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Abstract

Structural performance is affected by deterioration processes and external loads. Both effects

may change over time, posing a challenge for conducting reliability analysis. In such context,

this contribution aims at assessing the reliability of structures where some of its parameters are

modeled as random variables, possibly including deterioration processes, and which are subjected

to stochastic load processes. The approach is developed within the framework of importance

sampling and it is based on the concept of composite limit states, where the time-dependent

reliability problem is transformed into a series system with multiple performance functions. Then,

an efficient two-step importance sampling density function is proposed, which splits time-invariant

parameters (random variables) from the time-variant ones (stochastic processes). This importance

sampling scheme is geared towards a particular class of problems, where the performance of the

structural system exhibits a linear dependency with respect to the stochastic load for fixed time.

This allows calculating the reliability associated with the series system most efficiently. Practical

examples illustrate the performance of the proposed approach.

Keywords: Time-variant structure, Stochastic load, Importance sampling, Composite limit state

functions, Simulation-based method, Cumulative failure probability

1. Introduction 1

In the past decades, structural reliability theory for time-invariant problems has been widely 2

investigated and developed. Following this framework, it is assumed that the system and its 3



characteristics are static, and random variables are used to characterize their natural variabil- 4

ity. Various methods have been developed to carry out static reliability analysis, which can be 5

broadly classified as: asymptotic analytical methods, such as first/second order reliability method 6

(FORM/SORM) [1]; and simulation-based methods, e.g., Monte Carlo simulation (MCS)[2][3], 7

importance sampling (IS)[4, 5], line sampling [6] and subset simulation [7]. The efficiency of both 8

classes of methods can be improved by applying surrogate methods such as response surface meth- 9

ods [8], Kriging [9, 10] support vector machines [11] and polynomial chaos expansion [12], among 10

others. 11

Although advances in time-invariant reliability problems have been far reaching, in realistic 12

engineering situations, the model parameters typically change as a function of time, which is 13

termed as time-dependent (or time-variant). This is a result of the fact that engineering structures 14

and systems are often exposed to severe operating or environmental conditions during their service 15

life, which are responsible for the deterioration of structural strength and stiffness with time [13]. 16

Furthermore, the intensity and frequency of loads acting on these systems may also vary with 17

time. A reliability analysis can properly reflect and quantify the effect of time-variant factors 18

by estimating the failure probability of a system/structure over a period of time. Because time 19

is considered, more challenges are faced as compared with traditional, time-invariant reliability 20

analysis. As such, the application of typically applied reliability engineering methods may not be 21

direct in this context. 22

Reliability analysis considering time-variant properties and loadings has attracted much at- 23

tention recently and a vast number of methods have been developed. These are roughly classified 24

into three categories: (1) the out-crossing rate based methods; (2) the extreme value methods; 25

and (3) the composite limit state methods. Methods based on out-crossing rate make use of the 26

relationship between the failure probability and the expected mean number of out-crossings of 27

the random process over a prescribed threshold. There are many different approximations to the 28

out-crossing rate available in the literature, see e.g. [14, 15, 16]. However, the main drawback of 29

methods based on out-crossing rate for reliability analysis is that they are based on the assump- 30

tion of independence and Poisson distribution, which in certain cases may lead to a low accuracy. 31

Methods based on extreme values consider the worst situation of system’s performance over the 32

time interval of interest, and whenever the extreme value of the limit state function exceeds a 33

given threshold, failure occurs. The key challenge in extreme value methods lies in the construc- 34

2



tion of a proper surrogate model or a probability distribution for the output random process that 35

characterizes the structural performance [17]. In this context, a Gaussian process (GP) model 36

has been used in [18] to represent the extreme system response over time. Later, Hu and Ma- 37

hadevan [19] proposed a single-loop GP approach where training points of random variables over 38

time are generated at once (instead of tracking time and maximum responses separately). Qian 39

et al. [20] also proposed a single-loop strategy for time-variant system reliability analysis by com- 40

bining multiple response Gaussian process models. Many surrogate methods are only applicable 41

to cases where no input random process are involved. In [21] and [22], surrogate model methods 42

have been proposed to address this issue. However, discrete representation of stochastic processes 43

increases the dimensionality of the problem, posing a challenge for surrogate modeling due to the 44

so-called curse of dimensionality. An alternative strategy to surrogate modelling schemes is to 45

fit a probability distribution for the extreme values by a suitable distribution estimation method. 46

Hu and Du [17] proposed in this context a method for constructing an extreme value distribution, 47

based on the expansion optimal linear estimation method (EOLE) and saddle-point approxima- 48

tion. However, the distribution of extreme values in some cases may be highly non-linear and/or 49

follow a multimodal distribution, posing additional challenges. A third group of methods is based 50

on the concept of a composite limit state function, which serves as an alternative to handle re- 51

liability problems with time-variant characteristics. The main idea behind composite limit state 52

methods is that the original time-variant limit state function is discretized into a sequence of 53

instantaneous ones, and then the concept of series system reliability is used to convert the time- 54

variant reliability analysis into a time-invariant one. Jiang et al. [23] used time discretization 55

to convert stochastic processes into random variables, and then the first-order reliability method 56

(FORM) is adopted to compute the probability associated with the linearized limit-state function. 57

Mourelatos et al. [24], based on the concept of composite limit state, used the total probability 58

theorem and FORM to calculate reliability of time-dependent problems. Also, this composite 59

limit state idea allows applying simulation-based methods for static system reliability analysis in 60

time-variant problems. Recently, Li at al. [25] proposed a Generalized subset simulation (GSS) to 61

handle high-dimensional time-variant reliability. Similarly, Du et al. [26] adopted parallel subset 62

simulation to handle time-variant reliability with both deterioration in material properties and 63

dynamic load. 64

Several of the methods for reliability analysis which have been developed so far consider load as 65
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stochastic excitation which is dependent on time, while parameters related with structural behavior 66

are represented either as (static) random variables or even deterministic. For example, Au and 67

Beck [27] proposed an efficient importance sampling method for linear systems; later, Misraji et al. 68

