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Abstract

This work presents a Bayesian model updating approach for handling contaminant source charac-

terization problems in the context of water distribution networks. The problem is formulated in a

Bayesian model class selection framework where each model class represents a possible contaminant

event. The parameters of each model class characterize the contaminant mass inflow over time in

terms of its intensity and starting time. The class with the highest posterior probability is inter-

preted as the most plausible location for the contaminant injection. The evidences of the model

classes are estimated using the transitional Markov chain Monte Carlo (TMCMC) method. The

approach provides additional insight into the current network state in terms of posterior samples of

the parameters that describe the contaminant event. The effectiveness of the proposed identification

framework is illustrated by applying the contaminant source detection approach to a couple of water

distribution systems.

Keywords: Bayesian model updating, Contaminant source identification, Model class selection,

Water distribution systems.



1. Introduction

Water distribution networks are constantly exposed to external events that can negatively affect their

performance and the safety of the public. One important type of event is the intrusion, accidental

or intentional, of contaminants into the system [1, 2]. The presence of an unwanted substance in

the network can be very harmful to users and therefore the identification and characterization of

any source of contamination is an important goal in water security [3, 4]. In this context, sensor

measurements and available system knowledge must be properly taken into account. However, the

use of monitoring data in order to identify and characterize the contamination event remains an open

challenge in the security of water distribution systems. Relevant attributes of this type of events

include the location of the contaminant source, magnitude of the mass inflow, injection starting time,

duration, etc. Certainly, the source location is one of the most relevant features since it allows to

take corrective actions in a timely manner. Thus, efforts must be directed towards the effective

identification of the contaminant source based on available data from an array of sensors located in

the network.

Traditionally, the identification of contaminant sources has been treated as a deterministic inverse

problem [5, 6]. Direct optimization approaches, particle backtracking algorithm, data mining and

machine learning techniques have been reported in this context [7, 8, 9, 10, 11, 12, 13, 14]. The main

idea is to determine which contaminant outline can result in simulated sensor measurements that

best match the real sensor measurements. One of the difficulties of this type of approaches is the non-

uniqueness of the solution to the inverse problem. In fact, due to the nature of the problem, different

network characterizations may lead to similar behavior at the measurement points. For instance,

responses corresponding to a certain injection point with a given starting time and contamination

intensity can be similar to the ones of an upstream point with a higher intensity and an earlier

starting time.

Modeling and monitoring processes of water distribution networks involve unavoidable uncertainties

in hydraulic engineering practice [15, 16]. These uncertainties must be properly taken into account
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when dealing with identification problems in order to improve the overall security and reliability of

these critical infrastructure systems [17]. In the context of contaminant source detection, such uncer-

tainties may include sensor noise, nodal demands, modeling errors, attributes of contaminant events,

prior knowledge associated with possible source scenarios, etc. To deal with these issues, Bayesian-

type of approaches [18] have been also adopted for solving contaminant source characterization prob-

lems. The main idea of these approaches is to obtain revised probabilistic information that allows

to decide the most plausible contamination source based on available data. Bayesian techniques,

in the context of contaminant source detection problems, include the use of factor graph represen-

tation and belief propagation [19], beta-binomial conjugate framework coupled with deterministic

backtracking algorithms [20], real-time approaches where the posterior information is updated as

new measurements become available [21], backward probabilistic modeling [22], and Bayesian belief

networks [23, 24]. These methodologies usually identify a region in the network with relatively high

plausibility of containing the true sources, and some of them are limited to steady-state hydraulics.

An additional type of Bayesian approaches correspond to sample-based model updating techniques

[25, 26, 27]. In these contributions, injection location and time profile characteristics are simulta-

neously considered. Then, a set of posterior samples is obtained and the one that maximizes the

posterior probability density function is chosen as the contaminant event. Due to the mixed discrete-

continuous nature of the uncertain parameter space, this represents a serious computational challenge

in realistic network models. In addition, numerical results reported by the previous contributions

have usually identify a broad band of possible sources but they have not been able to single out the

true source. Then, it is clear that more research and developments are needed in order to improve

the precision, accuracy and efficiency of contaminant source characterization procedures.

In the previous context, this contribution proposes a simulation-based Bayesian model updating

framework [28, 29, 30] to deal with contaminant source identification of water distribution systems.

In particular, a model class selection problem is formulated where each model class is associated

with a potential source location. In this manner, the most probable source locations are selected

taking into account all possible contaminant scenarios for any given injection point and therefore
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the mixed discrete-continuous nature of the identification parameter space can be circumvented. To

solve the model class selection problem a multi-level Markov chain Monte Carlo algorithm, called

the transitional Markov chain Monte Carlo (TMCMC) method, is adopted in this work [31]. The

method is well-developed and it has been proved in a number of model updating and model class

selection applications. Moreover, the approach has been successfully used in resolving some of the

difficulties involved in the solution of inverse problems, that is, non-uniqueness, even in presence of

limited amount of data and when modeling errors are present. Actually, the TMCMC algorithm can

handle globally identifiable cases (set of most probable solutions is a singleton), locally identifiable

cases (set of most probable solutions is finite), and unidentifiable cases (set of most probable solutions

is uncountable) in an effective manner [31].

Thus, the efforts of this work are focused on the adaptation and implementation of the TMCMC

technique into the area of contaminant source characterization with applications to water distribution

networks. The approach provides a realistic representation of the uncertainties associated with the

hydraulic modeling, water quality behavior, measured data and prior engineering information. The

proposed approach is potentially a functional tool for identifying the location of the contaminant

sources and estimating the attributes of the contaminant events. In fact, results of the proposed

methodology indicate that the location of injection points is clearly identified for practical cases

when relatively large model and measurement errors are considered. Thus, the proposed identification

process is robust to model and measurement errors for the cases considered in this work. Moreover,

the proposed methodology allows to obtain further insight into the contaminant injection profile, in

addition to the identification of the contaminant event. This type of information can be useful to

assist involved decision making processes in an emergency management framework. The methodology

can be considered as an extension of the approach presented in [32] for leakage detection problems.

The organization of the paper is as follows. Section 2 presents the contaminant source identification

problem in the framework of Bayesian model updating. The proposed approach is introduced in

detail in Section 3. Section 4 discusses some aspects related to the numerical implementation of

the proposed method. The effectiveness of the proposed contaminant source identification scheme
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is demonstrated in Section 5 by means of two example problems. The paper closes with some

conclusions and final remarks.

