Semiparametric Regression for Dual Population
Mortality

Gary Venter! and Sule Sahin?
! Columbia University, Department of Actuarial Sciences, US

2 University of Liverpool, Department of Mathematical Sciences,
Institute for Financial and Actuarial Mathematics, UK

2 Hacettepe University, Department of Actuarial Sciences, Turkey

Abstract:

Parameter shrinkage applied optimally can always reduce error and projection variances
from those of maximum likelihood estimation. Many variables that actuaries use are on
numerical scales, like age or year, which require parameters at each point. Rather than
shrinking these towards zero, nearby parameters are better shrunk towards each other.
Semiparametric regression is a statistical discipline for building curves across parameter
classes using shrinkage methodology. It is similar to but more parsimonious than cubic splines.
We introduce it in the context of Bayesian shrinkage and apply it to joint mortality modeling
for related populations. Bayesian shrinkage of slope changes of linear splines is an approach
to semiparametric modeling that evolved in the actuarial literature. It has some theoretical
and practical advantages, like closed-form curves, direct and transparent determination of
degree of shrinkage and of placing knots for the splines, and quantifying goodness of fit. It
is also relatively easy to apply to the many nonlinear models that arise in actuarial work.
We find that it compares well to a more complex state-of-the-art statistical spline shrinkage

approach on a popular example from that literature.
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1 Introduction

Actuaries often need to estimate mortality models for specialized subpopulations of a larger
population, e.g., for pricing products for high-net-worth individuals. Dual mortality modeling
seeks to incorporate the data of the larger population while allowing the subpopulation model
to differ to the extent it has reliability. We develop a method to apply Bayesian shrinkage at
this step. This lets the parameters of the two models differ to the extent that this improves

the joint posterior distribution.

The method explored is to use Bayesian semiparametric models for both populations but make
the model for the smaller population the larger-population model plus a semiparametric model
for the differences, with both fit simultaneously. We build up increasingly complex models,
culminating in a negative binomial version of the Renshaw-Haberman model (Renshaw and
Haberman (2006)). As an illustration, we apply this to jointly model male mortality for
Denmark and Sweden. This is not a typical dual-mortality modeling application, as Denmark
with 5.6 million people would often be modeled on its own, even though Sweden is almost
twice as populous. However the data is publicly available and it lets us detail the steps of

the process.

Quite a few actuarial papers have addressed joint age-period-cohort (APC) modeling of
related datasets in reserving and mortality. Li and Lee (2005) introduce the concept of using
a joint stochastic age-period process for mortality modeling of joint populations, with mean
reverting variations from the joint process for each population. A similar approach by Jarner
and Kryger (2009) models a large and a small population with the small population having
a multi-factor mean-zero mean reverting spread in log mortality rates. Dowd et al. (2011)
model two populations that can be of comparable or different sizes with mean reverting
stochastic spreads for both period and cohort trends. A period-trend spread in an APC
model is estimated by Cairns et al. (2011), who use Bayesian Markov-Chain Monte Carlo
(MCMC) estimation. They assume fairly wide priors, not shrinkage priors. This uses the
capability of MCMC to estimate difficult models. Antonio, Bardoutsos, and Ouburg (2015)
estimate the model of Li and Lee (2005) by MCMC.

For some time actuaries have used precursors to semiparametric regression, like linear and
cubic spline curves fit across parameter types. Semiparametric regression uses parameter
shrinkage methodology to produce an optimized degree of parsimony in the curve construction.
The standard building block for this now is O’Sullivan penalized cubic splines (O’Sullivan
(1986)). Harezlak, Ruppert, and Wand (2018) provides good background, with R code. Here

we use penalized linear splines, which have some advantages for the models we study.



The actuarial use of shrinkage for linear-spline models started with Barnett and Zehnwirth
(2000), who applied it to APC models for loss reserving, using an ad hoc shrinkage methodology.
Venter, Gutkovich, and Gao (2019) used frequentist random-effects methods for linear-spline
shrinkage for reserving and mortality models, including joint modeling of related loss triangles.
Venter and Sahin (2018) fit the Hunt-Blake mortality model with Bayesian shrinkage of
linear splines, determining the shrinkage level by cross-validation. Gao and Meng (2018) used
Bayesian shrinkage on cubic splines for loss reserving models, getting the shrinkage level by
a fully-Bayesian method. Here we use linear splines on a Renshaw-Haberman model with a

fully-Bayesian estimation approach that combines lasso with MCMC to speed convergence.

Shrinkage methods are discussed in Section 2 and Section 3 has the application to actuarial

models. Section 4 works through the steps for fitting the joint model, and Section 5 concludes.

2 Shrinkage Methodologies

The use of shrinkage-type estimation to improve fitting and projection accuracy traces back
to actuarial credibility theory, then to various coefficient-shrinkage methods for regression,
which we work though in this section to show the reasoning that led to the current model.
The evolving methods have become easier to apply, and also have been extended to building

curves across levels of some variables.

2a Credibility

Shrinking estimates towards the grand mean started with combined estimation of a number
of separate means. A typical example is batting averages for a group of baseball players.
Stein (1956) showed that properly shrinking such means towards the overall mean always
reduces estimation and prediction variances from those of maximum likelihood estimation
(MLE) when there are three or more means being estimated. Similar methods have been part
of actuarial credibility theory since Mowbray (1914), and in particular Bithlmann (1967).
According to the Gauss-Markov Theorem, MLE is the minimum-variance unbiased estimate.
Credibility biases the individual estimates towards the grand mean, but reduces the estimation
errors. Thus having more accurate estimates comes at the cost of possibly asymmetric even

though smaller confidence intervals. This holds in all of the shrinkage methods below.

2b Regularization

For regression models, Hoerl and Kennard (1970), showed that some degree of shrinking
coefficients towards zero always produces lower fitting and prediction errors than MLE. This
is related to credibility, as in their ridge-regression approach, variables are typically scaled to
have mean zero, variance one, so reducing coefficients shrinks the fitted means towards the

constant term, which is the overall mean. Their initial purpose was to handle regression with



correlated independent variables, and they applied a more general procedure for ill-posed
problems known as Tikhonov regularization, from Tikhonov (1943). As a result, shrinkage

methods are also referred to as regularization.

With coefficients (;, ridge regression minimizes the negative loglikelihood (NLL) plus a

selected shrinkage factor A times the sum of squares of the coefficients. Thus it minimizes:

NLL+AY_ B35
J

The result of Hoerl and Kennard (1970) is that there is always some A > 0 for which ridge
regression gives a lower estimation variance than does MLE. They did not have a formula to
optimize A, but could find reasonably good values by cross validation — that is, by testing

prediction on subsamples omitted from the fitting.

In the 1990s, lasso (see Santosa and Symes (1986) and Tibshirani (1996)), which minimizes:

NLL+ XY |5
j

became a popular alternative. It shrinks some coefficients exactly to zero, so it provides
variable selection as well as shrinkage estimation. A modeler can start off with a long list of

variables and use lasso to find combinations that work well together with parameter shrinkage.

2c Random Effects

Random effects modeling provides a more general way to produce such shrinkage. Historically
it postulated mean-zero normal distributions for the 3;, with variance parameters to be
estimated, and optimized the joint likelihood, which is the product of those normal densities
with the likelihood function. This also pushes the coefficients towards zero since they start
out having mean zero, mode zero distributions. This can have a different variance for
each f3;, which can also be correlated. Ridge regression arises from the special case where
there is a single variance assumed for all the coefficients. Using the normal distribution for
this shrinkage is common but it is not a requirement. If the double exponential (Laplace)

distribution is assumed instead, lasso becomes a special case as well.