[28] applied a directional importance sampling scheme for reliability analysis of structural systems 69

subject to stochastic Gaussian loading. When uncertainties on different types of parameters are 70

simultaneously considered, i.e., random structural variables, time-variant structural parameters 71

(due to deterioration, etc.) and stochastic load processes, the reliability problem comprises a 72

time-variant structure (system), which is subjected to time-variant loads. In this context, most 73

of the current methods for reliability are based on approximate analytical methods, i.e., FORM 74

[23][24], or resort to surrogate models, i.e., through building extreme value surrogate models, 75

as in [29, 18, 19, 20, 21, 22], which have their own potential shortcomings. In the context of 76

simulation-based methods, MCS and subset simulation can be used to solve reliability problems 77

involving time-variant structures subject to stochastic load. However, their practical application 78

may become unfeasible due to the prohibitively high computational associated with uncertainty 79

propagation. Hence, there is still a large space for developing simulation-based methods for solving 80

this kind of reliability problems in an efficient manner. 81

In view of the aforementioned difficulty in estimating the reliability of time-variant struc- 82

tures subject to time-dependent loads, this contribution focuses on a specific type of problems, 83

namely conditional linear time-variant systems. By time-variant, it is meant that the time-variant 84

structure (with time-variant structural properties) is subjected to time-variant loads (stochastic 85

process); and by conditional linear, it is meant that at a particular instant of time and for a 86

nominal structural parameter setting, the output response has a linear relationship with the load. 87

The proposed approach is developed within the context of the composite limit state concept and 88

transforms the time-variant problem into a series systems reliability problem. As linear time- 89

variant systems are considered, an extremely efficient importance sampling density (ISD) function 90

is proposed to compute the reliability of the transformed series system. The importance sampling 91

scheme splits and explores the stochastic space spanned by the static random variables and the 92

time-variant space spanned by the stochastic processes in two steps. First, samples are generated 93

in the space associated with static parameters, after which conditional samples are generated 94

according to a specially designed ISD in the time-variant space. This allows to compute the re- 95

liability associated with the transformed series system efficiently. The innovative aspects of this 96
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study with respect to the state-of-the-art are as follows: 97

• A new tool for structural time-variant reliability analysis is presented, in which input random 98

variables, structural degradation processes as well as stochastic excitation processes are 99

included. 100

• A simulation-based method which can produce satisfactory, accurate estimations of the 101

failure probability is formulated. 102

• The most salient feature of the proposed approach is that it entails a single straightforward 103

simulation scheme, where neither optimization is applied to find the extreme response values 104

over time nor approximate linearization with respect to parameters is required. 105

This contribution is organized as follows. In Section 2, the definition and the transformation of 106

time-dependent reliability problem is discussed. Then, the mathematical formulation of the pro- 107

posed framework is developed in Section 3. Section 4 illustrates the performance of the proposed 108

approach through a number of application examples. Section 5 closes the paper with discussions 109

and an outlook for future work. 110

2. Reliability of structures with time-variant behavior 111

2.1. Reliability definition 112

In general, reliability problems whose performance is time-variant can be classified into three 113

groups according to the coupling and nature of the uncertain parameters [17]: (1) G = g(x, t) 114

where G is a response of interest, which is determined by the limit state function g(·); t is the 115

time instant; x = [x1, x2, . . . , xn] is the vector of basic time-invariant random variables of the 116

structure/system with probability density function f(x); (2) G = g(x,Y (t)) where Y (t) are 117

the time-dependent stochastic processes, which are implicit with respect to time t; (3) G = 118

g(x, t,Y (t)) which is the most general type of problem with time-invariant random variables, 119

explicit function terms with respect to time (such as structural degradation processes), and time- 120

dependent stochastic processes (such as stochastic load processes). 121

In this contribution, the last, most general type of problems is considered. The corresponding 122

cumulative failure probability over the time period is given by: 123

Pf (0, T ) = P {G = g(x, t,Y (t)) ≤ 0,∃t ∈ [0, T ]} (1)

5



where [0, T ] is the time interval of interest; ∃ stands for ‘there exists at least one’; Y (t) = 124

[Y1(t), . . . , YnY
(t)] is the vector of time-dependent stochastic processes with respect to time t, 125

which refers to load; g(·) is the corresponding limit state function. In this contribution, the focus 126

is on conditional linear time-variant structural systems. That is, the response of interest is linear 127

with respect to the input load conditional on a given time instant and structural parameters fixed 128

at certain values; from a mathematical viewpoint, the load terms appears in the form of a linear 129

term in the limit state function, which can be given by (in case it is explicitly available): 130

g(x, t,Y (t)) = a(x, t) +

nY∑
i=1

bi(x, t)Yi(t) (2)

where a(x, t) and bi(x, t) can be any type of function(implicit or explicit) of structural random 131

variables and time, and Yi(t) appears as a linear term. Note that even if the limit state function 132

cannot be stated explicitly, in case that a linear relationship between the response and load at 133

fixed time is verified, the proposed approach can also be applied. Such is the case, for example, in 134

linear structural analysis, where the response (deformation, stress and strain, etc.) is linear with 135

respect to the load. 136

2.2. Composite limit states transformation of reliability problem with time-variant behavior 137

The composite limit state is a useful approach to handle reliability problems with time- 138

dependent behavior. Its basic idea is to use the concept of series system reliability of the instanta- 139

neous limit state functions to covert the time-dependent reliability problem into a time-invariant 140

one. First, the time interval [0, T ] is discretized using a time step size 4t. Then, a time sequence 141

[t0, . . . , tl . . . , tm] = [0, . . . , l4t, . . . ,m4t] is generated, where l = 0, . . . ,m is the time index, t0 = 0 142

and tm = m4t = T . Based on this time discretization, the instantaneous failure probability is: 143

Pf (tl) = P{Gl = g(x, tl,Y (tl)) ≤ 0)} (3)

where Gl = g(x, tl,Y (tl)) is the instantaneous limit state function at time instant tl. 144

Based on the series system reliability formulation, the cumulative failure probability at time 145

instant T is given by: 146

Pf (0, T ) = P

{
m⋃
l=0

Fl

}
= P

{
min

l=0,...,m
g(x, tl,Y (tl)) ≤ 0

}
(4)
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where Fl = {Gl ≤ 0} is the failure region associated with the limit state function at the l-th time 147

instant, that is Gl. The failure probability can be expressed as an integral given by: 148