2. Contaminant Source Identification

2.1. Background and Hypotheses

The presence of unwanted substances in a water distribution network can be very harmful to users

and, therefore, it is of the utmost importance to take promptly corrective actions. Once the existence

of a contaminant event has been confirmed, it needs to be identified. The existence of contamination

can be diagnosed by monitoring the changes in concentration over time at certain control points.

Then, the basic idea is to update the hydraulic model in order to identify the location of the contam-

inant event. In other words, the predictions of the updated hydraulic model will match the measured

data obtained from an array of sensors located in the network. Although optimal sensor placement is

one of the important aspects of an effective contaminant warning system, this work focuses on source

identification with the assumption that sensors are located in the network in a somewhat reasonable,

sound, or optimal manner.

To simplify and clarify the demonstration of the proposed approach, the following assumptions are

considered in this study. First, the array of sensors provides continuous concentration measurements

over time rather than a binary signal indicating the presence or absence of the contaminant. Second,

the contamination event is modeled as a constant mass flow entering the network at a single node,

that is, the same amount of mass per time unit enters the network at a given node and from a certain

time instant. In addition, it is assumed that the contaminant is conservative, i.e., it does not decay

as it propagates through the distribution system. Thus, for a given network, the attributes of a

contaminant event are determined by three parameters: injection node, contaminant intensity (mass

inflow at the injection point), and the starting time. It is noted that, however, multiple sources and

alternative injection time profiles can also be considered in the proposed framework. The difference

in these cases is that the number of parameters involved in the characterization of the contaminant
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events may increase. Finally, the analysis of the water distribution network is carried out using the

well known hydraulic simulation program EPANET [33, 34]. In this setting, the hydraulic analysis is

based on mass conservation equations at all nodes of the network, and energy conservation equations

in all network links. On the other hand, the water quality analysis uses a Lagrangian time-based

approach to track discrete parcels of water as they move along pipes and mix together at junctions

between fixed-length time steps [33]. However, it is noted that different hydraulic simulation packages

can be used as well.

2.2. Contaminant Model Classes

Based on the previous information, the contaminant source characterization requires three network

parameters, i.e., the injection node N , the contaminant intensity I, and the starting time T . It

is noted that N is a discrete quantity, whereas I and T can be regarded as continuous quantities.

Thus, the contaminant source characterization problem presents a mixed discrete-continuous nature

in terms of the parameters to be identified, that is, the attributes of a contaminant event. In

this framework, it is assumed that Nc network nodes have been identified as potential contaminant

injection points. The set N = {1, 2, . . . , Nc} collects the possible injection nodes, that is, N ∈ N.

Clearly, the total number of potential contaminant events Nc is problem-dependent, and it depends

on a number of factors such as the layout of the network and additional engineering information.

In this regard, appropriate procedures such as particle backtracking algorithms can be used, in

principle, to identify the potential contaminant injection points [35, 36]. Since a single contaminant

source is assumed, the ith node, i = 1, 2, . . . , Nc, is associated with a class of network models, Mi,

that comprises all its feasible contaminant injection profiles. This model class is defined by the

vector of parameters θi ∈ Θi ⊂ R2, with θi = {Ti, Ii}, where Ti represents the starting time of

the contaminant event and Ii represents the mass inflow (contaminant intensity). It is noted that

if multiple sources or alternative injection time profiles are considered, the only difference in terms

of the present formulation is that the number of model classes or the dimension of the parameter

space can increase, as previously pointed out. The parameters θi constitute the set of unknowns
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that parametrize the model class Mi. That is, a particular network model Mi(θi) from the class Mi

is selected by specifying the values of the parameter set θi. In addition, the set of all model classes

is defined in the set M = {M1, . . . ,MNc}.

It is noted that when multiple sources of contamination are considered, the injection nodes, contam-

inant intensities and the starting times constitute the set of attributes of the potential contaminant

events. The total number of distinct contaminant events, or model classes, may be quite large in the

general case, and therefore an exhaustive search for the most probable events could be computation-

ally very expensive or even prohibitive. In this scenario, stochastic search algorithms [37, 38, 39, 40]

can be used to effectively provide a near optimal solution for the injection nodes. In this context,

it is important to note that in many practical situations the injection nodes are expected to occur

only in a certain number of nodes of the network, and therefore the computational complexity of

the problem can be significantly reduced. The consideration of multiple sources of contamination

and the corresponding assessment of the proposed methodology is subject for future research (see

Conclusions).

3. Proposed Approach

For the purpose of identifying the location of the contamination event, a Bayesian system identi-

fication scheme is adopted in this work [41]. The approach is coupled with a hydraulic and water

quality behavior simulator for model updating and model class selection of a parametrized class of

hydraulic models. It can be regarded as an extension of the methodology introduced in [32, 42] for

leakage and connectivity detection problems.

3.1. Model Class Selection

Monitoring data must be gathered and processed to identify the characteristics of the contamination

event. The information about the network behavior is denoted by D and it consists of concentration

measurements at a number of nodes. The data are used to update the plausibility of all possible
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injection nodes, i.e., model classes. The most plausible injection node is obtained by solving a

Bayesian model class selection problem [31, 43]. To this end, consider the set M = {M1,M2, . . . ,MNc}

of the Nc model classes previously defined. Given data D, the posterior probability of each model

class, i.e., P (Mi|M,D), i = 1, . . . , Nc can be determined as

P (Mi|M,D) =
P (D|Mi)P (Mi|M)∑Nc

l=1 P (D|Ml)P (Ml|M)
(1)

where P (D|Mi) is the evidence of the model class Mi, which is a measure of the plausibility of

obtaining the measurement data D from Mi. The optimal model class is selected as the one that

maximizes P (Mi|M,D), i = 1, . . . , Nc. Each model class has a prior probability P (Mi|M), i =

1, . . . , Nc, which measures the plausibility of contamination occurrence at each node before any

information is included into the analysis. For the case where no prior information is available, the

prior probabilities can be assumed to be equal, that is, P (Mi|M) = 1/Nc. In this case, the selection

among the model classes can be based solely on their evidence values.