We start by assuming the random effects have independent mean-zero normal distributions
with a common variance. Given a vector b of random effects and a vector 3 of parameters
(fixed effects), with respective design matrices Z and X, and a vector of observations y, the
model is:

y=Xp+2Zb+e¢



b~ N(0,00%)

e ~ N(0,0?)

Sometimes fitting the model is described as estimating the parameters and projecting the

random effects. A popular way to fit the model is to maximize the joint likelihood, which is:

p(b,y; B) = p(y|B3,b)p(D)

This is the likelihood times the probability of the random effects. The mean-zero distribution
for the bs pushes their projections towards zero, so this is a form of shrinkage. Matrix

estimation formulas have been worked out for this similar to those for regression.

Now we consider instead the double exponential, or Laplace, distribution for the random
effects. This is an exponential distribution for positive values of the variable, and is exponential

in —b for negative values. Its density is
p(b]A) = 0.5xe= A
Suppose all the random effects have the same \. Then the negative joint loglikelihood is:

~log[p(b, y; )] = log(2) — log(A) + >_ Alb;| + NLL

The constants do not affect the minimization, so for a fixed given value of A, this is the
lasso estimation. If A is considered a parameter to estimate, then the log(\) term would be
included in the minimization, giving an estimate of A as well. This same calculation starting
with a normal prior gives ridge regression. Thus these are both special cases of random

effects, and both provide estimates of the shrinkage parameter.

Lasso and ridge regression have problems with measures of penalized NLL like AIC and
BIC. These rely on parameter counts, but shrunk parameters do not use as many degrees of
freedom, as they have less ability to influence fitted values. Because of this, cross validation
is popular for model selection for frequentist shrinkage. There is usually some degree of
subjectivity involved in the choice of cross-validation approach. We will see below that
Bayesian shrinkage has a fast automated cross-validation method for penalizing the NLL. It
provides a good estimate of what the likelihood would be from a new sample from the same

population, which is the goal of AIC as well.

2d Bayesian Shrinkage



Bayesian shrinkage is quite similar to random effects, with normal or Laplace priors used for
the parameters like they are used for postulated distributions of the effects. Ridge regression
and lasso estimates are produced as the posterior modes. The Bayesian and frequentist
approaches are closer than in the past, as random effects are similar to prior distributions
and the Bayesian prior distributions are not necessarily related to prior beliefs. Rather they
are some of the postulated distributions assumed in the model, just like random effects are,

and they can be rejected or modified based on the posteriors that are produced.

In the Bayesian approach, a parameter might be assumed to be normally distributed with
mean zero, or Laplace or otherwise distributed. For a sample X and parameter vector [,

with prior p() and likelihood p(X|3), the posterior is given by Bayes Theorem as:

p(B]X) = p(X[B)p(B)/p(X)

Here the probability of the data, p(X), is not usually known but it is a constant. Since
p(5|X) must integrate to 1, the posterior is determined by p(X|5)p(5).

Note that if § were random effects, the numerator of p(3|X) would be the joint likelihood.
Thus maximizing the joint likelihood gives the same estimate as the mode of the posterior
distribution. The main difference between Bayesians and frequentists now is that the former
mostly use the posterior mean, and the latter use the posterior mode. Bayesians tend to
suspect that the mode could be overly responsive to peculiarities of the sample. Frequentists

come from a lifetime of optimizing goodness of fit of some sort, which the mode does.

Bayesians generate a sample of the posterior numerically using MCMC. This ranks parameter
samples using the joint likelihood, since this is proportional to the posterior. MCMC has
a variety of sampling methods it can use. The original one was the Metropolis algorithm,
which has a generator for the possible next sample using the latest accepted sample. If the
new sample parameters have a higher joint probability, it is accepted. If not, a random draw
is used to determine whether it is accepted or not. An initial group of samples is considered
to be warmup and is eventually eliminated, and the remainder using this procedure have

been shown to follow the posterior distribution.

We feel that random effects estimation can also make use of MCMC to calculate the posterior
mean, but under a different framework. Now we will just consider the case where there are
no fixed effects to estimate — all the effects in the model are random effects. A distribution is
postulated for the effects, including a postulated distribution for A\. We know how to calculate

the mode of the conditional distribution of the effects given the data, namely by maximizing



the joint likelihood. By the definition of conditional distributions, the joint likelihood =

p(X[B)p(B) = p(X, B) = p(X)p(B|X)

Thus the conditional distribution of the effects given the data is proportional to the joint

likelihood, and so can be estimated by MCMC.

What the Bayesians would call the posterior mean and mode of the parameters can instead
be viewed as the conditional mean and mode of the effects given the data. With MCMC,
the effects can be projected by the conditional mean instead of the conditional mode that
was produced by maximizing the joint likelihood. This does not require Bayes Theorem,
subjective prior and posterior probabilities, or distributions of parameters, so removes many
of the objections frequentists might have to using MCMC. Admittedly Bayes Theorem is
obtained by simply dividing the definition of conditional distribution by p(X), but you do
not have to do that division to show that the conditional distribution of the effects given the

data is proportional to the joint likelihood.

2e Goodness of fit from MCMC

One advantage of using MCMC, whether the mean or mode is used, is that there is a
convenient goodness-of-fit measure. The leave-one-out, or loo, cross validation method is to
refit the model once for every sample point, leaving out that point in the estimation. Then the
likelihood of that point is computed from the parameters fit without it. The cross-validation
measure, the sum of the loglikelihoods of the omitted points, has been shown to be a good
estimate of the loglikelihood for a completely new sample from the same population, so it

eliminates the sample bias in the NLL calculation. This is what AIC, etc. aim to do as well.

But doing all those refits can be very resource intensive. Gelfand (1996) developed an
approximation for an omitted point’s likelihood from a single MCMC sample generated
from all the points. He used the numerical integration technique of importance sampling to
estimate a left-out point’s likelihood by the weighted average likelihood across all the samples,
with the weight for a sample proportional to the reciprocal of the point’s likelihood under
that sample. That gives greater weight to the samples that fit that point poorly, and turns
out to be a good estimate of the likelihood that it would have if it had been left out of the
estimation. This estimate for the likelihood of the point turns out to be the harmonic mean
over the samples of the point’s probability in each sample. With this, the MCMC sample of

the posterior distribution is enough to calculate the loo goodness-of-fit measure.

This gives good but volatile estimates of the loo loglikelihood. Vehtari, Gelman, and Gabry
(2017) addressed that by a method similar to extreme value theory — they fit a Pareto to



the probability reciprocals and use the Pareto values instead of the actuals for the largest
20% of the reciprocals. They call this “Pareto-smoothed importance sampling.” It has been
extensively tested and is becoming widely adopted. Their penalized likelihood measure is
labeled ejgdloo, standing for “expected log pointwise predictive density.” Here we call —e/l]?dloo
simply loo. It is the NLL plus a penalty, so is a penalized likelihood measure, so lower is
better.

The fact that this is a good estimate of the NLL without sample bias comes with a caveat.
The derivation of that assumes that the sample comes from the modeled process. That is a
standard assumption but in financial areas, models are often viewed as approximations of
more complex processes. Thus a new sample might not come from the process as modeled.
Practitioners sometimes respond to this by using slightly under-fit models — that is more

parsimonious models with a bit worse fit than the measure finds optimal.