Pf (0, T ) =

∫∫
IF [x, t0, . . . , tm,Y (t1), . . . ,Y (tm)]f(x)

f(Y (t0)) . . . f(Y (tm)) dx dY (t0) . . . dY (tm)

(5)

where F =
⋃m
l=0 {Fl : Gl ≤ 0} is the failure of the series system; f(x) is the probability distribution 149

function of the (static) random variables; and IF [·] is the indicator function, which is equal to 150

1 in case failure occurs at any time instant within [0, T ]. Note that the computation of this 151

failure probability is far from trivial, as it is a series system problem [25, 30]. Of all simulation- 152

based reliability analysis methods, Monte Carlo simulation is a widely used technique which can 153

be applied to estimate this failure probability. However, its drawback is its low efficiency for 154

estimating small failure probabilities. 155

3. Proposed approach 156

This section presents an efficient importance sampling reliability analysis approach for systems 157

with time-dependent properties. Section 3.1 first describes the spectral decomposition method for 158

modeling the input stochastic process associated with the load. The strategy for coping with 159

time-dependent limit state functions by transforming the problem to a series system is discussed 160

in Section 3.2. Section 3.3 presents the proposed importance sampling density function and Section 161

3.4 summarizes the procedure of proposed approach. 162

3.1. Spectral decomposition of input random process 163

In case an analyst is faced with aleatory uncertainties, the uncertain quantities are usually 164

modeled as random variables. However, when these quantities vary over time (or space), they 165

should be treated as random processes. Note that there are different kinds of random processes [31]. 166

In the context of reliability analysis, a common approach is to transform them into traditional 167

random variables via an appropriate spectral decomposition such as the Karhunen-Loève (K-L) 168

expansion [32, 33] or the Expansion Optimal Linear Estimator (EOLE) [34]. 169

Consider an Gaussian, nonstationary stochastic process Y (t) defined by the mean function 170

µY (t), the standard deviation function σY (t), and the auto-correlation function ρY (tl, tj). The 171

covariance function of this process between time tl and tj is calculated by: 172

Cov(tl, tj) = ρY (tl, tj)σY (tl)σY (tj) (6)
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When the time interval is discretized as [t0, . . . , tl . . . , tm], the corresponding covariance matrix 173

ΣY is formed as 174

ΣY =


Cov (t0, t0) Cov (t0, t1) · · · Cov (t0, tm)

Cov (t1, t0) Cov (t1, t1) · · · Cov (t1, tm)
...

...
. . .

...

Cov (tm, t0) Cov (tm, t1) · · · Cov (tm, tm)

 (7)

In case ΣY is symmetric, bounded and positive-definite, Y (t) can be represented following the 175

K-L expansion as [32]: 176

Y (t) = µY (t) +
k∑
p=1

√
λpΨp(t)Zp (8)

where Ψp(t) corresponds to the element of matrix Ψ located in the row associated with time 177

t and the p-th column; Ψ = [Ψ1,Ψ2, . . . ,Ψk] is the matrix of orthogonal eigenvectors and 178

Λ = diag [λ1, λ2, . . . , λm] is a diagonal matrix that contains the corresponding non-negative 179

eigenvalues obtained by performing eigendecomposition ΣY = ΨΛΨT ; k ≤ m is the number 180

of identified dominant eigenfunctions, where k must be selected such that a well-selected error 181

on the reconstructed variance of the process is minimized [35]. Since Y (t) is a Gaussian process, 182

Zp, p = 1, . . . , k are i.i.d. standard Normal random variables. This means that the random process 183

Y (t) can be represented by a number of standard Gaussian random variables, and its standard 184

deviation σY (t) can be obtained as: 185

σY (t) =

√√√√ k∑
p=1

λpΨ2
p(t) (9)

Note that the approach that is introduced in the following section can be applied to various 186

kinds of stochastic process once they are represented by independent normal variables, no matter 187

what series expansion methods are used. As an additional remark, it should be noted that the 188

proposed framework is applicable for problems involving Gaussian stochastic processes only. In 189

fact, non Gaussian processes cannot be considered directly within the proposed scheme. 190

3.2. Reliability expressed in terms of a series system 191

According to Eq. (8), the stochastic process Yi(t) at time instant t is given by: 192

Yi(t) = µYi(t) +

ki∑
p=1

√
λipΨip(t)Zip (10)
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where ki is the number of retained eigenfunctions in the K-L expansion, and the corresponding 193

standard deviation can be obtained as: 194

σYi(t) =

√√√√ ki∑
p=1

λipΨ2
ip(t) (11)

Then the instantaneous limit state function in Eq. (2) can be rewritten as: 195

gZ(x, tl,Z) = a(x, tl) +

nY∑
i=1

bi(x, tl)µYi(tl) +

nY∑
i=1

ki∑
p=1

bi(x, tl)
√
λipΨip(t)Zip (12)

where Z = [Z11, · · · , Z1k1 , Z21, · · · , Z2k2 , · · · , ZnY 1, · · · , ZnY knY
] is the vector collecting all Gaus- 196

sian random variables involved. 197

Considering the limit state function (LSF) given in Eq. (12), the corresponding failure proba- 198

bility, as defined in Eq. (4), is expressed as: 199

Pf (0, T ) = Pf (0, tm) =

∫∫
IFU

m
[x, t0, · · · , tm,Z]φ(Z)f(x) dx dZ (13)

where FU
m =

⋃m
l=0 {Fl : gZ(x, tl,Z) ≤ 0} is the union of failure events of the series system; IFU

m
(·) 200

is the indicator function of FU
m ;and φ(·) is the joint PDF of i.i.d. standard Gaussian variables. 201

Note that direct solution of this equation using standard quadrature schemes is not possible 202

due to the typically high number of random variables involved. Therefore, simulation methods are 203

preferred to approximate this integral, which may require a high number of LSF evaluations to 204

obtain an acceptable coefficient of variation [36]. This motivates the use of importance sampling 205

methods [37] to reduce the required number of LSF evaluations, as recently also successfully applied 206

in the context of calculating first passage probabilities in linear dynamical systems [28, 38]. The 207

next section deals with the development of an importance sampling density for this specific case. 208