Figure 1: Scheme of the proposed Bayesian model class selection approach

A procedure to estimate the evidence for the different model classes, which involves a Bayesian model

updating problem, is addressed in the following sections. For illustration purposes, a sketch of the

proposed Bayesian model class selection approach is provided in Figure 1.
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3.2. Model Updating

In order to estimate the evidence of a model class, a Bayesian model updating problem is first con-

sidered. To this end, the plausibility of each model Mi(θi), within a class Mi, based on concentration

measurements D from the network, is quantified by the updated joint probability density function

p(θi|Mi,D) (posterior probability density function). According to Bayes’ Theorem, the posterior

probability density function of θi is given by

p(θi|Mi,D) =
p(D|Mi,θi) p(θi|Mi)

P (D|Mi)
(2)

where p(D|Mi,θi) is the likelihood function, p(θi|Mi) is the prior probability density function of θi,

and P (D|Mi) is the evidence of the model class Mi. The likelihood function expresses the plausibility

of observing the data D given a certain θi, while the prior probability density function represents

the prior or initial belief about the distribution of θi. Moreover, the evidence of the model class is

written as

P (D|Mi) =

∫
Θi

p(D|Mi,θi) p(θi|Mi)dθi (3)

where all terms have been previously defined. In the present formulation, a method that estimates the

evidence of the model class as a by-product of the solution to the Bayesian model updating problem

is implemented. In particular, the transitional Markov chain Monte Carlo (TMCMC) method is

adopted [31]. For completeness and clarity, the basic ideas of the TMCMC method are briefly

reviewed in the following sections.

3.3. Parameters Estimation

The TMCMC method iteratively proceeds from the prior to the posterior distribution of the param-

eter set θi. To this end, a number of non-normalized intermediate distributions pj(θi|Mi,D), j =

0, . . . ,m, are defined as
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pj(θi|Mi,D) ∝ p(D|Mi,θi)
αjp(θi|Mi) (4)

where the parameter αj increases monotonically with j such that α0 = 0 and αm = 1. The pa-

rameter αj is chosen in such a way that the change of the shape between two adjacent interme-

diate distributions be small. In this regard, different criteria can be used [31, 44, 45]. This small

change of the shape makes it possible to efficiently obtain samples from pj(θi|Mi,D) based on the

samples from the previous distribution. Once the parameter αj has been computed, the samples

at stage j are obtained by generating Markov chains where the lead samples are selected from

the distribution pj−1(θi|Mi,D). Each sample of the current stage is generated by applying the

Metropolis-Hastings algorithm [46, 47]. The lead sample of the Markov chain is a sample from

the previous step, i.e., θki,j−1, k = 1, . . . , Nj−1, that is selected according to a probability equal to

its normalized weight w̄(θki,j−1) = w(θki,j−1)/
∑Nj−1

s=1 w(θsi,j−1), where Nj−1 is the number of sam-

ples at the j − 1th iteration step, and w(θki,j−1) represents the plausibility weight which is given by

w(θki,j−1) = p(D|Mi,θ
k
i,j−1)αj−αj−1 .

The proposal probability density function for the Metropolis-Hastings algorithm is chosen as a Gaus-

sian distribution centered at the lead sample of the chain and with a covariance matrix equal to a

scaled version of the estimate covariance matrix of the current intermediate distribution pj−1(θi|Mi,D),

that is, Σi,j−1 = β2
∑Nj−1

s=1 w̄(θsi,j−1)
(
θsi,j−1 − θ̄i,j−1

) (
θsi,j−1 − θ̄i,j−1

)T
, θ̄i,j−1 =

∑Nj−1

s=1 w̄(θsi,j−1)θsi,j−1,

where β2 is a parameter that can be chosen according to different criteria. For example, it can be

defined directly by the user or by an adaptive scheme based on the acceptance rate of the sampling

process [48, 49]. The procedure is repeated until the parameter αj is equal to 1 (j = m). At the last

stage, the samples θki,m, k = 1, . . . , Nm, are asymptotically distributed as p(θi|Mi,D).

3.4. Evidence Estimation

The estimation of the evidences associated with the different model classes is known to be highly

nontrivial. In this regard, the TMCMC method provides a flexible and efficient means to estimate
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the evidences even in challenging cases such as those involving multi-modal, peaked or flat posterior

distributions. In fact, the TMCMC method can estimate the evidences as a by-product and they are

given in terms of the mean values of the weights at the different stages, Wi,j =
∑Nj

k=1w(θki,j)
/
Nj, as

Wi =
m−1∏
j=0

Wi,j (5)

where Wi is an asymptotically unbiased estimator of the evidence P (D|Mi) [31]. Note that if only

the evidences are required, the process can be stopped at stage j = m − 1. The reader is referred

to [31, 48] for a detailed description of the TMCMC method. A pseudo-code that illustrates the

implementation of the TMCMC method is provided in the Appendix.

4. Implementation Aspects

4.1. Contaminant Data

The likelihood function, p(D|Mi,θi), which measures how plausible is to obtain measurements D from

each model Mi(θi) is defined as follows. In the context of the present formulation, it is assumed that

the data D are obtained from nS sensors at nT time instants. Then, the concentration measurements

are contained in a vector y ∈ RnS×nT where y = 〈y1
T , . . . ,ynS

T 〉T , in which yj ∈ RnT , j = 1, . . . , nS is

a vector comprising the measurements at the jth sensor and given by yj = 〈yj(t1), . . . , yj(tnT
)〉T , where

yj(tk) represents the concentration level at the jth sensor location at time instant tk, k = 1, . . . , nT .

Formally, the prediction errors from the model Mi(θi) are written as ejk(θi) = yj(tk)−yj(tk,θi) , j =

1, . . . , nS , k = 1, . . . , nT , where yj(tk,θi) indicates the concentration level at the jth sensor location at

time instant tk computed from the model class Mi, corresponding to a particular value assigned to the

parameter set θi. The prediction errors may be due to hydraulic and water quality behavior network

modeling and device measurement accuracy that are unavoidable in the modeling and monitoring

processes of real water distribution systems, and they are modeled as normally distributed with zero

mean and covariance matrix C. Based on the previous conditions, the likelihood function p(D|Mi,θi)
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is written as [28, 29, 50]

p(D|Mi,θi) ∝ |C|−1/2 exp

[
−1

2
L(θi,y)

]
(6)

where ∝ indicates proportional, | · | denotes determinant, and L(θi,y) is a weighted measure of fit

between the model predictions and the measured data given by

L(θi,y) = [y− y(θi)]
T C−1 [y− y(θi)] (7)

where y(θi) represents the corresponding vector of measurements computed from the model class

Mi(θi). For simplicity, the prediction errors are assumed to be independent and, therefore, the

covariance matrix C is a diagonal matrix comprising the prediction error variances. It is noted that,

however, different prediction error model classes can be used as well, including models that consider

correlation [51, 52]. Finally, it is noted that, in the framework of model updating, parameters

associated with the characterization of the covariance matrix can also be included in the parameter

set θi.

