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We evaluate all two-point correlation functions of the Curci-Ferrari (CF) model in four dimensions
and in the presence of degenerate fundamental quark flavors. We compare our results to QCD lattice
data in the two flavor case for two different values of the pion mass, one that is relatively far from
the chiral limit, and one that is closer to the physical value. This work is a natural extension of
an earlier investigation in the quenched approximation. Our results confirm that the QCD gluon
and ghost dressing functions are well described by a perturbative approach within the CF model.
As for the quark sector, our main result is that the quark dressing function is also well captured
by the perturbative approach, but only starting at two-loop order, as anticipated in Ref. [1]. The
quark mass function is also well reproduced if the quarks are not too light. As is well known, this
function cannot be described within a purely perturbative approach in the case of too light quarks.
We find nonetheless that, provided one allows for a small offset in the UV, the quark mass function
is rather well reproduced in the IR, even for physical quark masses. We also find that, for a given
quark mass in the UV, the two-loop corrections tend to generate more mass in the infrared than
the one-loop corrections.

I. INTRODUCTION

The success of the Standard Model of particle physics
in describing three out of the four fundamental interac-
tions is not in any doubt. Nonetheless, while the prop-
erties of the electroweak sector are very well understood
over a large range of energies, that part describing the
strong sector is not. At high energy, the quarks and glu-
ons that are the fundamental fields of the SU(3) gauge
theory of the strong sector, known as Quantum Chromo-
dynamics (QCD), behave asymptotically as free entities,
[2, 3]. This is only a high energy property, however, as
in reality such quark and gluon states are never realized
in Nature as observable particles. Instead they are con-
fined within nucleons and from lattice gauge studies of
their propagators, it has become clear that they do not
share the same fundamental behaviour as the electrons
and photons of Quantum Electrodynamics. A distinc-
tive feature is that, as a function of the momentum p2

the propagators do not have a simple real pole. See, for
instance, [4–12].

Consequently there have been numerous theoretical at-
tempts to explain the behaviour of the gluon propaga-
tor analytically. The most common approaches rely on
non-perturbative methods such as the Dyson-Schwinger
equations [13] or the functional renormalization group
[14]. Alongside these non-perturbative studies, it has
also been advocated that valuable information could be
obtained from perturbative methods [15]. All these ap-
proaches centre around a common theme of there being a
non-zero mass scale of some sort that is active primarily

at low energies.

Ideally, one aims at generating this scale from first
principles, as for instance in the original work of Gri-
bov, [16], where it arose out of endeavouring to globally
fix the Landau gauge uniquely. A more phenomenologi-
cal approach relies on the inclusion of a non-zero gluon
mass term in the Landau gauge-fixed Lagrangian as a
way to model the effect of the non-perturbative gauge-
fixing. This model corresponds in fact to one particular
case of the so-called Curci-Ferrari (CF) model [17]. That
approach from nearly half a century ago fell out of favour
despite the modified Yang-Mills (YM) Lagrangian being
renormalizable. It transpired that the BRST charge is
not nilpotent in the presence of the explicit mass. Con-
sequently the standard definition of the physical state
space contained states with negative norm [18–20]. Since
then, however, it has been shown in lattice simulations
that the gluon propagator features positivity violation
[21, 22]. This empirical observation together with the
decoupling behaviour of the gluon propagator observed
for dimensions strictly greater than 2 [23, 24] has made
the CF model one new avenue for exploring the infrared
behaviour of the gluon and Faddeev-Popov ghost propa-
gators. This is one of the main motivations for continuing
to study the model in this article.

Indeed over the past years the CF model has been
extensively used to examine the infrared behaviour of
YM/QCD correlation functions in the vacuum [1, 15, 25,
26] as well as the phase structure at nonzero temperature
[27–33], both from a perturbative perspective. One of
the reasons why the model may be regarded as a credible
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candidate for describing infrared gluon dynamics is that
in [34, 35] it was argued that the mass parameter can be
interpreted as a necessary second gauge parameter. Its
origin derives from taking into account the presence and
effect of Gribov copies; see also [36] for more recent devel-
opments. In the ultraviolet, such a mass is unnecessary
and absent as it runs to zero consistent with the fact that
the Landau gauge is uniquely fixed in that region. While
the one loop studies of the gluon and ghost propagators
using the CF model [1, 26] were very encouraging and
gave good coverage of lattice data to all energies, the nat-
ural question that arose concerned whether this could be
improved if higher loop corrections were included. This
was examined at two loops in Ref. [37] for the case of
YM two-point correlation functions where a much closer
agreement with lattice data over all momenta emerged.
While this does not imply that a gluon mass term should
be included in Landau gauge-fixed YM theory, it did at
least demonstrate that perturbative computations could
be used to quantitatively probe the deeper infrared re-
gions of pure YM theory that at first might not seem
possible. More recently, a similar investigation was pur-
sued for the case of the ghost-antighost-gluon vertex in
one particular momentum configuration [39], with the
added difficulty that all relevant parameters had been
fixed in Ref. [37], thus representing a stringent test of
the method.

Having demonstrated that a gluon mass term gives a
window into the infrared the next natural extension of
this core idea is to include massive quarks on top of the
YM gluon mass term of the CF model and thereby en-
deavour to access QCD in the infrared. Of course, includ-
ing a quark mass one aims at probing chiral symmetry
breaking, another aspect of the infrared that is not fully
understood. This is certainly a challenge in particular
within the CF model as one needs to consider the quark
wave (or dressing) function and the quark mass function
as extra form factors on top of the gluon and ghost dress-
ing functions. Moreover, all these form factors depend a
priori on two mass scales.

A one-loop investigation of the CF model in the pres-
ence of massive quarks was carried out in Ref. [1]. Given
the extension of Ref. [37] the main direction of this article
is to extend the work of Ref. [1] to two loops. There are
at least two other reasons for considering the two-loop
extension. First, in Ref. [1], it was not easy to obtain
full satisfactory results at one loop in the Landau gauge.
Indeed, in this gauge, the quark field does not need to
be renormalized at one loop. This is because the one
loop correction to the wave function part of the quark
two-point function is finite. In fact for massless fields it
vanishes identically in the Landau gauge. In effect this
meant that the quark wave form factor could not be com-
mensurate with the other form factors which was evident
in Ref. [1] from the clear qualitative mismatch between
the CF one-loop predictions for this quantity and the
corresponding lattice results. Therefore to extract re-
sults that are meaningful at the same level of precision

as [37] for instance, a full two loop study is absolutely
necessary. In fact an estimate of the two-loop correc-
tions to this quantity given in Ref. [1] indicates that they
could greatly contribute to resolve the tension with the
lattice data. One of the goals of the present paper is
to show that this is indeed what happens and therefore
that just as the gluon and ghost correlators, the quark
wave function admits an accurate description within the
perturbative CF paradigm.

The second reason for considering the two-loop exten-
sion is that, despite the evidence for an accurate descrip-
tion of YM correlation functions within the perturbative
CF model, the situation in QCD is more delicate. In-
deed, given that the quark gluon coupling in the infrared
is two to three times larger than the pure gauge coupling
[38], the use of a strict perturbative approach is certainly
questionable and one way to test it is to evaluate the
size of the two-loop corrections. In fact, as it is well
known, the quark mass function cannot be reproduced
perturbatively in the chiral limit. Still, it makes sense to
ask whether other QCD form factors are well described
within the perturbative CF approach. One of the ideas
to be defended in this work is that both the gluon and
the ghost form factors, but also the quark wave form fac-
tor can be accurately captured perturbatively, and this
when even close to the chiral limit.

For completeness, we mention that it is also possible to
account for the spontaneous breaking of chiral symmetry
and the quark mass form factor within the CF model. To
do so, one needs to abandon the perturbative expansion
scheme and replace it by a double expansion in powers of
the pure gauge coupling (that remains moderate over all
scales in the CF model) and the inverse number of colors.
This has led to the development of the so-called Rainbow-
Improved expansion scheme [41, 42] that essentially boils
down, at leading order, to the Rainbow-Ladder approx-
imation (see e.g. [43, 44]) while consistently including
the running of the parameters. In has been shown that
this approximation scheme captures the spontaneous chi-
ral symmetry breaking and provides a consistent picture
of the gluon and ghost propagators as well as the quark
mass function.1 This goes, however, beyond the scope of
the present work and we will remain at a strict two-loop
order.

While one could argue that perturbation theory should
not be used for such studies, one point of view is that one
is trying to probe beyond the leading order high energy
behaviour where in effect quarks and certainly gluons are
massless. More usefully it in principle gives a technique
to carry out more phenomenological studies for medium

1 The quark wave function is poorly reproduced at leading order of
the Rainbow-Improved expansion basically for the same reason
as the one described in the main text: just as in the one-loop
case, there is no wave function renormalization of the propagator
and then the quark wave function cannot be commensurate with
the other form factors.
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to low energies similar to those begun in [45, 46] for in-
stance where a dynamical gluon mass was used. While
there are Dyson-Schwinger analyses of the quark wave
function and mass form factors in Ref. [47, 48] for ex-
ample, see also [49] for more recent and thorough re-
sults, perturbative approaches such as that provided here
should be regarded as complementary. This is in the
sense that in any theoretical exploration of the infrared,
some degree of modelling and approximations has to be
made. In ours it is clearly the loop expansion (on top of
the CF modelling) which in principle can be extended to
three loops with the development of numerical tools to
evaluate the underlying Feynman integrals for example.

Going to two-loop order in the present set-up is not
a straightforward task. In Ref. [37] the focus was on
pure YM where there was only one mass scale. Here we
will have two distinct masses when the dynamical quarks
are included. Therefore we have to evaluate all possible
two loop massive Feynman integrals contributing to the
gluon, ghost and quark two-point functions in the Lan-
dau gauge. Indeed aside from the one loop correction to
the quark two-point function, it is not until two loops
that graphs with both mass scales are present in indi-
vidual diagrams. It is only at this point that we truly
have a tool to fully explore the interrelationship between
the mass parameters behind color confinement and chiral
symmetry breaking.

The paper is organized as follows. We provide the
necessary background details for the Curci-Ferrari model
we use in Section II. This includes the definition of the
form factors that are computed to two loops as well as a
general review of the finer points of the renormalization
scheme that allows us to probe the infrared. A summary
of the one loop work of Ref. [1] is also provided together
with the definition of the Infrared Safe renormalization
scheme to be used throughout this work. The following
section describes the technical aspects of calculating the
necessary two loop Feynman graphs contributing to each
of the two-point functions when there are two indepen-
dent mass scales. As our ultimate goal is to plot the
form factors for all momenta a substantial part of the
discussion is devoted to internal checks in various limits
that ensure the results are reliable prior to constructing
plots. The implementation of the Infrared Safe renormal-
ization scheme at two-loop order is discussed in Section
IV which completes the analytic aspect of the computa-
tion. Our results are presented in Section V which con-
tains the form factor plots for all momenta in comparison
to several lattice data sets. These have been compiled
for different pion masses. Therefore the discussion of
Section V centres on the error analysis for relating two
loop results to data. After concluding remarks in Sec-
tion VI there are four Appendices. The first illustrates
all the graphs we have computed while the next discusses
finer aspects of the two loop renormalization group flow.
These ideas are illustrated in a third appendix using the
simple case of the minimal subtraction scheme which we
used as benchmark before implementing the Infrared Safe

renormalization scheme and which could also serve as a
pedagogical introduction to two-loop running. The fi-
nal appendix gathers next-to-leading order UV and IR
asymptotic expansions of the various anomalous dimen-
sions used in the present work.

II. THE CURCI-FERRARI MODEL

We turn to more specific aspects of our study and
discuss the necessary background to the Curci-Ferrari
model. In Ref. [17] the model was considered for an arbi-
trary covariant gauge parameter which featured a mass
for the Faddeev-Popov ghosts as well as one for the glu-
ons. However as the former depends linearly on the gauge
parameter, the ghost mass vanishes in the Landau gauge
limit on which we focus in this work. This is not uncon-
nected with the massless longitudinal mode of the gluon.

A. Generalities

In the Landau gauge limit, the Euclidean CF La-
grangian density in the presence of Nf degenerate quark
flavors (in the fundamental representation of the color
group) reads

L =
1

4
F aµνF

a
µν + iha∂µA

a
µ + ∂µc̄

a(Dµc)
a

+
1

2
m2(Aaµ)2 +

Nf∑
i=1

ψ̄i(D/+M)ψi , (1)

where F aµν ≡ ∂µAaν − ∂νAaµ + gfabcAbµA
c
ν is the field-

strength tensor, ha a Nakanashi-Lautrup field, (ca, c̄a)
a pair of ghost and antighost fields, and (ψi, ψ̄i) a pair of
quark and antiquark fields for each flavor i. The covari-
ant derivatives in the adjoint (φ) and fundamental (ψ)
representations read respectively

(Dµφ)a ≡ ∂µφa + gfabcAbµφ
c, (2)

Dµψ ≡ ∂µψ − igAaµtaψ , (3)

with fabc the structure constants of the SU(N) gauge
group and ta the generators of the corresponding Lie al-
gebra, normalized such that tr(tatb) = δab/2. The pa-
rameters g, m and M denote respectively the bare cou-
pling constant, bare gluon mass and bare quark mass.

In what follows, we choose a Euclidean convention for
the Dirac matrices, such that {γµ, γν} = 2δµν1, with 1
the identity matrix in spinor space. The Dirac contrac-
tion D/ ≡ γµDµ is defined in terms of those Euclidean
matrices. The formulas to be derived below are valid for
an arbitrary number of colors and an arbitrary number
of degenerate quark flavors (in the Landau gauge), but
we shall restrict the comparison to the lattice data to
the case of three colors and two degenerate flavors.
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The model is regularized by working in d = 4− 2ε di-
mensions. This allows us to take full advantage of the
symmetries of the model, in particular the BRST sym-
metry mentioned above. These symmetries, together
with the fact that the tree-level gluon propagator of the
model is transverse and decreases with two powers of the
momentum, ensure the renormalizability of the model.
Renormalization proceeds along the usual lines. One first
rescales the bare fields and bare parameters in terms
of their renormalized counterparts. Denoting the bare
quantities that appear in the action (1) with a subscript
B, this step writes

AaµB =
√
ZAA

aµ, caB =
√
Zc c

a, c̄aB =
√
Zc c̄

a ,

ψB =
√
Zψ ψ, ψ̄B =

√
Zψ ψ̄ , (4)

and

gB = Zg g , m2
B = Zm2 m2 , MB = ZMM . (5)

Then, the divergences present in the n-point functions
of the model are absorbed in the various renormaliza-
tion factors ZX with X ∈ {A, c, c̄, ψ, ψ̄, g,m2,M} and
the finite parts of these factors are fixed via a choice
of renormalization scheme. In this work, we consider
the so-called Infrared-safe renormalization scheme whose
definition in terms renormalization conditions is reviewed
below together with its main properties.

Let us recall here that, in dimensional regularization,
the bare coupling acquires the mass dimension ε, which
it is usually convenient to make explicit by introducing a
scale. In this article, we denote this scale as Λ in such a
way that the bare and renormalized couplings in (5) are
rescaled as gB → ΛεgB and g → Λεg respectively. The
reason for this unusual choice is that this scale has a pri-
ori nothing to do with the renormalization scale µ that
is introduced via the renormalization conditions. The
scale Λ is in fact a scale associated with the regulariza-
tion procedure, and, as such, the renormalized quantities
do not depend on its choice in the continuum limit (cor-
responding to ε → 0) while they depend in general on
the renormalization scale µ. We shall illustrate this be-
low when evaluating the anomalous dimensions and the
beta functions in the IR-safe scheme. We will also see
that, in intermediate computational steps, that is prior
to taking the continuum limit, it is convenient to keep
the two scales Λ and µ independent of each other.2

2 Of course, it is also possible to make the standard choice Λ = µ.
This hides, however, some of the simplifying features, while ob-
scuring the true source of µ-dependence of the renormalized
quantities. A well known scheme where this happens is the min-
imal subtraction scheme: in this case, there are no renormal-
ization conditions that introduce a µ-dependence and the only
source of µ-dependence seems to originate from the regulating
scale Λ which is taken equal to µ in this scheme. We shall re-
visit the minimal subtraction scheme in App. C, show how the
paradox is solved and how this peculiar scheme fits the general
picture.

B. Two-point functions

Our focus in this article is on the two-point functions of
the model. These are obtained by inverting the second
field derivative of the effective action Γ[A, ih, c, c̄, ψ, ψ̄].
In the ghost sector, this second derivative will be written
as

Γ
(2)

cac̄b
(k) ≡ δabΓ(k) . (6)

Similarly, in the gluon and quark sectors, we shall use
the notation

Γ
(2)

AaµA
b
ν
(k) ≡ δab

(
P⊥µν(k)Γ⊥(k) + P ‖µν(k)Γ‖(k)

)
(7)

and

Γ
(2)

ψψ̄
(k) ≡ −ik/Γγ(k) + 1 Γ1(k) , (8)

where

P⊥µν(k) ≡ δµν −
kµkν
k2

and P ‖µν(k) ≡ kµkν
k2

(9)

are the transverse and longitudinal projectors.