Using cross validation to determine the degree of shrinkage usually requires doing the
estimation for each left-out subsample for trial values of the shrinkage constant A\. With
Bayesian shrinkage you still have to compute loo for various As, but not by omitting points,

as loo already takes care of that. This was the approach taken by Venter and Sahin (2018).

Another way to determine the degree of shrinkage to use is to put a wide-enough prior
distribution on A itself. Then the posterior distribution will include estimation of A. Our
experience has been that the resulting loo from this ends up close to the lowest loo for any A,
and can be even slightly lower, possibly due to having an entire posterior distribution of As.

Gao and Meng (2018) do this, and it is done in the mortality example as well.

Putting a prior on A is considered to be the fully Bayesian approach. Estimating A by
cross-validation is not a Bayesian step. Bayesians often think of a parameter search to
optimize a cross-validation method as a risky approach. A cross-validation measure like loo is
an estimate of how the model would fit a new, independent sample from the same population,
but such estimates themselves have estimation errors. A search over parameters to optimize
the measure thus runs the risk of producing a measure that is only the optimum because of
the error in estimating the sample bias. The fully Bayesian approach avoids this problem. As
we saw above, the fully Bayesian method is also fully frequentist, as it can be done entirely

by random effects with a postulated distribution for .

2f Postulated shrinkage distributions
The shape of the shrinkage distribution can also have an effect on the model fit. The Laplace

distribution is more peaked at zero than the normal, and also has heavier tails, but is lighter



at some intermediate values. An increasingly popular shrinkage distribution is the Cauchy
1/p(B) = m(1+ X*5%)/A

—log(p(B)) = —logA + logm + log(1 + \*3?)

It is even more concentrated near zero and has still heavier tails than the Laplace. For a

fixed A, the constants in the density drop out, so the conditional mode minimizes:
NLL+ Y log(1+ N33)

This is an alternative to both lasso and ridge regression. Cauchy shrinkage often produces
more parsimonious models than the normal or Laplace do. It can have a bit better or bit
worse penalized likelihood, but even if slightly worse, the greater parsimony makes it worth

considering. It also seems to produce tighter ranges of parameters.

The Cauchy is the t-distribution with v = 1. If v = 2, the conditional mode minimizes
NLL+1.5) log(2+ Xj33)

If v = 3, this becomes:
NLL+2) log(3+ X?52)

The normal is the limiting case of t distributions with ever larger degrees of freedom. Degrees
of freedom v does not have to be an integer, so a continuous distribution postulated for v
could be used to get an indication for how heavy-tailed the shrinkage distribution should
be for a given data set. Actually, the Laplace distribution can be approximated by a t
distribution. A t with v = 6 matches a Laplace with scale parameter v/3 /2 in both variance
and kurtosis (and since the odd moments are zero, matches all 5 moments that exist for this
t), so is a reasonable approximation. E(1/X, X # 0) is zero for this t but is undefined for

the Laplace, which is due to its sharp point at zero.

We test priors for the example in Section 4. The Laplace is assumed while building the
model, but afterwards the shrinkage distribution is tested by using a students-t shrinkage
distribution with an assumed prior for v, and finding the conditional distribution of v given
the data. For this case, the conditional mean is close to v = 2. This is heavier-tailed than
the Laplace but less so than the Cauchy. The t-2 distribution, with v = 2, is a closed-form

distribution:

F(8) = (2+ 17"



F(B) =[68/y2+ 5% +1]/2
Still the Cauchy is a viable alternative to get to a more parsimonious model.

The versatility of the t for shrinkage also opens up the possibility of using different but
correlated shrinkage for the various parameters, as the multi-variate t prior is an option in the
software package we use. For v = 2, the covariances are infinite, but a correlation matrix can
still be input. Two adjacent slope changes are probably quite negatively correlated, as making
one high and one low can often be reversed with little effect on the outcome. Recognizing
this correlation in the assumed shrinkage distribution might improve convergence. We leave

this as a possibility for future research.

2g Semiparametric regression

Harezlak, Ruppert, and Wand (2018) represents the contemporary view of semiparametric
methodology. It uses a few advanced methods but is not easy to adapt to the fully Bayesian
approach to shrinkage. We compare our simpler method of Bayesian shrinkage on the slope
changes of linear splines to what they are doing and find the methods comparable in results,
with our method having the advantages of a Bayesian approach, such as being able to use the
mean of the conditional distribution of A given the data instead of using the chancey cross
validation meethod. They provide an oft-cited example of using semiparametric methods to
create a curve for mean by year of construction for the floor area a fixed monetary unit could
get, for apartments in Warsaw in 2007 — 2009. We fit their data by using Bayesian shrinkage
on the slope changes of linear splines (piecewise linear curves). Figure 1 shows the data and

the two resulting curves, which are quite similar.

Historically the spline-fitting literature rejected linear splines on aesthetic grounds for being
too jagged. But this was before shrinkage. Shrinkage can be done on cubic splines by
penalizing the average second derivative of the spline curve (see Hastie, Tibshirani, and
Friedman (2017)), much like ridge regression penalizes the sum of squared parameters.
The actuarial approach to linear-spline shrinkage, following Barnett and Zehnwirth (2000),
analogously shrinks the slope changes, which are the second differences of the splines. As
Figure 1 shows, this does not differ much in jaggedness from the cubic-spline fit. Another
advantage is that the knots of the linear splines come out directly from the estimation as the
points with zero slope change and so are determined simultaneously with the fits. This is a

separate procedure with cubic splines, which makes the overall optimization more awkward.

Harezlak, Ruppert, and Wand (2018) recommend O’Sullivan penalized splines. These are a
form of smoothing splines that meet a roughness penalty controlled by a smoothing constant

A. They pick this A using “generalized cross validation” from Craven and Wahba (1979).

10



These splines are averages of a number of cubic functions and are not closed form, but there
is available software to calculate them. They also discuss how to pick the number of knots
K for tying together the splines. They feel that with the smoothing done anyway, 35 knots
spread out by the quantiles of the data will usually suffice. They do have some functions for

testing the number of knots, however.

Actuarial smoothed linear splines can be done on any variables that can be ordered numerically
1, 2, 3, .... This is natural for years, ages, etc. but can make sense for class variables like
vehicle use classes that have some degree of ranking involved. The parameter shrinkage is
applied to the slope changes between two adjacent linear segments. Initially slope changes
are allowed between all adjacent variables, but if the shrinkage reduces a slope change to

zero, the line segment simply continues at that point, and a knot is eliminated.

Thus the shrinkage chooses the knots, which can then determine how many are needed and
put them where the curves most need to change. This is an advantage over the O’Sullivan
splines, which usually use a fixed number like 35 knots spread according to the number of
observations, not changes in the levels. In our experience, 35 knots is usually enough, but
can sometimes lead to over-parameterization. The degree of shrinkage could be selected by
loo cross validation, which seems as good or better than generalized cross validation once you
have a posterior distribution available, but we use the fully Bayesian method of letting the
conditional distribution of the degree of shrinkage given the data determine this. Bayesians
tend to prefer this approach, as discussed at the end of 2e above. The key to making this
work is that you can create a design matrix with slope-change dummy variables, as discussed

in Section 3 below.