4.2. Hydraulic and Water Quality Simulation Model

The widely used software EPANET 2.2 is employed in this work for analysis purposes [33, 34].

In other words, measurements computed from the model classes, in the framework of the TMCMC

method, are generated by this algorithm. The software allows performing extended period simulation

of hydraulic and water quality behavior of water distribution networks. Hydraulic analysis is based on

mass conservation equations at all nodes of the network (pipe connection points, tanks and reservoirs),

and energy conservation equations in all network links (pipes, pumps and valves). These two types of

relationships lead to a system of nonlinear equations that is solved using a type of Newton iteration

scheme. On the other hand, water quality analysis, which simulates the concentration over time

of different substances in all network components, uses a Lagrangian time-based approach to track
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discrete parcels of water as they move along pipes and mix together at junctions between fixed-length

time steps [33]. Water quality analysis uses information gathered from a previous hydraulic simulation

of the network in order to propagate the substance across the network. Hence, water quality results

do not affect the hydraulic behavior of the system under analysis. Validation calculations have shown

the efficiency and flexibility of this simulation model in a large number of water distribution networks.

4.3. Computational Efficiency

The proposed approach presents several advantages for implementation in a high-performance com-

puting (HPC) environment. In fact, all model classes are perfectly independent from each other.

Thus, the estimation of the evidences of the different model classes is perfectly parallel and the

analyses can be carried out simultaneously taking advantage of available parallelization techniques.

Moreover, the first stage of the TMCMC method corresponds to direct Monte Carlo simulation and,

therefore, it can be completely scheduled in parallel. In addition, subsequent stages involve the gen-

eration of a number of Markov chains that are perfectly parallel. Hence, the corresponding sampling

process can also be scheduled in a parallel setting. The load balance in the computer workers can

be based on a static or dynamic job-scheduling scheme [53]. Clearly, if a high-performance com-

puting environment is not available, the evidences for each potential contaminant event need to be

estimated in a sequential manner. Although such estimation may be computationally expensive and

could represent a possible limitation of the methodology, in many practical situations the injection

nodes are expected to occur only in a certain number of nodes of the network. For instance, available

pre-screening techniques [35, 36] as well as engineering knowledge about the network can be used to

rule out unfeasible nodes before the identification process is carried out. In addition, surrogate mod-

els can be integrated, in principle, to reduce the computational efforts associated with the evaluation

of the likelihood function [49, 50]. Thus, the computational complexity of the problem can be signif-

icantly reduced, even for the case when a HPC environment is not accessible. The implementation

and evaluation of the previous techniques within the proposed approach represent a future research

effort.
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5. Numerical Examples

5.1. Simplified Network Model

The objective of this example is to study in detail some of the capabilities of the proposed contaminant

source identification scheme. In particular, the effect of increasing the amount of available data and

the effect of model and measurement uncertainties on the performance of the approach are explored.

To this end, two cases are analysed in terms of the uncertainty included in the identification process.

Case A considers uncertainty in the hydraulic model properties, whereas case B considers both,

modeling and measurement errors. In addition, two scenarios in terms of the amount of measurements

are studied in each case.

5.1.1. Network Description

A simple network subject to a contamination event is considered in the test problem. The network

is shown in Figure 2 and comprises 17 nodes, 21 pipes and a single reservoir. The distances between

the nodes are also indicated in the figure. All nodes are located at the same level, whereas the

reservoir has a relative height of 15 m. The water enters to the distribution system through node 1.

The head-losses in pipes are modeled using the Darcy-Weisbach equation. All pipes are of diameter

110 mm, with roughness coefficient ε = 0.0046 mm. The nodes have a maximum demand of 0.5 l/s

and follow a typical demand pattern which is shown in Figure 3. An extended period of 36 hours is

shown in the figure.

For illustration purposes, it is assumed that the injection point is node 1, as indicated in Figure

2. The substance can propagate to all network nodes and a periodic behavior of the contaminant

concentration response can be eventually reached at every point of the network. The injection of the

substance starts two hours after the beginning of the simulation period. A constant intensity of 100

mg/min is considered. The hydraulic and water quality time step, in the context of EPANET, is 5

min.
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Figure 2: Water distribution network. Test problem

Figure 3: Normalized demand pattern

5.1.2. Synthetic Measurements

The performance of the proposed identification process is evaluated considering synthetic measure-

ments. The data considered for identification purposes are concentration levels over time obtained

at nodes 10 and 17, whose location is shown in Figure 4. The corresponding time history of the con-

taminant injection is also shown in the figure. As previously mentioned, continue-valued sensors are

considered for the identification process. Measurement and modeling errors are accounted explicitly

in the analysis in order to consider a realistic setting [32, 42, 54]. In order to include measurement

noise in the sensors, an error term is added to the predictions of the actual network. Simulated data

are generated as
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yj(tk) = yactual
j (tk) + ynoise

j (tk) , j = 1, . . . , nS , k = 1, . . . , nT (8)

where yactual
j (tk) represents the concentration level in the actual system and ynoise

j (tk) accounts for

the measurement error. The quantities yactual
j (tk) are obtained from an EPANET model that is

representative of the actual system and it is referred to as the actual network. This model has

hydraulic properties that deviate from the ones considered for identification purposes. The particular

characteristics that are perturbed from their nominal values are the pipe roughness coefficients and

peak nodal demands. The roughness coefficient of the lth pipe at the actual network is given by

εactual
l = εnominal

l (1 + αul), where εnominal
l is the roughness coefficient of the lth pipe in the model

class used for identification, ul is a random number uniformly distributed over [−1, 1] and α ∈ [0, 1]

represents the intensity of the uncertainty expressed as a percentage of the nominal value. Similarly,

the peak demand of the lth node is written as δactual
l = δnominal

l (1 + βul), where δnominal
l is the peak

demand of the lth node in the model class used for identification, ul is a random number uniformly

distributed over [−1, 1] and β ∈ [0, 1] represents the intensity of the uncertainty expressed as a

percentage of the nominal value. Thus, it is clear that the model classes used for identification are

not capable to represent the behavior of the actual network exactly.

