2\mathrm{d}r
!
= c0

++

\biggl( 
4\pi 

3
R3

\biggr) 
(B.13)

=\Rightarrow c\mathrm{b}
++

=
c0

++

\bigl( 
4\pi 
3
R3
\bigr) \int R

0
e - 2\phi (r) - \beta \Delta \mu \mathrm{i}\mathrm{n}\mathrm{t},++(r)4\pi r2\mathrm{d}r

(B.14)

Substitute c\mathrm{b}
++

back in Eq. (5.12) and repeat steps 1 and 2 till c\mathrm{b}
++

is converged.

3. Calculate bound Mg2+ ions after convergence of c\mathrm{b}
++

using Eq. (B.4), and use c\mathrm{b}
++

as
initial guess for next injection.
Follow the same steps for the convergence of the bulk Na+ concentration c\mathrm{b}

+
.
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