3.3. Importance sampling density function 209

In this section, an efficient importance sampling density (ISD) function is formulated, which 210

has the following form: 211

H(x,Z) = H(Z|x)H(x) (14)

Inspection of Eq.(14) reveals that this importance sampling density consists of two parts: one 212

part related with the (static) random variables x and another part to handle the stochastic process 213

Y (t) via its associated random variables Z. Recall that x is regarded as static because it does not 214

vary with time. In other words, when a sample of x is generated, it becomes a constant during 215

the time interval [0, T ]. 216
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3.3.1. Importance sampling density function for static random variables 217

The fist step of the proposed framework is to determine H(x). The most straightforward way 218

is to just choose the original distribution as the ISD, which is : 219

H(x) = f(x) (15)

Undoubtedly, H(x) may also be constructed based on information from the failure region, consid- 220

ering design points or an adaptive importance sampling density function. Nonetheless, it may be 221

challenging to determine a proper importance sampling function associated with the series system 222

in Eq. (2). Besides, extra computational burden is involved [30]. It is also worthy to note that 223

sampling of H(x) can be done applying low-discrepancy sequences [5], which are especially suit- 224

able for cases where a small number of samples is used. It will be shown in examples section that 225

the proposed approach just needs hundreds of samples, and it expected to achieve an improved 226

convergence rate in case the low-discrepancy sequence is adopted. 227

3.3.2. Importance sampling density function for Z 228

The next step is to formulate the probability function associated with Z conditioned on x. 229

Once the ISD of H(x) is determined, a number of samples {x(j) : (j = 1, . . . , N)} can be generated 230

according to H(x). Hence, in the following, it is considered that x has assumed a fixed value. 231

Then, H(Z|x) can be determined based on this fixed value. 232

Recall the transformed instantaneous LSF gZ(x, tl,Z) of Eq. (12). It is readily noticed that 233

for a fixed value x, the LSF is only an expression depending on Z. As Z is a vector of i.i.d. 234

normal variables, the corresponding mean and standard deviation of LSF (conditioned on x) can 235

be easily obtained: 236

µlgZ (x) = µgZ (x, tl) = a(x, tl) +

nY∑
i=1

bi(x, tl)µYi(tl) (16)

σlgZ (x) = σgZ (x, tl) =

√√√√ nY∑
i=1

ki∑
p=1

b2i (x, tl)λipΨ
2
ip(t) =

√√√√ nY∑
i=1

b2i (x, tl)σ
2
Yi

(tl) (17)

The reliability index for the instantaneous limit state function at time instant tl in Eq. (12) 237

can be obtained as: 238

β(x, tl) =
µlgZ (x)

σlgZ (x)
(18)
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and the corresponding design point Z∗l (x) = [Z∗l,1(x), · · · , Z∗l,p(x), · · · , Z∗l,nZ
(x)] can be obtained 239

as: 240

Z∗l,p(x) = −
bi(x, tl)

√
λipΨip(t)µ

l
gZ

(x)∑nY

i=1 b
2
i (x, tl)σ

2
Yi

(tl)
(19)

The distribution of the random variables (Z) conditional on the failure region Fl(x) (which is 241

defined as Fl(x) = {gZ(x, tl,Z) ≤ 0}) is given by [27]: 242

f(Z|Fl(x)) =
φ(Z)IFl

(x,Z)

Φ [−β(x, tl)]
(20)

where IFl
(·) is the indicator function of Fl(x); Φ(·) is the cumulative distribution function (CDF) 243

of the standard Gaussian variable. An expression for generating samples of Z conditional on Fl(x) 244

is given by [27] : 245

Z = αe∗l (x) + U⊥ (21)

where α is a standard Gaussian random variable conditional on α ≥ β(x, tl); e
∗
l (x) is a unit vector 246

in the direction of the design point which is given by: 247

e∗l (x) =
Z∗l (x)

||Z∗l (x)||
=

Z∗l (x)

β(x, tl)
(22)

and U⊥ is a standard Gaussian random vector orthogonal to e∗l (x), which is described by [27]: 248

U⊥ = U − 〈U , e∗l (x)〉e∗l (x) (23)

with 〈·, ·〉 denoting the inner product operator; and U is a n-dimensional standard Gaussian vector. 249

Note that n represents the total number of random variables associated with the representation 250

of the stochastic processes, that is n =
∑nY

i=1 ki. Thus, the final expression for generating samples 251

of Z which are distributed as f(Z|Fl(x)) is: 252

Z = U + (α− 〈U , e∗l (x)〉)e∗l (x) (24)

This means that according to Eq. (24), a sample Z will fall in the failure region Fl(x) and lead to 253

IFl
(x,Z) = 1. A schematic representation illustrating the capabilitiy of Eq. (24) for generating 254

failure samples is shown in Fig. 1. 255

In time-dependent problems, there are several limit state functions associated with a certain 256

realization x at different time instants, i.e. gZ(x,Z, tl), l = 0, . . . ,m (see Eq. (12)). Taking 257

this fact into account, the proposed importance sampling density function H(Z|x) is constructed 258
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Figure 1: Schematic diagram of sampling of conditional Z.

based on a combination of individual optimal sampling functions f(Z|Fl(x)) which is given by 259

[27]: 260

H(Z|x) =
m∑
l=0

wl(x)f(Z|Fl(x)) =
m∑
l=0

wl(x)
φ(Z)IFl

(x,Z)

Φ [−β(x, tl)]
(25)

where wl(x) ≥ 0 are the weights of individual sampling functions, which fulfill the conditions that 261

wl(x) ≥ 0 and
∑m

l=1wl(x) = 0. In this contribution, the weights are chosen to be proportional to 262

the probability content of Fl(x) = {gZ(x,Z, tl) ≤ 0} [39]: 263

wl(x) =
P (Fl(x))∑m
s=0 P (Fs(x))

=
Φ [−β(x, tl)]∑m
s=0 Φ [−β(x, ts)]