Figure 4: Location of sensors in the network

Moreover, the measurement error ynoise
j (tk) is generated as ynoise

j (tk) = yactual
j (tk) γ uj,k, where uj,k is

16



a random number uniformly distributed over [−1, 1] and γ ∈ [0, 1] represents the measurement noise

intensity expressed as a percentage of the response obtained from the actual network.

5.1.3. Definition of Probabilistic Model Classes

The set of probabilistic model classes comprises all feasible contaminant source locations based on

prior engineering information. All network nodes are considered as potential injection points with

the same plausibility. Thus, the posterior probability of Nc = 17 model classes must be evaluated. As

previously pointed out, appropriate techniques such as particle backtracking algorithms can be used,

in principle, to reduce the number of potential contaminant injection points [35, 36]. As discussed in

Section 2, each model class involves a constant mass flow into a given node starting at a given time

instant. Hence, the ith model class, Mi, is parametrized by θi = 〈Ti, Ii〉T , where Ti is the injection’s

starting time and Ii is the contaminant intensity. A uniform prior distribution for the uncertain

parameters θi is considered for each model class. They are defined in the intervals Ti ∈ [0, 540] min,

and Ii ∈ [0, 1000] mg/min. The upper bound for the starting time is associated with the first arrival

of the contaminant to the sensors.

Figure 5: Measurements of nodal concentration over time. Idealized network

In this regard, Figure 5 shows the measurements obtained at the sensors when no errors are considered

in the analysis, that is, α = β = γ = 0 (idealized network). It can be observed that the contaminant

arrives at node 10 about seven hours after the injection starts. On the other hand, the contaminant
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arrives at node 17 about ten hours after the start of the injection. Then, it is observed that the source

start time can be anytime from 9 hours before the time of first detection up to the time of detection.

Similar arrival times are obtained when model and measurement uncertainties are considered. Based

on the previous information, the upper bound of the starting time is set equal to 540 min (9 hours).

For reference purposes, recall that the actual contaminant source location is node 1, with starting

time T1 = 120 min, and intensity I1 = 100 mg/min. In terms of the TMCMC method, 100 samples

per stage are considered in its implementation.

5.1.4. Results of Case A: Hydraulic Model Uncertainty

Model errors are imposed by perturbing the values of all pipe roughness coefficients and peak nodal

demands, as previously pointed out. For illustration purposes, relatively large perturbations are

introduced simultaneously for the pipe roughness coefficients and peak nodal demands. In particular,

α = β = 10%. In terms of the proposed framework, it is assumed that all probabilistic model classes

present the same prior probability, since there is no particular preference to any possible injection

node based on previous information. Then, the model class selection problem can be addressed

considering only the evidence values. In addition, two scenarios are considered regarding the data-

set size used in the analysis. The first scenario considers measurements up to the time of first

detection of the contaminant (5 min after the first detection), while the second scenario contemplates

measurements up to 60 min after the first arrival of the contaminant to any sensor (about 10 hours).

Figure 6: Normalized evidences of all model classes. A) Scenario 1. B) Scenario 2. Hydraulic model uncertainty
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Figure 6 shows the normalized evidences of the model classes associated with the different injection

nodes obtained for both scenarios. The normalized evidences are such that their maximum value

is equal to one. It is observed that the injection node is correctly identified in the second scenario

(Figure 6-B), where the normalized evidence of model class 1, which considers node 1 as the injection

point, is equal to one, and the evidences of the other model classes are almost equal to zero. However,

the actual injection node is not identified correctly in the first scenario (Figure 6-A). In fact, the most

probable contaminant event identified corresponds to injection node 4. Additionally, contaminant

injection in nodes 1 and 9 also leads to model classes with evidences different to zero. It is noted

that nodes 1, 4 and 9 are upstream from node 10, which is consistent from the physical point of view.

Thus, although the actual injection node is not identified correctly, the results still provide important

information about the network behavior. When more data are available, the contaminant event is

properly determined as indicated from the results associated with Scenario 2, where the location of

the injection point is clearly identified even when relatively large model errors are included in the

model that generates the data.

To obtain further insight into the contaminant source identification process, Figure 7 shows the

corresponding identification process when using model class M1, that is, the most probable model

class. This figure shows how the samples in the T1 − I1 space converge for the actual contaminant

event during the different TMCMC stages when the second scenario is considered. Note that both,

the contaminant intensity and the starting time are correctly identified. The starting time ranges

from 120 to 135 min, whereas the contaminant intensity values range from 97.3 to 112.0 mg/min.

The posterior mean estimate of the model parameters is θ1 = 〈T1, I1〉T = 〈124.9, 104.1〉T . From the

different steps of the identification process, it is clear that the prior uncertainty of the contaminant

intensity value and the starting time is significantly reduced due to the available data.

5.1.5. Results of Case B: Hydraulic Model and Measurement Errors

To consider a more practical and realistic situation, it is assumed that model and measurement errors

are present in the analysis. To this end, the perturbation levels for the pipe roughness coefficients,
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Figure 7: Plot of samples in the T1 − I1 space generated at different steps of the transitional Markov chain Monte
Carlo method when updating model class M1. Hydraulic model uncertainties

peak nodal demands, and measurement noise intensities are taken equal to α = β = γ = 10%.

Figure 8 shows the normalized evidences obtained for scenarios 1 and 2. Under this case, the actual

contaminant event is not correctly identified in the first scenario (Figure 8-A), but the most probable

injection points are located across the flow paths from the actual injection location (node 1) to the

sensor recording non-zero concentrations (node 10), as in Case A where only model uncertainties are

considered. Thus, although the correct node is not identified, the proposed approach still provides

relevant information about the current state of the network.