A useful short-cut to the fitting when there are a lot of variables is to use lasso in an initial
sorting out process. The R lasso program glmnet developed by Friedman, Hastie, and
Tibshirani (2010) has a built-in cross-validation function cv.glmnet(), which we use with all
its standard defaults. It uses its own cross-validation method to select a range of A\ values
that are worth considering. We take the low end of this range, which eliminates the fewest
variables, as an initial selection point. Usually more variables are worth taking out, but this
can happen later. Adjacent dummy variables are highly negatively correlated, and one can
usually substitute for another with little change in the overall fit. This creates difficulties for
MCMC, but lasso can quickly sort out the variables with least overall contribution to the
model, and then MCMC can readily deal with those that remain. We did this in the Warsaw
example and also in the mortality example below. Even if by chance a slope change is left

out that would add value to the final model, the impact is likely to be minimal.

11



An advantage of this method is that the fully Bayesian approach chooses the knots and the
smoothing constant as parts of the posterior distributions, and as noted above, fully Bayesian
has less risk of producing a model with an exaggerated fit measure than cross validation. Also
being able to do this with just a design matrix and MCMC fitting software allows flexibility
in model construction. More complex bilinear models like Lee-Carter, Renshaw-Haberman,
and Hunt-Blake can be readily fit, as we shall see below. Further, it is straightforward to use

any desired parameter distribution, like negative binomial in the example.

Area Per Price by Construction Year with Piecewise-Linear and Smoothing Spline
Fits Apartments Sold in Warsaw 2007 - 2009

Figure 1: Semiparametric Fits to Warsaw Apartment Data

3 Joint Mortality Modeling by Shrinkage

We are using data from the Human Mortality Database (2019), which organizes tables by
year of death and age at death. The year of birth is approximately year of death minus age
at death, depending on whether the death is before or after the birthday in the year. For
convenience, we consider cohort to be year of death minus age at death. Cohorts are denoted
as n, with parameters p[n], age at death by u, with parameters qlu|, so the year of death is
n+w, with parameters r[n +u]. Also ¢ is a constant term, that is not shrunk in the modeling.
The parameters combine in the models to give the log of the mortality rate. Initially the
number of deaths is assumed Poisson in the mortality rate times the exposures, which are
the number living at the beginning of the year in the n,u cell. Theoretically, deaths counts
are the sum of Bernoulli processes, and so should be binomial, but for small probabilities,

the binomial is very close to the Poisson, which is sometimes easier to model. Later we test
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the Poisson assumption against heavier-tailed distributions.

3a Mortality models

A basic model is the linear APC model, which does not include the Lee-Carter trend weights.
This has become fairly popular with actuaries and it is our starting point, as it is a purely
linear model that can be estimated with standard packages, including lasso packages. Its

mortality rate m, for years 1 < n < a and ages 1 < u < b is given by:
mn, u] = ¢+ pln] + qlu] + r[n + u]
With exposures e[n,u], the deaths y[n, u| are often assumed to be Poisson distributed:
y[n,u] ~ Poisson (e[n, u]em[n’“}>

The model of Renshaw and Haberman (2006) adds cohorts to the Lee and Carter (1992)
model, which itself allows the time trend r[n + u] to vary by age, reflecting the fact that
medical advances, etc. tend to improve the mortality rates for some ages more than others.
Renshaw and Haberman (2006) also allow the cohorts to have stronger or weaker effects at
different ages. We have tried that for other populations and found that the age effects were
not consistent from one cohort to another. This aspect does not appear to have been widely
used. Haberman and Renshaw (2011) do find that it improves the loglikelihood somewhat
in one of three datasets they look at. Chang and Sherris (2018) graph the age effect for
several cohorts of their data, which shows some variations among cohorts. They find that
a two-parameter model for age variation within each cohort captures this well. We did not
try this model. A more generalized underlying model with this same adjustment is in Xu,
Sherris, and Ziveyi (2019).

Denoting the trend weight for age u by s[u], the Renshaw-Haberman model we use here is:
mn,u] = c+ p[n] + qu] + sjulrin + u]

Actually Renshaw and Haberman (2006) allow the possibility of different trends with different
age weights either simultaneously or in succession. This addresses a potential problem with
the Lee-Carter model: the ages with the most mortality improvement can change over time.
Venter and Sahin (2018) suggest an informal test for the need for multiple trends, and find
that they indeed help in modeling the US male population for ages 30-89. In the example
here we fit the model to ages 50 and up, and did this test, which suggested that one trend

is sufficient, so the model is presented in that form. It is then the same as the special case
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of the Renshaw-Haberman model with no age-cohort interaction. In other populations we
have noticed that modeling a wide range of ages over a long period can benefit from multiple

trends.

The Renshaw-Haberman and Lee-Carter models are sometimes described as bilinear APC
models, as they are linear if either the s or r parameters are taken as fixed constants. The
age weights help model the real phenomenon of differential trends by age, but their biggest
weakness is that they are fixed over the observation period, and the ages with the most trend
can change over time as medical and public health trends change. The possibility of multiple

trends in the Hunt-Blake model can reflect such changes.

3b Design matrix

To set the basic APC model up to use linear-modeling software packages, the entire array of
death counts y[n, u] is typically strung out into a single column d[j] of length ab. We assume
that the first b elements are for the ages 1,...,b in year 1, and so forth. When doing this, it is
generally helpful to make parallel columns each of length ab that record which age, period,
and cohort each cell d[j] comes from. Then a design matrix can be created where all the
variables p[n], g[u], r[n + u] have columns parallel to the death counts, and are represented as

0,1 dummy variables that have a 1 only for the observations that variable applies to.

The design matrix X will have g columns for the cohort parameters p[n], b columns for the
age parameters glu|, and a columns for the year parameters r[w = n + u|. Then all the
cells in X will be 0 except for the value 1 for the cells for the p[n| variables with d[j] from
cohort n, the cells for g[u] with d[j] with age u, and the cells for r[w] with d[j] from year
w. In practice we keep the constant ¢ out of the design matrix, and also leave out the first
cohort, age and year variables p[1], ¢[1], 7[1]. Then there are h = a + b+ g — 3 columns in
the design matrix. Let 8 be the h-vector of parameters and € be the ab-vector of exposures

corresponding to d. Then the ab-vector m of estimated mortality rates is
m=c+ Xp (2)

and R
d[j] ~ Poisson (é[j]em[j]) (17)

Both formulas (i), (i) still hold when X is singular and some further constraints are needed
on 3. In that case you cannot estimate 3 as (X’X)~1X’d, but however it is estimated, the
fitted values are computed using (i), (i7). These are the sampling statements that can be
given to MCMC to create samples of the conditional distribution of the parameters given

the data. We find it easiest to create the design matrix X in a spreadsheet, as the shape of
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the data array varies from one population to another, sometimes with cells left out, and a

spreadsheet gives instant visual confirmation of the calculations.

In the semiparametric case, where the parameters are slope changes to linear splines across
the cohort, age, and year parameters p[n], qlu|, and r[w], a different design matrix is needed.
In a linear spline, a point is the slope added to the value at the previous point. The slope
itself is the slope change added to the previous slope. The first point that a slope change
affects has had that slope change added into the previous slope. In the next point, that slope
change is already in the previous value and gets added again from the slope, so it is in twice.
In the following point it has been added in three times, etc. Consider the dummy variable
for a slope change for year 7 at a point in d that is from year k. If £ = ¢, that dummy has
value = 1. If k =i+ 1, the dummy has value = 2, etc. In general then it is (k —i+1),. The

same thing holds for the dummy variables for slope changes for ages and for cohorts.