(26)

Substituting Eq. (26) into (25), the proposed importance sampling density function H(Z|x) is 264

finally expressed by: 265

H(Z|x) = φ(Z)

∑m
l=0 IFl

(x,Z)∑m
l=0 Φ [−β(x, tl)]

(27)

3.3.3. Estimation of the failure probability 266

Using the newly introduced ISD H(Z|x) in Eq. (27) as the importance sampling density, the 267

time-dependent failure probability in Eq. (13) is expressed as: 268

Pf (0, T ) =

∫∫
IFU

m
[x, t0, · · · , tm,Z]

φ(Z)

H(Z|x)
H(Z|x)f(x) dx dZ

= E

[
IFU

m
(x, t0, · · · , tm,Z)

φ(Z)

H(Z|x)

]
= E

[∑m
l=0 Φ [−β(x, tl)]∑m
l=0 IFl

(x,Z)

] (28)
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Note that IFU
m

[x, t0, · · · , tm,Z] = 1 has been considered within Eq. (28). The reason is that 269

every sample Z generated from H(Z|x) is – by construction – located in at least one of the 270

failure domains Fl(x) (see Eq. 24), and as Fl(x) ⊂ FU
m , thus Z ∈ FU

m holds, leading to 271

IFU
m

[x, t0, · · · , tm,Z] = 1. 272

The expression for the failure probability as cast in Eq. (28) can be evaluated by means of 273

simulation. For that purpose, samples of the static random variables x(j) : j = 1, . . . , N distributed 274

according to f(x) are generated in the first place. Then, samples of Z are generated such that 275

they follow H(Z|x), yielding a set of samples, (x(j), Z(j)), j = 1, . . . , N which is distributed as 276

H(Z|x)f(x). Thus, Pf (0, T ) is estimated as: 277

P̂f (0, T ) =
1

N

N∑
j=1

∑m
l=0 Φ

[
−β(x(j), tl)

]∑m
l=0 IFl

(x(j),Z(j))
(29)

Obviously, the estimate P̂f (0, T ) is unbiased. The variance as well as the coefficient of variation 278

(c.o.v., denoted as δ) of the estimate P̂f (0, T ) can be obtained straightforwardly: 279

V ar
[
P̂f (0, T )

]
≈ 1

N − 1

 1

N

N∑
j=1

[∑m
l=0 Φ

[
−β(x(j), tl)

]∑m
l=0 IFl

(x(j),Z(j))

]2
− P̂ 2

f (0, T )

 (30)

280

δ[P̂f (0, T )] ≈

√
V ar[P̂f (0, T )]

P̂f (0, T )
(31)

In conclusion, the proposed approach utilizes the information on the ‘conditional linear’ rela- 281

tionship between the response and the applied load. Based on this fact, an efficient importance 282

sampling density function is constructed based on analytical investigation of the failure regions. It 283

can be seen from Eq. (29) that as the probability estimator is simulation-based, there is no need 284

for fitting a distribution, or conducting approximate analytical calculations. Hence, the accuracy 285

can be guaranteed as the simulation proceeds, i.e. as the number of samples increases. In the 286

following numerical applications, it is shown that the proposed approach exhibits excellent effi- 287

ciency, and that the proposed two-step designed importance sampling density function is highly 288

rewarding. 289

3.4. Summary of the proposed approach 290

The approach for estimating the failure probability of a time-variant structure subject to time- 291

variant load proposed in this section is summarized as follows. 292
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1. Stochastic processes are represented by spectral decomposition as in Eq. (8), and the equiv- 293

alent composite limit functions are obtained according to Eq. (12). 294

2. Generate samples x(j), j = 1, . . . , N following f(x). 295

3. Draw a set of samples Z(j), j = 1, . . . , N according to the proposed ISD given by Eq. (27). 296

Specifically: 297

(a) Draw an index l within the discrete set {0, . . . ,m} with probability proportional to 298

wl(x
(j)). 299

(b) Simulate U as a n-dimensional standard Gaussian vector with independent components, 300

and u as uniform variable on [0,1]. Compute 301

α = Φ−1
[
u+ (1− u) Φ

(
β(x(j), tl)

)]
(32)

or 302

α = −Φ−1
[
(1− u) Φ

(
−β(x(j), tl)

)]
(33)

and set 303

Z(j) = U +
(
α−

〈
U , e∗l (x

(j))
〉)

e∗l (x
(j)) (34)

4. Based on the generated samples set (x(j),Z(j)), j = 1, . . . , N , compute the failure proba- 304

bility estimator according to Eq. (29) as well as the coefficient of variation of the estimator 305

according to Eq. (31). 306

4. Examples 307

In this section, examples are given to illustrate the performance of the proposed method in 308

terms of accuracy and efficiency. Direct Monte Carlo simulation (MCS) and Subset simulation 309

(SS) are used for comparison. Note that the unit coefficient of variation (c.o.v.) ∆ is calculated 310

in all examples considered. Since any simulation algorithm for estimating failure probabilities has 311

a c.o.v. of the form δ = ∆/
√
N [27], the ‘unit c.o.v.’ ∆ is adopted as a measure of efficiency 312

which is inherent to the algorithm. That is, it is in theory invariant to the accuracy achieved and 313

the computational effort spent, where smaller values of ∆ correspond to a higher computational 314

efficiency. In addition, the computational cost is measured in terms of the number of samples N 315

considered for the evaluation of the failure probability. 316

For Examples 1 to 3, a time period of [0,10] years is considered, and a constant time interval 317