If more information is available, i.e., Scenario 2 (Figure 8-B), the injection node is properly deter-

mined. In fact, among all model classes, the proposed identification scheme clearly favors model

class M1. Thus, it is clear that increasing the amount of available data is highly beneficial towards

the identification process, which is reasonable from the practical point of view. The corresponding

identification process when using model class M1 is shown in Figure 10. This figure shows the evo-
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Figure 8: Normalized evidences of all model classes. A) Scenario 1. B) Scenario 2. Hydraulic model and measurement
errors

Figure 9: Plot of samples in the T1 − I1 space generated at different steps of the transitional Markov chain Monte
Carlo method when updating model class M1. Hydraulic model and measurement errors

lution of samples in the T1 − I1 space during the different TMCMC stages. At the final stage of the

identification process, the starting time ranges from 116 to 134 min, whereas the contaminant inten-

sity values range from 101.6 to 115.5 mg/min. The posterior mean estimate of the model parameters

is θ1 = 〈T1, I1〉T = 〈126.4, 106.6〉T . Then, the samples of the model parameters θ1 are distributed

around the actual value, as for the case where only model uncertainties are considered. Note that
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the model parameters (contaminant intensity and starting time) are globally identifiable since the

set of posterior samples (most probable model parameters) populates a vicinity of the target values.

Based on the previous results, it is concluded that the identification of the contaminant event is quite

robust to model and measurement errors for this particular network.

5.2. Application Problem

The objective of this example is to evaluate the capabilities of the proposed approach in a more

realistic network model. Two different events are considered in terms of the location of the con-

taminant source. For each event, two different scenarios in terms of the amount of measurements

are contemplated. In all cases, modeling and measurement uncertainties are included in the data

generation process.

5.2.1. Description of the Network

The water distribution network considered as an application problem corresponds to Example Net-

work 3 provided as a tutorial in EPANET 2.2 [33]. This system has been studied in the context of

contaminant source detection by other researchers in previous contributions [20, 21, 25, 26, 27]. It

consists of 92 nodes, 117 pipes, two reservoirs, three fully-mixed tanks and two pumps. The layout

of the network and some of its elements are shown in Figure 10. Transient flows are developed in the

pipeline system due to the varying operational conditions, demand requirements, and the filling and

draining of the storage tanks during the network operation. In this context, most nodes follow the

normalized demand pattern shown in Figure 11 during the analysis period. In addition, a total of

65.75 km of pipelines are allocated to distribute water to the different nodes. The pipe distributions

in terms of Hazen-Williams coefficients and diameters are shown in Tables 1 and 2, respectively. A

simulation period of 24 h is considered for analysis purposes. The corresponding hydraulic simulation

step and water quality step are equal to 5 min.
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Figure 10: Water distribution network. Application problem

Figure 11: Normalized demand pattern. Application problem

Hazen-Williams Number Total length
coefficient of pipes (km)

110 1 4.33
130 97 41.40
140 4 14.24
141 12 5.69
199 3 0.09

Table 1: Distribution of pipes in terms of their roughness coefficients. Application problem

5.2.2. Contamination events

Two different contamination events are studied in order to explore the capabilities of the proposed

approach. In each event, a conservative chemical is injected at a single node with a constant mass

inflow of 0.2 kg/min. The location of these two events within the network is illustrated in Figure 12.
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Diameter Number Total length
(mm) of pipes (km)
203.2 25 10.97
254.0 4 1.18
304.8 50 20.22
355.6 3 0.82
406.4 7 6.07
457.2 1 4.33
508.0 1 0.24
609.6 10 3.69
762.0 13 18.15
2514.6 3 0.09

Table 2: Distribution of pipes in terms of their diameters. Application problem

Event 1 is associated with a contaminant inflow at node 101, starting 2 h after the beginning of

the simulation. On the other hand, Event 2 corresponds to a contaminant injection into node 157,

starting 5 h after the beginning of the simulation. Note that compared with Event 1, a more

complex contaminant propagation pattern can be expected in Event 2 since node 157 is located in an

intermediate sector of the network. The attributes of each event under consideration are summarized

in Table 3.

Figure 12: Location of contaminant sources and array of sensors. Application problem

Concentration measurements at given network nodes are considered for identification purposes. In

this context, five fixed sensors recording contaminant concentration every 5 min are allocated in the

network according to Figure 12. This array of measuring devices is the one reported in [20], which
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is based on the example provided in the threat ensemble vulnerability assessment and sensor place-

ment optimization tool (TEVA-SPOT) toolkit [20, 55]. The same sensor configuration is considered

for both contaminant events. Finally, the corresponding concentration measurements are obtained

according to Section 5.1.2. Modeling and measurement uncertainties have been simultaneously con-

sidered in the data generation processes for both events. In this manner, a more realistic scenario in

terms of the available information about the actual network condition is addressed. As in the test

problem, 100 samples per stage are considered in the framework of the TMCMC method.

Event 1 Event 2
Source node 101 157

Intensity I (kg/min) 0.2 0.2
Starting time T (min) 120.0 300.0

Table 3: Attributes of the contaminant events. Application problem

5.2.3. Results: Event 1

This event is associated with a contaminant injection at node 101, that is, close to one of the water

sources (see Figure 12). For illustration purposes, Figure 13 shows the corresponding concentration

measurements at the sensors during the entire simulation period when no uncertainties are taken

into account, that is, α = β = γ = 0. It is noted that the contaminant arrives first to node 193 about

60 min after the injection starts, and the concentrations tend to decrease at the end of the analysis

period. This is attributed to the varying operational conditions of the system under analysis. For

reference purposes, the actual values of the contamination parameters for Event 1 are T = 120 min

and I = 0.2 kg/min.

The synthetic measurements considered for identification purposes are obtained considering model

and measurement errors as previously pointed out. In particular, the uncertainty levels are given

by α = β = γ = 10%. The Bayesian model class selection problem considers all network nodes as

potential injection points with the same degree of plausibility. This leads to a total of Nc = 92 model

classes whose posterior probability needs to be estimated. The parameters of each model class Mi

are given by θi = 〈Ti, Ii〉T where Ti is the injection’s starting time and Ii is the constant mass inflow
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Figure 13: Measurements of nodal concentration over time. Application problem. Event 1

(contaminant intensity). The prior distribution for the model parameters is taken as uniform with

Ii ∈ [0, 1] kg/min and Ti ∈ [0, 180] min. It is noted that the upper bound for the starting time

corresponds to the instant in which the contaminant arrives to the sensors for the first time.