The ghost propagator is obtained as Ggh(k) ≡ 1/Γ(k).
From the derivative nature of the ghost-antighost-gluon
tree-level vertex and the transverse nature of the tree-
level gluon propagator, it is easily argued that Γ(k) van-
ishes at least as k2 in the limit k → 0.3 It is then conve-
nient to define the ghost dressing function

F (k) ≡ k2Ggh(k) = k2/Γ(k) . (10)

As for the gluon propagator, it is obtained by first in-
verting the second derivative of the effective action in the
A/ih-sector and then restricting the so-obtained inverse
to the A-sector. The ih-sector cannot be disregarded
because it couples to the A-sector. However, since the
ih-dependent part of the action is not renormalized [25],
one is led to the inversion of the following matrix(

P⊥µν(k)Γ⊥(k) + P
‖
µν(k)Γ‖(k) ikµ

−ikν 0

)
. (11)

The inverse is easily found to be(
P⊥µν(k)/Γ⊥(k) −ikµ/k2

ikν/k
2 Γ‖(k)/k2

)
, (12)

from which it follows that the gluon propagator is trans-
verse, P⊥µν(k)G(k), with G(k) = 1/Γ⊥(k). By analogy

with the ghost sector, and despite the fact that Γ⊥(k)

3 This is because each loop contribution to Γ(k) involves a factor
k from the vertex attached to the external antighost leg, and an-
other factor (k+q)µP⊥µν(q) = kµP⊥µν(q) from the vertex attached
to the external ghost leg, with q the momentum associated with
the internal gluon propagator attached to this vertex.
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does not vanish as k → 0, it is customary to introduce a
gluon dressing function

D(k) ≡ k2G(k) = k2/Γ⊥(k) . (13)

Finally, the quark propagator is obtained by inverting

Γ
(2)

ψψ̄
(k). Multiplying Eq. (8) by ik/Γγ(k) + 1 Γ1(k) and

owing to the property k/2 = k2, one finds the propagator

S(k) =
ik/Γγ(k) + 1 Γ1(k)

k2(Γγ(k))2 + (Γ1(k))2
. (14)

It is customary to rewrite this as

S(k) = Z(k)
ik/+ 1M(k)

k2 +M2(k)
, (15)

with

Z(k) ≡ 1/Γγ(k) and M(k) ≡ Γ1(k)/Γγ(k) . (16)

The benefit of this rewriting is that M(k) appears as the
ratio of two tensor components of the same two-point
function and, as such, is a finite, renormalization group
invariant quantity, known as the quark mass function.
As for the function Z(k), we shall refer to it as the quark
dressing function.

Although we shall not be dealing directly with three-
point vertices in this work, let us mention here that a
similar argument to the one used for the ghost propagator
leads to the conclusion that loop corrections to the ghost-
antighost-gluon vertex vanish in the limit of vanishing
ghost momentum k → 0:

Γ
(3)

caAbµc̄
c(0, l, h) = −ifabcgBΛεhµ . (17)

This is Taylor’s non-renormalization theorem in the CF
model [25, 40, 54–57]. Another such theorem holds for
the combination Γ‖(k)F−1(k) which is related to the bare
gluon mass via the Slavnov-Taylor identity [25]:

Γ‖(k)F−1(k) = m2
B . (18)

Upon renormalization, the two identities (17) and (18)
constrain the combinations Zg

√
ZAZc and Zm2ZAZc of

renormalization factors to remain finite. These con-
straints are fully exploited within the Infrared-safe renor-
malization scheme which we now review.

C. Infrared safe renormalization scheme

The Infrared safe (or IR-safe in short) renormalization
scheme is defined by extending the relations between the
divergent parts of the renormalization factors Zg, Zm2 ,
ZA and Zc discussed in the previous section so as to
include their finite parts. One then requires that

Zg
√
ZAZc = 1 , Zm2ZAZc = 1 . (19)

The benefit of these conditions is that they give access to
Zg and Zm2 solely in terms of ZA and Zc. The latter are
fixed by requiring that the renormalized ghost and gluon
two-point functions (which depend both on the external
momentum k and on the renormalization scale µ) satisfy
the conditions

Γ(k = µ;µ) = 1 , Γ⊥(k = µ;µ) = µ2 +m2(µ) . (20)

As for the quark renormalization factors Zψ and ZM they
are fixed by imposing the conditions

Γγ(k = µ;µ) = 1 , Γ1(k = µ;µ) = M(µ) . (21)

Here, we are deliberately using the same notation for
the renormalized mass and for the quark mass function
defined in the previous section. In a generic renormaliza-
tion scheme, these two functions do not need to coincide.
In the present scheme however, they do coincide because
the bare components Γγ(k) and Γ1(k) renormalize iden-
tically, so that one has

Γ1(k)

Γγ(k)
=

Γ1(k;µ)

Γγ(k;µ)
=

Γ1(k; k)

Γγ(k; k)
, (22)

with the left-hand side corresponding to the quark-mass
function and the right-hand side corresponding to the
renormalized mass in the present scheme and at scale
µ = k.

Once all the renormalization factors are known from
(19)-(21), one can determine the various anomalous di-
mensions and beta functions. These are necessary in
order to obtain a controlled perturbative description of
the various propagators, in those cases where large loga-
rithms (associated with large separations of scales) would
invalidate the use of a näıve perturbative expansion. For
the moment we skip all details concerning the practi-
cal implementation of the renormalization group (RG)
as they will be recalled in full detail when considering
the RG flow at two-loop order in Sec. IV.

One of the main benefits of the IR-safe renormalization
scheme is that it features renormalization group trajec-
tories that are free of any Landau singularity and along
which the running coupling remains moderate, allowing
for a perturbative investigation of the CF model over all
scales.4 Based on these properties, the one-loop ghost,
gluon, and quark dressing functions, as well as the quark
mass function were evaluated in Ref. [1] within the IR-
safe renormalization scheme for an arbitrary number of
colors, degenerate flavors and dimensions, and compared
with lattice data in the particular case of d = 4 and
N = 3, for Nf = 2, 2 + 1 and 2 + 1 + 1 flavors, [50–53].
Let us now briefly review these results.

4 Other useful features of the IR-safe renormalization scheme will
be reviewed in Sec. IV.
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D. Summary of one-loop results

The one-loop CF results for the ghost and gluon dress-
ing functions were found to reproduce the unquenched
lattice data with high precision. Moreover, the results
for these two functions appeared to be rather insensi-
tive to the choice of the renormalized quark mass at the
initialization of the RG flow. One of the goals of this arti-
cle is to investigate whether these results improve further
upon the inclusion of higher order (two-loop) corrections.
This would support the perturbative paradigm, at least
for these quantities.

The situation in the quark sector is more delicate.
In Ref. [1], the quark mass function was correctly re-
produced, although not as accurately as for the ghost
and gluon dressing functions. On the other hand, it
is well known that perturbation theory cannot capture
the spontaneous breaking of chiral symmetry. Therefore,
we should expect the quality of the perturbative CF re-
sults to decrease as one tries to compare with lattice data
closer to the chiral limit (which were not available at the
time the analysis in Ref. [1] was performed). This means
that, in this regime, one cannot provide an equally good
description of the quark mass function over the whole
range of momenta. If one insists in reproducing the low
momentum range, there will be inevitably an offset in
the ultraviolet range which grows as the chiral limit is
approached, and, equivalently, if one insists in reproduc-
ing the ultraviolet range, the quark mass function will
not develop enough strength in the infrared to generate
the correct mass.

It should be stressed that the CF model is not to blame
here, but rather the use of the perturbative expansion in
the light quark regime. Indeed, in this range of quark
masses, the quark-gluon coupling is a few times larger
than the pure gauge coupling, jeopardizing the use of a
purely perturbative approach. As recalled in the Intro-
duction, a way to cope with this limitation while remain-
ing within the CF model, is to consider the Rainbow-
Improved (RI) expansion, a double expansion in powers
of the pure gauge coupling (which remains perturbative)
and of the inverse number of colors. This systematic com-
putational scheme has been considered at leading and
next-to-leading order in Refs. [41, 42] where it has been
shown to capture the spontaneous breaking of chiral sym-
metry while providing a good simultaneous account of the
ghost and gluon dressing functions and the quark mass
function.

The RI expansion lies however beyond the strict scope
of the present paper which aims instead at investigating
to which extent the perturbative CF model up to two-
loop order can describe the various two-point functions,
in particular in the case of the most chiral data available
to date [52]. This analysis is interesting in its own right,
even when including the quark mass function in the fit.
Of course, as we just explained, we may expect some
tension in the quark mass function but it is interesting
to see whether this tension is amplified or reduced upon

the inclusion of higher order corrections, and also how it
impact on the other functions. For completeness, we shall
also consider a partial fit of all the two-point functions
that we believe have a perturbative description within the
CF models, that is excluding the quark mass function but
including the quark dressing function.

That the quark dressing function Z(k) admits a per-
turbative description is not obvious from the results of
Ref. [1]. In this reference, the one-loop prediction for
this function in the CF model was seen not to reproduce
the lattice data, not even qualitatively as the function
was found to have the wrong monotonicity/convexity.
Here, however, the mismatch cannot be attributed to a
too large quark-gluon coupling since the RI resumma-
tion does not help in this respect [41, 42] and the mis-
match occurs also for large quark masses. In fact, the
one-loop contribution to Z(k) turns out to be unusually
small and even vanishes in the limit of zero gluon mass,
a well known result in the Landau gauge. This indicates
that two-loop corrections represent an important contri-
bution to Z(k) and should not be neglected,5 before any
judgement on the validity of perturbation theory for this
quantity. In Ref. [1], an estimate of the two-loop correc-
tions to Z(k) was proposed that hinted to a solution of
the monotonicity/convexity problem with the inclusion
of these contributions. This provides a further motiva-
tion for evaluating the two-loop corrections to the various
two-point functions, and, by slightly anticipating the re-
sults that will be presented below, we can already state
here that Z(k) admits an accurate perturbative descrip-
tion at two-loop order within the CF model.

Let us end this review of existing one-loop results by
mentioning that the one-loop quark-gluon vertex has also
been evaluated in Ref. [26]. The lattice data for this func-
tion are well reproduced by the leading order CF approx-
imation. In particular, as is already the case for the ghost
dressing function, the one-loop diagrams contributing to
this vertex are the same in both the quenched and un-
quenched cases since no quark loops are involved. There-
fore, the dynamical quarks contribute to these functions
only through the running of the coupling and the masses,
and the effect is small as compared to the quenched case.
An estimate of the two-loop corrections for this function
is left for a future investigation. For now, we concen-
trate on the evaluation of the two-loop corrections to the
various two-point functions of the CF model, which we
describe in the next section. The implementation of the
renormalization group at two-loop order in the IR-safe
scheme will be dealt with in Sec. IV.

5 They become the leading order corrections in the zero gluon mass
limit.
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III. UNQUENCHED TWO-POINT FUNCTIONS
AT TWO-LOOP ORDER

We devote this section to the details of how the two
loop corrections to the Landau gauge gluon, ghost and
quark two-point functions are evaluated in the presence
of non-zero gluon and quark masses. Once the two-point
functions are determined as functions of the bare param-
eters, we carry out the renormalization at two-loop or-
der. Aside from being necessary for our ultimate goal,
it provides an intermediate check on our original set-up.
Additional cross-checks will also be discussed. Some of
these entail checking that previous results, such as the
case when quarks are massless, correctly emerge in the
limit M → 0 for example.

A. Notation

Since we shall often refer simultaneously to the various
two-point functions Γ, Γ⊥, Γ‖, Γγ , Γ1 introduced in the
previous section, it will be convenient to denote them
generically as ΓC with C ∈ {∅,⊥, ‖, γ, 1} and where the
empty set ∅ is used to refer to the ghost component Γ(k).
Moreover, we write

ΓC(k) = ΓC0 (k2,m2
B ,MB)

+ λB ΓC1 (k2,m2
B ,MB)

+ λ2
B ΓC2 (k2,m2

B ,MB) , (23)

where ΓCn (k2,m2
B ,MB) represents the sum of n-loop

Feynman diagrams contributing to ΓC(k). For conve-
nience, we have factored out λnB , with

λB ≡
g2
BN

16π2
, (24)

in front of ΓCn (k2,m2
B ,MB). In practice, this means

that, in computing Feynman diagrams contributing to
ΓCn (k2,m2

B ,MB), the d-dimensional momentum integrals
are replaced by∫

ddp

(2π)d
→
∫
p

≡ 16π2Λ2ε

∫
ddp

(2π)d
, (25)

and the color factors are all systematically divided by
Nn.

The tree-level contributions ΓC0 (k2,m2
B ,MB) are linear

in any of their arguments. More precisely, we have

Γ0 = k2 , Γ⊥0 = k2 +m2
B , Γ

‖
0 = m2

B , Γγ0 = 1 , Γ1
0 = MB .

The one-loop contributions ΓC1 (k2,m2
B ,MB) have been

systematically evaluated in Ref. [1] and expressed in
terms of the two one-loop master integrals

Ama≡
∫
p

Gma(p) , (26)

Bmamb(k
2)≡
∫
p

Gma(p)Gmb(p+ k) . (27)

As for the two-loop contributions ΓC2 (k2,m2
B ,MB), as we

now explain, they can be systematically reduced to the
evaluation of the two-loop master integrals

Smambmc(k
2)

≡
∫
p

Gma(p)Bmbmc((p+ k)2) , (28)

Umambmcmd(k2)

≡
∫
p

Gmb(p)Gma(p+ k)Bmcmd(p2) , (29)

Mmambmcmdme(k
2)

≡
∫
p

Gma(p)Gmc(p+ k)

×
∫
q

Gmb(q)Gmd(q + k)Gme(q − p) , (30)

which can then be evaluated numerically using the Tsil
package [58].

B. Reduction to master integrals

One starts with the generation of the two-loop Feyn-
man graphs contributing to each of the two-point func-
tions. This is achieved using the Fortran based Qgraf
package, [59]. There are 23, 7 and 7 graphs at two loops
for the gluon, ghost and quark two-point functions re-
spectively compared with 4, 1 and 1 graphs respectively
at one loop. These are illustrated in App. A. In generat-
ing the graphs we have included snail topologies. Ordi-
narily, such graphs are excluded when there is no gluon
mass since they would vanish in dimensional regulariza-
tion in this particular case.

Once the graphs have been generated for each two-
point function, the next stage, after appending colour
and Lorentz indices, is to write each Green’s function in
terms of scalar integrals. The reason for this resides in
the techniques we use to evaluate the large set of inte-
grals. The path to the scalar integrals proceeds in several
steps. First, for the gluon and quark two-point functions
we have to project out the transverse and longitudinal
components in the former case, and in the latter case we
have to isolate the contributions proportional to k/ and 1,
see Eqs. (7) and (8). Of course, no projection is necessary
for the ghost two-point function.

While this converts tensor Feynman integrals with no
free Lorentz or spinor indices into scalar ones, the resul-
tant integrals still contain scalar products of loop and
external momenta. To two-loop order, all such scalar
products can be rewritten in terms of the squared length
of the propagator momenta, using for instance

k · p =
1

2

[
k2 + p2 − (k − p)2

]
(31)

for the massless case, where p is a loop momentum. When
a non-zero mass m is present one merely makes the extra
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replacement

(k − p)2 = [(k − p)2 +m2]−m2 (32)

for the appropriate propagator. This produces integrals
with no scalar products but rational polynomials of the
propagators. It is in this representation that each Feyn-
man integral of the large set of integrals appearing in the
two-point functions has to be written in order to imple-

ment the standard integration technique now widely used
in multi-loop computations. This is the Laporta algo-
rithm, [60], which is based on a systematic use of integra-
tion by parts. In particular, we used the Reduze imple-
mentation, [61, 62], written in C++ with GiNaC, [63],
as the core algebra foundation component. To organize
the tedious algebra associated with writing the integrals
contributing to a Green’s function, we have employed the
symbolic manipulation language Form, [64, 65].

→
p

ma

mb

→
p mc

ma

md

mb

me

FIG. 1. Graphical representations of I1ab(n1, n2) and Iabcde(n1, n2, n3, n4, n5) defined in (33) and (34).

The consequence is that the two-loop integrals can all
be written in terms of two basic integrals which are a

one-loop one and a two-loop one. The one loop one is

I1ab(n1, n2) =

∫
p

1

[p2 +m2
a]n1 [(p− k)2 +m2

b ]
n2
, (33)

where ni are integers both positive and negative. We use
ma and mb as generic masses which can both take values
from the set {0,m,M} of the three possible masses that
will concern us here. The two-loop core integral is

Iabcde(n1, n2, n3, n4, n5) =

∫
pq

1

[p2 +m2
a]n1 [q2 +m2

b ]
n2 [(p− k)2 +m2

c ]
n3 [(q − k)2 +m2

d]
n4 [(p− q)2 +m2

e]
n5

(34)

in the same notation as (33) which extends that used
in Ref. [37]. Moreover this syntax is the one we used
for defining the integral families of the Laporta algo-
rithm. The two integrals have the graphical represen-
tations given in Fig. 1. While (34) is the most general
massive two-loop self-energy structure, we will only be
concerned with two non-zero masses. To understand the
types of integrals that can actually appear in the evalua-
tion of the two-point functions, we provide two examples
for each of the gluon and quark two-point functions in
Fig. 2. The respective labels shown underneath each

graph indicate one of the set of integrals of (34) that
can arise. However for lines involving gluons some of the
propagators that emerge will be massless. So in addi-
tion to Iababb the structures I0babb, Iab0bb and I0b0bb will
be present. When 0 appears in the label it indicates a
massless propagator with the convention that m0 ≡ 0.
So for the other graphs Ibbbb0 will be present in the other
gluon self-energy diagram. For the two quark self-energy
graphs I0bbab, Iabb0b and I0bb0b will also occur in addi-
tion to Iabbab. For that labelled Iaabba there are seven
other contributions which are Iaabb0, Ia0bba, I0abba, I00bba,
I0abb0, Ia0bb0 and I00bb0.