∆t = 0.1 year is adopted to discretize the time interval in the calculation. As such, a number of 318
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m = 101 discrete time instants are obtained, i.e., tl = l∆t, l = 0, . . . ,m. Also, the number of 319

identified dominating eigenfunctions in K-L expansion is fixed at k = 30 which has been found 320

to be reasonable by carrying out some numerical validations. For Example 4, the time interval 321

and the number of expansion terms for the stochastic process are considered as ∆t = 0.25 year 322

and k = 30, respectively, as it involves finite element analysis. Such setting is used in order to 323

alleviate the computation burden associated with MCS. 324

4.1. Example 1: A two-bar frame 325

A two-bar frame shown in Fig. 2 is considered for the first example. It has been investigated 326

in [40] and [41] (among others) and is modified to suit the purposes of this work. This frame is 327

subjected to a dynamic force F (t) which is described by a stochastic process. The yield strength of 328

the bar A degrades with time, i.e. S(t) = S0e
(−0.05t), in which S0 is the initial yield strength of the 329

bar. Structural failure is defined as the maximum stress of the bar exceeding the corresponding 330

yield strength. Thus, the limit state function of this two-bar frame is expressed as follows. 331

g(x, t,Y (t)) = πl2D
2S(t)− 4F (t)

√
l21 + l22 (35)

where x = [D, l1, l2, S0] is the vector of structural random variables; Y (t) = F (t) is the vector 332

of stochastic load; t ∈ [0, 10] year. Distribution information of the input parameters is listed in 333

Table 1. As can be noted from this table, the load is described by a Gaussian stochastic process 334

with mean µ = 2.2 × 106 (N) and standard deviation σ = 2.2 × 105 (N). The autocorrelation of 335

the process is given by a squared exponential correlation function with correlation length equal to 336

1 year. 337

Table 1: Information of variables and parameters for two-bar frame (Example 1)

Parameter Distribution Mean Standard deviation Auto-correlation function

D(m) Normal 0.2 2× 10−3 −

l1(m) Normal 0.4 4× 10−3 −

l2(m) Normal 0.3 3× 10−3 −

S0(Pa) Lognormal 2.5× 108 2.5× 106 −

F (t)(N) Gaussian process 2.2× 106 2.2× 105 e−τ
2

The proposed approach is applied to solve this problem. In addition, Subset simulation and 338

Direct Monte Carlo simulation are also applied for comparison. The details of the results obtained 339
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Figure 2: A two-bar frame

Table 2: Results by different methods for two-bar frame beam (Example 1)

Methods Pf (0, T ) c.o.v. N Unit c.o.v.

Proposed approach 3.01× 10−3 0.12 100 1.2

SS 3.79× 10−3 0.20 3000 10.9

MCS 3.05× 10−3 0.02 106 18.1

Figure 3: Evolution of different estimators with respect to the number of samples employing the proposed approach

(Example 1).
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Figure 4: Evolution of different estimators with respect to the number of K-L expansion terms employing the

proposed approach (Example 1).

with each approach are listed in Table 2, which includes the estimate of failure probability, the 340

c.o.v. of estimate, the number of samples used N , and the unit c.o.v. of the method. It can be 341

seen from the table that the results that are obtained by these methods agree very well with each 342

other. Note that the proposed approach has been applied with only 100 samples, leading to a 343

c.o.v. of around 0.10. On the other hand, Subset simulation demanded 3000 samples, whereas the 344

c.o.v. is 0.20. As such, it is clear that the proposed approach is highly efficient. Such conclusion 345

is reinforced when examining the value of the unit c.o.v., which is an index of efficiency for a 346

simulation method. It can be seen that the proposed method owns the smallest unit c.o.v., which 347

is nearly 1/20 of that of MCS and 1/10 of that of Subset simulation for this example. Due to the 348

small unit c.o.v., the proposed approach can significantly reduce the computation cost. 349

In order to investigate the performance of the proposed method more clearly, several runs with 350

different number of samples are carried out. Fig. 3 shows the corresponding results obtained by 351

the proposed method as a function of the number of samples used. It can be seen from the figure 352

that, even when a small number of samples (100) is used, the proposed approach can produce 353

quite accurate estimates. Furthermore, when the number of samples increases from 100 to 1000, 354
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the c.o.v. of the failure probability estimate gradually decreases from about 0.1 to about 0.04. At 355

the same time, the unit c.o.v. fluctuates between approximate 1 and 2. 356

Also, the sensitivity of the probability with respect to the number of terms (k) in the K-L 357

expansion is shown in Fig. (4). It can be seen from this figure that 1) the failure probability is 358

first underestimated and becomes stable when k is larger than 30; 2) the c.o.v. and unit c.o.v. 359

of the estimate fluctuate when k > 30, implying that the efficiency of the proposed approach 360

seems insensitive to the number of terms k, under the condition that k is large enough such that 361

the error is controlled appropriately. This shows that the method is insensitive to the number of 362

transformed variables in this example ( according to Eq. (12)). 363

In conclusion, from the figure and table, the obtained results show that, for this kind of 364

problem, the proposed method exhibits high efficiency when compared to other existing methods. 365

The reason for this behavior is that the proposed method exploits the linearity with respect to 366

the stochastic process. 367

4.2. Example 2: Composite beam 368

This second example involves the composite beam shown in Fig.5, which has been borrowed 369

from [42] and [43] with appropriate modifications. The beam possesses a cross section of width 370

A(mm) and height B(mm) while its total length is L(mm). Its Young’s modulus is denoted 371

as Ew(t)(GPa). The beam has attached on its bottom face an aluminum plate with Young’s 372

modulus Ea(t)(GPa), whose cross section is C(mm) wide by D(mm) high. Along the beam, six 373

time-dependent stochastic loads, P1(t), P2(t), P3(t), P4(t), P5(t) and P6(t)(kN) are applied at six 374

different locations, L1, L2, L3, L4, L5 and L6(mm). Failure is defined whenever the maximum 375

bending normal stress of the beam exceeds the allowable tensile stress (yield strength) S(t). The 376

limit state function is then given by 377

g(x, t,Y (t)) = S(t)−
[
L3

L

∑6
i=1 Pi(t) (L− Li)−

∑2
i=1 Pi(t) (Lk − Li)

]
d(x)

W (x)
(36)

where Y (t) = [P1(t), P2(t), P3(t), P4(t), P5(t), P6(t)] is the vector of stochastic processes; 378

d(x) =
0.5AB2 +DC(B +D)Ea(t)/Ew(t)

AB +DCEa/Ew
(37)

379

W (x) =
AB3

12
+ AB

[
d(x)− B

2

]2
+
CD3Ea(t)

12Ew(t)
+
CDEa(t)

Ew(t)

[
D

2
+B − d(x)

]2
(38)

and 380

S(t) = S0e
−0.01t (39)
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381

Ea(t) = Ea0 [1− 0.1 log(t/2 + 1)] (40)
382

Ew(t) = Ew0 [1− 0.3 log(t+ 1)] (41)

are three random processes related with structural parameters’ deterioration. In this context, 383

S0 is the initial yield strength, and Ea0, Ew0 are the initial Young’s moduli of the beam and 384

the aluminum plate, respectively. There are 14 random variables and 6 stochastic load process 385

considered in this example. The distribution information of these parameters is given in Table 3. 386

Figure 5: A composite beam.