Figure 14: Normalized evidences of all model classes. Application problem. Event 1. A) Scenario 1. B) Scenario 2

The contaminant source characterization process is carried out considering two cases in terms of

the amount of available measurements. Scenario 1 considers measurements from the beginning of

the simulation up to 60 min after the contaminant arrives to two sensors (about 5 hours), whereas

Scenario 2 considers measurements during the entire analysis period (24 hours). Since all injection

points have the same prior probability, the model class selection process can be performed solely

based on their evidences. Figure 14 illustrates the normalized evidences obtained for all model classes,
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where nodes with normalized evidence close to zero have been depicted with small white circles. For

Scenario 1 (see Figure 14-A), two nodes have similar evidence values. In fact, the evidence of node 10

is slightly larger than of the actual contamination source (node 101). Validation calculations show

similar results when considering measurements up to 60 min after the initial contaminant detection

(about 4 hours). It is observed that nodes 10 and 110 are adjacent, that is, they belong to the same

pipeline. Thus, even when the actual injection point is not identified as the most probable one, the

results still provide information that can be useful to decision makers. When the measured data

consider the entire simulation period, i.e., Scenario 2, (see Figure 14-B), the actual injection point

is properly identified. Moreover, the evidence of node 10 represents about 4% of the evidence of

node 101 in this case. This illustrates that the system identifiability seems to improve as the amount

of available measurements increases.

The proposed methodology can provide additional insight into the contaminant event in terms of

posterior samples of the model parameters. To illustrate this, Figure 15 shows the evolution of

samples obtained during the different stages of the TMCMC method when Scenario 2 is considered.

It is noted how the samples converge from the prior distribution (stage j = 0) to the posterior

distribution (stage j = 10). The posterior samples are concentrated near the actual values for the

contamination parameters. Thus, the model parameters are globally identifiable in this case. At the

last stage, the starting time ranges from 125 to 130 min, while the contaminant intensity from 0.201

to 0.204 kg/min. The corresponding posterior mean estimate of the model parameters is given by

θ = 〈T, I〉T = 〈127.3, 0.203〉T . The slight differences with respect to the target values are explained

due to the presence of measurement noise and modeling errors. Note that, however, these values can

be considered as the actual values from a practical point of view.

5.2.4. Results: Event 2

The contaminant is injected at node 157 in this event. This node is located in an intermediate sector of

the network (see Figure 12). The corresponding target values of the contaminant source parameters

are T = 300 min for the starting time and I = 0.2 kg/min for the contaminant intensity. The
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Figure 15: Plot of samples in the T − I space generated at different steps of the transitional Markov chain Monte
Carlo method when updating the model class associated with node 101. Application problem. Event 1

concentration measurements reported in Figure 16 are associated with Event 2 when no uncertainties

are taken into account, i.e., α = β = γ = 0. In this case, the contaminant arrives first to sensor 207

after 135 min of continuous injection, that is, 435 min since the beginning of the simulation period.

On the other hand, sensors 119 and 141 do not receive contaminant influence during that period of

time. This is attributed to the location of the contaminant source as well as to the flow patterns

developed during the simulation period.

Model and measurement uncertainties are considered in this event. The uncertainty levels in rough-

ness coefficients, peak nodal demands and concentration measurements are given by α = β = γ =
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Figure 16: Measurements of nodal concentration over time. Application problem. Event 2

10%. As for the previous event, Nc = 92 model classes are considered with parameters θi = 〈Ti, Ii〉T

for each model class. A uniform prior distribution is considered with Ii ∈ [0, 1] kg/min and

Ti ∈ [0, 435] min. The upper limit for Ti coincides with the arrival time of the contaminant to

the sensors.

Two scenarios in terms of the time-span for measurements are addressed, as in Event 1. Scenario

1 involves measurements from the beginning of the simulation up to 60 min after the contaminant

arrives to two sensors (about 10 hours), whereas Scenario 2 considers measurements over the entire

simulation period (24 hours). As in the previous event, the source identification can be performed

based on the evidence values only. In this context, Figure 17 presents the normalized evidences

of all potential injection locations. Normalized evidences close to zero are depicted with small

white circles. It is seen that only node 195 presents a normalized evidence different from zero

in Scenario 1 (see Figure 17-A), that is, the contaminant source is not properly identified when

considering measurements up to 60 min after the detection in a second sensor. On the other hand,

the identification results improve when more data are incorporated in the identification process. In

fact, the actual contamination source (node 157) is identified as the most plausible in Scenario 2 (see

Figure 17-B), although nodes 159 and 161 present similar evidence values. It is noted that validation

calculations show similar results when considering measurements up to 60 min after the contaminant

arrives to three sensors (about 16 hours). These results are reasonable from the hydraulic viewpoint
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since these three nodes are part of a single flow path and, therefore, contaminant injection in any of

these locations generates similar propagation patterns through the water distribution network.

Figure 17: Normalized evidences of all model classes. Application problem. Event 2. A) Scenario 1. B) Scenario 2

Figure 18 shows the samples obtained during the different stages of the TMCMC method for the

model class associated with node 157 and considering measurements over the entire simulation pe-

riod. The samples at the initial stage (j = 0) are drawn from the prior distribution whereas the last

stage (j = 7) generates samples from the posterior distribution. It is seen how measurement data

significantly reduce the uncertainty in the model parameters. Note that the posterior samples popu-

late a vicinity of the target values for the model parameters, and therefore the model parameters are

globally identifiable as in Event 1. In fact, the starting time ranges from 279.8 to 311.4 min and the

contaminant intensity from 0.198 to 0.207 kg/min at the last stage. Moreover, the corresponding pos-

terior mean estimate is θ = 〈T, I〉T = 〈297.7, 0.203〉T . These results illustrate one of the advantages

of the proposed methodology, which allows to obtain further insight into the contaminant injection

profile in addition to the solution to the model class selection problem. This type of information

can be potentially useful to assist involved decision making processes in an emergency management

framework.
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Figure 18: Plot of samples in the T − I space generated at different steps of the transitional Markov chain Monte
Carlo method when updating the model class associated with node 157. Application problem. Event 2

5.2.5. Computational cost

The proposed approach presents advantageous features for implementation in a high performance

computing environment. As previously pointed out, the computational burden is almost entirely

associated with the water quality analyses of the water distribution network. The number of network

simulation runs for each model class depends, among other things, on the amount of samples per

stage and the number of TMCMC stages needed. In Event 2, the computational effort for obtaining

one water network solution is approximately 0.43 s and the average time spent to obtain posterior

samples of a given model class is about 6.4 min. Considering a parallel implementation to evaluate

the evidences of the model classes and neglecting the generation of posterior samples, which are not

required by the evidence estimate provided by the TMCMC method, the entire model class selection

process takes about 1.3 hrs. The previous computational efforts are based on the implementation of

the identification process in available twelve-core multi-threaded computer units. Of course, if more
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advanced computer power is available, the time to solve the contaminant source characterization

problem can be significantly reduced.