While the actual non-zero masses in our computa- tions are m and M we use ma and mb for the inte-
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Iababb Ibbbba

Iabbab Iaabba

FIG. 2. Graphs in gluon and quark 2-point functions containing the labelled integrals as examples. Gluon propagators are
represented by curly lines while quarks are denoted by straight ones.

gral definitions since in the process to write each Green’s
function in terms of scalar integrals, other topologies
are present at two loops which are illustrated in Fig.
3. For example, each graph is contained in Iabcde
through Iabcde(0, n2, 0, n4, n5) for the sunset diagram and
Iabcde(n1, n2, 0, n4, n5) for the graph with four propa-
gators. The sunset integral Iaaaab(0, n2, 0, n4, n5) that
arises in the graph labelled Iabbab in Fig. 2 is equivalent
to Iababa(0, n2, 0, n4, n5) which occurs in that labelled by
Iababb of the same figure. One can see this by noting
that if the propagator is absent then the argument of the
function corresponding to it is zero. So the respective
mass label can be anything or 0, a or b in this case. In
addition, the sunset topology has a sixfold permutation
symmetry that ensures the equality. The outcome is that
the labels a and b on the general two loop integral in the
two mass case could correspond to either quark or gluon
mass or vice versa depending on the Green’s function and
ultimate topology. Therefore in applying the Laporta al-
gorithm we have built the system of integration by parts
equations for a generic set of mass configurations based
on arbitrary masses ma and mb. Therefore in (34) the
elements of the two loop integral family is given by al-
lowing each of the labels in the integral to be one of the
set {0,ma,mb}. While this would produce 35 core inte-
grals the actual number is fewer due to using rotational
symmetry such as

I0aaba(n1, n2, n3, n4, n5) = Ia0baa(n2, n1, n4, n3, n5)

= Ibaa0a(n4, n3, n2, n1, n5) (35)

and similar relations for others with related label pat-
terns. Equally if the exponent of a massive propaga-
tor is zero then we relabel the corresponding index on
Iabcde(n1, n2, n3, n4, n5) as 0 by default.

Dwelling on this notational aspect of the calculation is
important since it is in a language that can be coded for
the Reduze version of the Laporta algorithm. For in-
stance, we have used the labels in (33) and (34) to define

FIG. 3. Additional two loop topologies that arise in each
2-point function.

the integral families for the application of the Reduze
package. There are not 35 cases in total since we reduce
the number by using the separate left-right and up-down
symmetries of the two loop graph of Fig. 1. This sub-
stantially lowers the number of cases. An example of this
was given in (35). The result of applying the Laporta al-
gorithm, [60], is to reduce the evaluation of all the graphs
and integrals in the two-point functions to a set of master
integrals which is significantly smaller than the original
input set. However the coefficients of each master are
functions of the two masses, the external momentum and
the spacetime dimension d. The presence of two non-zero
masses means the set of master integrals is larger than
that for the single scale problem of Ref. [37]. Given this,
we follow the same approach in the sense we choose a
basis for the masters that tallies with the integrals of the
Tsil package [58] which we use extensively. It evaluates
two loop self-energy integrals with non-zero masses nu-
merically and allows us to determine the behaviour of the
Green’s function over all momenta. More specifically the
mapping to the master integrals given above (which are
the ones defined in the Tsil package) is

I1a0(1, 0) = Ama , I1ab(1, 1) = Bmamb (36)

at one loop. At two loops we have

Iab00c(1, 1, 0, 0, 1) = Imambmc
I0ab0c(0, 1, 1, 0, 1) = Smambmc
Iabc0d(1, 1, 1, 0, 1) = Umcmambmd
Iabcde(1, 1, 1, 1, 1) = Mmambmcmdme , (37)
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where the first mapping corresponds to the two loop vac-
uum bubble Imambmc = Smambmc(k

2 = 0). We also en-
counter

I0ab0c(0, 2, 1, 0, 1) = Tmambmc
Iabc0d(2, 1, 1, 0, 1) = Vmcmambmd , (38)

with Tmambmc = −∂Smambmc/∂m2
a and Vmcmambmd =

−∂Umcmambmd/∂m2
a but we note that these mass deriva-

tives can be expressed in terms of the other master in-
tegrals. The remaining masters are the product of one
loop masters since

Iab000(1, 1, 0, 0, 0) = I1a0(1, 0)I1b0(1, 0)

Iab000(1, 1, 1, 0, 0) = I1a0(1, 1)I1b0(1, 0)

Iab0c0(1, 1, 0, 1, 0) = I1a0(1, 0)I1bc(1, 1)

Iabcd0(1, 1, 1, 1, 0) = I1ac(1, 1)I1bd(1, 1) . (39)

We note that the electronic version of each of our two-
point functions can be found in Ref. [67].

C. Renormalization

Once written in terms of the master integrals, it is
fairly easy to isolate the UV divergences in each two-point
function (23), the renormalization of which proceeds
along the usual lines. First, one rescales the correspond-
ing function by the appropriate factor, ΓC → ZCΓC ,
with

Z∅ = Zc , Z⊥ = Z‖ = ZA , Zγ = Z1 = Zψ . (40)

Next, one expresses the bare parameters in terms of
renormalized ones, m2

B = Zm2m2 and λB = Zλλ. Fi-
nally, one writes each renormalization factor Z as Z =
1 + δZ with δZ a formal series in powers of the renor-
malized coupling λ, which one expands to the relevant
order. At one-loop order for instance, the renormalized
two-point functions read

ΓC(k) = ΓC0 (k2,m2,M) + λΓC1 (k2,m2,M)

+ R1l ΓC0 (k2,m2,M) , (41)

where R is the operator

R ≡ δZC + δZm2m2 ∂

∂m2
+ δZMM

∂

∂M
, (42)

and Rnl refers to its n-loop truncation, obtained by
truncating the counterterms accordingly. It should
be mentioned that, because the tree-level contribution
ΓC0 (k2,m2,M) = uCk2 + vCm2 +wCM is linear with re-
spect to any of its arguments (with uC , vC , wC equal to
0 or 1), the action of the operator R on ΓC0 (k2,m2,M)
writes, at any order,

uCδZCk
2 + vC(δZC + δZm2)m2 + wC(δZC + δZM )M .

(43)
This applies in particular to the term in the second line
of Eq. (41). Therefore, each counterterm appearing in
this term allows one to absorb the one-loop divergences
that are present in the first line of (41) and that are
proportional to k2, m2 and M . More precisely, writing
the one-loop counterterms δZ1l

X with X ∈ {C,m2,M} as

δZ1l
X = λ

zX,1
ε

, (44)

with zX,1 = zX,11 +εzX,10, the elimination of divergences
amounts to the proper adjustment of the factors zX,11.
We mention that these factors are universal numbers that
do not depend on the considered renormalization scheme.
We checked that the values we obtained agree with the
well known results, see for instance [68, 69]. In partic-
ular, we find that zψ,11 = 0, in line with the fact that
the one-loop corrections to Z(k) vanish in the limit of a
massless gluon, and, therefore, that they are UV finite
for a non-zero m. On the other hand, the factors zX,10

(which produce finite contributions to the one-loop coun-
terterms) have to do with the scheme specification. They
can depend on the scales Λ and µ as well as on the vari-
ous masses present in the problem and will enter directly
the anomalous dimensions and beta functions which we
discuss in Sec. IV.

Similarly, at two-loop order, one finds

ΓC(k) = ΓC0 (k2,m2,M) + λΓC1 (k2,m2,M) + λ2ΓC2 (k2,m2,M)

+ λ
(
δZ1l

λ +R1l
)

ΓC1 (k2,m2,M) +R2l ΓC0 (k2,m2,M) . (45)

The role of the first term in the second line of (45) is to
absorb the subdivergences hidden in the first line. We
mention that all the divergent parts of the counterterms
appearing in this term have been determined in the previ-
ous step, with the exception of the one in δZ1l

λ . However,
the latter can be easily determined from the fact that, af-
ter this divergent part is fixed, there should only remain

divergences that are proportional to k2, m2 and M , so
that they can be absorbed in the second term of (45)
which has again the form (43). The two-loop countert-
erms in this term can be written as

δZ2l
X = λ

zX,1
ε

+ λ2 zX,2
ε2

, (46)

where zX,1 has already been determined at one-loop or-
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der and zX,2 = zX,22 + εzX,21 + ε2zX,20. Again, the fac-
tors zX,22 are pure constants that do not depend on the
renormalization scheme, and we have checked that the
values we obtained match known results [68, 69]. The
factors zX,21, even though they have also to do with
divergences, are not universal and are impacted by the
choice of scheme at one-loop order. Obviously, the factor
zX,20 is also impacted by the choice of scheme. It will
enter the anomalous dimensions and beta functions at
two-loop order, as we show in Sec. IV.

Before closing this section, let us make an important
remark. Of course, the main purpose of eliminating the
divergences is to obtain finite expressions for the two-
point functions in the continuum limit ε → 0. In this
respect, one should not forget certain terms that sur-
vive in this limit from cancellations of the form ε × 1/ε.
One important such contributions arises from ε2 correc-
tions to the factor zX,1 in (46). In principle, when im-
plementing a given renormalization scheme at one-loop
order, the factor zX,1 receives such a contribution and
in fact any power of ε. Of course, when it comes to
evaluating the one-loop order two-point functions in the
continuum limit, these higher powers of ε are irrelevant.
However, the ε2 contribution to zX,1 is not irrelevant
in the first term of the second line of (45) because it
produces a term of order ε0 that persists in the con-
tinuum limit. In this term, one should take instead
zX,1 = zX,11 + εzX,10 + ε2zX,1(−1) where zX,1(−1) is de-
termined by implementing the renormalization scheme
at one-loop order and for a finite value of ε. For simi-
lar reasons, the factors zX,1(−1) also enter the anomalous
dimension and beta functions at two-loop order, as we
show in Sec. IV.

D. Cross-checks

As a result of the reduction of the two-loop two-point
functions, one obtains expressions in terms of master in-
tegrals multiplied by rational functions of k2, m2 andM2.
Since these expressions are rather lengthy, it is preferable
to test them as much as possible before any serious prac-
tical application. In this section, we review the various
tests that we used in order to cross-check our expressions.

We mention that all these tests can be performed prior
to renormalization. On the other hand, the renormaliza-
tion of the two-loop expressions represents a test in it-
self since the cancellation of subdivergences by the coun-
terterms determined at one-loop occurs only if the di-
agrams are computed and combined correctly in order
to generate the correct subdivergences, as we described
in the previous section. Another test related to renor-
malization that we considered was to retrieve the cor-
rect renormalization factors in the minimal subtraction
scheme. Although this is not the scheme we use even-
tually for our comparison to lattice data, it is useful in
order to understand certain features in a simpler setting
and we provide a self-contained discussion in App. C.

Let us just mention here that, in this scheme, one has
zX,10 = zX,1(−1) = zX,20 = 0 by definition. We checked
that the values obtained for zX,11, zX,22 and zX,21 corre-
spond to the well known results of Ref. [68, 69].

We now describe our other tests in detail.

1. Quenched limit

In Ref. [37], the ghost and gluon two-point functions
were studied in the quenched limit. We have checked
that our unquenched expressions for these functions lead
to the expressions of that reference in the limit Nf → 0.

2. Ultraviolet behaviour

Based on the superficial degree of divergence of the
diagrams contributing to each of the two-point functions,
we expect the following large momentum behaviour to
hold true from Weinberg’s theorem, [70],

lim
k→∞

Γ(k)

|k|3
= 0 , lim

k→∞

Γ⊥(k)

|k|3
= 0 , (47)

lim
k→∞

Γγ(k)

|k|
= 0 , and lim

k→∞

Γ1(k)

|k|
= 0 . (48)

One difficulty in checking this behavior is that they are
not obeyed by all the terms that make the reduced ex-
pression of each two-point function. Rather, they emerge
after certain cancellations occur between these terms.
Since it is in general difficult to check these cancellations
numerically, we resorted to an analytical check using UV
asymptotic expansions of the various master integrals,
which were derived through our own implementation of
the algorithm described in Ref. [71]. An earlier version
of this algorithm was already used in Ref. [37]. For the
present investigation, we had to extend it to the case
where two mass scales are present in the master integrals.
At leading order, we obtain the expressions:

Γ(k)

k2
= 1− λ

[
1 +

3

4
ln

(
µ2

k2

)]

−λ2

[
1751

192
− 15

16
ζ(3)− 95

48

Nf
N

+

(
235

48
− 13

12

Nf
N

)
ln

(
µ2

k2

)
+

(
35

32
− 1

4

Nf
N

)
ln

(
µ2

k2

)2
]

+O
(
m2

k2
,
M2

k2

)
, (49)
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Γ⊥(k)

k2
= 1− λ

[
97

36
− 10

9

Nf
N

+

(
13

6
− 2

3

Nf
N

)
ln

(
µ2

k2

)]

−λ2

[
2381

96
− 59

8

Nf
N
− 55

6

CF
N

Nf
N

− ζ(3)

(
3 + 4

Nf
N
− 8

CF
N

Nf
N

)
+

(
137

12
− 25

6

Nf
N
− 2

CF
N

Nf
N

)
ln

(
µ2

k2

)
+

(
13

8
− 1

2

Nf
N

)
ln

(
µ2

k2

)2
]

+O
(
m2

k2
,
M2

k2

)
, (50)

Γγ(k) = 1 + λ2CF
N

[
41

4
− 3ζ(3)− 5

8

CF
N
− 7

4

Nf
N

+

(
25

4
− 3

2

CF
N
− Nf

N

)
ln

(
µ2

k2

)]

+O
(
m2

k2
,
M2

k2

)
, (51)

and

Γ1(k)

M
= 1 + λ

CF
N

[
4 + 3 ln

(
µ2

k2

)]

+λ2CF
N

[
1531

24
+ 13

CF
N
− 26

3

Nf
N

− ζ(3)

(
21− 12

CF
N

)
+

(
445

12
+ 12

CF
N
− 16

3

Nf
N

)
ln

(
µ2

k2

)
+

(
11

2
+

9

2

CF
N
− Nf

N

)
ln

(
µ2

k2

)2
]

+O
(
m2

k2
,
M2

k2

)
, (52)

which indeed verify (47) and (48). In the equations
above, CF = (N2 − 1)/(2N) denotes the fundamental
SU(N) Casimir. We have also used that the adjoint
Casimir is CA = N . For the sake of simplicity, we pro-
vide the asymptotic behaviors as obtained in the minimal
subtraction scheme. We could easily derive them in a
generic renormalization scheme, in which case the corre-
sponding expressions depend explicitly on zX,10, zX,1(−1)

and zX,20. Let us also mention that the absence of terms
of order λ in the leading order contribution of Γγ(k) re-
lates again to the fact that these terms cancel in the limit
of a vanishing gluon mass.

We mention that Weinberg’s theorem [70] implies also
that limk→∞ Γ‖(k)/|k|3 = 0, but in fact, from the
Slavnov-Taylor identity (18), we have a stronger con-
straint, namely limk→∞ Γ‖(k)/|k| = 0. By plugging (23)
into (18) and expanding up to the relevant order, we find

m2
BΓ1 + k2Γ

‖
1 = 0 (53)

and

m2
BΓ2 + k2Γ

‖
2 + Γ1Γ

‖
1 = 0 . (54)

We have checked that these identities hold true, thus con-
firming the Slavnov-Taylor identity (18) at two-loop or-
der and the corresponding UV suppression of Γ‖(k) with
respect to the näıve counting.

3. Infrared behaviour

In the opposite momentum range, we expect the two-
point functions ΓC(k) to be regular. This is because,
these functions are built out of Euclidean Feynman inte-
grals and there are always enough massive propagators
to regularize the k → 0 limit. As we have already dis-
cussed, in the case of the ghost two-point function, Γ(k)
is not only regular in this limit, but vanishes at least as
k2.

Again, these expectations might be difficult to check
numerically because they typically emerge as the result
of cancellations between various terms in the reduced ex-
pressions for ΓC(k), which themselves do not behave ac-
cordingly. We then resorted to an analytical check that
requires the expansion of the various master integrals in
powers of k2.

We first checked that the various master integrals
that produce the wrongly behaving terms always involve
enough massive propagators in such a way that the rout-
ing of k inside the integral can always be chosen to
avoid massless propagators. In this situation, we can
employ the strategy of Ref. [72] that leads to a regu-
lar expansion in powers of k2 with coefficients given by
the momentum independent master integrals Ama and
Imambmc ≡ Smambmc(k2 = 0) and their mass derivatives.
The latter mass derivatives can always be conveniently
re-expressed in terms of Ama and Imambmc using

∂

∂m2
a

Ama = (d/2− 1)
Ama
m2
a

(55)

that follows from dimensional analysis and

∆mambmc

∂

∂m2
c

Imambmc

= (d− 3)(m2
a +m2

b −m2
c)Imambmc

+ (d− 2)

[
AmaAmb +

m2
a −m2

b −m2
c

2m2
c

AmaAmc

+
m2
b −m2

a −m2
c

2m2
c

AmbAmc

]
, (56)
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with

∆mambmc = m4
a +m4

b +m4
c

− 2 (m2
am

2
b +m2

bm
2
c +m2

cm
2
a) , (57)

that follows from integration by parts techniques [72, 73].
In this way, the coefficients of the Taylor expansion at
small k are functions of these two master integrals. Using
these expansions, we could check that the various two-
point functions behave as expected.