In this example, six stochastic processes are considered simultaneously. The proposed ap- 387

proach, as well as Subset simulation and Direct Monte Carlo simulation are applied to solve this 388

problem. Table 4 exhibits the obtained results by these methods, showing consistency between 389

methods with respect to the failure probability estimates. In this case, MCS shows a relatively 390

low efficiency, where 106 samples are used and the unit c.o.v is 103.7. Subset simulation produces 391

a probability estimate with a relatively large c.o.v. (0.29). The proposed approach has been 392

carried out with 500 samples and produces an estimate with c.o.v. around 0.10. In addition, the 393

proposed method owns the smallest unit c.o.v. which is nearly 1/8 of that of MCS and 1/40 of 394

that of Subset simulation in this example. The advantage on efficiency of the proposed approach 395

is obvious. 396

4.3. Example 3: Ten-bar truss structure 397

This example involves a ten-bar aluminum truss, which corresponds to a modified version of 398

the problem considered in [44] and [45] in order to suit the purposes of this contribution. The truss 399
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Table 3: Information parameters for composite beam (Example 2)

Parameter Distribution Mean Standard deviation Autocorrelation function

A(mm) Normal 100 1 −

B(mm) Normal 200 2 −

C(mm) Normal 80 0.8 −

D(mm) Normal 20 0.2 −

L1(mm) Normal 200 2 −

L2(mm) Normal 400 4 −

L3(mm) Normal 600 6 −

L4(mm) Normal 800 8 −

L5(mm) Normal 1000 10 −

L6(mm) Normal 1200 12 −

L(mm) Normal 1400 14 −

Ea0(GPa) Extreme value 70 0.7 −

Ew0(GPa) Extreme value 8.75 0.0875 −

S0(GPa) Lognormal 2.7× 10−2 2.7× 10−4 −

P1(t)(kN) Gaussian process 15 1.5 cos (πτ)

P2(t)(kN) Gaussian process 15 1.5 cos (πτ)

P3(t)(kN) Gaussian process 15 1.5 cos (πτ)

P4(t)(kN) Gaussian process 15 1.5 cos (πτ)

P5(t)(kN) Gaussian process 15 1.5 cos (πτ)

P6(t)(kN) Gaussian process 15 1.5 cos (πτ)

Table 4: Results by different methods for composite beam (Example 2)

Methods Pf (0, T ) c.o.v. N Unit c.o.v.

Proposed approach 9.1× 10−5 0.11 500 2.59

SS 8.6× 10−5 0.29 5000 20.6

MCS 9.3× 10−5 0.10 106 103.7
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is shown in Fig. 6. In this example, the length of the vertical and horizontal bars is L, the modulus 400

of elasticity is E(t), and the cross-sectional area of its members is denoted as Aj j = 1, 2, . . . , 10. 401

These quantities are all modelled as basic random variables. This truss is subjected to two vertical 402

stochastic process loads F1(t) and F2(t), and a horizontal stochastic process load F3(t). The limit 403

state function is cast as the difference between the allowable displacement d(t) and the vertical 404

displacement δ2 of joint 2, that is: 405

g(x, t,Y (t)) = d(t)−

(
6∑
i=1

NiN
0
i

Ai
+
√

2
10∑
i=7

NiN
0
i

Ai

)
L

E(t)
(42)

where 406

d(t) = d0e
(−0.05t) (43)

407

E(t) = E0[1− 0.1 log(t+ 1)] (44)

are two stochastic processes related with structural deterioration, respectively; x = [A1, · · · , A10, 408

L,E0, d0] is the vector of basic random variables; Nj(j = 1, 2, . . . , 10) are the axial forces which 409

can be obtained from the equilibrium and compatibility equations: 410

N1 = F2 −
√

2N8/2

N2 = −
√

2N10/2

N3 = −F1(t)− 2F2(t) + F3(t)−
√

2N8/2

N4 = −F2(t) + F3(t)−
√

2N10/2

N5 = −F2(t)−
√

2N8/2−
√

2N10/2

N6 = −
√

2N10/2

N7 =
√

2 (F1(t) + F2(t)) +N8

N8 = (a22b1 − a12b2) / (a11a22 − a12a21)

N9 =
√

2F2(t) +N10

N10 = (a11b2 − a21b1) / (a11a22 − a12a21)

(45)

where 411

a11 =
(
1/A1 + 1/A3 + 1/A5 + 2

√
2/A7 + 2

√
2/A8

)
L/(2E)

a12 = a21 = L/(2A5E)

a22 =
(
1/A2 + 1/A4 + 1/A6 + 2

√
2/A9 + 2

√
2/A10

)
L/(2E)

b1 =
(
F2(t)/A1 − (F1(t) + 2F2(t)− F3(t)) /A3 − F2(t)/A5 − 2

√
2 (F1(t) + F2(t)) /A7

)√
2L/(2E)

b2 =
(√

2 (F3(t)− F2(t)) /A4 −
√

2F2(t)/A5 − 4F2(t)/A9

)
L/(2E)

(46)
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where Y (t) = [F1(t), F2(t), F3(t)] is the vectors of load stochastic processes; N0
i is obtained by 412

assuming F1 = F3 = 0 and F2 = 1 in Eq. 45. 413

The information of basic random variables and the stochastic processes is given in Table 5. 414

Figure 6: Ten-bar truss structure.