In the original levels design matrix, each row has three columns with a 1 in them. When a
row is multiplied by 3, those three values would pick out the year, age, and cohort parameters
for that cell, and they would be added up to get the m value for the cell. In principle this is
the same for the slope-change design matrix, but for any given row there would be non-zero
elements for every year, age, and cohort up to that point. Those values would multiply the
slope-change parameters in 8 by the number of times that they add up for that cell, and

those would be summed to give m.

3c Fitting procedure

For the two population case, assume that the dependent variable y column has all the
observations for the first population followed by all the observations for the second population.
Our approach is to fit a semiparametric model to the larger population and simultaneously
fit a semiparametric model for the differences in the second population from the first. Then
the smaller population parameters (in log form) are the sum of the two semiparametric
models. With shrinkage applied, the difference parameters hopefully are smaller, so the

second population would use fewer effective parameters than the first.

To create the overall design matrix for this, we put the first population’s design matrix in
the upper left quadrant, whose columns are the shrinkage dummies for the first population,
followed by a matrix of all zeros in the upper right quadrant, which has the variables for the
second population. The lower left quadrant repeats the upper left, as the second population
starts off with all the parameters of the first population The same matrix is repeated in the
lower right quadrant, here for the differences in the second population’s slope changes from

the first population’s. Hopefully many of these will be small or zero. Then one more column
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was added for the change in the constant term for the second population. This is all zeros for
the first population and all ones for the second population. (The software adds in an overall

constant term, which is not shrunk, so a variable for it is not needed.)

MCMC is an effective way to search for good parameters, but these variables make it difficult.
Consecutive variables are highly correlated — here many are 99.9% correlated. There could
be hundreds of variables in APC models for reasonably large datasets. It could take days or
weeks to converge to good parameters running MCMC software on all of those correlated
parameters. To speed this up, we start with lasso, which is usually very fast, to identify
variables that can be eliminated, and then use a reduced variable set for MCMC. Lasso
software, like the R package glmnet, includes cross validation routines to help select A. This
gives a range of A\ values that is worth considering. We use the lowest A value this suggests,
which leaves the largest number of variables, to generate the starting variables for MCMC.

Usually this still includes more parameters than are finally used in the model.

When a slope-change variable is taken out, the slope of the fitted piecewise linear curve does
not change at that point, which extends the previous line segment. If instead a small positive
or negative value were to be estimated, the slope would change very slightly at that point,
probably with not much change to the fitted values. When lasso cross validation suggests
that the slope change is not useful, that is saying it would not add to the predictive value of
the model. It is possible that a few of the omitted points in the end could have improved the
model, but probably they would not have made a lot of difference. So even with MCMC,
there is no guarantee that all the possible models have been examined and the very best

selected. Nonetheless this procedure is a reasonable way to get very good models.

Constraints are needed to get convergence of APC models. First of all, with the constant
term included, the first age, period, and cohort parameters are set to zero. This is not enough
to get a unique solution, however. With age, period, and cohort parameters all included, the
design matrix is singular. The parameters are not uniquely determined in APC models in
general: you can increase the period trend and offset that by decreasing the cohort trend,
with adjustments as needed to the age parameters, and get exactly the same fitted values.
Additional constraints can prevent this. A typical constraint is to force the cohort parameters
to sum to 1.0. Venter and Sahin (2018) constrain the slope of the cohort parameters to be 0,
which makes the period trend the only trend so it can be interpreted as the trend given that
there is no cohort trend. They also constrain the age weights on trend in Lee-Carter, etc. to
be positive with the highest value = 1. This then makes the trend interpretable as the trend
for the age with the highest trend. Anather popular constraint is to instead make the trend

weights sum to 1.0.
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Some analysis of APC models takes the view that there are no true cohort and period trends
since they only become specific after arbitrary constraints. But often there are things known
or knowable about the drivers of these trends, like behavioral changes across generations,
differences in medical technology and access to health care, etc., and these imply differences
between time trend and cohort trend. Also, in Bayesian shrinkage and random effect models,
two parameter sets with all the same fitted values will not be equally likely. Their probabilities
are proportional to the joint likelihood, which is the likelihood of the data times the postulated
(or prior) distribution of the effects (or parameters). Since these are shrinkage distribution, a
parameter closer to zero will have higher probability. Over a number of parameters, these
will never come out identical across the entire sample. Even though the design matrix is

singular, there are still unique parameter sets with the highest probability.

It has been our experience that letting the parameters sort themselves out with no constraints
usually gives a bit better fit, by loo, than you can get with the constraints. Parameter sets
with lower prior probabilities show up less frequently in the posterior distribution, so the
posterior mean gives a model with parameters closer to zero. Such a model would usually
have a better fit by loo penalized likelihood even though having the same loglikelihood as
other fits. The loo penalty does not look at the size of parameters — just at the out-of-sample
predictions — but these are better with properly shrunk parameters. You could say that fitting
by shrinkage is itself a complicated type of constraint that does give unique parameters, but
that these parameters do not have the ready interpretations that some constraints imply.
Still, the better predictive accuracy measured by loo is some evidence, even if not totally
definitive, that the trends estimated without other constraints better correspond to empirical
reality. In this study we make the age weights on the period trend positive with a maximum

of 1.0, but only constrain the trends themselves by Bayesian shrinkage.

Using slope change variables, with some eliminated, helps with identifiability. If a straight
regression is done for a simple age-period model, the slope change design matrix gives exactly
the same ¢, r parameter values that the 0,1 dummy matrix gives, and the APC matrix is still
singular. But when enough slope changes are set to zero, the matrix is no longer singular.
Our procedure, then, is to use lasso for an AP design matrix, take out the slope change
variables that lasso says are not needed, then add in all the cohort variables, and run lasso
again. The maximum variable set lasso finds for this is then the starting point for MCMC,

without any other constraints on the variables.

The MCMC runs usually estimate a fair number of the remaining parameters as close to zero
but with large standard deviations. This is analogous to having very low t-statistics. We

take out those variables as well, but look at how loo changes. As long as loo does not get
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cohort
1920
1919
1918
1917
1916
1915
1914
1913
1912
1911
1910
1909
1908
1907
1906
1905
1904
1903
1902
1901
1900
1899
1898
1897
1896
1895
1894
1893
1892
1891
1890
1889
1888
1887
1886
1885
1884
1883
1921
1920
1919
1918

year
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1971
1971
1971
1971

Table 1: Excerpt of Design Matrix
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worse from this, those variables are left out. Usually a fair number of the variables that lasso
identified are eliminated in this process. Leaving them in has little effect on the fit or the
loo measure, but the data is more manageable without them. We use the best APC model
produced by this as the starting point for the bi-linear models, which add age modifiers to
the period trends.

The steps we used to fit an APC model are then:

1. Make a slope-change design matrix for the age and period variables and another one

for the cohort variables.

2. Do a lasso run using cv.glmnet in default mode and list the coefficients for lambda.min.

Take the variables with coefficients of zero out of the age-period design matrix.
3. Combine the remaining columns with the cohort design matrix.

4. Run lasso again with cv.glmnet and list the coefficients for lambda.min. Take the

variables with coefficients of zero out of the combined design matrix.
5. Run MCMC beginning with this design matrix and compute the loo fit measure.

6. Look at the MCMC output and identify variables with high standard deviations and

means near zero.
7. Take out these variables, run MCMC again, and compute loo.

8. If loo has improved, see if there are more variables to take out, and repeat. If loo is

worse, put some variables back in.