Let us also mention that the regularity of Γ‖(k) in the
limit k → 0 can alternatively be seen as a consequence of
the Slavnov-Taylor identity (18) and the fact that Γ(k)
vanishes at least as k2, or, equivalently, the fact that Γ(k)
vanishes at least as k2 can be seen as a consequence of
the Slavnov-Taylor identity and the regularity of Γ‖(k).

4. Spurious singularities

The limit k → 0 is not the only one where individual
terms in the reduced expression for ΓC(k) behave in a
singular manner. In the case of the ghost and gluon two-
point functions, we find that certain terms are singular
as k2 approaches 2m2 or 2M2. Of course, the two-point
function in these limits should be regular, thus providing
a test for the reduced expressions. We have checked that
this is indeed the case since the residue of 1/(k2 − 2x2)
with x = m or x = M vanishes thanks to the following
identity between master integrals (kx ≡

√
2x)

2(d− 3)x2
[
6(d− 4)x4Mxxxx0(k2

x)− (3d− 8)Sxx0(k2
x)
]

=
[
(d− 2)Ax−2(d− 3)x2Bxx(k2

x)
]2
−8(d− 3)2x4B2

xx(k2
x) ,

(58)

that one can derive using the Laporta algorithm. When
expanded in ε, it is easily shown that this combination
is finite and reproduces the combination of finite master

integrals in Eq. (23) of Ref. [37] that was also found to
vanish using the results in Ref. [58].

In addition, all two-point functions contain terms that
are singular as m approches 2M . Since the Euclidean
two-point functions have no reason to be singular in
this limit, some cancellations need to occur among these
terms, providing a further check on the reduced expres-
sions. For instance, in the case of Γ1(k), we found a
potentially singular term at m = 2M , the residue of
1/(m− 2M) being proportional to

(d− 2)(2AM −A2M )BM(2M)(k)

+ 4M2
(
TM(2M)(2M)(k)− 2T(2M)(2M)M (k)

− (d− 3)U(2M)M(2M)M (k)
)
. (59)

Using the Laporta algorithm, we verified that this com-
bination of master integrals indeed vanishes. In partic-
ular we built a different Reduze database to the two
mass scale one described earlier. Instead a single mass
scale database was constructed where we set ma = M
and mb = 2M at the outset. These cancellations played
a role in other two-point functions. In the case of the
gluon two-point function, we needed several other van-
ishing combinations of master integrals. These are

(d− 2)(2AM −A2M )BMM (k)

− 4M2
(
TM(2M)M (k)

− 2T(2M)MM (k)

− (d− 3)UMM(2M)M (k)
)
, (60)

(d− 2)AMB(2M)(2M)

+ 2M2
(
TM(2M)M + (d− 3)U(2M)(2M)MM

)
,(61)

and finally

(d− 3)
[
(d− 4)k2x2(k2 + 4x2)2Mxxxx0 − 2(3d− 8)(k2 + 4x2)Sxx0

]
=
[
(d− 2)2A2

x − 2(d− 2)(d− 3)k2AxBxx − 2(d− 3)2k2x2B2
xx

]
(k2 + 4x2)

− 4(d− 3)
[
3p2Txx0 + 4(d− 3)(k2 + x2)U0(2x)xx − 2(d− 2)(k2 + x2)AxB(2x)x

]
(k2 − 2x2) (62)

that we also substantiated using the Laporta algorithm. This later cancellation boils down to (58) when k2 = 2x2.

5. Zero mass limit

This is more an internal cross-check since we computed
independently the propagators in the case of vanishing
gluon and quark mass (M = m = 0) with the goal of
recovering them from the zero mass limit of the massive
propagators. In order to compute this limit it is useful to

bare in mind that any of the master integrals presented
above can be written as

(µ2ε)LF(k2,m2,M2) =(µ2ε)L(k2)D

×F(1,m2/k2,M2/k2) ,
(63)

where L is the number of loops and D the mass dimen-
sion of the integral (leaving aside the powers of µ that
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multiply it). As a result of this simple dimensional anal-
ysis it is clear that the low mass expansion (m� k and
M � k simultaneously) is equivalent to the large mo-
mentum expansion. Consequently, the zero quark and
gluon mass limits for Γ(k), Γ⊥(k), Γγ(k) are nothing but
the leading terms in the expansions (49)-(51). We have
checked that these expressions coincide with the results
of a direct calculation with massless fields (in the mini-
mal subtraction scheme). Of course, in this limit, Γ‖(k)
and Γ1(k) are just zero.

IV. RENORMALIZATION GROUP

In principle, in order to compare the renormalized two-
point functions computed within a given approach to
those obtained within lattice simulations, it is enough to
evaluate the renormalized two-point functions at a given
renormalization scale, that is ΓC(k;µ0). Indeed, the mo-
mentum dependence of renormalized two-point functions
as computed within different approaches should differ
only to within an overall constant which is easily ad-
justed.

In practice, however, a direct perturbative evaluation
of ΓC(k;µ0), such as the one described in the previous
section, is not accurate in the case of a large separation
of scales between k and µ0. Indeed, in this case, large
logarithms ln k/µ0 effectively modify the expansion pa-
rameter λ into λ ln k/µ0 which has no reason to be small,
even when λ is small. As is well known, the way to cope
with these large logarithms is to use the renormalization
group (RG).

The renormalized functions ΓC(k;µ) for different val-
ues of µ are related by the fact that they arise from the
same bare function ΓC(k). The differential equation gov-
erning the evolution of ΓC(k;µ) with µ is the so-called
Callan-Szymanzik equation. In its integrated form it can
be written as

ΓC(k;m2
0,M0, λ0, µ0)

= z−1
C (µ, µ0) ΓC(k;m2(µ),M(µ), λ(µ), µ) (64)

and relates a given n-point function at the fixed scale
µ0 to the same n-point function at the running scale µ.
The benefit of Eq. (64) is that it allows one to evaluate
ΓC(k;µ0) while maintaining perturbative control at any
scale. This is achieved by evaluating the right-hand side
of Eq. (64) with the choice µ = k that prevents the ap-
pearance of any large logarithms. This requires in turn
the evaluation of the rescaling factor zC(µ, µ0) as well as
the running m2(µ), M(µ) and λ(µ) of the various param-
eters.

The rescaling factor is given by

zC(µ, µ0) = exp

(∫ µ

µ0

dν γC(ν)

)
, (65)

where γC is the so-called anomalous dimension related to

the corresponding renormalization factor ZC as

γC ≡
d lnZC
d lnµ

. (66)

The running of the parameters is given by the so-called
beta functions

βm2 ≡ dm2

d lnµ
, βM ≡

dM

d lnµ
, βg2 ≡ dg2

d lnµ
. (67)

It should be noted that the derivatives d/d lnµ in
Eqs. (66)-(67) are to be taken for fixed bare masses and
dimensionful bare coupling Λ2εZg2g2. These constraints
imply6

0 = γm2 +
βm2

m2
= γM +

βM
M

= γg2 +
βg2

g2
, (68)

where

γm2 ≡ d lnZm2

d lnµ
, γM ≡

d lnZM
d lnµ

and γg2 ≡
d lnZg2

d lnµ

(69)

are the anomalous dimension associated with the param-
eters.

Thus, in a sense, the renormalization group allows us
to evaluate ΓC(k;µ0) by using perturbation theory indi-
rectly: rather than using perturbation theory to evaluate
ΓC(k;µ0), one uses perturbation theory to determine all
the anomalous dimensions

γX ≡
d lnZX
d lnµ

, (70)

(with X ∈ {C,m2,M, g2}) from which one can recon-
struct the running of the parameters and the rescaling
factors that enter (64). As we discuss in App. B, the
anomalous dimensions do not have large logarithms and
are thus amenable to perturbative calculations.7 In the
next section, we explain how the two-loop anomalous di-
mensions are evaluated.

A. Two-loop anomalous dimensions and beta
functions in the IR-safe scheme

In a generic renormalization scheme, the renormaliza-
tion conditions allow us to access the various renormal-
ization factors ZX with X ∈

{
A, c, ψ,m2,M, λ

}
from

which one can evaluate the corresponding anomalous di-
mensions γX . More precisely, from

ZX = 1 + λ
zX,1
ε

+ λ2 zX,2
ε

, (71)

6 These equations are easily obtained by requiring that the loga-
rithms of Zm2m2, ZMM and Λ2εZg2g2 do not depend on lnµ.
Here we are taking a µ-independent Λ. In App. B, we discuss
the case of a µ-dependent Λ, including the conventional choice
of Λ = µ.

7 This true, of course, provided λ(µ) remains moderate enough.
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with zX,1 = zX,11 + zX,10ε+ zX,1(−1) and zX,2 = zX,22 +

zX,21ε + zX,20ε
2 where the zX,ab are functions of Λ, µ,

m2 and M , it is possible to derive the following generic
expression for the anomalous dimension:

γX = g2 ∂zX,10

∂ lnµ
+ g4

(
∂zX,20

∂ lnµ
−
(
∂zX,10

∂ lnµ
+
∂zg2,10

∂ lnµ

)
zX,10−

(
∂zX,1(−1)

∂ lnµ
+
∂zg2,1(−1)

∂ lnµ

)
zX,11 −

∑
i

∂zm2
i ,10

∂ lnµ

∂zX,10

∂ lnm2
i

)
,

(72)

where
∑
i sums over all possible masses in the problem,

here mi = m and mi = M . See App. B for details. More-
over, the finiteness of the anomalous dimensions requires
the following constraints to hold true

0 =
∂zX,11

∂ lnµ
=
∂zX,22

∂ lnµ

=
∂

∂ lnµ

(
zX,21 − (zX,10 + zg2,10)zX,11

)
. (73)

The first two are trivial since, as we have already seen
zX,11 and zX,22 are pure constants. The last constraint
is less trivial and we have checked that it holds true in
the particular renormalization scheme considered here. It
should of course hold true in any other renormalization
scheme. In particular, we show in App. C that this con-
straint is nothing but a generalization of the constraint
zX,22 = zX,11(zX,11 + zg2,11)/2 that arises as a conse-
quence of the finiteness of the anomalous dimensions
within the minimal subtraction renormalization scheme.

We mention also that, in the case where zX,11 6= 0, the
above constraints can be used to simplify the formula
(72) by rewriting the second term within the round

bracket by − zX,10

zX,11

∂zX,21

∂ lnµ . When zX,11 = 0, this replace-

ment cannot be made but the formula simplifies as well
because the third term within the bracket vanishes. In
the present model, this occurs for the quark anomalous
dimension since zψ,11 = 0.

As we have already mentioned above, in this work we
consider the so-called IR-safe renormalization scheme de-
fined by the conditions (19)-(21). In addition to the
benefits of this choice which were already reviewed in
Sec. II C, we note that the use of (19) allows us to bypass
the calculation of the anomalous dimensions for m2 and
λ since they are directly given in terms of the anomalous
dimensions for A and c via

γλ = −(γA + 2γc) , γm2 = −(γA + γc) , (74)

leading to the beta functions

βλ
λ

= γA + 2γc ,
βm2

m2
= γA + γc . (75)

Moreover, one can formally solve this system for γA and
γc in terms of linear combinations of βm2/m2 and βλ/λ

giving

γA =
βλ
λ
− 2

βm2

m2
, γc =

βm2

m2
− βλ

λ
. (76)

Then, one can explicitly integrate the rescaling factors
zA(µ, µ0) and zc(µ, µ0) in terms of the running parame-
ters m2(µ) and λ(µ)

zA(µ, µ0) =
m4

0

λ0

λ(µ)

m4(µ)
, zc(µ, µ0) =

λ0

m2
0

m2(µ)

λ(µ)
. (77)

This, combined with the renormalization conditions (20),
provides explicit expressions for the gluon and ghost
dressing functions in terms of the running parameters

D(p;µ0) =
λ0

m4
0

m4(p)

λ(p)

p2

p2 +m2(p)
, (78)

F (p;µ0) =
m2

0

λ0

λ(p)

m2(p)
. (79)

For the quark propagator, we need to determine the
quark mass anomalous dimension in order to extract
the corresponding beta function, as well as the quark
anomalous dimension in order to obtain the correspond-
ing rescaling factor. However, with the parametrization
(15), the rescaling factor applies only to Z(k), and be-
cause of the renormalization condition, we have

Z(k;µ0) = exp

(
−
∫ k

µ0

dν γψ(ν)

)
. (80)

As already mentioned, the quark mass function M(k)
identifies with the running mass in the chosen scheme.

B. Asymptotic behaviors

In Apps. D and E, the interested reader can find the
UV and IR asymptotic expansion of the various two-loop
anomalous dimensions at next-to-leading order, which we
used in order to control the RG flow in these regimes.

With the RG flow at our disposal, we can now evaluate
the various two-point functions and compare to available
lattice data.
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V. RESULTS

In this section, we compare the unquenched ghost,
gluon and quark dressing functions as well as the quark
mass function, as computed within the CF model at two-
loop order, to existing SU(3) four dimensional lattice
data in the case of two degenerate quark flavors. Our
results depend on three parameters defined at the ini-
tial scale µ0 of the RG flow: the renormalized coupling
λ0 = λ(µ0), the renormalized gluon mass m0 = m(µ0)
and the renormalized quark mass M0 = M(µ0). In addi-
tion to these three parameters, we have adjustable nor-
malization factors NX for X ∈ {F,D,Z}. There is
not such an adjustable normalization for the quark mass
function since the latter is a scheme independent quan-
tity.

In order to find the best fit to the lattice data, the
parameters and the normalizations need to be chosen so
as to minimize a joint error function χ combining the
individual errors χX , with X ∈ {F,D,Z,M}:

χ2 ≡ 1

4

[
χ2
F + χ2

D + χ2
Z + χ2

M

]
. (81)

The individual error for X ∈ {F,D,Z} is taken to be

χ2
X =

1

N

∑
i

(
NX

Xth.(ki)

Xlt.(ki)
− 1

)2

, (82)

which simply averages, over the available data points,
the relative error of the appropriately rescaled theoretical
values Xth.(ki) to the data Xlt.(ki). This choice is jus-
tified because the data for X ∈ {F,D,Z} never become
small over the available range; see below. In contrast,
when X = M , the data decrease rapidly as one increases
k and it makes more sense to consider an average of rel-
ative errors, in the range where the data are not small,
and of appropriately normalized absolute errors, in the
range where the data become small. In this case, we shall
then employ the error function

χ2
M =

1

N

[
i=∗∑
i=1

(
Mth.(ki)

Mlt.(ki)
− 1

)2

+

i=N∑
i=∗+1

(
Mth.(ki)

Mlt.(k∗)
− Mlt.(ki)

Mlt.(k∗)

)2
]
, (83)

where k∗ is chosen such that Mlt.(k∗) is the point from
the lattice data closest to 0.1 GeV.

Because the error function (81) depends quadratically
on the normalizations NX , the latter can be determined
explicitly in terms of the lattice and theoretical data.
One finds

NX =

∑
iXth.(ki)/Xlt.(ki)∑
iX

2
th.(ki)/X

2
lt.(ki)

. (84)

The fitting problem reduces then to the minimization of
χ2 with respect to the three remaining parameters, λ0,
m0 and M0.

A. Far from the chiral limit

We first compare our two-loop results with lattice
data simulated using a pion mass Mπ = 426 MeV, see
Refs. [52, 74], that is relatively far from the chiral limit.
The set of parameters that minimizes χ and the corre-
sponding errors are shown in Tab. I. The corresponding
plots for the gluon and ghost dressing functions are shown
in Fig. 4, whereas those for the quark mass function and
quark dressing function are shown in Fig. 5. It is also
instructive to display the individual errors as obtained
from this global fit. This is shown in Tab. II.
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FIG. 4. Comparison of the one- and two-loop CF results for
the gluon (top) and ghost (bottom) dressing functions to the
lattice data of Ref. [52] using Mπ = 426 MeV. The parameters
are determined from a global fit using the four functions D,
F , Z and M and the lattice data of Refs. [52, 74].

order λ0 m0 M0 χ(%)

1-loop 0.39 430 140 13.0

2-loop 0.32 390 160 5.6

TABLE I. Parameters that minimize χ comparing with lattice
data for Mπ = 426 MeV. The parameters m0 and M0 are
given in MeV and µ0 is taken equal to 1 GeV.
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FIG. 5. Comparison of the one- and two-loop CF results for
the quark dressing function (top) and quark mass function
(bottom) to the lattice data of Ref. [74] using Mπ = 426 MeV.
The parameters are determined from a global fit using the four
functions D, F , Z and M and the lattice data of Refs. [52, 74].

order χF (%) χD(%) χZ(%) χM (%)

1-loop 3.3 5.3 19.3 16.1

2-loop 2.4 3.7 5.3 9.0

TABLE II. Individual errors as obtained from the global fit
of Tab. I.

We observe that the global agreement with lattice data
greatly improves once two-loop corrections are included.
Moreover, two-loop contributions appear to be small in
the ghost-gluon sector, as expected [42]. This suggests
that perturbation theory is well controlled in the gauge
sector of the CF model. On the other hand, the improve-
ment on the quark dressing function is quite remarkable,
given the inconsistent results obtained at one-loop for
this quantity [1]. As already mentioned earlier, this is
an indication that the quark dressing function is well de-
scribed by perturbation theory within the CF model, the
mismatch of the one-loop results just meaning that one
needs to go at least up to two-loop order to start having
a good account of the function. In fact the error χZ is

comparable to χF and χD, the plot in Fig. 5 being here
a little bit misleading since it zooms in on a region close
to Z = 1.8 This confirms earlier expectations based on
estimates of the two-loop corrections [1].