Table 5: Information of variables and parameters for ten-bar truss (Example 3)

Parameter Distribution Mean Standard deviation Autocorrelation function

A1, · · · , A10(in) Normal 10 0.1 −

L(in) Normal 360 3 −

E0(ksi) Normal 1.5× 104 1.5× 102 −

d0(in) Lognormal 5 0.05 −

F1(t)(kip) Gaussian process 100 10 e−τ
2

F2(t)(kip) Gaussian process 120 12 e−τ
2

F3(t)(kip) Gaussian process 400 40 e−τ
2

In this example, three stochastic processes are considered. The proposed approach, Subset 415

simulation and Monte Carlo simulation are applied to solve this problem. Table 6 shows the 416

obtained results by these methods. It can be seen from the table that the results by these methods 417

are consistent with each other. Note that the failure probability is quite small (≈ 10−4). MCS 418

shows a low efficiency with unit c.o.v. bigger than 100; SS also obtained an estimate with relatively 419

large c.o.v. of 0.25 (1000 samples were considered for each level). The proposed approach has 420

been carried out with only 100 samples and obtains a estimate with c.o.v. below 0.10. Clearly, 421
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Table 6: Results by different methods for ten-bar truss (Example 3)

Methods Pf (0, T ) c.o.v. Total number of samples Unit c.o.v.

Proposed approach 8.2× 10−5 0.08 100 0.8

SS 6.5× 10−5 0.25 5000 22.5

MCS 8.9× 10−5 0.11 106 105.9

the proposed method owns the smallest unit c.o.v. which is nearly 1/100 of that of MCS and 1/25 422

of that of Subset simulation in this example. 423

4.4. Example 4: Bracket structure 424

This example involves a bracket structure. Its 3-D finite element model is shown schematically 425

in Fig. 7. The rear face of the bracket is fixed, and a distributed stochastic process load F (t) 426

is applied in the negative vertical direction over the front face. In this example, the maximum 427

allowable deflection of the tip of the bracket in the vertical direction is d0, which is characterized 428

as a random variable. The limit state function is defined as: 429

g(x, t,Y (t)) = d0 − δmax (E(t), γ, P (t)) (47)

where γ is Poisson’s ratio; δmax(·) is the maximum displacement of the bracket, which is determined 430

through a finite element analysis in Matlab utilizing the Partial Differential Equation (PDE) 431

toolbox; E(t) is the Young’s modulus, which is a random time-variant process given by 432

E(t) = E0(1− 0.2 log(t+ 1)) (48)

The distribution information of the parameters is given in Table 7. 433

In this linear elastic problem, the response (maximum vertical displacement) has a linear 434

relationship with load (provided that strains and stresses are below the elastic limit). Therefore, 435

the proposed approach can be applied, even though it actually involves an implicit limit state 436

function. 437

Table 8 shows the results obtained by different reliability methods. It can be seen from the 438

table that the results by these methods are consistent with each other. The proposed approach 439

has been carried out with only 30 samples and obtains an estimate of the failure probability 440

with a c.o.v. around 0.10. Figure 8 illustrates the evolution of the estimates generated with the 441

proposed approach, confirming that 30 samples suffice for an accurate analysis. As in the previous 442
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examples, the proposed method owns the smallest unit c.o.v. which is nearly 1/24 and 1/15 of 443

those associated with MCS and Subset simulation, respectively. The advantage on efficiency of 444

the proposed approach is remarkable, as it comprises an implicit LSF whose evaluation is time- 445

consuming because of the finite element model. 446

Figure 7: The finite model and response of bracket structure.

Table 7: Information of variables and parameters for bracket structure (Example 4)

Parameter Distribution Mean Standard deviation Autocorrelation function

E0(GPa) Lognormal 200 2 −

γ Lognormal 0.3 0.03 −

d0(m) Extreme value 2.0× 10−4 2.0× 10−6 −

P (t)(N/m2) Gaussian process 1.8× 104 1.8× 103 e−τ
2

Table 8: Results by different methods for bracket example (Example 4)

Methods Pf (0, T ) c.o.v. Total number of samples Unit c.o.v.

Proposed approach 3.4× 10−3 0.12 30 0.68

SS 5.1× 10−3 0.19 3000 10.3

MCS 3.7× 10−3 0.12 2× 104 16.4

5. Conclusions 447

A new efficient importance sampling method has been proposed to estimate the reliability of 448

a time-variant structure subject to time-variant load, where the limit state function includes ran- 449

dom variables, structural degradation parameter processes and Gaussian stochastic load processes. 450
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Figure 8: Evolution of estimators with respect to the number of samples by the proposed approach (Example 4).
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This approach first utilizes the series expansion methods to discretize the stochastic process and 451

transforms the time-variant problem into a series system. Then, a two-step importance sampling 452

density function is constructed to carry out the reliability analysis by means of simulation. Ex- 453

amples have been presented to investigate the performance of the proposed approach. It is shown 454

that the proposed approach has advantages in the following aspects: (1) It owns high efficiency, 455

as it can obtain a reliable estimate of the probability with only a hundred of samples in the given 456

examples. (2) The accuracy of the failure probability evaluated by proposed approach is relatively 457

insensitive to the magnitude of the probability itself. (3) No approximate analytical calculation 458

is involved. 459

Note that the application of the proposed approach is limited to problems involving first order 460

stochastic processes. That is, the performance of the structural system must exhibit a linear 461

dependency with respect to the stochastic load for a fixed time. It is expected that it can also 462

be applied to weakly non-linear stochastic processes. It should also be recalled that the proposed 463

approach is applicable for those cases where the limit state function is linear with respect to the 464

loading terms. Another aspect that should be also pointed out is that the proposed approach is 465

based on composite LSF idea which is sensitive to the time discretization. Then, a smaller interval 466

will result in an increased number of composite LSFs, which involves bigger computational burden. 467

It is also found that the efficiency (indicated by the unit c.o.v.) may vary for different problems. 468

Generally speaking, the proposed approach may be highly efficient in case the transformed series 469

system is dominated by one or few of the composite LSF. 470

Future research efforts will aim at analyzing the application of the proposed approach con- 471

sidering linearization of nonlinear stochastic processes. Another aspect to be examined is the 472

formulation of an importance sampling density function associated with the so-called static ran- 473

dom variables. 474
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