Steps 6 — 8 do not usually change the model very much. They are just there to tidy things

up a bit by eliminating variables that are not making much difference.

4 Swedish-Danish Male Mortality Example

We model deaths from 1970-2016 for ages 50-99 and cohorts 1883-1953 from the Human
Mortality Database. Figure 2 graphs the cumulative mortality trends by age ranges for both
populations to see if there are any apparent shifts in the ages with the highest trend. The
trends are a bit different in the two countries, but they look a lot like what the Lee-Carter

model assumes, with the relative trends among the ages reasonably consistent over time.

4a APC model
Each population has 50 ages for 47 years coming from 71 cohorts. Leaving out the first age,
period, and cohort of each population, and adding the dummy variable for Denmark, gives

331 variables for the APC design matrix. Table 1 has an excerpt from the design matrix,
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showing the first few age and cohort variables for Sweden for several observations.

We started with a lasso run, using the R GLM lasso package glmnet, without the cohort
variables. The cv.glmnet app does the lasso estimation as well as this package’s default
cross validation. One of the outputs is the smallest A (thus the one with the most non-zero
coefficients) that meets their cross-validation test. We ran the package twice. The first time
was without the cohort variables, and then with the resulting non-zero variables from the

first run plus all the cohort variables.

This resulted in 80 variables: 22 age variables, 16 year variables, and 42 cohort variables
remained after lasso. We use the Stan MCMC application, specifically the R version, rstan
provided by Stan Development Team (2020). This requires specifying an assumed distribution
for each parameter, and it simulates the conditional distribution of the parameters given the
data. We used the double exponential distribution for all the slope-change variables. This is
a fairly common choice, usually called Bayesian lasso, but we revisit it below. The double
exponential distribution in Stan has a scale parameter s = 1/ > 0. An assumed distribution

was provided for that, as well as for the constant term.

Eliminating the zero-coefficient variables enabled the APC model to be fit with no further
constraints. Usually something like forcing the cohort parameters to have zero trend is needed
for identifiability. That particular constraint means that the period trends can be interpreted
as the trends given that they have all the trend and none is in the cohorts. The method here

is simpler and gives a bit better fit, but does not allow for such an easy interpretation.

For positive parameters, we prefer to start with a distribution proportional to 1/z. This
diverges both as x gets small and as it gets large, so it gives balancing strong pulls up and
down, whereas a positive uniform distribution diverges upwardly only, and this can bias the
parameter upward. As an example where the integral is known, consider a distribution for
the mean /3 of a Poisson distribution with probability function proportional to e ?#*. With
a uniform distribution for [, which is proportional to 1, the conditional distribution of /3
given an observation k is also proportional to e ?$*, which makes it a gamma in k + 1 and 1,
with mean k + 1. But if the distribution of [ is assumed proportional to 1/, the conditional
is proportional to e ?8*~! which makes it a gamma in k, 1, with mean k. Thus the 1/3
unconditional distribution take the data at face value, whereas the uniform pushes it upwards.

Numerical examples with other distributions find similar results.

The 1/ assumption is easier to implement in Stan by assuming log(f3) is uniform. Stan
just assumes a uniform distribution is proportional to a constant, so can be ignored. If not

specified, it takes the range £1.7977-103%®, which is the largest expressible in double-precision
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format. We usually start with a fairly wide range for uniform distributions, but if after
working with the model for a while the conditional distributions tend to end up in some
narrower range, we tend to aim for something a bit wider than that range — mostly to save
the program from searching among useless values. We ended up with assuming that the

constant is uniform on [-8,-3], with log(s) uniform on [-6,-3].

The best purely APC model had 54 parameters, a loo measure of 22,158.5, and NLL of
22,081.7. The sample-bias penalty, 76.8, is the difference between these. This penalty is a bit
high for 54 parameters with shrinkage, which veteran Stan modelers tend to find suspicious
in terms of predictive ability of the model. We know from the preliminary visual test that

there is some variation in trend across the ages, and not reflecting this could be the problem.
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Figure 3: Trend Factors

4b Renshaw-Haberman model
The next step was to put in the trend weights by age, which gives the Renshaw-Haberman
model. This is no longer a simple linear model, which complicates the coding, but not
substantially. We used the constraint that the highest weight for any age for a population
would be 1.0, with all the weights positive. In that way, the trend at any year is the trend
for the age with the highest weight.
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Trend Weights by Age

Figure 4: Trend Age Weights

For this we needed a separate slope-change design matrix Y for trend weights, with 100 rows
and columns — one for each age in each population. When unneeded variables were eliminated,
the columns were dropped but not the rows. Then the parameter vector n times the design
matrix gives the initial weights for each age, which could be negative so are subtracted from

their maximum value then exponentiated to give the age weights «.

a1:Y77

o= eal—maz(cxl)

Adjusting the weights to have a maximum of 1.0 has to be done separately for each population
then concatenated. Now the design matrix X and the parameter vector § are only for the
age and cohort parameters, with another design matrix Z with parameters 1 for the years.

Then (i) becomes:
m=c+ X+ ae(Z1) 0

In the end, six more age, period, and cohort variables were eliminated, leaving 46 APC
variables, and 72 slope-change variables, so 118 variables all together. This produced a loo
penalized NLL of 20,725.5, an NLL of 20,644.5, which are improvements of about 1400 over
the APC model. The penalty of 81.0 for the 118 variables is a more typical relationship for
shrinkage models. NLL and penalized NL are in logs, so it is the absolute difference, not the
relative difference, than indicates how much improvement a better model produces. Here

that is substantial, so Renshaw-Haberman is clearly better for this data.

4c Alternative shrinkage priors
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Next we tried an alternative shrinkage distribution, as discussed in Section 3, using the
variables from the best model. Instead of the double exponential priors, we assumed that the
slope-change variables were t-distributed. A double exponential is roughly equivalent to a t
with v = 6, a Cauchy is ¥ = 1, and a normal is the limit as v gets large. We tried a prior
with log(v) uniform on [-1,6]. That gives a range for v of about [0.37,403]. The result was a
slightly worse loo, at 20,726. The mean of v was 2.4, with a median of 2. This is heavier
tailed than the double exponential, with larger parameters allowed and smaller ones pushed

more towards zero. Two more parameters came out < 0.001 and can be eliminated.

We have found in other studies that loo does not change greatly with small changes in the
heaviness of the shrinkage distribution tails, and it looked like estimating v was using up
degrees of freedom. Next we tried a constant ¥ = 2 and took out the two small trend-weight
variables. The result was then 116 variables, with a loo measure of 20,723.4, NLL of 20,643.9,
and a penalty of 79.5. Such a drop of 2 in the penalized NLL is usually considered a better

model, and this one is more parsimonious as well.
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Figure 6: Cohort Factors

4d Negative-binomial model
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Table 2: Summary of Goodness-of-Fit Measures

Parameters Loo Penalty NLL
APC (Poisson with Laplace shrinkage) 54 22,159 77 22,082
Renshaw-Haberman (Poisson with Laplace shrinkage) 118 20,726 81 20,645
Renshaw-Haberman (Poisson with v = 2 shrinkage) 116 20,723 79 20,644
Renshaw-Haberman (Neg. Bin. with v = 2 shrinkage) 116 20,648 59 20,589

One assumption not checked so far is the Poisson distribution of deaths in each age-period
cell. As an alternative, we tried the negative binomial distribution, which has an additional
parameter ¢, which does not affect the mean but which makes the variance = u?/¢ + p. This

changes (i7) to:
dj] ~ NB (e[jle", ¢) (iv)

This actually gave a still lower NLL of 20,589.1, and loo of 20,648.1, so an improvement of 75.
The sample-bias penalty was much lower, at 59. There were also three fewer trend-weight
variables, leaving 67 of those, as well as 46 age, period, and cohort variables as before. Now
there is still a constant, the shrinkage parameter, and ¢ that are not shrunk, so 116 variables
in total. The low penalty means that the loglikelihood of the omitted variables was not much
worse than that of the full model, which is part of why the predictive measure loo was so

much better.