The largest source of error comes clearly from the
quark mass function although we note that the error val-
ues obtained for χM remain quite reasonable and still
improve when including the two-loop corrections. As al-
ready mentioned above, this can be attributed to the
fact that the lattice data are relatively far from the chiral
limit and non-perturbative considerations are not needed
to generate the corresponding quark mass. In fact, if we
exclude the quark mass function from the fit (by using
the error function χ̃ defined below in (85)), the corre-
sponding errors for F , D and Z at two-loop order remain
essentially the same, with a clear improvement of Z, see
Tab. III.

order χF (%) χD(%) χZ(%)

1-loop 5.5 3.9 16.1

2-loop 2.5 3.7 3.0

TABLE III. Individual errors as obtained from a fit that ex-
cludes the function M .

We expect of course the ability of perturbation the-
ory to reproduce the quark mass function to decrease as
we try to fit lattice data closer to the chiral limit. We
investigate this question in the next section.

B. Closer to the chiral limit

The deterioration of the quality of perturbation theory
with regard to the quark mass function is related to the
fact that perturbation theory is not capable of capturing
the spontaneous breaking of chiral symmetry. As already
discussed in Sec. II D, within the CF model, this can be
consistently cured by employing a double expansion in
powers of the pure gauge coupling and of the inverse
number of colors. We shall not consider this strategy
here, however, since our aim is to remain at a purely
perturbative level. Instead, we shall investigate to which
extent the dressing functions D, F and Z remain under
perturbative control despite the increasing tension in the
quark mass function as we approach the chiral limit. To
this purpose, we consider global fits that include or ex-
clude the quark mass function and which are thus based

8 In a certain sense, the leading order perturbative contribution to
the quark dressing function is the two-loop contribution. Based
on this remark, it would be even more consistent to fit the lattice
propagators using the two-loop expressions for F , D and M and
the three-loop expressions for Z. A complete three-loop evalua-
tion of Z is a difficult task but one could imagine doing a rough
estimate similar to the estimate made in Ref. [1] for the two-loop
corrections.
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either on the error function (81) or on the reduced error
function

χ̃2 =
1

3

[
χ2
F + χ2

D + χ2
Z

]
. (85)

In this latter case, we can consider the parameter M0

either as a free parameter that needs to be varied along
with the other parameters λ0 and m0, or fix it such that
the quark mass function agrees with the lattice data at
some momentum scale in the UV. For this analysis, we
shall use the most chiral data available to date [52, 74]
that correspond to a pion mass of Mπ = 150 MeV.
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FIG. 6. Comparison of the one- and two-loop CF results for
the gluon (top) and ghost (bottom) dressing functions to the
lattice data of Ref. [52] using Mπ = 150 MeV. The parameters
are determined from a global fit using the four functions D,
F , Z and M and the lattice data of Refs. [52, 74].

The parameters of the global fit including all functions
are given in Tab. IV together with the global error. The
individual errors are displayed in Tab. V. The corre-
sponding plots are shown in Figs. 6 and 7.

As expected, the perturbative description of the
quark mass function deteriorates, although we note
that there is still an improvement when including the
two-loop corrections and the two-loop result captures
a substantial part of the quark mass function for the
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FIG. 7. Comparison of the one- and two-loop CF results for
the quark dressing function (top) and quark mass function
(bottom) to the lattice data of Ref. [74] using Mπ = 150
MeV. The parameters are determined from a global fit using
the four functions D, F , Z and M and the lattice data of
Refs. [52, 74].

order λ0 m0 M0 χ(%)

1-loop 0.41 400 60 17.6

2-loop 0.36 360 50 7.5

TABLE IV. Parameters that minimize χ comparing with lat-
tice data for Mπ = 150 MeV. The parameters m0 and M0 are
given in MeV and µ0 is taken equal to 1 GeV.

considered value of Mπ, specially in the infrared. This
deterioration in the fit of the quark mass slightly impacts
the errors on the other functions (specially the ghost and
quark dressing functions in the infrared) which remain,
however, well described by the perturbative expressions.

When excluding the quark mass function from the
global fit, a clear improvement on the ghost, gluon and
even quark dressing functions is visible both on the plots
given in Figs. 8 and on the error values, see Tab. VI.
This confirms that these quantities are well described by
perturbation theory within the CF model, even for close
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order χF (%) χD(%) χZ(%) χM (%)

1-loop 6.3 6.1 20.6 27.3

2-loop 5.6 5.1 1.9 12.7

TABLE V. Individual errors as obtained from the global fit
of Tab. IV.

to physical values of the pion mass. In fact, the errors
are surprisingly smaller than in the case of Mπ = 426
MeV, see Tab. III. The parameters which minimize
the reduced joint error (85) remain similar to the ones
computed before, and the joint error is less sensitive to
the value of M0 value than it is to the values of the other
parameters, as can be seen in Fig. 9. We note finally
that the quality of the fits at Mπ = 150 MeV seems to
be even better than that obtained for Mπ = 426 MeV. A
closer look reveals that, when the mass is included in the
fit, the improvement only truly occurs for the function
Z, the other functions F , D and M presenting larger
errors than in the case Mπ = 426 MeV. The curve for M
does quite well in reproducing the IR data, but presents
an offset in the UV tail which impacts our estimation of
the error. As the mass function is excluded from the fit,
the quality of the fit for Z remains quite good (and even
improves further) and the errors on the functions F and
D become comparable to those obtained for Mπ = 426
MeV. This confirms that the only quantity that cannot
be accessed within a strict perturbative approach within
the CF model is the mass function M , in the case where
the quarks are too light, although we stress once more
that the IR is quite well reproduced, even for physical
quark masses, if one allows for a small offset in the UV.

order χF (%) χD(%) χZ(%)

1-loop 4.9 4.0 14.3

2-loop 2.4 3.3 1.3

TABLE VI. Individual errors as obtained from a global fit
that excludes the quark mass function, to be compared to the
individual errors as given in Tab. V.

Rather than considering M0 as a free parameter, one
can also adjust it such that the quark mass function
agrees with the lattice data at some momentum in the
UV, i.e. 2.94 GeV, corresponding to a quark mass of 6.6
MeV. Since in the present scheme, the quark mass func-
tion and the renormalized mass agree with each other,
this adjustment is easily achieved by choosing the ini-
tial condition of the RG flow at µ0 = 2.94 GeV, with
M0 = 6.6 MeV, leaving only two parameters, λ0 and m0,
to minimize χ̃.

Enforcing the quark mass in the UV to the lattice
value introduces of course some tension that deteriorates
(mainly in the infrared) the quality of our results for the
various dressing functions (not shown). However, our
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FIG. 8. Comparison of the one- and two-loop CF results
for the gluon (top) and ghost (middle) and quark (bottom)
dressing functions to the lattice data of Ref. [52] using Mπ =
150 MeV. The parameters are determined from a global fit
using the three functions D, F , Z and the lattice data of
Refs. [52, 74].

purpose here is to evaluate the role of two-loop perturba-
tive corrections in generating the quark mass function in
the infrared for a small (but non-zero) value of Mπ. Our
result for the quark mass function is shown in Fig. 10.
We find that, for Mπ = 150 MeV, the constituent quark
mass is only reproduced to 10% accuracy at one-loop
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FIG. 9. Level curves for the reduced error function χ̃ in pa-
rameter space. The top plot shows the error regions for a fixed
value of the gluon mass, m0 = 380 MeV, while for the bottom
plot we fixed the coupling in such a way that λ0 = 0.32.

order while we can obtain 50% of its value by includ-
ing two-loop contributions. As already mentioned above,
the full dressing function can be generated using the RI
expansion but it is already interesting to note that two-
loop perturbative corrections are conspiring in the right
direction.
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FIG. 10. Comparison of the one- and two-loop CF results for
the quark mass function to the lattice data of Ref. [74] using
Mπ = 150 MeV. The parameters λ0 and m0 are determined
from a global fit using the four functions D, F , Z and the
lattice data of Refs. [52, 74]. The parameter M0 is chosen to
coincide with the lattice data at the scale µ0 = 2.94 GeV.

C. A remark on the used data for Z

We have used two kinds of lattice data for the quark
dressing function Z, as described in Ref. [74]. In the first
set, the same lattice action is used to describe the whole
range of momenta, while in the second set an improved
action has been used for momenta larger than ∼ 2 GeV in
the case Mπ = 426 MeV, and larger than ∼ 1 GeV in the
case Mπ = 150 MeV. While we used the improved data
to produce the plots shown above, strangely enough, our
fits for Z are systematically better when using the non-
improved data set. We note, however, that the differences
are rather small and can probably not be resolved at the
present level of accuracy.

VI. CONCLUSIONS

In this work, we have performed an exhaustive investi-
gation of all two-point correlation functions of the Curci-
Ferrari model in the presence of degenerate fundamental
quark flavors, using the IR-safe renormalization scheme
that was put forward in Ref. [25]. We were able to evalu-
ate all the two-loop graphs using a variety of techniques.
Moreover we were able to construct smooth plots of the
form factors over all energies that incorporated the run-
ning of all parameters. This was necessary to compare
with specific lattice data sets which depended on different
choices of the pion mass.

By comparing our results to available lattice data for
QCD two-point functions in the case of two degenerate
flavors, we find that the ghost and gluon dressing func-
tions are well captured by the perturbative expansion
within the CF model both far from the chiral limit and
closer to the physical case. This was already known from
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one-loop evaluations within this model [1] and two-loop
corrections represent tiny corrections to these already ac-
curate results.

The impact of two-loop corrections by contrast is more
important in the quark sector where they drastically
correct for the qualitatively inconsistent quark dressing
function obtained at one-loop order. Our conclusion is
that the two-loop contribution represents the true lead-
ing order contribution to the quark dressing function and
provides as accurate results as for the other dressing func-
tions.

As for the quark mass function, it is well known that
in principle it cannot be described within a strict pertur-
bative approach, especially close to the chiral limit. We
find, however, that even in the case of an almost physical
value for the pion mass, the two-loop corrections provide
a non-negligible part of the quark mass function and that
the mismatch has little impact on the accuracy of the
various dressing functions.

In a future work, we plan to extend the analysis to
the quark-gluon vertex in those particular configurations
where one of the external momenta vanishes, similar to
the analysis of the ghost-antighost-gluon vertex given in
Ref. [39]. The challenge is here again to reduce all the
Feynman integrals that enter the various form factors.
However, since one of the external momenta vanishes,
this is of the same complexity as the evaluation of the
two-point form factors. Moreover, no additional renor-
malization group analysis needs to be carried out since
all the relevant beta functions and anomalous dimensions
have been evaluated in the present work.
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Appendix A: Diagrams

1. Gluon two-point function

The two-loop diagrams contributing to the gluon two-
point function are displayed in Fig. 11.

FIG. 11. Two-loop diagrams contributing to the gluon two-
point function.
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2. Ghost two-point function

The two-loop diagrams contributing to the ghost two-
point function are displayed in Fig. 12.

FIG. 12. Two-loop diagrams contributing to the ghost two-
point function.

3. Quark two-point function

The two-loop diagrams contributing to the quark two-
point function are displayed in Fig. 13.

FIG. 13. Two-loop diagrams contributing to the quark two-
point function.

Appendix B: Two-loop running

In this section, we derive general formulas for the two-
loop anomalous dimensions and beta functions within a
generic renormalization scheme defined from a given set
of renormalization conditions, such as for instance the
IR-safe conditions considered in this work. In Sec. C,
for completeness, we shall also revisit the minimal sub-
traction scheme and see how it fits the general discussion
(despite the absence of renormalization conditions in this
case).

We consider a field theory involving various bare fields
ϕB,i of bare square mass m2

B,i. For simplicity, we as-
sume that interactions are controlled by only one bare
coupling, denoted by λB , but an extension to an arbi-
trary number of coupling constants is straightforward.
We work in dimensional regularization, in which case the
bare coupling has dimension 4− d = 2ε and it is conve-
nient to make this explicit by introducing a scale. We
shall then operate the rescaling λB → Λ2ελB where the
new λB is dimensionless. As already mentioned in the
main text, our notational choice Λ (rather than µ) is
not innocent. It is meant to emphasize that this scale
is in general different from the renormalization scale µ.
The latter is introduced upon implementing a certain
renormalization scheme via the renormalization condi-
tions. On the other hand, the scale Λ is a regulating
scale that has nothing to do with the renormalization
procedure.

To some extent, the scale Λ should be put on the same
footing as the cut-off scale in the cut-off regularization.
This analogy needs to be taken with a pinch of salt of
course because, in dimensional regularization, the regu-
lating parameter ε is dissociated from the regulating scale
Λ. In particular, the continuum limit is defined as the
limit ε→ 0 and not as the limit Λ→∞. However, as in
any other regularization, we expect the continuum results
obtained in the limit ε→ 0, to be independent of the reg-
ulating scale Λ, while they will in general depend on the
renormalization scale µ. This should apply in particular
to the anomalous dimensions and the beta functions and
we will check explicitly that this is indeed the case.

Let us mention that, in most approaches, the scale Λ
is identified with the scale µ. This is a perfectly accept-
able choice (and even a convenient one in some respects)9

since the anomalous dimensions and the beta functions
do not depend on this choice and are in fact the same for
any choice of dependence Λ(µ). However, the choice of
a µ-dependent Λ tends to obscure the real source of µ-
dependence within the renormalization group, while un-
necessarily complicating the evaluation of the anomalous
dimensions and the beta functions (as we shall explicitly

9 In particular, one does not need to introduce two scales in inter-
mediate calculations. We stress however that continuum results
do not depend on the scale Λ, so they depend only on one scale,
µ, even in the case where the choice Λ 6= µ is made.
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illustrate below). In what follows, we shall first derive the
anomalous dimensions and the beta functions by taking
Λ independent from µ and then check that the so ob-
tained functions do not depend on the choice of Λ, even
when the latter is assumed to depend on µ.

1. RG basics

Upon renormalization, the bare fields and the bare pa-
rameters are rescaled by renormalization factors as

ϕB,i = Z1/2
ϕi ϕi , m

2
B,i = Zm2

i
m2
i , λB = Zλλ . (B1)

We shall denote the renormalization factors generically as
ZX with X ∈ {ϕi,m2

i , λ}. They depend a priori on the
regulator ε, the two scales Λ and µ, and the renormalized
parameters m2

i and g2.
The renormalized n-point functions are functions of

the renormalization scale µ. This µ-dependence is con-
trolled by the Callan-Szymanzik equation which, in its
integrated form, is written as10

Γ(n)
ϕi1 ...ϕin

({k}; {m2
0}, λ0, µ0) (B2)

=

n∏
k=1

z
−1/2
ik

(µ, µ0) Γ(n)
ϕi1 ...ϕin

({k}; {m2(µ)}, λ(µ), µ) ,

and relates a given n-point function at a fixed scale µ0

to the same n-point function at the running scale µ. We
have already discussed the benefit of this type of equa-
tions in maintaining perturbative when large logarithms
are present. Perturbative control is achieved by evaluat-
ing the right-hand side of Eq. (B2) with the choice µ = k.
This requires in turn the evaluation of the rescaling fac-
tor z(µ, µ0) as well as the running m2

i (µ) and λ(µ) of the
various parameters.

The rescaling factor is given by

zi(µ, µ0) = exp

(∫ µ

µ0

dν γϕi(ν)

)
, (B3)

where γϕi is the so-called anomalous dimension of the
field ϕi, related to the corresponding renormalization fac-
tor Zϕi as

γϕi ≡
d lnZϕi
d lnµ

, (B4)

where the d/d lnµ derivatives are to be taken for fixed
bare masses and dimensionful bare coupling Λ2εZλλ. On
the other hand, the running of the parameters is given
by the so-called beta functions

βλ ≡
dλ

d lnµ
, βm2

i
≡ dm2

i

d lnµ
. (B5)

10 We use the notation {k} and {m2} to designate respectively the
set of all external momenta of the considered n-point function
and the set of all masses in the problem.

By expressing that ln(Zm2
i
m2
i ) and ln(Λ2εZλλ) do not

depend on lnµ, one easily relates the beta functions to
the anomalous dimensions associated with the parame-
ters as11

0 = γm2
i

+
βm2

i

m2
i

, 0 = γλ +
βλ
λ
, (B6)

where

γm2
i
≡
d lnZm2

i

d lnµ
and γλ ≡

d lnZλ
d lnµ

(B7)

It follows that the implementation of the renormalization
group equation (B2), requires the determination of the
various anomalous dimensions

γX ≡
d lnZX
d lnµ

, (B8)

with X ∈ {ϕi,m2
i , λ}. Below, we evaluate these anoma-

lous dimensions at one- and two-loop order.
We mention that, in deriving Eq. (B6), we have made

use of our assumption of a µ-independent Λ. Were we
to consider a µ-dependent Λ, the right-hand side of the
second equation of (B6) would involve an additional term
2ε d ln Λ/d lnµ which cannot be neglected because it can
(and does) end up multiplying contributions proportional
to 1/ε. By choosing a µ-independent Λ, we do not need to
worry about this subtlety. A related convenient feature
of using a µ-independent Λ is that both βm2

i
/m2

i and

βλ/λ are of order λ, whereas with a µ-dependent Λ, βλ/λ
is of order λ0 which leads to new contributions when
evaluating the anomalous dimensions at a given order.
We will show below that despite these implementation
differences, the various additional contributions that one
needs to consider in the case of a µ-dependent Λ cancel
with each other, making the µ-independent choice, the
simpler one in practice.