6. Conclusions

A Bayesian model class selection framework for handling contaminant source characterization prob-

lems in the context of water distribution networks has been presented. The parameters of each model

class characterize the contaminant mass inflow over time in terms of its intensity and starting time.

The class with the highest posterior probability is interpreted as the most plausible location for the

contaminant injection. The evidences of the model classes are estimated as a by-product of the model

updating technique, i.e., the transitional Markov chain Monte Carlo method. The model updating

technique is combined with a multi-purpose hydraulic and water quality simulation model in order

to obtain the quantities of interest, including concentration measurements at a number of nodes. In

addition, the proposed methodology presents advantageous features for its implementation in a high

performance computing environment.

The effectiveness and capabilities of the proposed methodology are demonstrated with a couple of

water distribution systems. Results indicate that overall, the proposed method is potentially a useful

tool to address contaminant source detection problems. The proposed approach can provide relevant

information for decision making processes even when relatively scarce and noisy data are available. In

addition, it can provide additional insight into the actual system state in terms of the characteristics

of the injection process. Generally, the scenarios where the actual injection node was not identified

are associated with high levels of uncertainty and relatively short measurements periods. However,

in these cases, the method is still able to identify nodes that are close to the actual source. The

results also show the importance of an appropriate selection of the sensors configuration in order

to improve the accuracy of contaminant source detection and therefore the safety of water utility

networks.

Future research efforts involve the assessment of the proposed technique in more complex water
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distribution networks and the consideration of field data as well as multiple sources of contamina-

tion and alternative injection profiles. The implementation of optimal sensor location strategies to

improve the predictive capability of the proposed approach in the framework of utility networks is

an additional subject for future research. Another research direction is the treatment of binary or

fuzzy sensors as well as the integration of pre-screening techniques and surrogate models within the

proposed framework. Finally, the consideration of stochastic models such as water-demand models

within the proposed identification scheme is also one topic for further research. Some of these issues

are currently under consideration.
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7. Appendix

The following pseudo-code illustrates the implementation of the transitional Markov chain Monte

Carlo method [31] to obtain posterior samples associated with the ith model class Mi. It is assumed

that the corresponding log-likelihood function Li(θi) = ln (p(D|Mi,θi)) is available (see Eq. (5)).

1. Define β2. Set j = 0 and α0 = 0. Obtain samples θki,j, k = 1, . . . , N0, distributed ac-

cording to the prior distribution p(θi|Mi). Compute the corresponding log-likelihood values

Lki,j = Li(θki,j), k = 1, . . . , N0. Note that this step is equivalent to perform direct Monte Carlo

simulation.
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2. Define L∗ = maxk=1,...,Nj
Lki,j. Compute α∗ such that

σw
µw

= 1 (9)

where

µw =
1

Nj

Nj∑
k=1

exp
{

(α∗ − αj)(Lki,j − L∗)
}

(10)

σw =

√√√√ 1

Nj − 1

Nj∑
k=1

(
exp

{
(α∗ − αj)(Lki,j − L∗)

}
− µw

)2
(11)

3. Set αj+1 = min(1, α∗) and compute

ŵki,j = exp
{

(αj+1 − αj)(Lki,j − L∗)
}

(12)

w̄ki,j =
ŵki,j∑Nj

ι=1 ŵ
ι
i,j

(13)

ln(Wi,j) = ln

 1

Nj

Nj∑
k=1

ŵki,j

+ (αj+1 − αj)L∗ (14)

4. If αj+1 = 1 and no posterior samples are required, go to step 8. Otherwise, continue with

step 5.

5. Obtain the parameters of the proposal distribution

θ̄i,j =

Nj∑
k=1

w̄ki,jθ
k
i,j (15)

Σi,j = β2

Nj∑
k=1

w̄ki,j
(
θki,j − θ̄i,j

) (
θki,j − θ̄i,j

)T
(16)

and define θ
k(loc)
i,j = θki,j, k = 1, . . . , Nj, and Lk(loc)

j,k = Lki,j, k = 1, . . . , Nj. These variables are

used to track the evolution of each Markov chain.
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6. Apply the Metropolis-Hastings algorithm [46, 47] to generate Nj+1 samples distributed accord-

ing to pj+1(θi) ∝ p(θi|Mi)p(D|Mi,θi)
αj+1 . For k = 1 to Nj+1:

(a) Draw ν from the set {1, 2, . . . , Nj} with probabilities equal to the normalized weights

w̄ιi,j, ι = 1, . . . , Nj. Set the lead sample as θlead
i = θ

ν(loc)
i,j with Llead

i = Lν(loc)
i,j .

(b) Generate a candidate sample θcand
i from a multivariate normal distribution with covariance

matrix Σi,j and centred at θlead
i . If p(θcand

i |Mi) = 0, set Υ = 1 and go to Step 5-(c).

Otherwise, compute Lcand
i = Li(θcand

i ) and

ln(Υ) = αj+1

(
Lcand
i − Llead

i

)
+ ln

(
p(θcand

i |Mi)
)
− ln

(
p(θlead

i |Mi)
)

(17)

(c) Generate ξ uniformly distributed on [0, 1]. If ln(ξ) ≤ min{ln(Υ), 0}, set θki,j+1 = θcand
i ,

Lki,j+1 = Lcand
i and update the last element of the current Markov chain as θ

ν(loc)
i,j = θcand

i

and Lν(loc)
i,j = Lcand

i . Otherwise, set θki,j+1 = θlead
i and Lki,j+1 = Llead

i .

7. If αj+1 < 1, set j ← j + 1 and go back to step 2. Otherwise, continue with step 8.

8. Stop the sampling process, set m = j + 1, and compute the evidence estimate as

P (D|Mi) ≈ Wi = exp

(
m−1∑
j=0

ln(Wi,j)

)
(18)
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