The Poisson is an approximation to the binomial distribution that would come from a sum of
independent Bernoulli processes. Having a more dispersed distribution suggests that there is
some degree of correlation in the deaths. That could arise from high deaths in bad weather
or disease outbreaks, for instance. However the dispersion is a measure of the departure of
the actual deaths from the fitted means, and also includes model error and estimation error.

Thus it is not entirely certain that the better fit implies that deaths are correlated.

We just assumed that log(¢) was distributed uniform on 4+1.7977 - 103%. The conditional
mean of ¢ given the data is 2839. The largest mean for any cell was slightly above 2000, and
that would get a variance increased by 70%. This could be as little as a 10% increase for
small cells. Compared to the Poisson, this makes it less critical to get a very close fit on the
largest cells, which can give a better fit on the other cells. Of course, another reason for the
better fit could be actual greater dispersion. The parameters graphed in Figures 3 — 6 are for

the negative-binomial model as are the actual vs. fitted values in Figures 7 and 8.

4e Fit summaries

Table 2 summarizes the goodness-of-fit measures for all the models. Table 3 shows the
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Table 3: Parameter Count and Sum of Absolute Values for Negative Binomial Model
Age Cohort Trend Weight

Sweden Count 10 15 5 34
Denmark Count 3 9 4 33
Sweden Sum |f| 0.126 0.062 0.054 0.363
Denmark Sum || 0.022  0.041 0.093  0.189

number of parameters of each type by country and the sum of their absolute values in the
negative-binomial model. As we were hoping, by doing the joint fitting, Denmark got fewer
parameters and lower impact as measured by parameter absolute values. Thus not so much
change from the Sweden model was needed. Trend is a bit of an exception, and as we
saw, Sweden does not have much trend while Denmark has some. The mortality-by-age
parameters are one area in particular where the populations are similar, and Denmark does
not need much change from the Sweden values. It is surprising how dominant the age-weight
parameters are in both size and count, and also how they add so little to the NLL penalty

and so much to the goodness of fit. They are clearly important in this model.

Figure 3 shows the parametric curves fit to trend factors by population. Sweden has less trend
in the later years. Denmark does not deviate from the Swedish trend until halfway through
the period. Both show long stretches with few slope changes. These are a lot simpler than
the empirical trend graph in Figure 1, which could be why the age weights are important.
Figure 4 shows the curves for the age weights. They are more complex than the trends, but
still fairly smooth graphs. Denmark largely has the same overall pattern as Sweden, so is
using its parameters to a fair degree. Figure 5 graphs the fitted age factors on a log scale,
along with a rotation of the factors to horizontal, to better show their differences. There are

some nuances of slope-change variation that shows up in the rotation.

Figure 6 shows the cohort factors, along with fitted lines to each to show their average slopes.
Although the shapes are different, a lot of the slope changes and differences from linear are

actually similar between the two populations.

Actual vs. fitted mortality rates are graphed for the cohorts by age in 3-year ranges in Figure
7. The fitted values form smooth curves in this modeling. Denmark’s rates are more volatile,
but the fitted values reasonably represent the trends in each country. For the most part, the
rates are lower for later cohorts. The cohort parameters did not do exactly that, but the
fitted rates are a combination of age, period, cohort, and trend-weight parameters, which are
all relative to each other. Figure 8 graphs this for year of death instead of cohort, and the

conclusions are similar.
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In the example, the difference parameters for the second population are smaller and fewer
than the parameters in the first model, suggesting that it is retaining features of the model
of the larger population. For this data, the Renshaw-Haberman model fits better than
the linear APC model, the negative binomial fits better than the Poisson, and using the t-
distribution with ¥ = 2 works well as an assumed shrinkage distribution. A more parsimonious
model, that looks not as good by loo, can be obtained by a Cauchy shrinkage distribution
(the t-distribution with ¥ = 1), which could be a good idea if the model is regarded as
an approximation to a more complex process. These shrinkage distributions also provide
minimization formulas similar to those of lasso and ridge regression. The t with v = 2 case,
for instance, leads to minimization of NLL+1.532;log(2 + A*3).

4f Projections

Projecting forward using these models would require projecting the period trends, and if
more cohorts are to be included, the cohort trends would need to be projected as well. With
the fits that we have, the period and cohort trends look remarkably stable for both countries.
For over 20 years, the period trend for Sweden has been constantly downward, at a factor
of 0.991 per year. For Denmark the trend rate has been 0.987 over this period. These are
the factors for ages 7075, with less trend at other ages according to the curves fit to trend
weight by age. A reasonable starting point would be to continue these trend rates. You could
not expect declining mortality forever, but the rates are not very steep. After 50 years of
decline at this rate, Sweden’s mortality at those ages would drop by a factor of 0.65, and
Denmark’s by 0.51. Other ages would have less decline, and the deaths overall would shift to
still older ages.

The cohort trends are less steep, with factors of 0.992 and 0.996 for Sweden and Denmark,
respectively. Fifty years of compounding of these would give reduction factors of 0.69 for
Sweden and 0.81 for Denmark. If these were to be combined, those born in 2003 would have
lower mortality by 0.43 in Sweden and 0.41 in Denmark for the peak trend ages. Actuaries
would naturally want to temper these trends with reasonable judgement if they were to use
them in annuity and insurance pricing. In practice, pandemic issues would of course now go
into their calculations. These countries have data through the Spanish flu pandemic that

might influence their adjustments.

Stan can output the parameters for every sampled posterior point. The prior distributions
can be used to simulate future outcomes for each sample, and these could be used for
distributions around the projected mean results. These priors all have mean zero, which
would be consistent with continuing the latest trends. The correlations across the parameters

could also be computed over the historical period and applied during the simulations.
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To use a model like this in practice, it would be important to review the parameter distributions.
The Appendix has some R code for running these models. That includes code for printing

and graphing the parameter distributions.

49 Population behavioral studies

Despite being among the countries with the longest life expectancy in the world from 1950
to 1980, Denmark experienced a dramatic fall in the rankings in the 1990s while Sweden
maintained its position near the top. The difference in mortality between Denmark and
Sweden has been discussed by several papers and Christensen et al. (2010) provides a
comprehensive review as well as describing the trends in overall mortality and cause-specific
mortality with a discussion based on the underlying determinants of reduced life expectancy
in Denmark. They show that Denmark’s life expectancy improvement rates were close to
zero between the late 1980s and early 1990s. Although the mid-1990s, Denmark experienced
an annual increase in life expectancy, Danish longevity has not been able to catch up with
Sweden. Juel, Sorensen, and Bronnum-Hansen (2008) shows the significant impact of the
risk factors such as alcohol consumption, smoking, physical inactivity and unhealthy diet on
Danish life expectancy. Christensen et al. (2010) emphasizes the impact of smoking as the
major explanation for the divergent Danish life expectancy trend compared to Sweden while
acknowledging the contribution of different lifestyles and health care systems (investment in
health care is lower in Denmark than in Sweden) in two countries. They also explain the
reasons for the improvement in life expectancy in the early 1990s in Denmark as the effect of
decreasing cardiovascular mortality, better lifestyles, better medical and surgical treatment

as well as better medical disease prevention services.