We also stress that the success of the perturbative RG
relies on the absence of large logarithms in the right-hand
side of Eq. (B2) which is granted by the choice µ = k but
also by the fact that the anomalous dimensions do not
contain large logarithms. This last property is rather
intuitive since anomalous dimensions are usually associ-
ated with variations of the system over a thin momentum
shell. However, it is satisfactory to see explicitly why
large logarithms are absent from the anomalous dimen-
sions. We shall provide an answer to this question below.
Needless to mention that the anomalous dimensions are
finite functions for they enter the RG evolution of renor-
malized n-point functions. This property will be put into
good use below.

11 For the moment, we take Λ as µ-independent. We later discuss
the case of a µ-dependent Λ, including the conventional choice
Λ = µ.
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2. One-loop running

To derive the anomalous dimension γX at one-loop or-
der, we start from the one-loop renormalization factor
ZX expanded up to order ε0. We write it as

ZX = 1 + λ
zX,1
ε

, (B9)

with

zX,1 = zX,11 + εzX,10 , (B10)

and where zX,11 and zX,10 are a priori functions of Λ,
µ and the masses m2

i . We will see below that there are
some constraints on the factors zX,ab.

From (B8) and (B9), the anomalous dimension be-
comes

γX =
1

ZX

(
λ

ε

∂zX,1
∂ lnµ

+
βλ
λ

λ

ε
zX,1

+
∑
i

βm2
i

m2
i

λ

ε

∂zX,1
∂ lnm2

i

)
. (B11)

The term with the partial derivative ∂/∂µ takes into ac-
count the explicit µ-dependence of zX,1, while the terms
involving the beta functions, see Eq. (B5), take into ac-
count the implicit µ-dependence of zX,1 via its depen-
dence on λ and m2

i . Since βm2
i
/m2

i and βλ/λ are of order
λ, see the discussion above, we can neglect the terms
proportional to the beta functions to the present order
of accuracy. Moreover, we can replace ZX by 1 in the
denominator of (B11). We find eventually

γX =
λ

ε

∂zX,1
∂ lnµ

. (B12)

Expanding to order ε0, this gives

γX =
λ

ε

∂zX,11

∂ lnµ
+ λ

∂zX,10

∂ lnµ
. (B13)

The finiteness of the anomalous dimensions imposes zX,11

not to depend explicitly on µ. This is not really a sur-
prise since zX,11/ε corresponds to the divergence of a one-
loop Feynman integral and, as such, is a pure constant
that does not depend on the considered renormalization
scheme. We eventually arrive at

γX = λ
∂zX,10

∂ lnµ
. (B14)

We notice that the anomalous dimension could a priori
still depend on Λ (via the factor zX,10). We will show
below that this is not the case and also that the same
expression could be obtained using a µ-dependent Λ.

3. Two-loop running

In order to extend the anomalous dimension γX to two-
loop order, we need the renormalization factors to order
λ2 and ε1, which we write as

ZX = 1 + λ
zX,1
ε

+ λ2 zX,2
ε2

, (B15)

with

zX,1 = zX,11 + zX,10ε+ zX,1(−1)ε
2 , (B16)

zX,2 = zX,22 + zX,21ε+ zX,20ε
2 . (B17)

We need to include zX,1(−1) because, although it is a

contribution of order ε1 to ZX , it contributes at order ε0

to the two-loop two-point functions; see the discussion in
the main text. We will see below that it also contributes
to the anomalous dimensions at this order.

From (B8) and (B15), the anomalous dimension becomes

γX =
1

ZX

(
λ

ε

∂zX,1
∂ lnµ

+
λ2

ε2
∂zX,2
∂ lnµ

+
βλ
λ

(
λ
zX,1
ε

+ 2λ2 zX,2
ε2

)
+
∑
i

βm2
i

m2
i

(
λ

ε

∂zX,1
∂ lnm2

i

+
λ2

ε2
∂zX,2
∂ lnm2

i

))
. (B18)

Using the fact that βm2
i
/m2

i and βλ/λ are both of order λ and expanding ZX up to order λ, we find

γX =
λ

ε

∂zX,1
∂ lnµ

+
λ2

ε2
∂zX,2
∂ lnµ

− λ2

ε2
∂zX,1
∂ lnµ

zX,1 − γλ
λ

ε
zX,1 −

∑
i

γm2
i

λ

ε

∂zX,1
∂ lnm2

i

, (B19)

where γλ and γm2 are the gamma functions determined at one-loop order, prior to an expansion in ε, see Eq. (B12).
Using this latter equation, we find

γX =
λ

ε

∂zX,1
∂ lnµ

+
λ2

ε2

(
∂zX,2
∂ lnµ

−
(
∂zX,1
∂ lnµ

+
∂zλ,1
∂ lnµ

)
zX,1 −

∑
i

∂zm2
i ,1

∂ lnµ

∂zX,1
∂ lnm2

i

)
, (B20)
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and expanding to order ε0, this gives

γX =
λ2

ε2
∂zX,22

∂ lnµ
+
λ2

ε

(
∂zX,21

∂ lnµ
−
(
∂zX,10

∂ lnµ
+
∂zλ,10

∂ lnµ

)
zX,11

)
+ λ

∂zX,10

∂ lnµ

+ λ2

(
∂zX,20

∂ lnµ
−
(
∂zX,10

∂ lnµ
+
∂zλ,10

∂ lnµ

)
zX,10−

(
∂zX,1(−1)

∂ lnµ
+
∂zλ,1(−1)

∂ lnµ

)
zX,11−

∑
i

∂zm2
i ,10

∂ lnµ

∂zX,10

∂ lnm2
i

)
, (B21)

where we used that zX,11 is a pure constant. The finiteness of the gamma function imposes that

∂zX,22

∂ lnµ
= 0 and

∂zX,21

∂ lnµ
−
(
∂zX,10

∂ lnµ
+
∂zλ,10

∂ lnµ

)
zX,11 = 0 . (B22)

The first constraint is again not a real surprise since zX,22/ε
2 has to do with the overall divergence of a two-loop

Feynman integral and, as such, should be a pure constant that does not depend on the considered renormalization
scheme. The second constraint is more subtle and relates to a similar well known identity in minimal subtraction
which constrains zX,22, zX,11, zλ,11, see below. Since zX,11 is a pure constant, this second constraint can also be
reformulated as stating that the combination zX,21 − (zX,10 + zλ,10)zX,11 should not depend on µ. In turn, this
provides a cross-check for any two-loop determination of the n-point functions in a given scheme, which we have used
in our particular application to the CF model. See the main text.

We eventually arrive at the following finite expression for the two-loop anomalous dimension

γX = λ
∂zX,10

∂ lnµ
+ λ2

(
∂zX,20

∂ lnµ
−
(
∂zX,10

∂ lnµ
+
∂zλ,10

∂ lnµ

)
zX,10−

(
∂zX,1(−1)

∂ lnµ
+
∂zλ,1(−1)

∂ lnµ

)
zX,11 −

∑
i

∂zm2
i ,10

∂ lnµ

∂zX,10

∂ lnm2
i

)
,

(B23)

in terms of the various factors zX,ab. In the case zX,11 6= 0, this expression can be simplified using the second constraint
in (B22). One finds

γX = λ
∂zX,10

∂ lnµ
+ λ2

(
∂zX,20

∂ lnµ
− zX,10

zX,11

∂zX,21

∂ lnµ
−
(
∂zX,1(−1)

∂ lnµ
+
∂zλ,1(−1)

∂ lnµ

)
zX,11 −

∑
i

∂zm2
i ,10

∂ lnµ

∂zX,10

∂ lnm2
i

)
. (B24)

In the case zX,11 = 0, one cannot use the second constraint but the formula also gets simpler:

γX = λ
∂zX,10

∂ lnµ
+ λ2

(
∂zX,20

∂ lnµ
−
(
∂zX,10

∂ lnµ
+
∂zλ,10

∂ lnµ

)
zX,10 −

∑
i

∂zm2
i ,10

∂ lnµ

∂zX,10

∂ lnm2
i

)
. (B25)

In the case zX,11 6= 0, we note that the anomalous dimensions involve zX,1(−1) and zλ,1(−1), that is order ε1 contri-
butions to the renormalization factors. This, in turn, can be traced back to the fact that the one-loop anomalous
dimensions that appear in Eq. (B19) are multiplied by 1/ε and, therefore, need to be expanded up to order ε1,
contrary to the previous section where they were expanded up to order ε0 only. That the terms with zX,1(−1) and
zλ,1(−1) are not present in the case zX,11 = 0 is also visible in Eq. (B19) since the just mentioned 1/ε terms are not
present.

4. Λ-independence

The formula (B23) and its simplified versions (B24)
and (B25) are the ones we use in our implementation of
the RG in Sec. IV. We still need to clarify two questions
however.

First, the expression (B23) was derived assuming a µ-
independent Λ and one is left wondering what would
happen with a µ-dependent Λ (such as the standard
choice Λ = µ). We will show that one obtains exactly
the same expressions for the anomalous dimension γX ,
via a lengthier procedure however. Second, even though
the expression (B23) does not depend explicitly on Λ, it

could still depend implicitly on Λ via the dependence of
the factors zX,ab. We will show that this is not so: the
Λ-dependence cancels identically when the various zX,ab
are combined into Eq. (B23).

A key remark in demystifying these two questions is
that the only source of Λ-dependence in the renormal-
ization factors appears via the ε-expansion of Λ2ελ (since
the scale Λ is introduced as a rescaling of the coupling
in the first place). In practice this means that, if the
renormalization factors are written as

ZX = 1 +
∑
a≥1

(
λ

ε

)a
zX,a , (B26)



26

one should have ∂(Λ−2aεzX,a)/∂ ln Λ = 0, that is

∂zX,a
∂ ln Λ

− 2aεzX,a = 0 . (B27)

Writing each zX,a as

zX,a =
∑
b≤a

zX,ab ε
a−b , (B28)

the constraint (B27) can be rewritten as

∂zX,ab
∂ ln Λ

= 2azX,a(b+1) , (B29)

for b < a, and

∂zX,aa
∂ ln Λ

= 0 , (B30)

this later result being totally trivial since the zX,aa are
expected to be pure constants, independent of the con-
sidered renormalization scheme.

a. Explicit Λ-dependence

Keeping these remarks in mind, let us now re-derive
the one-loop anomalous dimensions using a µ-dependent
Λ. There are two main differences with respect to the
calculation that used a µ-independent Λ. First, there
is a new source of µ-dependence in the renormalization
factors, via Λ. This leads to the expression

γX =
1

ZX

(
λ

ε

∂zX,1
∂ lnµ

+
λ

ε

∂zX,1
∂ ln Λ

d ln Λ

d lnµ

+
βλ
λ

λ

ε
zX,1 +

∑
i

βm2
i

m2
i

λ

ε

∂zX,1
∂ lnm2

i

)
, (B31)

where we note the presence of a new term proportional
to d ln Λ/d lnµ as compared to (B11). Second, there is an
additional term in the relation between the beta function
and the anomalous dimension for λ, see (B6):

0 = 2ε
d ln Λ

d lnµ
+ γλ +

βλ
λ
. (B32)

When expanding the anomalous dimension (B31) up to
order λ, this term cannot be neglected unlike γλ because
1) it is of one order less in λ as compared to γλ and
therefore produces a new order λ contribution, and 2)
this new contribution survives the continuum limit since
it has the form ε× 1/ε. One eventually arrives at

γX =
λ

ε

∂zX,1
∂ lnµ

+ λ

(
1

ε

∂zX,1
∂ ln Λ

− 2zX,1

)
d ln Λ

d lnµ
. (B33)

A similar but lengthier calculation at two-loop order
leads to (B19) supplemented with the term[(

λ− λ2

ε
zX,1

)(
1

ε

∂zX,1
∂ ln Λ

− 2zX,1

)
+
λ2

ε

(
1

ε

∂zX,2
∂ ln Λ

− 4zX,2

)]
d ln Λ

d lnµ
.(B34)

Owing to Eq. (B27), it is easy to see that all these extra
terms that one generates when evaluating the anomalous
dimension with a µ-dependent Λ eventually cancel. As
announced above, the final expression for the anomalous
dimension in terms of the factors zX,a does not depend on
the particular choice of Λ, and the fastest way to arrive
at the result (avoiding unnecessary cancellations) is to
use a µ-independent Λ.

b. Implicit Λ-dependence

So far we have shown that the expressions (B12) and
(B19) have no explicit dependence on Λ. Obviously, this
conclusion extends to (B14) and (B23) which are nothing
but the order ε0 truncated versions of these expressions.
However, there could still be an implicit dependence with
respect to Λ via the factors zX,ab. We now show that this
is not the case.

Consider for instance (B14) and take a ∂/∂ ln Λ deriva-
tive. Owing to Eq. (B29), we have

∂γX
∂ ln Λ

= λ
∂2zX,10

∂ lnµ∂ ln Λ
= 2λ

∂zX,11

∂ lnµ
, (B35)

which vanishes since zX,11 is a pure constant.
A similar conclusion can be reached starting from the

two-loop expression (B23) and exploiting (B29). Focus-
ing on the terms inside the bracket multiplying λ2, we
find

∂

∂ ln Λ

(
. . .

)
λ2

= 4
∂zX,21

∂ lnµ
− 2

(
∂zX,11

∂ lnµ
+
∂zλ,11

∂ lnµ

)
zX,10 − 2

(
∂zX,10

∂ lnµ
+
∂zλ,10

∂ lnµ

)
zX,11

− 2

(
∂zX,10

∂ lnµ
+
∂zλ,10

∂ lnµ

)
zX,11 −

(
∂zX,1(−1)

∂ lnµ
+
∂zλ,1(−1)

∂ lnµ

)
∂zX,11

∂ ln Λ

− 2
∑
i

∂zm2
i ,11

∂ lnµ

∂zX,10

∂ lnm2
i

− 2
∑
i

∂zm2
i ,10

∂ lnµ

∂zX,11

∂ lnm2
i

= 4

(
∂zX,21

∂ lnµ
−
(
∂zX,10

∂ lnµ
+
∂zλ,10

∂ lnµ

)
zX,11

)
= 0 ,

(B36)
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where we have again used that zX,11 is a pure constant, as well as the second constraint in (B22).

We mention that, contrary to the absence of explicit Λ-
dependence, the absence of implicit Λ-dependence applies
only to the anomalous dimensions in the continuum limit
ε → 0. For instance, the one-loop anomalous dimension
to order ε1

γX = λ
∂zX,10

∂ lnµ
+ λ

∂zX,1(−1)

∂ lnµ
, (B37)

depends implicitly on Λ since one has

∂γX
∂ ln Λ

= λ
∂2zX,1(−1)

∂ lnµ∂ ln Λ
= 2λ

∂zX,10

∂ lnµ
, (B38)

which is usually not zero. As we already discussed above,
this Λ-dependent, order ε1 one-loop anomalous dimen-
sion is crucial for the correct evaluation of the order ε0

two-loop anomalous dimension since it is multiplied by
a 1/ε factor in Eq. (B19). In this case, however, the Λ-
dependence (B38) gets cancelled by other Λ-dependent
terms in the ε0 order two-loop anomalous dimension, thus
ensuring the Λ-independence of the latter.

5. Absence of large logarithms in γX

The previous considerations allow us to understand
more precisely the absence of large logarithms in the
anomalous dimensions, which we alluded to above. In-
deed, the renormalization factors are functions of Λ/mi

and µ/mi and large logarithms could potentially occur
when any of these ratios goes to 0 or ∞. However, if we
assume that the renormalization scheme is regular in the
mi → 0 limit (this is the case for the IR-safe scheme con-
sidered in this work), the renormalization factors need to
have a well defined zero-mass limit and therefore large
logarithms associated with Λ/mi → ∞ or µ/mi → ∞
are excluded. We are then left with potential large log-
arithms in the limits Λ/mi → 0 or µ/mi → 0. How-
ever, there cannot be large logarithms associated with
µ/mi → 0 because mi � µ and the Feynman inte-
grals that enter the renormalization factors are always
infrared regulated.12 In conclusion, the only possible
source of large logarithms in the renormalization factors
is Λ/mi → 0. But because the anomalous dimensions
do not depend on Λ, these large logarithms in the renor-
malization factors are not inherited by the anomalous di-
mensions. We stress that the previous argument excludes
the presence only of large logarithms in the anomalous
dimensions and beta functions. Of course, the latter can
feature logarithms multiplied by strictly positive (resp.

12 This does not prevent the appearance of terms like
µ2/m2 lnµ2/m2 but these are not large logarithms for µ/m→ 0.

strictly negative) powers of m2/µ2 in the UV (resp. in
the IR), as the explicit expressions given in App. ?? il-
lustrate.

6. Non-renormalization theorems

The formula for the two-loop anomalous dimensions
that we have derived above is general. It may happen,
as in the model considered in this work, that some of the
renormalization factors obey a non-renormalization the-
orem stating that their product

∏
i ZXi is finite and al-

lowing one to consider a scheme where this product is set
equal to 1. This, in turn, implies the relation

∑
i γXi = 0

between the corresponding anomalous dimensions.
Let us here check that the general formula (B20)

is compatible with this expectation. The non-
renormalization theorem implies

0 =
∑
i

zXi,1 , (B39)

0 = 2
∑
i

zXi,2 +
∑
i 6=j

zXi,1zXj ,1 . (B40)

Owing to (B39), it is trivial to check that the terms of
(B20) that are linear in zX,1 cancel in the sum

∑
i γXi .

To check that the remaining terms cancel as well, we use
(B39) in order to rewrite (B40) as

0 = 2
∑
i

zXi,2 −
∑
i

z2
Xi,1 . (B41)

Then, the remaining terms in (B20) are proportional to∑
i

(
∂zXi,2
∂ lnµ

− ∂zXi,1
∂ lnµ

zXi,1

)
=

1

2

∂

∂ lnµ

∑
i

(2zXi,2 − z2
Xi,1) = 0 . (B42)

Appendix C: Minimal subtraction

Up until now, we have restricted our attention to renor-
malization schemes associated with renormalization con-
ditions. In this section, for completeness, we revisit the
minimal subtraction scheme which relies, not on renor-
malization conditions, but rather on the strict absorption
of 1/ε poles in the renormalization factors. We will show
that, despite appearances, this scheme fits the general
discussion of the previous section.

In the minimal subtraction scheme, renormalization
factors contain purely divergent terms in the limit ε→ 0
(whose pre-factors are pure constants), and do not in-
volve any finite part. At two-loop order for instance, we
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have

ZX = 1 + λ
zMSX,1
ε

+ λ2
zMSX,2
ε2

, (C1)

with zMSX,1 = zX,11 and zMSX,2 = zX,22 + εzMS21 ,13 and thus
zMSX,10 = zMSX,1(−1) = zMSX,20 = 0. Näıvely, it seems that one
cannot use the formulas (B14) and (B23) for these would
give simply 0. Moreover, it seems that there is no point
in distinguishing between a renormalization scale µ and
a regulating scale Λ as we did above since there are no
renormalization conditions to introduce the renormaliza-
tion scale µ in the first place.

On the other hand, the only scale µ that is introduced
in minimal subtraction is the scale that makes the bare
coupling dimensionless. As we have already mentioned,
this is a regulating scale a priori, which has nothing to
do with renormalization (denoting it as µ is not enough
to qualify it as a renormalizaiton scale) and it is not clear
how such a scale could control the renormalization group
flow.

In this section, we first derive the minimal subtrac-
tion anomalous dimensions in the standard way, without
paying much attention to these considerations. We then
revisit the same calculations using a point of view more
in line with the general discussion of the previous sec-
tion. While making the minimal subtraction scheme fit
the general picture, this point of view clarifies the true
source of µ-dependence in this scheme and makes the de-
termination of anomalous dimensions simpler and com-
patible with the formulas (B14) and (B23).

1. Standard derivation

From Eq. (C1) at one-loop order, because the factors
zMSX,ab are constants and because the only source for µ-
dependence is λ, we find

γX =
βλ/λ

ZX
λ
zX,11

ε
. (C2)

According to Eq. (B32) with Λ = µ, βλ/λ starts at order
λ0 with the contribution −2ε. To obtain the anomalous
dimension at order λ, we just need to keep this leading
contribution to βλ/λ and replace ZX by 1 in the denom-
inator of Eq. (C2). One finds eventually

γX = −2zX,11λ , (C3)

where we note that the ε coming from βλ/λ has combined
with the 1/ε in (C2) to produce an order ε0 anomalous
dimension.

13 The values of zX,11 and zX,22 are the same as in the previous
section since they are scheme independent. On the other hand,
zMSX,10, zMS

X,1(−1)
, zMSX,21 and zMSX,20 have no reason to be the same

as those in the previous section.

One can proceed similarly at two-loop order. Starting
from Eq. (C1), one finds

γX =
βλ/λ

ZX

(
λ
zX,11

ε
+ 2λ2 zX,22 + εzX,21

ε2

)
. (C4)

This time, βλ/λ (as well as ZX) needs to be expanded to
order λ. This includes the contribution −2ε but also γλ
as given by Eq. (C3) with X = λ. One finds

γX = −4λ2 zX,22 − zX,11(zX,11 + zλ,11)/2

ε

−(2zX,11λ+ 4zMSX,21λ
2) . (C5)

The finiteness of the beta function imposes that

zX,22 =
1

2
zX,11(zX,11 + zλ,11) , (C6)

and we finally arrive at

γX = −
(
2zX,11λ+ 4zMSX,21λ

2
)
. (C7)

2. Connecting to the general discussion

Let us now re-derive these results with a slightly dif-
ferent perspective that makes the minimal subtraction fit
the general discussion. In particular, Eqs. (C3) and (C7)
will appear as particular cases of Eqs. (B14) and (B23).

Consider a slight generalization of the minimal sub-
traction scheme, which we refer to as ΛMS, defined by
the renormalization factors

ZΛMS

X = 1 + λ
zΛMS

X,1

ε
+ λ2

zΛMS

X,2

ε2
, (C8)

with

zΛMS

X,a =

(
Λ

µ

)2aε

zMSX,a , (C9)

or, equivalently

zΛMS
X,aa = zMS

X,aa , (C10)

zΛMS
X,a(a−1) = zMS

X,a(a−1) + 2azMS
X,aa ln

Λ

µ
, (C11)

. . .

where the dots represent zX,ab for b < a− 1. In fact,
this defines a family of schemes parametrized by Λ, of
which the standard minimal subtraction corresponds to
the choice Λ = µ. The scale Λ plays the role of the
regulating scale, while the scale µ is the renormalization
scale and the flow with respect to this latter scale needs
to be determined for m2

B = Zm2m2 and λB = Λ2εZλλ
fixed. In particular the anomalous dimensions should
again be independent of the choice of Λ in the continuum
limit (we will check this explicitly below), thus providing
an alternative way to obtain the anomalous dimensions
in minimal subtraction. The benefit of this approach is
that, upon the appropriate introduction of Zλ factors,
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the only way the coupling appears is via the combination
Λ2εZλλ. Therefore one never needs to consider βλ/λ and
cancellations of the type ε× 1/ε.

At one-loop order for instance, up to higher order cor-
rections, one writes

ZX = 1 + Zλλ

(
Λ

µ

)2ε
zX,11

ε
. (C12)

The only dependence on µ is via the factor µ−2ε and one
obtains immediately

γX = −2zX,11
Zλ
ZX

λ

(
Λ

µ

)2ε

= −2zX,11λ

(
Λ

µ

)2ε

,(C13)

which boils down to (C3) in the continuum limit. Simi-
larly, at two-loop order, one would write

ZX = 1 + λ

(
Λ

µ

)2ε
zX,11

ε

+ λ2

(
Λ

µ

)4ε (zX,22

ε2
+
zX,21

ε

)
= 1 + Zλλ

(
Λ

µ

)2ε
zX,11

ε

+ Z2
λλ

2

(
Λ

µ

)4ε(
zX,22 − zX,11zλ,11

ε2
+
zX,21

ε

)
.

(C14)

Again, the only µ-dependence is via the factors µ−2aε

and one recovers (C7) together with the constraint (C6).
In fact, with this approach, it is not difficult to see that
the minimal subtraction anomalous dimension is given at
any order by

γX = −
∑
a≥1

2azMSX,a1g
2a . (C15)

We mention also that the ΛMS-scheme is no different
from the generic schemes considered in the previous sec-
tion and, as such, the expressions (C3) and (C7) should
be compatible with (B14) and (B23). This is easily seen
after noting that, from (C9), the µ-dependence of the fac-
tors zΛMS

X,a is controlled by the same equation that controls

the Λ-dependence, see Eq. (B27), up to a sign:

∂zΛMS

X,a

∂ lnµ
+ 2aεzΛMS

X,a = 0 . (C16)

This in turn implies

∂zΛMS

X,ab

∂ lnµ
= −2azΛMS

X,a(b+1) . (C17)

Using these identities, it is easily seen that, in the min-
imal subtraction scheme, (C3) and (C7) are compatible
with (B14) and (B23). Moreover, the identity (B22) is
nothing but a rewriting of (C6).

The present discussion also clarifies the true source of
µ-dependence within the standard minimal subtraction

scheme. By revisiting the derivation (C14) with Λ = µ,
we see that the scale µ that appears in the numerator
of the factor (µ/µ)ε, and that stems from the rescaling
of the coupling, has nothing to do with the RG run-
ning. The running originates instead from the scale µ
that appears in the denominator of the factor (µ/µ)ε.
Contrary to the former which is nothing but a regulat-
ing scale needed to make the coupling dimensionless in
dimensional regularization, this second occurrence of µ
is the renormalization scale. It is introduced here not by
renormalization conditions, but rather by the minimal
subtraction requirement that the renormalization factors
do not depend explicitly on any scale and in particular
on the regulating scale.

3. Integrating the one-loop flow

For completeness, let us recall here how the minimal
subtraction beta functions and anomalous dimensions are
integrated out at one- and two-loop orders. At one-loop
order, we have

βλ
λ

= −γλ = 2zλ,11λ . (C18)

This is rewritten as

dλ

λ2
= zλ,11 d lnµ2 , (C19)

which integrates to

λ(µ) =
λ0

1− zλ,11λ0 ln µ2

µ2
0

=
1

−zλ,11 ln µ2

Λ2
LP

(C20)

with

Λ2
LP = µ2

0 exp

(
1

zλ,11λ0

)
. (C21)

The scale ΛLP is the Landau pole and, if zλ,11 is negative,
the flow makes sense only for µ > ΛLP. We restrict to
this case from now on.

Next, we write

β2
m/m

2

βλ/λ
=
γm2

γλ
=
zm2,11

zλ,11
, (C22)

which is nothing but

d lnm2 =
zm2,11

zλ,11
d lnλ = d ln(λ)

z
m2,11
zλ,11 . (C23)

It follows that

m2

m2
0

=

(
λ

λ0

) z
m2,11
zλ,11

. (C24)

Finally, we write

γϕ
βλ/λ

= −γϕ
γλ

= −zϕ,11

zλ,11
, (C25)
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which is nothing but

d ln zi = −zϕi,11

zλ,11
d lnλ = d ln(λ)

−
zϕi,11

zλ,11 , (C26)

where zi is the rescaling factor (B3). It follows that

zi(µ, µ0) =

(
λ

λ0

)− zϕ,11
zλ,11

. (C27)

4. Integrating the two-loop flow

We have

βλ
λ

= −γλ = 2zλ,11λ+ 4zλ,21λ
2 , (C28)

which is nothing but

dλ

λ2
(

1 + 2
zλ,21

zλ,11
λ
) = zλ,11d lnµ2 . (C29)

We can rewrite this conveniently as

zλ,11d lnµ2 = −
1
λ(

1
λ + 2

zλ,21

zλ,11

)d( 1

λ

)

=

[
−1 +

2
zλ,21

zλ,11

1
λ + 2

zλ,21

zλ,11

]
d

(
1

λ

)
, (C30)

which integrates to

zλ,11 ln
µ2

µ2
0

=
1

λ0
− 1

λ(µ)
+ 2

zλ,21

zλ,11
ln

1
λ(µ) + 2

zλ,21

zλ,11

1
λ0

+ 2
zλ,21

zλ,11

,

(C31)

and gives µ as a function of λ. We notice that, because
the running of g is logarithmic, the second term is sub-
leading in the UV and we recover the one-loop running.

We can estimate the correction to the one-loop behav-
ior by replacing λ(µ) by λ1loop(µ) in the logarithm. We
obtain

1

λ(µ)
=

1

λ0
− zλ,11 ln

µ2

µ2
0

+ 2
zλ,21

zλ,11
ln
−zλ,11 ln µ2

µ2
0

1
λ0

+ 2
zλ,21

zλ,11

.

(C32)

We note that

λ2loop − λ1loop = −2λ1loopλ2loop
zλ,21

zλ,11
ln
−zλ,11 ln µ2

µ2
0

1
λ0

+ 2
zλ,21

zλ,11

,

(C33)

and thus the corrections are not that small. We mention
also that (C31) provides corrections to the Landau pole
defined by the scale at which 1/λ(µ) vanishes. One finds

Λ2
LP = µ2

0

(
1

1 +
zλ,11

2zλ,21λ0

)2
zλ,21

z2
λ,11

exp

(
1

zλ,11λ0

)
,(C34)

in terms of which we have

zλ,11 ln
µ2

Λ2
LP

= − 1

λ(µ)
+ 2

zλ,21

zλ,11
ln

(
1 +

zλ,11

2zλ,21

1

λ(µ)

)
.

(C35)

Next, we write

βm2

m2
= −γm2 = 2zm2,11λ+ 4zm2,21λ

2 , (C36)

which is nothing but

d lnm2 =
(
zm2,11λ+ 2zm2,21λ

2
)
d lnµ2 . (C37)

Upon using (C30), this is rewritten as

zλ,11d lnm2 = −
zm2,11 + 2zm2,21λ

1
λ + 2

zλ,21

zλ,11

d

(
1

λ

)
= −

 zm2,11
1
λ + 2

zλ,21

zλ,11

+
2zm2,21

1
λ

(
1
λ + 2

zλ,21

zλ,11

)
 d( 1

λ

)

= −

[
zm2,11

1
λ + 2

zλ,21

zλ,11

+
zλ,11

zλ,21
zm2,21

(
1
1
λ

− 1
1
λ + 2

zλ,21

zλ,11

)]
d

(
1

λ

)
, (C38)

which is easily integrated to

ln
m2

m2
0

=
zm2,21

zλ,21
ln

λ

λ0
+

(
zm2,21

zλ,21
−
zm2,11

zλ,11

)
ln

1
λ(µ) + 2

zλ,21

zλ,11

1
λ0

+ 2
zλ,21

zλ,11

=
zm2,11

zλ,11
ln

λ

λ0
+

(
zm2,21

zλ,21
−
zm2,11

zλ,11

)
ln

1 + 2
zλ,21

zλ,11
λ

1 + 2
zλ,21

zλ,11
λ0

, (C39)
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or

m2

m2
0

=

(
λ

λ0

) z
m2,11
zλ,11

(
1 + 2

zλ,21

zλ,11
λ

1 + 2
zλ,21

zλ,11
λ0

) zλ,11zm2,21
−z
m2,11

zλ,21

zλ,21zλ,11

. (C40)

The second factor approaches 1 in the deep UV and we recover the one-loop running.

Finally, if we solve formally (C28) and (C36) for λ and λ2, we find

λ =
βλ
λ zm2,21 −

βm2

m2 zλ,21

2(zλ,11zm2,21 − zm2,11zλ,21)
and λ2 =

βm2

m2 zλ,11 − βλ
λ zm2,11

4(zλ,11zm2,21 − zm2,11zλ,21)
. (C41)

Plugging this back into

γϕi = 2zϕi,11
λ+ 4zϕi,21

λ2 , (C42)

gives

γϕ = −
zϕ,11zm2,21 − zm2,11zϕ,21

zλ,11zm2,21 − zm2,11zλ,21

βλ
λ

− zϕ,11zλ,21 − zλ,11zϕ,21

zm2,11zλ,21 − zλ,11zm2,21

βm2

m2
(C43)

from which it follows that

zi(µ, µ0) =

(
λ

λ0

)− zϕ,11zm2,21
−z
m2,11

zϕ,21

zλ,11zm2,21
−z
m2,11

zλ,21

×
(
m2

m2
0

)− zϕ,11zλ,21−zλ,11zϕ,21
z
m2,11

zλ,21−zλ,11zm2,21

. (C44)

To recover the one-loop behavior, we notice that deep in
the UV, Eq. (C24) holds, and this leads to

z(µ, µ0) =

(
λ

λ0

)− zϕ,11zm2,21
−z
m2,11

zϕ,21

zλ,11zm2,21
−z
m2,11

zλ,21

×
(
λ

λ0

)− zm2,11
zλ,11

zϕ,11zλ,21−zλ,11zϕ,21
z
m2,11

zλ,21−zλ,11zm2,21

.

(C45)

We notice that the terms proportional to zϕ,21 in the
numerator of the exponent cancel and we are left with

zi(µ, µ0) =

(
λ

λ0

)− zϕ,11

(
z
m2,21

−
zλ,21
zλ,11

z
m2,11

)
zλ,11zm2,21

−z
m2,11

zλ,21

=

(
λ

λ0

)− zϕ,11
zλ,11

, (C46)

in agreement with Eq. (C27).

We mention that the previous derivation is not valid
for a massless field and the formula (C44) is plagued by
singularities (since zm2,ab = 0). However, plugging (C40)
into (C44), we can combine the various powers of λ/λ0

just as before and we arrive at

zi(µ, µ0) =

(
λ

λ0

)− zϕ,11
zλ,11

(
1 + 2

zλ,21

zλ,11
λ

1 + 2
zλ,21

zλ,11
λ0

) zϕ,11
zλ,11

− zϕ,21
zλ,21

.

(C47)

These formulas do not make any reference to the mass of
the fields and apply, therefore, to a massless field as well.

Appendix D: Asymptotic expansion in the UV

In this section, we collect the next-to-leading order UV
and IR asymptotic expansions of the various two anoma-
lous dimensions as computed in the IR-safe scheme. The
corresponding expansions for the beta functions for λ and
m2 can be deduced from the non-renormalization theo-
rems, whereas that for M can be deduced directly from
its relation to γM .