Looking at the fitted period trends in Figure 3 and the fitted cohort trends in Figure 6
shows that our model estimates the period trends as being pretty similar until the mid-1990s,
with Denmark improving faster after that. However the cohort trends are more favorable
in Sweden. You could largely get the same overall effects by rotating the Swedish cohort
curve up to match Denmark’s and rotate its period curve down. Either would correspond to
the empirical relationship between the countries. But the actual results from the estimation
are those that best match the conditional distribution of the parameters given the data that
come with no constraints, as discussed at the end of Section 3. Both populations’ fits show
sharp improvements beginning with cohorts born in the mid-1920s (who reached adulthood
after WWII). This turn was slightly more in Denmark, but trends there had been upward
before then, so Sweden maintains a faster rate of cohort improvement. Smoking was probably
a key part of this. Denmark’s slowdown in mortality improvement in the 1990s corresponds

to when their worst cohorts by our fits reached their 70s. The cohort fits suggest that the
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unhealthy behaviors found in the studies noted above were largely a cohort effect. That is

something that the lifestyle measures may be able to test.

5 Conclusion

Joint APC-modeling of related populations is a common need in actuarial work, including
for mortality models and loss reserving. Semiparametric regression is a fairly new approach
for actuaries, and has advantages over MLE in producing lower estimation and prediction
errors. We show how to apply it to individual mortality models by shrinking slope changes
of linear-spline fits to the parameters, and then to modeling related data sets by shrinking

changes in the semiparametric curves between the data sets.

MCMC estimation can be applied to complex modeling problems. We show how it can
be used here to produce samples of the conditional distribution of the parameters given
the data. This is typically done in a nominally Bayesian setting, where the model starts
with postulated distributions of the parameters, called priors, and yields the conditional
distribution of parameters given the data, called the posterior. But frequentist random-effects
modeling postulates distributions of the effects (which look like parameters to Bayesians)
and there seems to be no reason it could not also use MCMC to sample from the conditional
distribution of the effects given the data. Furthermore, when Bayesians take this approach,
they often feel free to depart from the traditional view of priors as incoming beliefs and
treat them instead more like random effects — that is postulated distributions. Thus the
approach we take appears largely consistent with Bayesian and frequentist approaches, but

differs slightly from the historical practices of each.

MCMC software can have problems with highly correlated variables like the slope change
variables. Ridge regression and lasso were designed for this problem, and can be much
more efficient in estimating conditional modes. We use lasso, with only minor shrinkage, to
eliminate the less-necessary slope-change variables, and then use MCMC with the reduced
parameter set. Common lasso software requires linear models, so we start off with a lasso
Poisson regression for the linear APC model, with a log link, to reduce the variable set going
into MCMC. We also present some advantages that MCMC shrinkage of linear-spline slope

changes has over the standard semiparametric use of O’Sullivan penalized splines.
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Appendix — Code Examples

First we look at doing a Poisson lasso run in R starting with a shrinkage design matrix. The
cv.glmnet code exponentiates a regression model to give the Poisson means. If an offset is
included, effectively the means before exponentiating are the offsets plus the regression fit,
and have an offset for every observation. Thus the offsets should be the logs of the exposures.

The constant term is not in the design matrix but is added in.

library(readxl)

library(glmnet)

y = as.integer(scan('deaths.txt')) #scan turns a column file into a vector

X = as.matrix(read_excel("shrink design mat.x1lsx")) #spreadsheet has header row
offs = scan('logexpo.txt')

fit = cv.glmnet(x, y, standardize = FALSE, family = "poisson", offset=offs)

out <- as.matrix(coef(fit, s = fit$lambda.min)) #these are the lasso parameters

write.csv(out, file="lasso fit.csv")

This is possible Stan code mort_apc.stan for the APC case. The double exponential =

Laplace prior is known as Bayesian lasso as the posterior mode is closely related to the lasso

estimates.
data {
int N; // number of obs
int U; // number of variables

vector [N] expo;
int y[N];
matrix[N,U] x;
+
parameters { // all except v will get uniform prior, which is default
real<lower=-8, upper=-3> cn; //constant term, starting in known range
real<lower=-6, upper = -3> logs; //log of s, related to lambda, not too high
vector [U] v;
+
transformed parameters {
real s; // shrinkage parameter
vector [N] mu;
s = exp(logs); //makes 1/x prior for s>0 to prevent bias
mu = exp(cn+x*v);

for (j in 1:N) mul[j] = mul[j]*expolj];
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}
model { // gives priors for those not assumed uniform. Choose this one for lasso.
for (i in 1:U) v[i] ~ double_exponential(0, s); // more weight to close to O
y ~ poisson(mu);
}
generated quantities { //outputs log likelihood for loo
vector [N] log lik;
for (j in 1:N) log lik[j] = poisson_lpmf(y[j]l | mul(jl);
}

This is R code for running the Stan code mort_apc.stan and doing some analysis. The
print command allows you to print out distribution ranges for each parameter with selected
parameters and percentiles. Plot with show density plots all of the selected parameters
as density graphs on a single scale. Plot with “hist” selected graphs histograms of each
parameter’s posterior distribution. Extract gets all of the parameters by sample, but you
have to be careful to check what order they come out in. One way to do this is just to keep
the first chain, which here is mort_ss[,1,], and look at it as an array, which will have variable
names as column headings. The order of the variables will be the same if you do it again
with all of the chains. With the parameter sample distributions you can also compute the
correlations among the parameters. These could be used along with the prior distributions

to simulate parameter changes going forward to get projections ranges.

library(readxl) # allows reading excel files; assumes there is a header Tow
library("loo")
library(rstan)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
#read in data
X = as.matrix(read_excel('shrink design mat.xlsx'))

y = as.integer(scan('deaths.txt'))

expo = as.integer(scan('expo.txt'))

N <- nrow(x)

U <- ncol(x)

c(N,U)

df = 1ist(N=N,U=U, expo=expo,y=y,X=X)
#now Tun stan

set.seed(8)
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mort_1 <- stan(file = 'mort apc.stan', data=df, verbose = FALSE, chains = 4,
iter = 2000, control = list(adapt_delta = 0.9, max_treedepth = 14))
#compute loo
log_spread_1 <- extract_log_lik(mort_1)
loo_spread_1 <- loo(log_spread_1)
loo_spread_1
#output parameter means by chain
out_mort_1 <- get_posterior_mean(mort_1)
write.csv(out_mort_1, file="out apc.csv")
#show some output
plot(mort_1, pars = "v", show_density = TRUE, ci_level = 0.8, fill color = "black")
plot(mort_1, plotfun = "hist", pars = "v'") #histograms for each parameter
print (mort_1, pars=c("c", "v", "s"), probs=c(.025, 0.2, 0.5, 0.8, 0.975),
digits_summary = 5)
#get all samples
mort_ss = extract(mort_1, permuted = FALSE)
#3D array iterations by chains by parameters
#can get rid of unneeded columns, concatenate to 2 dimensions, write out, etc.
#array variables can be in different order than from get_posterior_mean

#1f you just keep 1 chain you can write out as .csv and tt will have headings
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