In the UV, at next-to-leading order of the asymptotic
expansion, we find for the gluon and ghost anomalous
dimensions



32

γA = λ

{[
−13

3
+

(
65

4
+

3

2
ln
µ2

m2

)
m2

µ2

]
+
Nf
N

[
4

3
− 8

M2

µ2

]}
+ λ2

{
−85

6
+

(
18343

96
+
π2

48
+

171

4
ζ(3)− 891

16
S2 +

205

16
ln
µ2

m2
+

35

8
ln2 µ2

m2

)
m2

µ2

+
Nf
N

[
17

3
−
(

8

3
+ 48ζ(3)

)
m2

µ2
−
(

281

3
+ 16ζ(3)

)
M2

µ2
+ 2

(
m2

µ2
− 2

(
1 +

M2

m2

)
M2

µ2

)
ĨmMM

+

(
2 ln

µ2

m2
− 2 ln

µ2

m2
ln

µ2

M2
+ ln2 µ2

M2

)
m2

µ2
− 2

(
ln
µ2

m2
+ 2 ln

µ2

M2

)
M2

µ2

]
+
Nf
N

CF
N

[
4−

(
128

3
− 32ζ(3)

)
m2

µ2
− 48

M2

µ2

]}
, (D1)

γc = λ

{
−3

2
−
(

3

4
− 3

2
ln
µ2

m2

)
m2

µ2

}
+ λ2

{
−17

4
+

(
−211

8
+
π2

48
+

3

4
ζ(3)− 891

16
S2 +

103

8
ln
µ2

m2
+

35

8
ln2 µ2

m2

)
m2

µ2

+
Nf
N

[
1

2
+

3

2

m2

µ2
+ 11

M2

µ2
+ 2

(
m2

µ2
− 2

(
1 +

M2

m2

)
M2

µ2

)
ĨmMM

+

(
ln
µ2

m2
− 2 ln

µ2

m2
ln

µ2

M2
+ ln2 µ2

M2

)
m2

µ2
− 2

(
ln
µ2

m2
+ 2 ln

µ2

M2

)
M2

µ2

]}
, (D2)

with

S2 ≡
4

9
√

3
Im Li2(eiπ/3) , (D3)

and

ĨmMM = −mRe

{√
m2 − 4M2

m2 − 4M2

[
π2

6
− 1

2
ln2 M

2

m2
+ ln2

(
1

2
−
√
m2 − 4M2

2m

)
− 2Li2

(
1

2
−
√
m2 − 4M2

2m

)]}
,

(D4)

where Li2 denotes the dilogarithm function. It is easily checked that the term between square brackets in ĨmMM

vanishes linearly as m→ 2M and thus the above expressions for γA and γc are regular in this limit.

In mass-independent schemes, the coupling beta function is two-loop universal, whereas in mass-dependent
schemes, such as the IR-safe scheme considered here, it is two-loop universal in the UV. Using βλ/λ = γA + 2γc, we
have checked that we recover indeed the two-loop univeral behavior in the UV [75].

Similarly, for the quark anomalous dimensions, we find

γψ = λ
CF
N

(
9

2
− 3 ln

µ2

m2

)
m2

µ2

+ λ2CF
N

{
25

2
+

(
695

8
− π2

24
− 45ζ(3) +

891

8
S2 −

47

2
ln
µ2

m2
− 35

4
ln2 µ2

m2

)
m2
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−
(
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)M2
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+
CF
N

[
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(
5− 6ζ(3)

)m2
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+ 24

M2
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]
+
Nf
N

[
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µ2
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(
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µ2
− 2

(
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M2

m2

)
M2

µ2

)
ĨmMM

− 2

(
ln
µ2

m2
− 2 ln

µ2

m2
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µ2

M2
+ ln2 µ2

M2

)
m2

µ2
+ 4

(
ln
µ2

m2
+ 2 ln

µ2

M2

)
M2

µ2

]}
, (D5)
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and

γM = λ
CF
N

{
6−

(
9

2
+ 3 ln

µ2

m2

)
m2

µ2
− 6

M2

µ2
ln
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}
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{
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2
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2
+
π2

24
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ln
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N
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(
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. (D6)

Appendix E: Asymptotic expansion in the IR

In order to obtain the IR asymptotic expansion of the two-loop anomalous dimensions at next-to-leading order,
we first checked that all the master integrals required to obtain the anomalous dimensions to order µ4/m4 and
µ4/M4 are either known analytically or such that one can always root the external momentum through massive
propagators. For this second type of master integrals, one can employ the strategy of Ref. [72] that we briefly
reviewed in Sec. III D 3. For completeness, we here provide the resulting expansions.

In the case of Sabc, assuming a 6= 0, it is convenient to choose the loop momenta as follows

Sabc(k) =

∫
p

∫
q

1

(p+ k)2 + a

1

(q + p)2 + b

1

q2 + c
. (E1)

One can then expand the massive propagator carrying the external momentum k:

1

(p+ k)2 + a
=

∞∑
n=0

(−1)n
(2(p · k) + k2)n

(p2 + a)n+1
=

∞∑
n=0

(−1)n
n∑
`=0

n!

`!(n− `)!
(2(p · k))`(k2)n−`

(p2 + a)n+1
. (E2)

This yields

Sabc(k) =

∞∑
n=0

(−1)n
n∑
`=0

n!

`!(n− `)!

∫
p

∫
q

(2p · k)`(k2)n−`

(p2 + a)n+1

1

(q + p)2 + b

1

q2 + c
. (E3)

The p-integral vanishes for ` odd, whereas for ` even, one can use the formula∫
ddp

(2π)d
f(p2) (2 p · k)` =

`!

(`/2)!

(k2)`/2

(d/2)`/2

∫
ddp

(2π)d
f(p2) (p2)`/2 , (E4)

given in Ref. [71], where (a)n ≡ a(a+ 1) · · · (a+ n− 1) is the Pochhammer symbol. One then arrives at

Sabc(k) =

∞∑
n=0

(−1)n
[n/2]∑
`=0

n!

`!(n− 2`)!

(k2)n−`

(d/2)`

∫
p

∫
q

(p2)`

(p2 + a)n+1

1

(q + p)2 + b

1

q2 + c

=

∞∑
n=0

[n/2]∑
`=0

∑̀
h=0

(−1)n+`−h n!

(n− 2`)!h!(`− h)!

(k2)n−`

(d/2)`
a`−h I(n+1−h)11(a, b, c), (E5)

where we redefined `→ 2` (since it is even) and [n/2] denotes the integer part of n/2.
We have thus expressed the IR expansion of Sabc in terms of the integrals I(n+1−h)11 which are essentially nothing

but multiple derivative of I111(a, b, c) with respect to a. These multiple derivatives can be conveniently obtained by
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repeated use of Eq. (56).14 We note that ` ≤ n/2 and thus the exponent of k2 in (E5) is such that n− ` ≥ n/2. This
implies that terms with n > 2p contribute to powers of k2 with an exponent strictly larger than p. In other words,
to obtain the expansion up to order (k2)p, it is enough to truncate the sum over n up to and including n = 2p.

In the case of Uabcd(k), assuming a 6= 0, we write

Uabcd(k) =

∫
p

∫
q

1

(p+ k)2 + a

1

p2 + b

1

q2 + c

1

(q + p)2 + d
, (E6)

which is similar to (E1) with b→ d and an additional propagator 1/(p2 + b). It is then clear that by using the same
technique as above, we arrive at

Uabcd(k) =

∞∑
n=0

(−1)n
[n/2]∑
`=0

n!

`!(n− 2`)!

(k2)n−`
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q
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(p2 + a)n+1

1
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1

q2 + c

1

(q + p)2 + d

=

∞∑
n=0
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∑̀
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(−1)n+`−h n!

(n− 2`)!h!(`− h)!

(k2)n−`

(d/2)`
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∫
p

∫
q

1

(p2 + a)n+1−h
1

p2 + b

1

q2 + c

1

(q + p)2 + d
. (E7)

In the case where a = b, we then obtain

Uaacd(k) =

∞∑
n=0

[n/2]∑
`=0

∑̀
h=0

(−1)n+`−h n!

(n− 2`)!h!(`− h)!

(k2)n−`

(d/2)`
a`−h I(n+2−h)11(a, c, d) . (E8)

In the case a 6= b, we write

αn+1 ≡
1

(p2 + a)n+1

1

p2 + b
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1

(p2 + a)n
1

p2 + a

1
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=

1
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1

(p2 + a)n

[
1
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− 1

p2 + b

]
=

1
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1
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1
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+

1
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1
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1
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− 1

(b− a)2

1

(p2 + a)n
+ · · ·+ (−1)n

(b− a)n+1

1

p2 + a
− (−1)n
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α0

=
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(−1)j

(b− a)j+1

1

(p2 + a)n+1−j −
(−1)n

(b− a)n+1

1

p2 + b
, (E9)

and then

Uabcd(k) = −
∞∑
n=0

[n/2]∑
`=0

∑̀
h=0

(−1)`
n!

(n− 2`)!h!(`− h)!

(k2)n−`

(d/2)`

a`−h

(b− a)n+1−h I111(b, c, d)

+

∞∑
n=0

[n/2]∑
`=0

∑̀
h=0

n−h∑
j=0

(−1)n+`−h+j n!

(n− 2`)!h!(`− h)!

(k2)n−`

(d/2)`

a`−h

(b− a)j+1
I(n+1−h−j)11(a, c, d) . (E10)

As before, to obtain the expansion up to order (k2)p, we need to consider the sum over n up to n = 2p.

Let us finally consider the case of Mabcde, assuming a 6= 0 and b 6= 0. We write

Mabcde(k) =

∫
p

∫
q

1

(p+ k)2 + a

1

(q + k)2 + b

1

p2 + c

1

q2 + d

1

(p− q)2 + e
, (E11)

14 One could wonder why it is not possible to simply take multiple
derivative of the explicit expression for I111(a, b, c). Although
possible this leads to cumbersome combinations of hypergeomet-

ric functions and their derivatives. It is much more convenient
to first express the multiple derivatives algebraically in terms of
I111(a, b, c) using Eq. (56) and only then do the substitution of
I111(a, b, c) by its explicit expression.
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where we assume a 6= 0 and b 6= 0. The expansion of the two propagators carrying k leads to

Mabcde(k) =

∞∑
n1=0

∞∑
n2=0

n1∑
`1=0

n2∑
`2=0

(−1)n1+n2n1!n2!

`1!`2!(n1 − `1)!(n2 − `2)!
(k2)n1+n2−`1−`2

×
∫
p

∫
q

(2(p · k))`1

(p2 + a)n1+1

(2(q · k))`2

(q2 + b)n2+1

1

p2 + c

1

q2 + d

1

(p− q)2 + e
. (E12)

This can be simplified using the last formula in the Appendix of Ref. [71]

Mabcde(k) =

∞∑
n1=0

∞∑
n2=0

n1∑
`1=0

n2∑
`2=0

∑
2h1/2+h3=`1/2

(−1)n1+n2n1!n2!

(n1 − `1)!(n2 − `2)!h1!h2!h3!

(k2)n1+n2−(`1+`2)/2

(d/2)(`1+`2)/2

×
∫
p

∫
q

(p2)h1

(p2 + a)n1+1

(q2)h2

(q2 + b)n2+1

1

p2 + c

1

q2 + d

(2p · q)h3

(p− q)2 + e
. (E13)

Using 2p · q = p2 + q2 + e− (p− q)2 − e, this rewrites

Mabcde(k) =

∞∑
n1=0

∞∑
n2=0

n1∑
`1=0

n2∑
`2=0

∑
2h1/2+h3=`1/2

∑
j1+j2+j3+j4=h3

(−1)n1+n2+j4n1!n2!

(n1 − `1)!(n2 − `2)!h1!h2!j1!j2!j3!j4!

× (k2)n1+n2−(`1+`2)/2

(d/2)(`1+`2)/2
ej3
∫
p

∫
q

(p2)h1+j1

(p2 + a)n1+1

(q2)h2+j2

(q2 + b)n2+1

1

p2 + c

1

q2 + d

1

((p− q)2 + e)1−j4

=

∞∑
n1=0

∞∑
n2=0

n1∑
`1=0

n2∑
`2=0

∑
2h1/2+h3=`1/2

∑
j1+j2+j3+j4=h3

h1+j1∑
p1=0

h2+j2∑
p2=0

× (−1)n1+n2+j4+h1+j1−p1+h2+j2−p2n1!n2!(h1 + j1)!(h2 + j2)!

(n1 − `1)!(n2 − `2)!h1!h2!j1!j2!j3!j4!p1!p2!(h1 + j1 − p1)!(h2 + j2 − p2)!

(k2)n1+n2−(`1+`2)/2

(d/2)(`1+`2)/2

× ah1+j1−p1bh2+j2−p2ej3
∫
p

∫
q

(p2 + c)−1

(p2 + a)n1+1−p1

(q2 + d)−1

(q2 + b)n2+1−p2

1

((p− q)2 + e)1−j4
.

(E14)

In the case a = c and b = d, we arrive at

Mababe(k) =

∞∑
n1=0

∞∑
n2=0

n1∑
`1=0

n2∑
`2=0

∑
2h1/2+h3=`1/2

∑
j1+j2+j3+j4=h3

h1+j1∑
p1=0

h2+j2∑
p2=0

× (−1)n1+n2+j4+h1+j1−p1+h2+j2−p2n1!n2!(h1 + j1)!(h2 + j2)!

(n1 − `1)!(n2 − `2)!h1!h2!j1!j2!j3!j4!p1!p2!(h1 + j1 − p1)!(h2 + j2 − p2)!

× (k2)n1+n2−(`1+`2)/2

(d/2)(`1+`2)/2
ah1+j1−p1bh2+j2−p2ej3I(n1+2−p1)(n2+2−p2)(1−j4)(a, b, e) . (E15)

In the other cases, we need to make use of (E9). We note that `i ≤ ni and thus ni − `i/2 ≥ ni/2, so terms with
n1 + n2 > 2p contribute to powers of k2 with exponent n1 + n2 − (`1 + `2)/2 > p. In other words, to obtain the
expansion up to order (k2)p, we need to truncate the double sum over n1 and n2 such that it includes all terms with
n1 + n2 ≤ 2p. For j4 = 0, we need to relate I(n1+2−p1)(n2+2−p2)1(a, b, e) to I111(a, b, e) by repeated use of (56). For
j4 ≥ 1, we can relate I(n1+2−p1)(n2+2−p2)(1−j4)(a, b, e) to

Jα,β(a) ≡
∫
p

1

(p2 + a)α(p2)β
=
a2−α−β−ε

(4πΛ2)−ε
Γ(2− β − ε)Γ(α+ β − 2 + ε))

Γ(2− ε)Γ(α)
. (E16)
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instead. More precisely

I(n1+2−p1)(n2+2−p2)(1−j4)(a, b, e)

=

∫
p

∫
q

1

(p2 + a)n1+2−p1

1

(q2 + b)n2+2−p2
((p− q)2 + e)j4−1

=
∑

q1+q2+q3+q4=j4−1

(j4 − 1)!

q1!q2!q3!q4!
eq4
∫
p

∫
q

(p2)q1

(p2 + a)n1+2−p1

(q2)q2

(q2 + b)n2+2−p2
(−2p · q)q3

=
∑

q1+q2+2q3+q4=j4−1

(j4 − 1)!

q1!q2!(2q3)!q4!

(2q3)!

q3!

eq4

(d/2)q3

∫
p

∫
q

(p2)q1+q3

(p2 + a)n1+2−p1

(q2)q2+q3

(q2 + b)n2+2−p2

=
∑

q1+q2+2q3+q4=j4−1

(j4 − 1)!

q1!q2!q3!q4!

eq4

(d/2)q3
Jn1+2−p1,−q1−q3(a)Jn2+2−p2,−q2−q3(b) , (E17)

where in the last steps we have used Eq. (E4).

For instance up to order µ2, the gluon and ghost anomalous dimensions in the IR are found to be

γA =λ

{
1

3
− 217

180

µ2

m2
+

4Nf
5N

µ2

M2

}
+ λ2 µ

2

m2

{
38687

25920
− 37

288
π2 +

3647

288
S2 −

179

360
ln
µ2

m2
+

13

144
ln2 µ2

m2

+
Nf
N

[(
8

9
− 16x2 +

994

9
x4 − 2756

9
x6 +

520

9
x8 +

7216

9
x10 − 1984

3
x12

)
Ĩ1xx

(1− 4x2)4

+

(
151

90
− 3334

135
x2 +

3280

27
x4 − 33112

135
x6 +

3112

9
x8 − 992

3
x10

)
lnx2

(1− 4x2)4

−25 + 1122x2 − 12128x4 + 36760x6 − 44640x8

270(1− 4x2)3

]
+
CF
N

Nf
N

[
−
(

16

9
− 32x2 +

1952

9
x4 − 5888

9
x6 +

1664

3
x8 +

1280

9
x10

)
Ĩ1xx

(1− 4x2)4

−
(

4 + 504x2 − 8056x4 + 47792x6 − 78432x8 + 19840x10 + 9600x12

135(1− x2)2

)
lnx2

(1− 4x2)4

−4− 416x2 + 3904x4 − 5376x6 + 4800x8

135(1− 4x2)3(1− x2)

}
, (E18)

and

γc =λ

(
− 5

12
+

1

2
ln
µ2

m2

)
µ2

m2

+ λ2 µ
2

m2

{
−4295

576
+

5

72
π2 +

459

16
S2 +

1

12
ln
µ2

m2

+
Nf
N

[
5

9
+ 4x2 + 4x4Ĩ1xx +

(
1

3
+ 2x2

)
lnx2

]}
, (E19)

where we have set x ≡ M/m. In deriving these expressions, we have used that ψ1(1/3) + ψ1(1/6) = 8π2/3 + 81S2,
where ψ1 denotes the trigamma function. In the quenched limit Nf → 0, we recover the results obtained in Ref. [37].
Similar (but lengthier) expressions can be obtained for the anomalous dimensions γψ and γM .
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